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Abstract. We construct adelic objects for rank two integral structures on arithmetic surfaces and develop
measure and integration theory, as well as elements of harmonic analysis. Using the topological Milnor
K2 -delic and K1 ×K1 -delic objects associated to an arithmetic surface, an adelic zeta integral is defined. Its
unramified version is closely related to the square of the zeta function of the surface. For a proper regular model
of an elliptic curve over a global field, a two-dimensional version of the theory of Tate and Iwasawa is derived.
Using adelic analytic duality and a two-dimensional theta formula, the study of the zeta integral is reduced to the
study of a boundary integral term. The work includes first applications to three fundamental properties of the
zeta function: its meromorphic continuation and functional equation and a hypothesis on its mean periodicity;
the location of its poles and a hypothesis on the permanence of the sign of the fourth logarithmic derivative of
a boundary function; and its pole at the central point where the boundary integral explicitly relates the analytic
and arithmetic ranks.
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Introduction

0. A conceptual way to understand the meromorphic continuation and functional equation of zeta
functions of global fields and their twists by Dirichlet characters is to lift them to zeta integrals on
appropriate adelic objects and then calculate the integrals in two different ways, using a powerful
adelic duality. For number fields this first appeared in [24], [57], [25]; for the general case see e.g.
[60]. For a continuous homomorphism χ from the idele class group to the multiplicative group of
complex numbers, and an appropriate function f on the adeles, one derives the following formula
concerning the zeta integral ζ(f, χ):

ζ(f, χ) = ξ(f, χ) + ξ(f̂ , χ̂) + ω(f, χ), <(s(χ)) > 1

in which the first two terms are absolutely convergent integrals on the plane. The boundary term
ω(f, χ) involves an integral of f and its transform f̂ over the set {0}, which is the (weak) boundary
of the multiplicative group of the global field. This boundary term is a rational function either of
s or of q−s. The meromorphic continuation, functional equation, and the location of the poles of
the zeta integral and the determination of their residues then follow from analytic properties of the
boundary term.

This K1-adelic method was extended to algebraic groups over global fields in [18], where one
works with zeta integrals of an automorphic representation. The appropriate analogue of the boundary
term has finitely many poles. In particular, in the cuspidal case the corresponding boundary term
vanishes.

1. Instead of passing from the one-dimensional, commutative theory, which uses GL1 or K1 of
one-dimensional local, global, and adelic objects, to the one-dimensional, noncommutative theory,
i.e. using algebraic groups of the objects, this work goes in the direction of a commutative, two-
dimensional theory in the following sense. The analogue of a global field is a two-dimensional
global field, namely the field of rational functions of an arithmetic surface, which in this text will
be a proper, regular model of a curve over a (one-dimensional) global field. Abelian extensions of
a two-dimensional global field are described by higher class field theory, one exposition of which
uses products, restricted in a two-dimensional sense, of topological Milnor Kt

2-groups of completed
and semi-completed objects associated to points and curves on the surface. In this work, without
using higher class field theory, but working with subobjects of the objects from explicit higher class
field theory, we lift the zeta function of the arithmetic surface to a zeta integral on Kt

2-delic and
K1 × K1-delic objects, and then develop a two-dimensional, commutative generalization of Tate
and Iwasawa’s one-dimensional theory.

Thus, unlike almost all works in arithmetic geometry, which study the zeta function of arithmetic
schemes in dimension two and higher via the study of their L-function factors, the two-dimensional
adelic analysis of this paper directly operates with the zeta function.

The key ingredient, which has not been available until recently, is the theory of translation
invariant measure and integration on higher dimensional local fields, developed in [11], [12]. To
introduce the zeta integral we first construct the theory of measure and integration on new adelic
objects. The two-dimensional adelic analysis reveals various kinds of new adelic symmetries
underlying the properties of the zeta function, which are not explicitly visible in the approaches
which study the L-function factors. Milnor K-theory plays an important role too, both for the
motivation of some of the main objects and for their use. There are numerous links between the
commutative, two-dimensional adelic theory of this paper and the one-dimensional, noncommutative
theories, including aspects of the arithmetic and geometric Langlands correspondences.
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The ideles, introduced by Chevalley, simplified and clarified some of fundamental structures
in algebraic number theory. Similarly, for a group G (G = Ga, Kn, or K⊕n1 ), G-adeles in higher
dimensions are expected to play a central role in arithmetic geometry. Deep theorems in the arithmetic
of elliptic curves in characteristic zero have so far been proved only under special restrictions on
the ground global field, using quite specific methods which unfortunately cannot be extended to
an arbitrary global field. In contrast, adelic methods are universal and they work over an arbitrary
global field without any restrictions. The adelic perspective in dimension two leads to a unified
whole understanding of the connections between three fundamental aspects of zeta functions: the
meromorphic continuation and functional equation, the location of poles, and the behaviour at the
central point.

2. This text deals with the relative situation of a two-dimensional, arithmetic scheme S over a
one-dimensional baseB, the latter being the spectrum of the ring of integers of a global number field
k in characteristic zero, or a proper, smooth, connected curve over a finite field. The central case
on which we concentrate in this work is that of a proper, regular model of an elliptic curve over a
global field, which is the first nontrivial case of an arithmetic surface. The zeta integral in this case
converges in the best possible way. In the case of proper, regular models of hyperbolic curves over
global fields one should renormalize the fibre products of local zeta integrals, using the projective
space over B.

Prerequisites for this work are the one-dimensional theory [57], [24] and the higher dimensional,
local theory [11], [12]. A closely related text which explains the main ideas, methods, constructions,
and directions of applications and which is relatively free from technical details is [14]. The current
text simplifies some of the objects in [14].

A brief review of [11] is included at the beginning of parts 1 and 3. The numeration of the
sections continues that of [11], and its sections are referred to without explicit mentioning of [11].
The sections form rather natural divisions of the material of the paper and they are of varying length;
such a simple marking of the text aims to simplify its reading. The two-dimensional theory of [11]
was extended to higher dimensional local fields in [12], which also contains a discussion of the links
between the integration on higher local fields and the Feynman path integral. For an alternative
approach to the measure, integration and zeta integrals on valuation fields whose residue field is a
local field see [39]; its method uses the lifting from the residue level, see section 13 of [11. For the
measure and integration theory on finite dimensional vector spaces over such fields see [40], and for
some new, interesting behaviour of the Fubini property for invertible polynomial transformations on
vector spaces see [41]. The study of new representation theoretical algebras associated to algebraic
groups over two-dimensional local fields, related to [11], is contained in [32] and [36]. In the equal
characteristic case, there is a geometric categorical approach to the study of representation theoretical
aspects of finite and infinite dimensional groups over two-dimensional local fields; see e.g. [16],
[6]. It has undoubtedly many links with the previously mentioned works. For a model theoretical
approach to integration on henselian fields with residue field of characteristic zero, which unifies
a finitely additive version of the measure and integration on higher local fields with the so called
motivic integration, see [22], [23].

3. The paper consists of 4 parts. Part 1 develops the theory of adelic measure and integration on
new, two-dimensional adelic objects associated to S. Part 2 contains a short K2-delic description of
two-dimensional class field theory. Part 3 introduces and studies the zeta integral of S, and, for a
proper, regular model of an elliptic curve over a global field, it derives a two-dimensional analogue
of the unramified part of the classical Tate–Iwasawa theory. Part 4 includes both a more explicit
description of the zeta integral and the first applications of the two-dimensional adelic method to
and its relations with several key issues in the arithmetic of elliptic curves over global fields.
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Now we summarise the content of the four parts; see also their introductions and the introductions
of their subparts. Parts 1 and 3 are essentially devoted to constructing new mathematical objects and
checking some of their fundamental properties.

3-1. In the theory of part 1 we do not strive for the maximal level of generality and place more
emphasis on explicit constructions rather than developing a general approach. To an arithmetic
scheme S −→ B corresponding to a proper, regular model of a smooth, projective curve over a
global field (for the precise definition, see section 24), we can associate several adelic objects. Each
of them is defined by two restricted product conditions.

There are two quite different adelic spaces on S. Recall that every nonarchimedean, two-
dimensional local field has two rings of integers: one is the ring of integers of a discrete valuation
of rank one and the other is the ring of integers of a discrete valuation of rank two (for example, if
the field is Qp((t)) then these two rings are Qp[[t]] and Zp + tQp[[t]]). The two adelic spaces on S

will be adelic spaces associated to these two different integral structures.
Section 28 introduces a large adelic object AS, for which one of the restricted product conditions

is taken with respect to the rank one integral structure. In positive characteristic this adelic object was
first defined by Parshin in [44], [46]; see his subsequent works for their first geometric applications.
This adelic space is suitable for geometric duality studies and for the study of 1-cocycles on the
surface. It is not very useful for measure and integration, the zeta integral, and the study of 0-cycles.
For all those purposes one uses the second adelic space AS′ , introduced in section 29. It is associated
to a subset S′ of the irreducible curves on S which contains only finitely many horizontal curves.
This object satisfies two adelic conditions, one of which is taken with respect to the rank two integral
structure. Using the two-dimensional local theory of [11], section 30 introduces an R((X))-valued
measure, a C((X))-valued integration, and a transform for elements of certain functional spaces on
the adelic object AS′ . If the vertical part of S′ contains all vertical curves on S then the measure and
integration theory on the object AS′ works best when the genus of the generic fibre is 1. In the case
of a general arithmetic surface, a renormalization is required.

The adelic object AS′ contains a subspace BS′ of local-global nature which, from the point of
view of adelic dualities, plays the role of an analogue of the global elements in the one-dimensional
adelic object (of course, there is also a purely discrete object, the two-dimensional global field K
of functions on S, but it is not really involved at this stage). Relations between various objects
associated to AS′ and the next level BS′ are crucial for two-dimensional class field theory and zeta
integral study. In section 32 we derive an analogue of the summation formula, whose left and right
hand sides are integrals over finitely many curves, for elements in certain functional spaces on A.

3-2. Part 2 introduces topological Milnor K2-delic objects associated to S, using the adelic objects
of part 1 and local theory of [9]. It includes without proof the main theorem of two-dimensional
class field theory for S in the language of Kt

2-delic objects. Abelian extensions of the field K of
rational functions on S are described by open subgroups of JS/PS, where

JS =
∏′

y

∏′

x∈y
Kt

2 (Kx,y)×
∏′

σ,ω∈Sσ0

Kt
2 (Kω,σ),

where Kx,y, Kω,σ are two-dimensional local fields, or finite products of such fields, associated to
points on curves y and archimedean curves Sσ, and

PS = ∆

∏′

y

K2(Ky) + ∆

∏′

x

K2(Kx) + ∆

∏
σ

K2(Kσ),

where Ky, Kσ, and Kx are two-dimensional fields and rings associated to irreducible curves,
archimedean fibres, and closed points, and ∆ is the map induced by the diagonal map; see sections
24 and 33 for definitions. Keeping in mind the unramified theory and the following study of the zeta
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integral, we explain how to modify the class group JS/PS to a more convenient J/P . The main
theorem of part 2 is not used in the study of the zeta integrals. Analogously to the one-dimensional
theories, the theory of zeta integrals employs some of adelic objects which naturally appear in class
field theory, but none of the results.

3-3. For a scheme S of finite type its (arithmetic) zeta function is defined as the Euler product

ζS(s) =
∏
x∈S0

(1− |k(x)|−s)−1

of factors corresponding to closed points x of S, where |k(x)| is the cardinality of the finite residue
field at x.

Let S = E −→ B be a two-dimensional, arithmetic scheme which is a regular model of an elliptic
curve E over a global field k and which is proper over B. Up to a product nE(s) of finitely many
zeta functions of affine lines over finite fields associated to singular fibres of E −→ B, ζE(s) equals
the Hasse–Weil zeta function

ζE(s) =
ζB(s) ζB(s− 1)

LE(s)
,

where LE(s) is the L-function of E and where ζB is the classical Dedekind zeta function ζk in
characteristic zero and is the completed (at infinite valuations) zeta function of k, the function field
of B, in positive characteristic. Traditionally, properties of the zeta function in dimension two are
not studied directly, but via the study of the properties of the L-function, with the Galois group in the
background being that generated over k by the torsion points of E. This text studies properties of
the zeta function directly, using the commutative, two-dimensional adelic method, with the Galois
group in the background now the maximal abelian extension of the field of rational functions on E.

3-4. In the local theory of [11] we used a surjective homomorphism, natural from the point of view
of class field theory, from K1 ×K1 of the ring of integers of rank one of a two-dimensional local
fieldKx,y to the topological Milnor groupKt

2(Kx,y). We use it to integrate functions overKt
2(Kx,y)

via lifting them to functions on K1 ×K1 of the ring of integers. No information is lost as far as the
unramified zeta integral is concerned. Using the local homomorphisms, we construct in part 3 an
adelic homomorphism

t: (K1 ×K1)(AS′ ) = (AS′ × AS′ )× −→ J

which is canonical modulo units; see section 36. The homomorphism t is related to the symbol map
A×S′⊗A×S′ −→ J via a commutative diagramme in Lemma 36. This gives a certain relation between
the multiplicative groups of two different integral structures on the surface.

Fix S′ as the union of all fibres on E together with a finite set of horizontal curves, and work with
A = AS′ . We define certain subgroups T, T1, T0 of (A×A)× with their measure and integration. In
particular, the integration over T differs from the integration over (A×A)×; the measure on T0 is the
tensor product of lifts of rescaled discrete measures on the function fields of fibres and curves, and it
differs from the lift of the discrete counting measure at the residue level. The objects T , T1, T0 are
two-dimensional zeta integral analogues of the ideles, the ideles of module 1, and the multiplicative
group of global elements in the one-dimensional case. The morphism t sends T into the Kt

2-delic
object J , and the local-global object T0 to P modulo units. The kernel of t is large, but it can be
ignored in the unramified theory. We also define a subgroup T of T , which differs at horizontal data.

For a function g in a two-dimensional Bruhat–Schwartz space and a continuous homomorphism
χ: J/P −→ C×, we define an adelic zeta integral

ζ(g, χ) = ζE,S′ (g, χ) =
∫
T

g χt,
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where χt is a certain version of χ ◦ t, modified at horizontal data; for the notation see sections 39
and 37.

The definition of the zeta integral entails that for reasonably nice functions g it factorizes into a
product of zeta integrals on curves and fibres in S′. The zeta integrals on fibres are different from
the zeta integrals on horizontal curves. In general, the zeta integral takes values in C((X)), but, for
an unramified χ = | |s2 and appropriate lift of functions at the residue level, its values are in C.

3-5. Section 40 contains the first calculation of the zeta integral, under some restrictions on the
types of singularities of the fibres. It shows that ζ(g, | |s2) on <(s) > 2 equals the product of an
exponential factor c1−s

E , the square of the zeta function ζE(s), and the product of the squares of
the one-dimensional zeta integrals at s/2 of the horizontal curves in S′, each of which satisfies a
functional equation with respect to s→ 2−s. In particular, through cE we get an adelic interpretation
of the non wild part of the conductors of the fibres. The reason why we add the horizontal data
is to ensure that the image N of the module map | | on T is a nice, locally compact group in
characteristic zero, namely the multiplicative group of positive real numbers; the horizontal zeta
integral contribution will then cancel out each other in the functional equation for E. The set S′
includes just finitely many horizontal curves to ensure that the product of the horizontal zeta integrals
converges.

Using the summation formula from section 32 on infinitely many finite subsets of curves in S′,
we deduce in section 44 a two-dimensional theta formula∫

T0

(
f (αβ)− |α|−1 f (ν−1α−1β)

)
dµ(β) =

∫
∂T0

(
|α|−1 f (ν−1α−1β)− f (αβ)

)
dµ(β).

Its shape reflects the difference between the additive structure and multiplicative structure (close to
the unramified class field theory structure) in dimension two.

We perform the second calculation of the zeta integral ζ(f, | |s2) for a certain centrally normalized
function f in section 45. This gives the decomposition

ζ(f, | |s2) = ξ(| |s2) + ξ(| |2−s2 ) + ω(| |s2)

on the half-plane <(s) > 2 (for notation see section 45). The function ξ(| |s2) is an absolutely and
uniformly convergent integral on the complex plane, and so it extends to an entire function on the
complex plane. These two calculations of the zeta integral form a two-dimensional analogue for E
of the (unramified) work of Tate and Iwasawa.

In section 46 we get an integral representation for the boundary term

ω(| |s2) =
∫
N−

h(n)ns−2 dµN− (n), h(n) =
∫
T1

(
n2 f (mnγ)− f (m−1

n γ)
)
dµ(γ),

where h(n) is the boundary function, N− is a subspace of the elements 6 1 of the measure space N
such that N is the disjoint union of N− and its inverse, and mn ∈ T are chosen such that |mn| = n2.

The integral representation of ω(| |s2) is actually a Laplace–Stieltjes transform: for example, in
characteristic zero a logarithmic change of variable makes this integral the Laplace transform of
the function h(e−t) e2t. Using the relation between ζ(f, | |s2) and ζE(s) we see that the zeros of the
L-function ofE and the poles of the zeta function essentially correspond to the poles of the boundary
term. Compare this with the quite different one-dimensional situation, where finitely many poles of
the corresponding boundary term match poles, and not zeros, of the twisted zeta function.

Using the two-dimensional theta formula of section 45 we obtain h(n) = h1(n) + h2(n), where
the integral

∫
N−

h1(n)ns−2 dµN− (n) extends to an entire function on the complex plane and

h2(n) = n2
∫
T1/T0

∫
∂T0

(
|mnγ|−1f (m−1

n ν−1γ−1β)− f (mnγβ)
)
dµ(β) dµ(γ)
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(see section 46 for the notation), so that the information about the analytic properties of the zeta
integral is contained in h2(n). The latter involves an integral over the (weak) boundary ∂T0 of the
adelic object T0, which explains the terminology ‘boundary term’ for ω(| |s2). All the information
about the meromorphic continuation, functional equation, and poles of the zeta integral is contained
in the boundary term ω(| |s2), which in turn is determined by the structure of the integral h2(n).
Unlike the one-dimensional case, the boundary term in dimension two is highly nontrivial.

3-6. Part 4 contains first relations and applications of the previous theory to three fundamental
aspects of the arithmetic of elliptic curves over global fields: the meromorphic continuation and
functional equation of the zeta function, the location of its poles, and its behaviour at s = 1. For
more on this see Analysis on arithmetic schemes. III.

We include several explicit descriptions of the zeta integral and function h(n) in the ‘classical’
number theory language. In particular, we derive in 4.3 the following explicit formula for the zeta
integral in characteristic zero when the set S′ contains only one horizontal curve, the image of the
zero section. Write a generalized Dirichlet series

ζE(s)2c1−s
E =

∑
n∈cEN

c(n2)
ns

.

Then

ζE,S′ (f, | |s2) = e
∑

n∈cEN
c(n2)

∫ ∞
0

∫ ∞
0

ya,n2a−1 (n)ns
da

a

dn

n
,

where

ya,b(n) =
(
Θ(n2a2)− 1

)(
Θ(n2b2)− 1

)
,

Θ is the theta-function of k, and e is the square of the normalized classical measure on the idele class
group of k. In this case,

h(n) = e
∑

n∈cEN
c(n2)

∫ ∞
0

(
n2ya,n2a−1 (n)− ya,n2a−1 (n−1)

) da
a
.

3-7. Aspects of the meromorphic continuation and functional equation of the zeta integral are
discussed in sections 47 and 48. Since the zeta function of E does not remember much about auto-
morphic properties of its denominator, theL-function ofE, we need a replacement of automorphicity.
We offer a new hypothesis of mean-periodicity in an appropriate space of complex valued functions
on R or Z for the function H(t), which is h(e−t) in characteristic zero and h(q−t), t ∈ Z, in positive
characteristic. Recall that a function l in a locally convex functional spaceX is called mean-periodic
if its translations do not generate a dense subspace. The Hahn–Banach theorem on X shows that
this is equivalent to l being a solution of a homogeneous convolution equation l ∗ τ = 0, where τ
is a nonzero element of the dual space of X . In the presence of harmonic synthesis in X every
mean-periodic function l in X is approximated by sums of exponential polynomials, each of which
lies in the closure of the space generated by translations of l; this generalizes the classical Fourier
series representation for periodic functions. See section 47 for more properties of mean-periodic
functions. The Laplace–Stieltjes transform of a mean-periodic function of exponential growth has a
meromorphic continuation to the complex plane, given by the Laplace–Carleman transform.

A functional equation for the boundary function is

h(n−1)n = −h(n)n−1.
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In some sense the Laplace transform of h corresponds to the Mellin transform for modular L-
functions, and the functional equation of h and the mean-periodicity ofH are weak analogues of the
modularity of L-functions.

In positive characteristic the functionH is mean-periodic in the space of complex valued functions
on Z of exponential growth. In characteristic zero H is expected to be mean-periodic in the space
C∞exp(R) of smooth functions on R of exponential growth. The expected mean-periodicity of H(t)
would imply that the zeta integral extends to a meromorphic function and satisfies the functional
equation. Hence we would get the same properties for the square of ζE and of ζE ; see section 48.
One would also obtain a description of the poles of the zeta function on the critical line as the
Carleman spectrum of the transform of a function related to h. The integral adelic representation for
the function h and the two-dimensional theta formula will be of great help towards establishing the
mean-periodic property of H .

In characteristic zero it is proved in [56] that if the zeta-function of E has a meromorphic
continuation of the expected shape and satisfies the functional equation, then the corresponding
function H is indeed mean-periodic in several functional spaces which include the space C∞exp(R).
For modular curves the convolutor for H can be obtained using the theory of GL(2) cuspidal
automorphic representations, which in this sense is dual to the two-dimensional commutative theory;
see [55].

More generally, to every zeta function of an arithmetic scheme in characteristic zero which
extends to a meromorphic function on C of the expected shape and satisfies the functional equation,
one can associate a mean-periodic function in C∞exp(R). For example, for the Riemann zeta function
we get x−1(ϑ(x−2)− 1)− (ϑ(x2)− 1) = 1− x−1 and the mean-periodic function is 1− et.
3-8. When one tries to meromorphically extend the zeta integral to the left, the issue of its poles come
naturally into consideration. Relations of the study of the zeta integral to the (generalized) Riemann
hypothesis for the zeta integral are discussed in sections 49–54 under the assumption that the set S′
contains exactly one horizontal curve, namely the image of the zero section. In sections 49–50 we
describe the behaviour of the first three derivatives of H(t) as t → ∞. In section 51 we propose
hypothesis (∗) which says that the fourth derivative of H(t) keeps its sign for all sufficiently large t.
This hypothesis is discussed for characteristic zero in section 52, and for positive characteristic in
section 53. In section 54 we show that hypothesis (∗), together with the absence of noninteger, real
poles for the zeta integral inside the critical strip (i.e. the real RH), imply the Riemann Hypothesis
for the zeta integral. The real RH can be easily checked computationally for modular elliptic curves
over the rationals ([48] includes the computational data for the curves of conductor < 8000). On
the other hand, when k = Q the analytic study of the function H in [54] shows that if LE(s) has
a holomorphic continuation and satisfies the functional equation, the nonreal zeros of LE(s) on the
critical line are of multiplicity not greater than the multiplicity at 1 (this is expected to be true) and
some technical condition on the derivative of LE holds, then the Riemann hypothesis for the zeta
function implies hypothesis (∗).

In section 55 we discuss a relation between the Laplace–Carleman transform, the analytic
continuations of the zeta integral and zeta function, and their functional equations. Without using
mean-periodicity, but assuming hypothesis (∗) and non density of the Carleman spectrum of the
Laplace–Stieltjes–Carleman transform of a function related to h, we describe another method to
derive the analytic continuation and functional equation of the boundary term.

3-9. Another application of zeta integrals is to special values, as they give a new method of studying
the local behaviour of the zeta function at s = 1 and relate the geometric arithmetic and analytic
ranks of the zeta function. The analytic behaviour of the zeta integral at s = 1 is described by
the behaviour of the boundary term at s = 1, and the latter involves an integral over the boundary
of T0 whose structure incorporates the arithmetic rank. Assuming the meromorphic continuation
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and functional equation of the zeta function, the new method is sketched in section 58. It uses the
relation between the multiplicative groups of the two adelic spaces indicated in 3-4. See [69] for
more development.

3-10. In section 57 we sketch modifications required to treat an arithmetic scheme corresponding to
a curve of genus g > 1 over a global field. Since the zeta integral defined above diverges for such
schemes, one has to implement a fibrewise renormalization, using the (g − 1)st power of the zeta
function of P1(B).

1. A-delic objects with respect to two-dimensional structure

Unlike the classical one-dimensional case where there is a unique adelic object A, there are two
quite different adelic objects associated to an arithmetic surface. The first two-dimensional adelic
object A, which in positive characteristic appeared in [44] – [46], will be defined below in arbitrary
characteristic; and we introduce and study a new two-dimensional adelic object A. In the first
approximation, the main difference between them is that one of the two adelic conditions for A
is with respect to the integral structure of rank one, whereas a similar adelic condition for A is
with respect to the integral structure of rank two. The bold adelic object is more suitable for
geometric applications, including Poincare type dualities and relations with the Picard group at
the multiplicative level, and is less suitable for arithmetic applications. In particular, one cannot
integrate over A, but one can integrate over A. In 25 we define the adeles Ay associated to a curve
y on S as a certain restricted product of local objects associated to points on the curve y. Its fraction
version Ay is defined in 28. The adelic object A is a certain restricted product of all Ay with respect
to the integral structures of rank one. Section 25 introduces the adeles AS({A}) associated to a
choice of Ox,y-modules Ax,y as a certain restricted product of Ay. When each Ax,y is chosen to be
Ox,y and when a set S′ of curves on S includes only finitely many nonsingular horizontal curves,
the corresponding object denoted by AS′ or just A. We endow the adeles AS′ with an appropriate
topology. Using local characters, we get a pairing between AS′ and a certain dual object A◦S′ ; unlike
the one-dimensional case the latter is not isomorphic to AS′ when the set S′ is infinite.

Sections 30, 31 and 32 contain a list of natural definitions of measures and integrals on the adelic
objects. In 30, using the local theory of [11], we define a normalized measure on A and three
functional spacesR′A,RA,QA. Then we define and study integration on A and Fourier transform for
functions on it. We get an analogue of the familiar formula for the Fourier transform of functions in
QA, just by reducing to the one-dimensional case.

Providing the most general constructions is not the aim of this work, since this would make the
text too long. We choose those pieces of the general theory which are relevant for the study of the
zeta integral. In 31 we extend the previous definitions to adelic groups A×, (A×A)×. Measure and
integration on B, B× B are defined, and then we prove a summation formula in 32.

Now for the reader’s convenience we briefly review parts of the local theory of [11].
For an introduction to higher dimensional local fields see [68] and other papers in [15]. Let F

be a two-dimensional local field. Assume that the residue field E of F is a nonarchimedean local
field. Denote by t2 a local parameter of F and by t1 a lift of a local parameter of the residue field.
Denote by O the ring of integers of F with respect to its discrete valuation of rank one. Denote by
O the ring of integers of F with respect to any of its discrete valuations of rank two, for example
corresponding to the choice of local parameters t2, t1; O does not depend on the choice of discrete
valuation. When we pass to the adelic theory, the two different integral structures O and O give two
different adelic objects A and A on S.
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Define a function µ on the ring A of sets generated by the closed balls a + ti2t
j
1O with respect to

the rank two integral structure (this ring of sets does not depend on the choice of discrete valuation
of rank two)

µ(a + ti2t
j
1O) := q−jXi,

where q is the cardinality of the residue field of E. The function µ is well defined, translation
invariant and finitely additive; it depends on the choice of discrete valuation of rank two. Moreover,
µ is countably additive in the following refined sense. Call a series

∑
αn,αn =

∑
ai,nX

i ∈ C((X)),
absolutely convergent in the two-dimensional local field C((X)) if there is i0 such that ai,n = 0 for
all i < i0 and all n and if for every i the series

∑
n ai,n absolutely converges in C. Then the measure

µ is countably additive in the following refined sense: for countably many disjoint setsAn in A such
that ∪An ∈ A and

∑
µ(An) absolutely converges in C((X)), we have µ(∪An) =

∑
µ(An). See

[11] and [12] for more details.
To define the space of integrable functions, we first consider the space RF of all functions

f :F −→ C((X)) which can be written as a sum of a function which is zero outside finitely many
points and of

∑
cn charAn with countably many disjoint measurable setsAn, cn ∈ C((X)), such that

the series
∑
cnµ(An) absolutely converges in C((X)) with respect to its two-dimensional topology.

Then we define
∫
f dµ =

∑
cnµ(An); this definition is consistent. For example,

∫
charOdµ = 1,∫

charOdµ = 0. In order to have an analogue of the Fourier transform, we have to extend this class
of integrable functions to include functions of type α 7→ ψ(βα), where ψ is a character of F with
conductor O. On this larger space we then define the integral and check its consistency.

In particular, if a function f1:E −→ C is (absolutely) integrable over E with respect to the
normalized Haar measure µE , then the function f1 ◦ p extended by zero outside the ring of integers
O with respect to the discrete valuation of rank one on F is integrable and

∫
O
f1 ◦ p dµ =

∫
E
f1 dµE .

Denote by QF the subspace of integrable functions consisting of functions f with support in O and
such that f |O = g ◦ p|O for a Bruhat–Schwartz complex valued function g on E. For an integrable
function f define its transform

F(f )(β) =
∫
F

f (α)ψ(αβ) dµ(α).

Given f ∈ QF , the function F(f ) belongs to QF , and by reducing to the one-dimensional case
one easily gets the familiar double transform formula F2(f )(α) = f (−α). One can actually define
a weaker version of the Fourier transform without using measure and integration theory on higher
local fields, see e.g. [31].

For two-dimensional local fields whose residue field E is an archimedean local field, the ring
of measurable sets is generated by B = a + tiD + ti+1K[[t]] where D is an open ball in E and t
is a local parameter. The measure is a translation invariant additive measure µ on this ring such
that µ(B) = µE(D)Xi where µE is the ordinary Lebesgue measure on E if E is real, and is twice
the ordinary Lebesgue measure on E if E is complex. Define the character ψ:E((t)) −→ C× by∑
ait

i 7→ exp(−2πiTrE/R (a0)). The minus sign is to make the theory compatible with that of Tate.
The transform of an integrable function f is defined by the same formula as above.

See [11], [12], and [39] for a closely related approach of finitely additive lifting of integration
from a locally compact residue level, mentioned in 13.

1.1. Basic objects

24. Basic Notation. The following notation will be used throughout the text. The notation
matches those in [11] and [12]. It slightly differs from some of the notation in [14] which has been
partially simplified: most importantly, we do not use rescaling maps o and o′ in the current text, see
in particular Remark 3 in 39 and also Remark 2 in 36.
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Let S be a scheme of finite type. Various data sets associated to the scheme S are denoted by
S∗, S

∗. In particular, for i > 0 the notation Si stands for the set of all s in S whose closure {s}
viewed as a closed integral subscheme has dimension i. Closed points are often called just points.
The closure of an element of S1 is called a curve and often denoted by y. Thus every curve on S in
this text is irreducible.

Let B be an open subscheme of the following one-dimensional scheme B: the spectrum of the
ring of integers of a global number field k in characteristic zero or a proper smooth connected curve
over a finite field with function field k in positive characteristic.

For a smooth projective geometrically irreducible curve over k, let S be an arithmetic scheme
(surface) which is a proper regular model of the curve, i.e. a regular integral scheme which is proper
and flat over B with fibre dimension 1 whose generic fibre is the curve. In this text we assume that
B is the complete one-dimensional scheme B.

Every curve on S is either a component of a fibre S −→ B or it projects onto the wholeB. In the
former case it is called a vertical curve, and in the latter a horizontal curve. Every horizontal curve
is the closure on the surface of a closed point of the generic fibre. Objects of this paper are often but
not always depend on the reduced structure of subschemes of S only. To keep track of multiplicities
of components we use the terminology ‘special fibre Sb = S ×B k(b) over b ∈ B0’ and ‘geometric
fibre S ×B k(b)sep’. For a fibre ?, the notation y ⊂ ? stands for an irreducible component (viewed
with its reduced structure) y ∈ S1 of the fibre.

We will work with a set S′ of some of fibres and horizontal curves ? on the surface, on which
we impose more and more restrictions in 29, 35, 36, 40. Often we work with infinite products∏
x∈?,

∏
?∈S′ which are the limits (if they exist) limXo→X0

∏
x∈Xo , limSo→S′

∏
?∈So over the

partially ordered set of finite subsets Xo of the set of closed points of ? and finite subsets So of S′.

Fields and rings associated to S, y, x.

ByK we denote the function field of S. It is a two-dimensional global field. Its abelian extensions
are described in two-dimensional class field theory, see Theorem 34 for an adelic statement.

For a curve y denote by Ky the field of fractions of the completion Oy of the local ring of S at
y; we do not use the traditional hat notation for complete objects. Denote by My its maximal ideal.
The field Ky is a complete discrete valuation field with residue field k(y). A prime element of Ky

(local parameter of y) will be denoted by ty.
For every x ∈ S0 denote Ox the completion of the local ring of S at x. Its residue field is denoted

by k(x). This is a finite field of cardinality qx. Denote by K ′x the field of fractions of Ox and by Kx

its subring generated by K and Ox. In 36 we also define a subring Qx of K ′x for a singular point x
of a fibre ?.

For a nonarchimedean place v of the one-dimensional global field k let kv denote the completion
of k at v. Let Sv = S×B Okv and denote its special fibre by Sv = S×B k(v). The completion of the
local ring of Sv at a closed point x of Sv is naturally isomorphic to Ox. Denote by Kv the field of
functions of the generic fibre Skv = S ×B kv of Sv. For an archimedean place σ of k let kσ be the
completion of k with respect to σ. Let Sσ = S×B kσ, Kσ = k(Sσ). We can work with the curve Sσ

which may be called an ‘archimedean fibre’, note its difference from the one-dimensional special
fibres. For a closed point ω ∈ Sσ0 let Kω,σ be the fraction field of the completion of the local ring
of Sσ at ω; it is a two-dimensional local field whose first residue field kσ(ω) is R or C. Denote by
Oω,σ the ring of integers of Kω,σ with respect to the discrete valuation of rank one and choose a
local parameter tω. Choosing the coefficient subfield in Kω,σ we get an isomorphism of the latter
two-dimensional local field and the formal power series kσ(ω)((tω)).

Let ? be a curve or a fibre on S. For a closed point x in ? denote by ?(x) ⊂ (SpecOx)1 the
disjoint union of local branches z ∈ y(x) of y at x, y ⊂ ?. If x is a nonsingular point of ? then ?(x)
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is a one element set. If x is a singular point of a curve ? then its local branches z at x correspond
to minimal prime ideals of the completion of the local ring of ? at x and they also correspond to
maximal ideals of its integral closure.

In part 1 and 2 of this text we use the following notation. For a map K from the set {(x, z)},
where x a closed point, z ∈ ?(x) for a curve or fibre ? on S, to abelian groups or measures/functions,
Kx,? denotes

∏
z∈?(x) Kx,z for groups and ⊗z∈?(x)Kx,z for measures and functions. There will be

one exception from this rule in part 1: the object∗ Ox,? defined in 25 for a singular x ∈ ?. In part 3
and 4 of this work there will be several objects which do not follow the rule: e.g. the integral

∫
Tx,?

for singular x ∈ ? differs from the product of (x, z)-objects and integrals, where z runs through
?(x). In part 3, when all singular points (if they exist) of the reduced parts of fibres are split ordinary
double points, we occasionally use the notation

∏
x∈?Kx,z for the product of Kx,z where only one

local branch z (it does not matter which one) of ? at x is chosen for each x ∈ ?.
For a local branch z of ? at x denote byKx,z the fraction field of the completion of the localization

of Ox with respect to the corresponding prime ideal of Ox. The field Kx,z is a two-dimensional
local field, see e.g. [15]. According to the notation of the previous paragraph we get the ring
Kx,? =

∏
z∈?(x) Kx,z which is associated to the data x ∈ ? on S. If x is a nonsingular point of ?

then Kx,? = Kx,z is a field. A local parameter ty of Ky where y ⊂ ?, x ∈ y, can be used as a main
local parameter t2x,z of Kx,z .

Denote by Ox,z be the ring of integers of Kx,z with respect to the two-dimensional structure.
Denote by Ox,z the ring of integers in Kx,z with respect to the discrete valuation of rank one, and
by Mx,z its maximal ideal. Denote by Ex,z = Ox,z/Mx,z the first residue field of Kx,z . This is a
locally compact field. The ring of integers of Ex,? is a semilocal ring isomorphic to the product of
the ring of integers of Ex,y, y ⊂ ?. The ring of integers of Ex,? is the completion with respect to the
intersection of its maximal ideals of the normalization of the local ring of y at x and it is isomorphic
to the product of the completions of the local rings of the normalization ŷ of y at preimages of x.

For a local branch z at x of a curve or a fibre ? denote by t1x,z a lift in Ox,z of a local parameter
(uniformizer) of Ex,z . Denote by kz(x) the quotient field of Ox,z by its maximal ideal; it coincides
with the residue field of Ex,z , let qx,z be the number of its elements. The finite field kz(x) is a finite
extension of the field k(x). We call a closed point x of ? split or totally rational if the residue field
k(x) coincides with the residue field kz(x) for all local branches z of ? at x. In particular, every
regular point x of ? is split. For example, if x is a split ordinary double point of ? then the completion
of the local ring of ? at x is isomorphic to the quotient of the integral formal power series over k(x)
in two variables by the ideal generated by their product.

Let y be a horizontal curve and let σ be an archimedean place of k. The ring k(y) ⊗k kσ is the
direct sum of the completions k(y)Σ of k(y) with respect to all places Σ of k(y) which extend the
place σ, and is the direct sum of fields kσ(ω) where ω runs through closed points of Sσ which are
mapped to y under Sσ −→ S. We have the natural identification of the two sets, Σ↔ ω, and without
loss of generality we use the notation ω for Σ. Denote by Kω,y the corresponding two-dimensional
local field k(y)ω((ty)) associated to the curve y and its archimedean place ω. The archimedean local
field k(y)ω coincides with kσ(ω), and the field Kω,y is isomorphic to Kω,σ. Denote by Oω,y = Oω,σ
its ring of integers. It will be convenient to put Oω,y = Oω,y.

We have natural embeddings

Kx −→ Kx,y, Ky −→ Kx,y, Ky −→ Kω,y, Kσ −→ Kω,σ.

For more properties of the local objects in relation to each other see e.g. §1 Ch. II of [29].

* roman O in the published version is changed in this text to O
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From now on for a horizontal curve y we include the objects associated to the archimedean points
ω on y, like the field Kω,y, etc. In the list of data associated to y, we will often use the notation x, y
for ω, y, and in particular this field will be among the fields Kx,y associated to y.

When x ∈ S0, y ∈ S1, x ∈ y we often call (x, y) a nonarchimedean datum, sometimes using ab-
breviation na in displayed formulas; when the first residue of the correspondingKx,y is archimedean,
abbreviation a is sometimes used. The notation ns is used for nonsingular and acrhimedean points
of a curve or fibre, and s for singular points of a curve or fibre.

Everywhere below in the text ? stands for a fibre or a horizontal curve on S −→ B.

25. We go through a series of definitions which will lead to the adelic objects A, B, A, B in 28
and 29.

The adelic object Ary for a curve y on S is informally

Ary =
{(∑

i>r

ai,xt
i
y

)
x∈y =

∑
i>r

ait
i
y : ai = (ai,x)x∈y ∈ (Ox,y)x∈y are nice lifts of ai ∈ Ak(y)

}
.

This object knows more about the curve on the surface than the usual one-dimensional adelic space
Ak(y). As usual, there is some little extra work to be done in mixed characteristic.

Definition of Ary. In equal characteristic let ly: k(y) −→ Oy be the lifting which corresponds
to a choice of a subfield of Oy which is projected isomorphically onto k(y). Define

lny : k(y)⊕n −→ Oy, (c1, . . . , cn) 7→
n∑
i=1

ly(ci)ti−1
y .

In mixed characteristic we follow a well known standard procedure. Fix a p-base a1, . . . , as of
k(y), so s = 1, and lifts ai to Oy. Note that a1, . . . , as is a p-base of Ex,y and of Ak(y).

Define a map

kn: k(y) −→ Oy/p
nOy,

∑
a1

i1 . . . as
isbi1,...,is

pn 7→
∑

a
i1
1 . . . a

is
s b

pn

i1,...,is
+ pnOy,

where b is any lift of b. This map does not depend on the choice of lifts. Define a map

lny : k(y)⊕n −→ Oy/t
n
yOy, (c1, . . . , cn) 7→

n∑
i=1

kn(ci) ti−1
y + tnyOy.

In arbitrary characteristic for every x ∈ y define similarly the local and adelic maps

lnx,y:E⊕nx,y −→ Ox,y, Lny :A⊕nk(y) −→ (Ox,y)x∈y,

(resp. −→ Ox,y/t
n
yOx,y, −→ (Ox,y/tnyOx,y)x∈y). We also get the map

Ln,ry = try L
n−r
y :A⊕n−rk(y) −→ (Kx,y)x∈y

(resp. −→ (tryOx,y/t
n
yOx,y)x∈y).

Now define

Ary := {(ax,y)x∈y : ax,y ∈ Kx,y, (ax,y + tnyOx,y)x∈y ∈ im (Ln,ry ) for every n > 1} ⊂ (Kx,y)x∈y.

Observe that the construction of the object Ary works for every complete discrete valuation field
L whose residue field is a one-dimensional global field k and we similarly get the adelic object ArL.
In particular, ArKy = Ary.
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Using 24 for a singular curve y we see that

Ary := {(ax,y)x∈y : ax,y = (ax,z)z∈y(x) ∈ Kx,y, (ax,y) + tnyOy ∈ im (Ln,ry ) for every n > 1}.

Remark. We have Ary ' lim←−m>0 Ary/Ar+m
y . The quotient Ary/Ar+m

y is in one-to-one correspon-

dence with A⊕mk(y). In equal characteristic we can endow A⊕mk(y) with a suitable structure of graded
ring so that it is isomorphic to the quotient ring Ary/Ar+m

y and Ary is isomorphic to tryAk(y)[[ty]].
One of equivalent definitions of Ay is all (αx,y) ∈ (Ox,y)x∈y such that for every m > 0 for

almost all x ∈ y the element αx,y is in Ox + Mm
y Ox,y, where My is the maximal ideal of Oy. The

object Ary does not depend on the choice of ty.

Definition of Ay, py. Put Ay := A0
y. Denote by p = py:Ay −→ Ak(y) the residue homomor-

phism (ax,y) 7→ (ax,y) induced by the residue maps Ox,z −→ Ex,z , Oω,y −→ k(y)ω. Note that this
is not the coefficient of the inverse power of a local parameter.

Definition of Aσ. For an archimedean place σ let Aσ be the restricted product of Kω,σ with
respect to Oω,σ, ω runs through closed points of Sσ.

Definition of O?, K?, k(?), t?, Ox,?. For a closed point x of ? the objects Ox,?, Ox,?, Kx,?

are defined by the agreement in 24.
Denote by O? the completion of the product of the local rings of y ⊂ ? with respect to the r-adic

topology, r is the intersection of maximal ideals of the product. The ring O? can be identified with
the product of Oy for all y ⊂ ?. Denote by K? its fraction ring and by k(?) the ring of rational
functions on ?.

Choose a local parameter t? of ?, i.e an element of O? which serves as a local parameter in all
Oy, y ⊂ ?. We will use t? as the t2-parameter of all two-dimensional local fields Kx,z , z ∈ ?(x).

If ? is a fibre, denote by Ox,? the sum of the diagonal image of Ox in Ox,? and of t?Ox,?; this
is a subring of Ox,?. The ring Ox,? coincides with the preimage with respect to the residue map
Ox,? −→ Ex,? of the image of completion of the local ring of ? at x in Ex,?.

If ? is a horizontal curve, denote by Ox,? the preimage in Ox,? with respect to the residue map
of the image of the completion of the local ring of ? at x in Ex,?.

We have Ox,? = Ox,? if and only if x is a nonsingular point of ?.

Let x be an ordinary double point of a fibre ?. Then the local ring of ? at x consists of rational
functions which give two integral elements of Ex,z and Ex,z′ with equal free terms. The subring
Ox,? of Ox,? is the preimage with respect to the residue map of the set of pairs of integral power
series with equal free terms.

Definition of A?, Ar? p?. Let ? be a fibre. Denote by A? ⊂
∏
x∈?Kx,? the adeles

A? =
∏
y⊂?

Ay.

Similarly to Ay above, the ring A? can be viewed as associated to K?, and can be denoted AK? .
Denote Ar? =

∏
y⊂? Ary.

The maps (py)y⊂? induce the surjective homomorphism

p = p?:A? −→ Ak(?) :=
∏
y⊂?

Ak(y).
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Definition of OA?, ÔA?. For a fibre ? or a horizontal curve put

OA? :=
( ∏
x∈?,ns

Ox,? ×
∏
x∈?,s

Ox,?
)
∩ A?,

see 24 for the notation ns and s; recall that we also agreed in 24 that Oω,y = Oω,y.
Define

ÔA? :=
∏
x∈?

Ox,? ∩ A?.

Unlike A? and ÔA?, the object OA? keeps track of singular points of ?.

Recall that for a countable set of groupsGi, i ∈ I , and their subgroupsHi (defined for almost all i)
the restricted productG =

∏′
Gi with respect to (Hi) is the subgroup of the product ofGi of elements

(gi) such that gi ∈ Hi for almost all i. For a finite subset J of I denote GJ =
∏
i∈J Gi ×

∏
i 6∈J Hi.

Then G = lim−→GJ .

Definition of AS({A}). For every curve y and nonarchimedean x ∈ y fixOx,z-modulesAx,z ⊂
Kx,z of rank one such that they are commensurable withOx,z (two groups are called commensurable
if their intersection is of finite index in each of them) and the module Ax,y equals Ox,y for almost
all x ∈ y. For archimedean ω on horizontal y let Aω,y = Oω,y.

So if ? is a fibre or a horizontal curve, then (Ax,y)x∈? can be written as α? ÔA? for an appropriate
α? ∈ A×? .

The following two-dimensional adelic object takes into account the integral structure of rank two
on the surface and includes the data for archimedean curves Sσ

AS({A}) =
∏′

?

A? ×
∏

Aσ

= {(ax,?)x∈?, where ? runs through fibres or horizontal curves}
× {(bω,σ)ω∈Sσ0 , where σ runs through archimedean places of k}

such that
for all ? the element (ax,?)x∈? belongs to A?,
(bω,σ)ω∈Sσ0 ∈ Aσ,
for almost all (x, ?) the element ax,? belongs to Ax,?.

In particular for almost all ? the element (ax,?)x∈? belongs to α?ÔA? with α? as above.

Thus, the part of AS({A}) outside archimedean curves is the restricted product of A? with respect
to A?({A}) = A? ∩

∏
Ax,y.

Definition of AS′ ({A}). Choose a set S′ of some fibres and some horizontal curves on S.
Let Ax,y be as in the previous definition. Define AS′ ({A}) = AS({A}) ∩

∏
?∈S′ A?.

Note that AS′ ({A}) does not include any of archimedean curves data.
For a fixed ? and (ax,?)x∈? ∈ A? for almost all x ∈ ? the element ax,? belongs to Ax,?. Hence,

if S′ is finite then AS′ ({A}) =
∏
?∈S′ A?; if S′ contains infinitely many fibres, the equality does not

hold.

We will fix the choice of modules Ax,y in 27.



16 I. Fesenko Analysis on arithmetic schemes. II

26. ∗ Define the topology of the restricted product
∏′
i∈I Gi of topological groups Gi with

respect to their closed subgroups Hi as the sequential saturation [10] (i.e. the strongest topology
with the same set of fundamental sequences) of the inductive limit topology of G = lim−→GJ ,
GJ =

∏
i∈J Gi

∏
i 6∈J Hi endowed with the product topology, J runs through finite subsets of I . If

Hi are open, then the open base subgroups are
∏
i∈J Vi ×

∏
i6∈J Hi of GJ , where J runs through

finite subsets of I and Vi are open subgroups in Gi.

Definition of the topology of A? and AS({A}). Define the canonical topology of Kx,z

as the sequential saturation of the inductive limit of bOx,z with the scaled topology of Ox,z , b ∈ Kx,z ,
the topology ofOx,z is the sequential saturation of the projective limit of the topologies onOx,z/Mm

x,z

and the topology on the latter is the sequential saturation of the topology which has an open base
a(Ox + Mm

x,z), a runs through regular elements of Ox,z/Mm
x,z . Define the canonical topology on Ar?

and AS({A}) as the sequential saturation topology of the induced topology from the product ofKx,z .
Then the canonical topology of A? coincides with the sequential saturation of the topology in which∏
x∈?

∏
z∈?(x)

(
Wx,z + tm? A?

)
, m > 1, form an open base of 0, where Wx,z are open subspaces of

Ox,z containing tm? Ox,z and almost every Wx,z is equal to Ox. See [73] for more properties of these
topologies.

However, we will work with a weaker topology, sufficient for the purposes of this paper. Note that
the ring of integersOx,z with respect to the two-dimensional structure and the modulesAx,z are open
subsets in the ring of integersOx,z . EndowA?({A}) with the sequentially saturation of the translation
invariant topology which has

∏
x∈?Wx,? ∩ A? as open base, where Wx,? are neighbourhoods of

zero in Kx,? with respect to its canonical topology and Wx,? = Ax,? (or equivalently = Ox,?) for
almost all x ∈ ?. Then a subgroup of A? is open if and only if it is of the form

∏
x∈?Wx,? ∩ A?

where Wx,? are open subgroups of Ox,? and Wx,? = Ox,? for almost all x ∈ ?. In particular, OA?
and

∏
x∈?Ax,? ∩ A? are open in A?.

Endow AS({A}) with the sequential saturation topology of the following translation invariant
topology: it has

(∏
Wx,y ×

∏
Wω,σ

)
∩ AS({A}) as a fundamental system of neighbourhoods of

zero, where Wx,y (resp. Wω,σ) are neighbourhoods of zero in Ox,y, for almost all nonarchimedean
(x, ?) (resp. for almost all (ω, σ)) equal to Ax,? (resp. Aω,σ).

Thus, restricting to the vertical part of AS({A}), its subgroup is open if and only if it is of the
form

∏
?A? with open subgroups A? of A? and A? =

∏
x∈?Ax,? ∩ A? for almost all vertical ?.

One easily checks that every continuous homomorphismψ:AS({A}) −→ C× is trivial on almost
all Ax,y, Oω,σ, and is the product of local homomorphisms ψx,y = ψ|Ox,y , ψω,σ = ψ|Kω,σ .

Definition of By, B?, BS ({A}), BS′ ({A}). If y is a horizontal curve or a nonsingular vertical
curve, define By as the intersection of the diagonal image of Ky in

∏
Kx,y with Ay, so it is equal to

Oy. For a singular fibre ? define B? as the intersection of the diagonal image of K? in
∏
Kx,? with

A?. So B? can be identified with the product of By for all y ⊂ ?.
Define Bσ as the intersection of the diagonal image of Kσ with Aσ.
We get a homomorphism B? −→ k(?) induced by p?.

Define BS ({A}) =
∏′

B? ×
∏

Bσ as the intersection of
∏

B? ×
∏

Bσ with AS({A}) ⊂∏
A?×

∏
Aσ. For a set S′ of fibres and horizontal curves define BS′ ({A}) = BS ({A})∩AS′ ({A}).

* this page contains a little more information than the original paper
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1.2. Adelic dualities

In this section we study characters of adeles and fix adelic objects AS, A◦S, BS, B◦S and then A, B.

27. For a nontrivial character ψ of a nonarchimedean two-dimensional Kx,? (resp. Kx,z) the
conductor of ψ at x, ? (resp. at x, z) is the orthogonal complement Ax,? of Ox,? (resp. Ox,z) with
respect to ψ. Recall that in 24 we agreed to use the notation x, y for ω, y where ω is an archimedean
place of k(y) and y is a horizontal curve.

Proposition. Let ? be a fibre or a horizontal curve.
There are local characters ψx,?, x ∈ ?, and ψω,σ, ω ∈ Sσ, such that their product

ψ? = ⊗x∈?ψx,?, ψx,? = ⊗z∈?(x)ψx,z, (resp. ψσ = ⊗ω∈Sσ ψω,σ)

is defined on A? and is trivial on B? (resp. on Aσ and is trivial on Bσ).
Moreover, for a fibre or a horizontal curve ? one can choose the local characters in such a way

that the conductors Ax,? of ψx,? at all nonarchimedean points x ∈ ? are commensurable with Ox,?
and coincide with Ox,? for almost all x ∈ ?; for every singular point x of ? the (x, z)-conductor of
ψ? is Ox,z for all z ∈ ?(x); and there is a nontrivial character on Ak(?) such that its composition
with the residue map p? gives ψ?.

In addition, if ? is a fibre then the orthogonal complement O⊥x,? of Ox,? with respect to the
x-part of ψ? is of the form αx,?Ox,? where αx,? is the (x, ?)-part of an element α? of A×? . One can
also choose ψ? such that at every split ordinary double point x of fibre ? and t1-local parameters
t1x,z, t1x,z′ at two local branches z, z′ of ? at x the element αx,? is (t1−1

x,z, t1
−1
x,z′ ).

Proof. We will lift appropriate characters at the residue level to the level of the two-dimensional
fields.

Denote by l:Fp −→ Z any map which mod pZ coincides with the identity map of Fp.
Consider several cases.
(a) First assume that ? = y is nonsingular.
Choose characters ψx,y:Ex,y −→ C×1 , where C×1 is the group of complex numbers of module

1, such that ψy = ⊗x∈yψx,y = 1 on k(y) and almost all conductors are the rings of integers of Ex,y.
See e.g. [57] and [60]. For compatibility with [57] and [60], in characteristic zero at archimedean
x = ω of y we choose ψx,y(α) = exp

(
−2πiTrk(y)ω/R (α)

)
, these conditions determine ψy uniquely

in characteristic zero.
If Ex,y is of positive characteristic write ψx,y = exp(2πi l ◦ ϕx,y/p) with a well defined map

ϕx,y:Ex,y −→ Fp which we call the additive part of ψx,y.

(a1) In equal characteristic define ψx,y = ψx,y ◦ py. Then the tensor product of ψx,y, x ∈ y, is
trivial on By.

(a2) For an archimedean curve Sσ choose a nonzero kσ-differential form Ωσ on Kσ and define

ψω,σ(α) = exp
(
−2πiTrk(y)ω/R res

t−1
ω

(
Ωσ α

))
where k(y)ω = kσ(ω) as in 24. Then ψω,σ(α) does not depend on the choice of tω and ⊗ω∈Sσψω,σ
is trivial on Bσ.

(a3) In mixed characteristic we consider first the unramified case and then the general case.
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(a3.1) Assume first that Ky is absolutely unramified. Then we can use prime p as a local
parameter ty of y. Define ψx,y:Kx,y −→ C×1 by imposing condition ψx,y

(
pOx,y

)
= 1 and for

−n < 0 put

ψx,y
(
p−n+1lnx,y(a1, . . . , an) + pOx,y

)
= exp

(
2πi p−nln(ϕx,y(a1), . . . , ϕx,y(an))

)
using the maps defined in 25, where ln:F⊕np −→ Z /pnZ is the restriction of lny defined in 25 with
ty = p. Since

∑
x∈y ϕx,y(a) = 0 for a ∈ k(y), ⊗x∈yψx,y equals 1 on p−n+1lny (k(y)⊕n) + tyOy for

every n, and hence on By.
(a3.2) Let L be a complete discrete valuation field with prime element p such that Ky/L is a

totally ramified extension of complete discrete valuation fields of degree n.
The following argument is classical. Let f (X) be the monic irreducible polynomial of ty over

L. Recall that Tr(tiy/f
′(ty)) = 0 for 0 6 i 6 n − 2 and = 1 for i = n − 1, where Tr is the trace

map TrKy/L. Denoting by O the integral structures with respect to rank one discrete valuation, let
the integer m be such that t−my OKy = f ′(ty)OKy . Then m is the minimal integer with the property
Tr(tmy OKy ) ⊂ OL.

For every place v of k(y) there is a uniquely determined two-dimensional local field Lv which is
an extension of L as a discrete valuation field, such that OLv ⊃ OL, MLv = MLOLv and OLv/MLv

is the completion of k(y) with respect to v, see e.g. [27]. Then Ky/L and Lv/L are linearly
disjoint and every two-dimensional local fieldKx,y associated to Ky is of the form KyLv. Let
γ ∈ tmy OKy \ tm+1

y OKy . Now it is easy to see that {α ∈ KyLv : Tr(γαOKyLv ) ⊂ OLv} = OKyLv
for almost all places v, where Tr is the trace map TrKyLv/Lv . The previous paragraph defines a
character ψL of the adelic ring AL associated to L and the trace map gives the trace map Tr from Ay
to AL, which sends By to OL. Thus, put ψ(α) = ψL(Tr(γ α)), α ∈ Ay.

(b) Now consider the case of a singular fibre or a horizontal curve ?. We describe the residue
characters which are then lifted as above to the level of characters on two-dimensional objects.

At the residue level choose characters for the normalizations of components of ?, then their
tensor product gives a nontrivial character ψ? on the one-dimensional adelic object Ak(?). Using the
approximation theorem we can assume that at the preimage of singular points of ? the conductor of
ψ? is trivial (i.e. it equals to p?(Ox,?)). Lift, as above, the residue character to the character ψ? of
A?.

To explain the last paragraph of the theorem let ? be a fibre on the regular surface S, so ? is
of locally complete intersection. Denote by OA⊥? the orthogonal complement of OA? defined in
25 with respect to ψ?. Denote o = p?(OA?), o⊥ = p?(OA⊥? ). If j is an open o-submodule of
Ak(?) such that its orthogonal complement with respect to ψ? is open, then it immediately follows
that the double orthogonal complement of j with respect to ψ? is j. Since j⊥ = (o⊥ : j), we get
(o⊥ : (o⊥ : j)) = j for every such j, i.e. o⊥ is a dualizing o-module by definition. The Gorenstein
property of ? is equivalent to o being a dualizing o-module and is equivalent to o⊥ = γ?o for some
γ? ∈ A×k(?) (see e.g. [19] for a similar argument). Denote by αx,? a lift of the x-components of γ?.
For a split ordinary double point x of ? (more generally, of the reduced part of the fibre) the element
p?(αx,?) can be chosen as (bp?(t1−1

x,z), cp?(t1−1
x,z′ )) for some b, c ∈ k(x)×. Changing the character

ψ? to ψ?(δ · ) with appropriate δ ∈ k(?)×, we get a character for which b = c = 1. The additive part

of ψ? can be written as α 7→
∑
x′∈?̂ Resx′ (β

−1
α) for some β ∈ A×k(?), where x′ runs through all

points on the normalization ?̂ of ? (the disjoint union of the normalizations of components of ?) and
Resx′ = Trk(x′)/Fp ◦ resx′ .

Remark. Using the correspondence between characters on adeles and differential forms the pre-
vious results can be easily translated into the language of differential forms. A choice of a relative
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canonical divisor ωS/B gives canonical divisors on fibres. In particular, the character ψ?(γ−1 · ) (for
which p?(Ox,?) is its own complement) corresponds to a nonzero differential form Ω? on ? which
is regular at singular points of ? (see [49], Ch. 4 for the notion of regularity in the case of singular
curves and [37], Ch. 10 for the general case). The divisor of Ω? is the sum of canonical divisors on
the components of the normalization ?̂, whose support does not include preimages of singular points
of ? plus

∑
[x′] for all preimages x′ of singular points x.

Choice of ψ?. From now on choose and fix characters ψ?, satisfying all the conditions of the
previous Proposition. As usual, these characters are not uniquely determined, unless ? is a horizontal
curve of characteristic zero.

Definition of dx,z, dx,?. Let ? be a fibre or a horizontal curve. Define numbers dx,z and
multi-indices dx,? associated to the character ψ? for nonarchimedean points x ∈ ? in the following
way.

If x is a nonsingular point of ? and ?(x) = {z}, write the conductor Ax,z of the nonarchimedean
local character ψx,z , the (x, z)-component of ψ, as the fractional ideal t1

dx,z
x,z Ox,z with integer dx,z .

Using the αx,? from the previous Proposition, for a singular point x of ? and a local branch z of
? at x let dx,z be the minimal integer such that the image p(αx,?) in Ex,z belongs to the dx,z-power
of the maximal ideal of its ring of integers. Let dx,? be the multi-index whose component at z is
dx,z . In particular, if x is a split ordinary double point of a fibre ? then dx,z = dx,z′ = −1 for local
branches z, z′ of ? at x and dx,? = (−1,−1).

Using the module map | |x,z on Kx,z (see 5) we get

|t1dx,zx,z |x,z = q−dx,zx,z ,

qx,z is defined in 24.

Definition of AS, AS′ , BS, BS′ . Using the general definition in 25 and 26 denote by AS, AS′
and BS, BS′ the adelic objects with respect to Ax,y = Ox,y; recall that at the archimedean points
x = ω of horizontal y we already fixed Aω,y = Oω,y.

The general definition in 26 gives the topology on AS. It coincides with the sequential saturation
of the restricted product topology of Ay with respect to with respect to OAy.

Denote by A◦S, A◦S′ and B◦S, B◦S′ the adelic objects Ax,y as in the previous Proposition, thus they
depend on the choice of the characters.

Definition of Sp, Sh. Denote by Sp, Sh the sets of fibres (resp. horizontal curves) of S −→ B.
We have vertical and horizontal subspaces ASp , ASh of AS.

28. Now we define the large adelic object A mentioned in the introduction of this part.

Definition of Ay, A?, p?. Put Ay = ∪r∈ZAry = Ay[t−1
y ]. For a fibre ? define

A? =
∏
y⊂?

Ay.

Put

Aσ = Aσ.

Define the projection map p?:A? −→ Ak(?) as p?:A? −→ Ak(?) of 25, extended by zero outside
A?.
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Definition of AS, AS′ . Define

AS =
∏′

?

A? ×
∏
σ

Aσ

= {(ax,?)x∈?,where ? runs through fibres and horizontal curves}
× {(bω,σ)ω∈Sσ ,where σ runs through archimedean places of k},

such that (ax,?)x∈? ∈ A? for every fibre and horizontal curve ?, and
for almost all ? the element ax,? belongs to Ox,? for all x ∈ ?, i.e. (ax,?)x∈? ∈ A?,
there is an integer r such that (ax,?)x∈? belongs to Ar? for every ?.

For a set S′ of fibres and horizontal curves we similarly define AS′ = AS ∩
∏
?∈S′ A?.

The object AS is the restricted product of A? with respect to A? ∩
∏
x∈? Ox,?.∗

Every element of AS is an element of AS. Unless S′ is finite, the adelic structure on AS′ is not
induced from AS′ .

Remark 1. The object AS is the adelic object with respect to the integral structure of rank one:
it is the restricted product of A? with respect to A? = A? ∩

∏
x∈? Ox,?. In contrast, on its vertical

part the object AS is the restricted product of A? with respect to ÔA? = A? ∩
∏
x∈?Ox,?, and AS

takes into account the more refined integral structures of rank two on S.
The object AS has various relations with the geometry of S and its structure sheaf OS. It

would be very useful to find a refinement of the structure sheaf OS which takes into account the
two-dimensional integral structures on S, see also Remark 3 in 56.

Remark 2. As soon as the set S′ contains infinitely many vertical curves, the condition ‘ax,y
belongs to Ox,y for almost all x ∈ y’ instead of ‘ax,y belongs to Ox,y for almost all x ∈ y’ makes
it impossible to define a nontrivial translation invariant measure on AS as the tensor product of
local translation invariant measures µx,y on two-dimensional local fields Kx,y, since in this case the
product ⊗?∈S′ ⊗x∈? µx,? diverges on AS′ ∩

∏
Ox,y.

Definition of BS and CS. DefineBS as the intersection of the diagonal image of
∏
Ky×

∏
Kσ

with AS. Define CS as the intersection of the diagonal image of
∏
Kx with AS.

For a set S′ of some of horizontal curves and fibres define the adelic object BS′ as the intersection
of the diagonal image of

∏
y∈S′ Ky with AS′ .

We get the following diagramme

AS

��
� ??

?

BS

??
? CS

��
�

K

We briefly mention that one can appropriately choose local parameters ty so that the tensor
product of shifted characters ψ̃x,y(α) = ψx,y(tyα), ψ̃ω,y(α) = ψω,y(tyα) is a nontrivial character ψ̃
of AS, which vanishes on BS and CS. This in turn gives a pairing AS ×AS −→ C×1 such that the
adelic object AS is self-dual with respect to the topology in the footnote.

* the topology of AS is the sequential saturation of the induced topology from the product of the canonical
topologies of Kx,z , see 26 and also [73]
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Remark 3. In the case of smooth surfaces over finite fields the adelic objectAS was first introduced
in [44], [46]; for a generalization of the nonarchimedean part of adelic objects for noetherian schemes
see [1]. In this case the pairing AS×AS −→ C×1 associated to ψ̃ is related to the pairing introduced
in [44], [46]: in the additive form it is the sum of local residues of a nonzero differential form in Ω2

S

multiplied by the local components of α and β. Using this pairing one easily establishes additive
duality on S. The object orthogonal to BS + CS is BS ∩ CS = K, and any character trivial on
BS + CS is of the form α 7→ ψ̃(aα) for a ∈ K.∗

See the next section for a rational version of A.

29. From now on the notation S′ stands for a fixed set of some fibres and some finitely many
horizontal curves. The set S′ will further be specified in 35 and 36, and in the case of proper regular
models of elliptic curves from 40 on.

Definition of A, B. Following the definition in 28 and using the setS′we will use the abbreviated
notation

A = AS′ , B = BS′ ,

and similarly A◦, B◦. So the data associated with archimedean curves are not included in these
objects.

Then A is the restricted product of A? with respect to OA?, where ? runs over horizontal curves
in S′ and fibres. Thus, every element of A has only finitely many (x, y)-components not in Ox,y.

The topology of A is the induced topology from AS.

We have the following picture of almost all main adelic objects in dimension two, where the left
row are analytic adelic objects and the right row are geometric adelic objects

A AS

B BS

K.

Lemma. The map ψ = ⊗?∈S′ψ?, where ψ? are defined in 27, is a character of A◦ trivial on B◦.
Using it we get the continuous pairing

A× A◦ −→ C×1 , (α, β) 7→ ψ(αβ).

With respect to this pairing the adelic objects B and B◦ are orthogonal to each other, and the
orthogonal complement of B◦ is B + A ∩

∏
?∈S′ A

1
?.

Choose an element ρ ∈ A◦ such that ρx,?Ox,? = t1
dx,?
x,? Ox,? for all nonsingular x ∈ ? and

ρx,? ∈ O×x,? at singular x ∈ ?. Then A◦ = ρA.
If S′ is finite then A = A◦, B = B◦. If S′ contains infinitely many vertical curves then A 6= A◦,

since dx,y 6= 0 for infinitely many x ∈ y ∈ S′.

Proof. Use local duality from 3 and 20 and the construction of the local characters in 27, and argue
entirely similar to the one-dimensional case [57].

* see [73] for more on that including an adelic proof of the Riemann–Roch theorem for divisors on smooth
projective irreducible surfaces over perfect fields; see [71] and [72] for some related results in the arithmetic
case.
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Definition of a rational version A of A. Define another adelic object A({A}) as the
restricted product of A? with respect to A0

? ∩
∏
Ax,y in the following sense: (ax,y) ∈ A({A}) with

ax,y ∈ Kx,y if for almost all y the element ax,y belongs to Ax,y for all x ∈ y and there is an integer
r such that (ax,y)x∈y belongs to Ary for every y.

Define B({A}) as the diagonal image of
∏
Ky intersected with A({A}). Define, similarly to the

above, objects A, A◦, B, B◦. These are ‘rational’ versions of the objects A, B, etc.
Using the character ψ we get a pairing A×A◦ −→ C×1 . The orthogonal complement of each of

B,B◦ is the other one.
We do not use the adelic object A in this paper, since A and spaces related to it are sufficient for

the zeta integrals.

1.3. Adelic measure and integration

Using the local theory of [11] we will introduce adelic measures, appropriate spaces of functions
and integrals.

30. Given an integral domain A with a principal prime ideal P = tA and projection A −→ A/P =
B and given an R-valued translation invariant countably additive measure µB on B, we described
in 13 of [11] how to lift it to an R((X))-valued translation invariant finitely additive measure (and
countably additive in the refined sense) on A: the ring of measurable sets of A is generated by shifts
of sets tip−1(L), with a measurable subset L of B, its measure is by definition XiµB(L). This
measure can be called the ‘lifted measure’ from the residue level. Every non empty measurable set
can be written as a disjoint union of sets An each of which is in the form A′n \ A′′n with A′n ⊃ A′′n,
whereA′n is a finite disjoint union (overm) of sets ti(n)p−1(Bm), andA′′n is empty or a finite disjoint
union (over l) of sets tj(n)p−1(Cl) with some integer j(n) > i(n), for the higher local field case see
sect. 6 of [12]. One also easily extends the definitions to a measure on the field of fractions of A.

For a detailed presentation of the ‘lifted measure’ from locally compact fields to n-dimensional
complete discrete valuation fields whose last residue field is the locally compact field see [39]. The
measure and integration on A and B will be the ‘lifted measure and integration’.

Definition of local measures. Let ? be a fibre or a horizontal curve. Using 4, 11, 12, 20
of [11] define translation invariant measures µx,? = µKx,? on Kx,? which are self-dual with respect
to the local characters ψx,? defined and fixed in 27 (in accordance with 24, the measure µx,? is
the tensor product of measures µx,z on the objects Kx,z for local branches z ∈ ?(x)). Thus, these
measures are normalized in the following way:

(a) for nonarchimedean nonsingular points x ∈ ? we get µx,?(Ox,?) = q
dx,?/2
x,? , dx,? are defined in

27.
(b) at each singular point x of a fibre ? we get µx,z(Ox,z) = 1 for each local branch z of ? at x.
So µx,?(Ox,?) = 1 and hence for a split ordinary double point x of a fibre ? we get, computing the
index, µx,?(Ox,?) = |k(x)|−1, Ox,? is defined in 25.
(c) at each archimedean point x of a horizontal curve ? the measure µx,? is as it was defined as in
[11] and reviewed at the end of the introduction of this part.

This normalization of the measures will result in the familiar property with respect to the chosen
character ψ: the double Fourier transform with respect to µx,? and ψx,? of a well chosen function f
equals f ◦ j where j is the involution α 7→ −α, see Proposition below.
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For standard facts about functions, measure and integrals on restricted products of locally compact
groups, see e.g. [57], 3.1–3.3; there the restricted product is taken with respect to open compact
subgroups whose measure is almost always 1. Those constructions can be extended in purely
algebraic way to restricted products of groups arising in the two-dimensional adelic theory, groups
which are not locally compact.

Let Gi, Hi be as in 26. Suppose that there are translation invariant measures (taking values
in R((X))) µi on Gi such that µi(Hi) = 1 for almost all i ∈ I . Consider the ring of measurable
subsets of

∏′
Gi generated by A ⊂ GJ , for finite J ⊂ I , where A =

∏
i∈J Ai ×

∏
i6∈J Hi and

Ai are measurable subsets of Gi. Then we get a translation invariant measure on GJ given by
µJ (A) =

∏
i∈J µi(Ai). Define the measure µ onG as lim−→µJ , so (G,µ) = lim−→ (GJ , µJ ) as (R((X))-

valued) measure spaces. We will write µ = ⊗µi. Integrable functions on
∏′

Gi are those functions f
on
∏′

Gi for which f |Hi = 1 for almost all i and limJ

∫
GJ

fJ exists whereGJ =
∏
i∈J Gi×

∏
i6∈J ei

and fJ = f |GJ , ei is the identity element of Gi.
Using this general recipe, we now define µA? and then µA.

Definition of µA? . Let ? be a horizontal curve or a fibre. Using the local measures µx,z define
an R ((X))-valued measure µA? in the following way: the ring of measurable sets is generated
by translations of sets ti?(

∏
x∈?Dx,?) ∩ A?, i > 0, where Dx,z are measurable subsets of Kx,z ,

Dx,z ⊂ Ox,z , Dx,z + t?Ox,z = Dx,z and where Dx,z = Ox,z for almost all x ∈ ?.
The µA?-measure of this measurable set is equal by definition toXi

∏
x∈? µx,?(Dx,?) ∈ R((X)).

Note that µx,?(Dx,?) = 1 for almost all x ∈ ?.
The function µA? is well defined on the ring of measurable sets, translation invariant and finitely

additive.
Allowing i above run through all integer values, one similarly defines a translation invariant

R((X))-valued measure on A?.

In particular, for a nonsingular fibre y the measurable set OAy is of µAy -measure 1 if and only
if
∏
x∈y q

dx,y
x,y = 1.

Using the definitions and 13 we obtain

Lemma 1. Let ? be a horizontal curve or a fibre. The R ((X))-valued translation invariant measure
µA? on A? lifts, in the sense of the beginning of this section, the appropriately normalized Haar
measure µAk(?) on Ak(?), which is self-dual with respect to the character ψ? = ⊗x∈?ψx,? defined in
27.

Definition of the adelic measure µA. Define the ring of measurable subsets of A as
generated by translations of sets C =

∏
?∈S′ C? of A, where C? is a measurable subset of A?, equal

to OA? for almost all ? ∈ S′, and µA? (C?) = 1 for almost all ? ∈ S′. Define

µA = ⊗?∈S′µA? .

Thus, µA(C) =
∏
µA? (C?).

The measure µA, if it is defined, see Remark 1, is translation invariant and finitely additive.
Similar to the one-dimensional theory, this measure depends on the choice of the characters ψ?.
Similarly define the measure µA = ⊗?∈S′µA?

on the adelic object A introduced in 29.

Remark 1. Measurable sets with respect to µA have almost all their ?-components equal to OA?
of µA?-measure 1. Hence we need the equality

∏
x∈? q

dx,?
x,? = 1 to be satisfied for almost all ? ∈ S′.
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For a nonsingular fibre y we get a classical formula
∏
x∈y q

dx,y
x,y = q2(1−gy)

y where qy is the cardinality
of the maximal finite subfield of k(y) and gy is the genus of y, see 40. Hence if S′ contains infinitely
many fibres then the measure µA is defined on AS′ if and only if the genus of the generic fibre of S
is 1. In the general case we can renormalize the measure as in the following definition.

Definition of renormalized measures µ̃A? , µ̃A◦? , µ̃A, µ̃A◦ . For a nonsingular fibre y
define

µ̃Ay := qgy−1
y µAy , µ̃A◦y := q1−gy

y µAy

and for singular fibres and horizontal curves put µ̃A? = µ̃A◦? = µA? .
Then µ̃A? (OA?) = 1 for almost all ? ∈ S′ and hence

µ̃A = ⊗?∈S′ µ̃A? , µ̃A◦ = ⊗?∈S′ µ̃A◦?

are well defined additive translation invariant measures on A and A◦.

Definition of module | |. For a fibre or a horizontal curve ? define

| |? =
∏
x∈?
| |x,?.

For every γ ∈ A×? we get |γ|x,? = 1 for almost all x ∈ ?. We also get |γ|? =
µ?(γ?A?)
µ?(A?)

for every

γ? ∈ A×? , where A? is any measurable subset of A? of nonzero measure.
Define

| | = | |S′ =
∏
?∈S′

| |?.

For every γ ∈ A× we get |γ|? = 1 for almost all ? ∈ S′. We also get |γ| = µ̃(γA)
µ̃(A)

for every γ ∈ A×,

where A is any µ̃-measurable subset of A of nonzero measure.

Now we define several functional spaces R′ ⊃ R ⊃ Q on A? and A, using the local spaces of
functions R,R′, Q defined in [11], and then we define the integrals.

Definition of space R′A? and integral
∫
f dµA? . Let ? be a horizontal curve or a fibre.

Using the local spaces R′ of functions defined in 7, 9, 11, let R′A? be the linear space generated by
f?, where f?(α) = g?(t−i?? α) extended by zero outside ti?? A?, i? > 0, and
g? = ⊗x∈?gx,? with gx,? ∈ R′Kx,? =

∏
z∈?(x) R

′
Kx,z

,
g? = h? ◦ p? for an integrable continuous function h? on Ak(?), where p? was defined in 28.

For f? ∈ R′A? as above define ∫
f? dµA? := Xi?

∫
g? dµA?

and extend by linearity to all elements of R′A? . This is well defined, since the functions f? with
different i? are linearly independent, the proof goes entirely similar to the proof of Prop. 1.5 in [39].

For f? is as above we get
∫
f? dµA? = Xi?

∫
Ak(?)

h? dµAk(?) .

In particular, elements of R′A? are continuous functions on A?.
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Definition of space R′A and integral
∫
f dµA. Let R′A be the space generated by f =

⊗?∈S′f?, where f? ∈ R′A? and
∫
f? dµA? = 1 for almost all ? ∈ S′.

The last condition implies that the indices i? for f ∈ R′A should be 0 for almost all ? ∈ S′.
For f = ⊗f? ∈ R′A put ∫

f dµA =
∏
?∈S′

∫
f? dµA?

and extend by linearity to R′A.

Here and later extensions by linearity are well defined, since the adelic conditions reduce the
verification to the case of functions on the product of finitely many spaces.

Similarly one can define a functional space R′A by letting i? in the definition of R′A? run through
all integers; similarly one defines the integral

∫
f dµA for f ∈ R′A. We also mention that the

previous definitions can be extended to let elements of R′A take values in C((X)) rather than in C.
Using the measure µ̃A one similarly defines the integral

∫
f dµ̃A.

Example 1. Suppose that S′ includes fibres only. Let

f = ⊗?∈S′f?, f? = ⊗x∈?fx,?,

where

fx,z = charti?? t1cx,zx,z Ox,z
, i? > 0,

such that
(a) for every ? ∈ S′ the integers cx,z = 0 for almost all x ∈ ?, z ∈ ?(x),

(b) the product
∏
x∈? q

dx,?/2−cx,?
x,? = 1 for almost all ? ∈ S′,

(c) i? = 0 for almost all ? ∈ S′.
Then f ∈ R′A. Here, according to 24, qdx,?/2−cx,?

x,? =
∏
z∈?(x) q

dx,z/2−cx,z
x,z . We get∫

f dµAS′ = X
∑

?∈S′
i?
∏
?∈S′

(∏
x∈?

q
ex,?/2−cx,?
x,?

)
,

where ex,z = dx,z at nonsingular x ∈ ? and ex,z = 0 at singular x ∈ ?.

If we integrate against the measure µ̃A, we can replace (b) by (b̃)
∏
x∈? q

−cx,?
x,? = 1 for almost all

? ∈ S′. Then for every f satisfying (a),(b̃),(c) we get∫
f dµ̃AS′ = X

∑
?∈S′

i?
∏
?∈S′

(∏
x∈?

q
−cx,?
x,?

)
.

Lemma 2. For f ∈ R′A and β ∈ A, γ ∈ A× we have∫
f (α) dµA(α) =

∫
f (α + β) dµA(α),∫

f (α) dµA(α) = |γ|S′
∫
f (γα) dµA(α).

Now we define a subspace RA of R′A.
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Definition of spaces RA, RA? . Using the local spaces R defined in 6 and 11, denote by RA
the subspace of R′A generated by f = ⊗?∈S′ ⊗x∈? fx,? with fx,? ∈ RKx,? and such that for almost
all (x, ?), where x ∈ ? ∈ S′,

fx,z = charti?? t1cx,zx,z Ox,z
, z ∈ ?(x), i? > 0.

Using S′ = {?} one gets the definition of space RA? .
Similarly one defines spaces RA, RA? by letting i? take arbitrary integer values.

For f as in the previous definition we deduce: for every ? ∈ S′ for almost all x ∈ ? the integer
cx,z equals zero for z ∈ ?(x); for almost all ? ∈ S′ the product

∏
x∈? q

dx,?/2−cx,?
x,? = 1; i? = 0 for

almost all ?.

The element f of Example 1 belongs to RA.

To define the adelic transform we will use the local transforms Fx,y,Fω,y defined in 9 and 11,
and take them with respect to the local measures and characters introduced in 27.

The choice of the measure µx,z in 29 implies that the local transform of chart1cx,zx,z Ox,z
with

respect to the ψx,z and µx,z is

Fx,z(chart1cx,zx,z Ox,z
) = qdx,z/2−cx,z

x,z char
t1
dx,z−cx,z
x,z Ox,z

at nonsingular x ∈ ?.
At a split ordinary double point x of ? for the transform Fx,? = Fx,z ⊗ Fx,z′ we get

Fx,?(charOx,? ) = q−1
x charO⊥x,? , Fx,?(charO⊥x,? ) = qx charOx,? ,

O⊥x,? is defined in 27.

Definition of transform F on RA? . Let f? ∈ RA? , f?(α) = g?(t−i?? α) with g? = ⊗x∈?gx,? ∈
RA? such that gx,? = chart1

cx,?
x,? Ox,?

for almost all x ∈ ?. Using the local transforms in 9 and 11,
introduce the adelic transform

F(f?) = Xi? ⊗x∈? Fx,?(gx,?)

and extend by linearity to RA? and RA? (it is well defined).

Then

F(f?)(β) =
∫
f?(α)ψ?(αβ) dµA? (α),

where ψ? is the character on A? defined in 27.

Definition of transform F on RA. For f ∈ RA introduce its transform

F(f )(γ) =
∫
f (α)ψ(αγ) dµA(α).

This is a C((X))-valued function on A◦.

We get

F(fα)(γ) = |α|−1
S′

F(f )α−1 (γ).
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Remark 2. Note that the function F(f?) is a C((X))-valued function on A◦? = A?. Thus, for F to
induce an endomorphism of spaces of functions, e.g. RA? ,RA, so that its square is the involution it is
natural to extend the spaces to includeC((X))-valued functions. This is all relatively straightforward,
and we do not pursue this line in this text, since for the purposes of the zeta integral the space QA
defined below and related to it spaces will be sufficient, and the transform F is an endomorphism of
QA.

Example 2. Suppose that S′ is the union of all the fibres of S and of finitely many nonsingular
horizontal curves.

At nonsingular nonarchimedean x of ? put fx,? = chart1
cx,?
x,? Ox,?

, such that for all ? ∈ S′ for
almost all x ∈ ? the integer cx,? equals zero. At singular x ∈ ? put fx,? = charOx,? .

In characteristic zero, for a horizontal ? = y and ω ∈ r−1
σ (y) let

fω,y(α) = exp
(
−eω π | rest0ω (α)|2

)
charOω,y (α),

where we use the notation of 24,
eω = Trk(y)ω/R (1),

| | is the usual absolute value, both in real and complex places. So, in the notation of 11, | | = | |1/eωk(y)ω .
It is convenient to define dω,y = cω,y = 0.

Now suppose that
∏
x∈? q

dx,?/2−cx,?
x,? = 1 for almost all ? ∈ S′. Then f ∈ RA.

The local transform of the function fω,y equals itself, and the transform of f = ⊗?∈S′ ⊗x∈? fx,?
is ∏

?∈S′

(∏
x∈?

q
dx,?/2−cx,?
x,?

)
f1, f1(α) = f

(
γα
)
,

where γx,z = t1
−dx,z+cx,z
x,z at nonsingular x ∈ ? and γx,? = (t1x,z, t1x,z′ ) at split ordinary double x

of ?.

Remark 3. After appropriately defining local components of ρ introduced in 29 at finitely many
singular points x ∈ ? (for example ρx,? = (t1−1

x,z, t1
−1
x,z′ ) at a split ordinary double point) we get

F(charOAy ) = |ρ|−1/2
y charρOAy and |ρ|y = q2(g−1)

y for nonsingular fibres y where g is the genus of
the generic fibre of S. Thus, the previous formula extends to the formula

F(charOA) = |ρ|−1/2 charρOA

for infinite S′ if and only if the genus of the generic fibre of S is 1.

For the zeta integral computation the following smaller spaces Q will be useful.

Definition of spaces QA, QA? . Using the local spaces Q defined in 9 and 11, denote by QA
the subspace of RA generated by functions ⊗?∈S′ ⊗x∈? fx,? ∈ RA, where archimedean fω,y are
pullbacks with respect to py of functions in the Schwartz space on Eω,y, extended by zero outside
Oω,y, and where nonarchimedean fx,? are in the space QKx,? = ⊗z∈?(x)QKx,z .

Restricting to one fibre or horizontal curve ?, we get the definition of the space QA? . We have
QA? = p?

∗(QAk(?) ) and the similar property for the integrals, where QAk(?) is the Bruhat–Schwartz
space on Ak(?).

In particular, for a function in QA the numbers i? in the definition of R′A are zero for all ?.
The function f in the previous example belongs to the space QA.
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The transform F induces an endomorphism of QA.

Using 9, 11, 12 we deduce

Proposition. For f ∈ QA we have F(f ) ∈ QA, F2(f ) ∈ QA and

F2(f )(α) = f (−α).

If we extend the space RA by allowing its elements take values in C((X)), we then easily get a
similar formula for the transform F2 on that space.

To complete this section we introduce the measure and integral on B-spaces.

Definition of µB? , µB and
∫
B dµB. Let ? be a fibre or a horizontal curve. Using 13 define an

R ((X))-valued translation invariant measure µB? on B? which lifts the discrete counting measure on
k(?): the measurable sets are elements of the ring generated by the products of translations of sets
of the type ti?? p

−1
? (A), where A ⊂ p?(B?) is a measurable set with respect to the discrete counting

measure µk(?) on k(?). The measure of ti?? p
−1
? (A) is Xi?µk(?)(A).

Define the measure
µB = ⊗?∈S′µB? .

Components of a measurable set with respect to this measure for almost all ? ∈ S′ are sets p−1
? (pt),

the preimages of points, since the measure of almost all components should be 1.
For f = ⊗f? ∈ QA, f? = ⊗x∈?fx,y, fx,y ∈ QKx,y , f? = g? ◦ p?, where g? is an integrable

function on k(?), define ∫
f (β) dµB(β) =

∏
?∈S′

∫
g? dµk(?)

and extend by linearity to the space QA. The right hand side may diverge if the set S′ is infinite.
For a subset C =

∏′
?∈S′ C? of B, such that C? = p−1

? (B?), B? ⊂ p?(B?) and for f as above
define the integral ∫

C

f (β) dµB(β) :=
∏
?∈S′

∫
p?(C?)

g? dµk(?)

and extend to QA.

31. In this section we extend the previous definitions to some algebraic groups; this will be used in
the following parts of the text. This is done in the same way how one defines measures on algebraic
groups over adeles in dimension one. It is easy to develop a more general theory, for example for
a quasi-projective variety V over K, a finite dimensional K-algebra A and an algebraic group G
one can define the adelic objects V (A), A(A), G(A) similarly to the one-dimensional case presented
in [62]. In particular, for a group G the adelic object G(A) is the restricted product of G(A?) with
respect to G(OA?), the measure on it is the tensor product of the measures, etc.

Definition of A× A, µA×A. Similarly to the definition of Ay = A0
y and A? in 25, define

A? × A? = G2
a (A?) = {(α(1)

x,?, α
(2)
x,?)x∈? : (α(m)

x,? )x∈? ∈ A? for m = 1, 2}.

Let A × A be the restricted product of A? × A? with respect to O(A? × A?) = OA? × OA? =
G2
a (OA?), OA? was defined in 25.

In particular,

A× A = G2
a(A) = {(α(1)

x,?, α
(2)
x,?)x∈?∈S′ : (α(m)

x,? )x∈?∈S′ ∈ A for m = 1, 2}.
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Endow A×A with the sequential saturation topology [10] of the following translation invariant
product topology: it has

∏
Wx,y ×Wx,y ∩A×A as the fundamental system of neighbourhoods of

zero, where Wx,y are neighbourhoods of zero in Kx,y with respect to its topology, almost all equal
to Ox,y.

The adelic object A× A comes with its translation invariant measure µA×A = µA ⊗ µA.
We will use the same notation | | = | |S′ for the module on A×A, it is the product of the modules

of the components.
Using the projection map p?:A? −→ Ak(?) defined in 28, we use the same notation for the map

A? ×A? −→ Ak(?) × Ak(?).

Definition of spaces R′A×A, RA×A and integral
∫
f dµA×A. Define R′A?×A? = R′A? ⊗

R′A? . For f? = f (1)
? ⊗ f (2)

? , f (m)
? ∈ R′A? , define

∫
f? dµA?×A? =

∫
f (1)
? dµA?

∫
f (2)
? dµA? and extend

by linearity.
Define R′A×A as the space generated by f = ⊗?∈S′f? with f? ∈ R′A?×A? such that

∫
f? dµA?×A?

= 1 for almost all ? ∈ S′. Put ∫
f dµA×A =

∏
?∈S′

∫
f? dµA?×A?

and extend by linearity.
Define RA×A as the subspace of R′A×A generated by f = ⊗?∈S′ ⊗x∈? fx,? where fx,? ∈

RKx,?×Kx,? are such that fx,? = f (1)
x,? ⊗ f (2)

x,? with f (m)
x,z = char

t
i?,m
? t1

cx,z,m
x,z Ox,z

, z ∈ ?(x), for almost
all x ∈ ? ∈ S′.

For the f as in the previous paragraph the definitions imply: for all ? for almost all x ∈ ? the
integer cx,z,m equals zero for z ∈ ?(x);

∏
x∈? q

dx,?−cx,?,1−cx,?,2
x,? = 1 for almost all ? ∈ S′; i?,m = 0

for almost all ?, m = 1, 2.

Definition of space QA×A and transform on QA×A. Define the subspace QA×A as the
subspace of RA×A generated by ⊗?∈S′ ⊗x∈? f

(1)
x,? ⊗ f (2)

x,? ∈ QA ⊗QA.
In particular, for an element of f of QA×A the numbers i?,m are zero for all ?.
In the case of one fibre ? or curve y this definition also gives the definition of the spacesQA?×A? ,

QAy×Ay . In particular, the space QA?×A? coincides with p∗?(QAk(?) ⊗QAk(?) ).
Using the character⊗?⊗x∈? (ψx,?⊗ψx,?) of A×A define the transform F on the spaceQA×A.

Now we consider the multiplicative groups. The definitions imply that A× is the restricted
product of A×? with respect to (OA?)×.

The group of invertible adeles A× acts on the spaces R′A, RA defined in 30:

f −→ fα, fα(γ) = f (αγ).

Definition of the topology on A×S , A×. Define the topology on A×S (resp. A×)∗ as the
induced topology from AS × AS (resp. A× A) via

A×S −→ AS × AS, A× −→ A× A, α 7→ (α, α−1).

* we also have the stronger canonical topology on A×
S

and A× using the canonical topology on AS defined in
the footnote of 28
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Definition of µA×? . Similarly to 30 define a (multiplicative) translation invariant measure µA×?
using the normalized local measures µK×x,z , z ∈ ?(x), from 14: µK×x,z = (1 − q−1

x,z)−1 µKx,z/| |x,z
for nonarchimedean x ∈ ?, z ∈ ?(x); and µK×ω,y = µKω,y/| |ω,y. The ring of measurable sets is
generated by sets D =

∏
x∈?Dx,? ∩ A×? where Dx,? ⊂ O×x,? and Dx,? = O×x,? for almost all x ∈ ?;

and then µA×? (D) =
∏
x∈? µK×x,? (Dx,?) ∈ R((X)).

Definition of space RA×? and integral
∫
f? dµA×? . Define RA×? as the linear space gener-

ated by f? where f? = ⊗x∈?fx,? is a continuous function on A×? , with fx,? ∈ RKx,? for all x ∈ ?,
such that fx,?|O×x,? = 1 for almost all x ∈ ?. Define∫

f? dµA×? =
∏
x∈?

∫
fx,? dµK×x,?

and extend by linearity to RA×? .

If f? = h? ◦ p? for an integrable continuous function h? on A×k(?) then
∫
f? dµA×? =

∫
h? dµA×

k(?)
where µA×

k(?)
is the multiplicative measure associated to the measure µAk(?) defined in Lemma 1 of

30.

Definition of µA× , space RA× and integral
∫
f dµA× . Define µA× = ⊗?∈S′µA×? . Define

the space RA× as the linear space generated by ⊗?∈S′f? with f? ∈ RA×? for all ?.
For f = ⊗f? ∈ RA× with f? ∈ RA×? define∫

f dµA× =
∏
?∈S′

∫
f? dµA×?

(the product may diverge) and extend by linearity to RA× . Thus, the integral
∫
f dµA× takes values

in C((X)) if converges.

The spaceQA is a subspace ofRA× . Unlike the spacesR′A,RA,QA with respect to µA, the space
RA× includes nonintegrable functions with respect to µA× .

One can also define a multiplicative invariant measure on A×, the space RA× and the integral
against this measure.

Example. Let S′ consist of all fibres. Let f = ⊗?f?, f? = ⊗x∈?fx,?, where

fx,z = | |sx,z chart1cx,zx,z Ox,z
, s ∈ C,

and where for every ? ∈ S′ for almost all x ∈ ? we have cx,z = 0 for z ∈ ?(x).
Then f? ∈ RA×? and ∫

f? dµA×? =
∏
x∈?

∏
z∈?(x)

qex,z/2−cx,zs
x,z

1
1− q−sx,z

,

ex,z is defined in Example 1 of 30.
We get ∫

f dµA× =
∏
?∈S′

(∏
x∈?

∏
z∈?(x)

qex,z/2−cx,zs
x,z

1
1− q−sx,z

)
.
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For the product of the exponential factors to converge we need in addition the condition
∏
x∈? q

cx,?
x,? =

1 for almost all ? ∈ S′. If so, then
∏
?∈S′

∫
f? dµA×? ∈ C absolutely converges for <(s) > 2, as

follows from its comparison with the zeta function of S which is known to absolutely converge in
that half-plane, see 38.

Note that according to 30 the measure µ is defined on A if and only if
∏
x∈? q

dx,?
x,? = 1 for

almost all fibres ?. The function g = ⊗?∈S′ ⊗x∈? chart1cx,zx,z Ox,z
belongs to QA if and only if∏

x∈? q
dx,?/2−cx,?
x,? = 1 for almost all ? ∈ S′.

Thus, if the measure is defined on A, i.e. the generic fibre of S is of genus 1, then for every
g ∈ QA, s ∈ C, we get | |s g ∈ RA× and

∫
g | |s dµA× absolutely converges if <(s) > 2.

When the generic fibre of S is of genus different from 1, one has to renormalize fibre integrals to
ensure the convergence of their infinite product, see 57.

Definition of (A×A)×, µ (A×A)× , space R (A×A)× and integral
∫
f dµ(A×A)× . The local

normalized measures are µ (Kx,z×Kx,z)× = (1− q−1
x,z)−2 µKx,z×Kx,z/| |x,z for nonarchimedean x, y,

and µ (Kω,y×Kω,y)× = µKω,y×Kω,y/| |ω,y. Here | |x,z is the module on the product of two copies of
Kx,z .

Similar to the above, (A×A)× = A× ×A× is the restricted product of (A? ×A?)× with respect
to
(
O(A? × A?)

)×.
The group of invertible adeles (A × A)× acts on the spaces R′A×A, RA×A, QA×A: f −→

fα, fα(γ) = f (αγ).
EndowG4

a (A) with the topology similar to the case ofG2
a (A). Define the topology on (A×A)×

as the induced from G4
a (A) via (A× A)× −→ G4

a (A), (α, β) 7→ (α, α−1, β, β−1).
Define µ (A?×A?)× = µA×? ⊗ µA×? , µ (A×A)× = ⊗?∈S′µ (A?×A?)× .

Define R (A?×A?)× = RA×? ⊗ RA×? . For f? = f (1)
? ⊗ f (2)

? with f (m)
? ∈ RA×? define the integral∫

f? dµ (A?×A?)× =
∫
f (1)
? dµA×?

∫
f (2)
? dµA×? and extend by linearity to R (A?×A?)× .

If f? = h? ◦ p? for an integrable continuous function h? on (Ak(?) × Ak(?))× then
∫
f? dµA×? =∫

h? dµ(Ak(?)×Ak(?))× where µ(Ak(?)×Ak(?))× is the tensor product of µA×
k(?)

.

Define a functional space R (A×A)× as the linear space generated by ⊗?∈S′f?, f? ∈ R (A?×A?)× .

For f = ⊗f? ∈ R (A×A)× with f? ∈ R (A?×A?)× define∫
f dµ(A×A)× =

∏
?∈S′

∫
f? dµ(A?×A?)×

(the product may diverge) and extend by linearity to R (A×A)× .

In particular, QA×A is a subset of R(A×A)× .
Similarly to the above we deduce that if the generic fibre of S is of genus 1, then for every

g ∈ QA×A, s ∈ C, we get | |s g ∈ R(A×A)× and the integral
∫
g | |s dµ(A×A)× absolutely converges

if <(s) > 2.

Remark 1. The theory of measure and integration on A× is in some sense simpler than the theory
on A, since A×? coincides with the preimage of its image with respect to p?:A? −→ Ak(?). Almost
all functions we work with in the study of an unramified zeta integral are pullbacks of functions on
Ak(?). For the purposes of the application to the unramified zeta integral we can define the weak
R-valued measure µwA×?

on A×? as the pullback of the measure on A×k(?), and the weak R-valued
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measure µw(A?×A?)× on (A? × A?)× as the pullback of the measure on (Ak(?) × Ak(?))×. For a
function f = p∗?(h) ∈ Q with a function h at the residue level the integral

∫
f dµw coincides with

the integral
∫
f dµ.

Remark 2. In the study of the zeta integral we will mainly work with (A × A)×. We will
introduce a subgroup T < (A× A)× in 36 and an integral denoted

∫
T
g in 37 which is not equal to∫

g charT dµ(A×A)× . It will differ from the latter at (x, ?), x is a singular point of ?.

Finally, we extend the measure and integration from B to B×B in the most straightforward way.

Definition of B × B, µB×B, and integral. Using B define the adelic object B × B in the
similar way to the definition of A× A using A.

Using 13 we get the R ((X))-valued translation invariant measure µB?×B? on B?×B? which lifts
the discrete counting measure on k(?)× k(?), similar to the definition of the measure on µB? .

The adelic object B× B comes with its measure

µB×B = ⊗?∈S′ µB?×B? .

For f ∈ QA×A define its integral against the measure µB×B similarly to the definition of the
integral against the measure µB.

Definition of µB× , µ (B×B)× , and integral. The measure on k(?) is counting discrete and
the discrete measure on k(?)× is induced by it. Define the measure on B×? and on (B? × B?)× as
induced from the measure on B? in 30 and on B?×B?. So these measures are just lifts of the discrete
measures on k(?)× and on (k(?)× k(?))×.

Similarly define the measure on B× and (B × B)× as the tensor product of the measures on
the components. So these measures are just induced by the measures on B and B × B. We get∫
B× f dµB× =

∫
B f charB× dµB.

For f = ⊗f? ∈ QA×A, f? = g? ◦ p? where g? is an integrable function on Ak(?) × Ak(?) and a
subset C =

∏′
? C? < (B × B)×, C? = p−1

? (B?) for a measurable subset B? ⊂ p?(B? × B?) define
the integral

∫
C
f dµ(B×B)× as

∏
?∈S′

∫
p?(C?) g? dµk(?)×k(?) and extend to f ∈ QA×A.

32. In this section we get summation formulas on B and B × B in the case of finite S′. These
formulas lift the one-dimensional summation formulas.

Lemma. Let f ∈ QA. Assume the set S′ in 29 is finite. Then the integral
∫
f (β) dµB(β) is finite and∫

f (β) dµB(β) =
∫

F(f )(β) dµB(β).

Proof. Use the definition of the Q-spaces and the calculation of the transform function in 9 (the
transform of g ◦ p is F(g) ◦ p) and reduce to the one-dimensional case on every fibre and horizontal
curve.

Remark 1. Define the measure on A ∩Ay as the lift of the measure on Ak(y) following 13, and
then define the measure on A and B, as above. The previous Lemma holds for these adelic objects
and measures as well.

Remark 2. Using the measures µA? and µB? , one can define the measure µA?/B? on A?/B? which
lifts the appropriate one-dimensional quotient measureµAk(?)/k(?) so thatµ(A?/B?) = µ(Ak(?)/k(?)).
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We have µ(Ay/By) = |ρ|−1/2
y = q1−gy

y for a nonsingular fibre y, ρ is defined in 29, see also Remark
3 in 30. Hence, if the genus of the generic fibre of S is one, we can define µ(A/B)S′ as ⊗?∈S′µA?/B?
and we have the well defined number µ(A/B)S′ :=

∏
?∈S′ µ(A?/B?) for infinite S′.

The previous Lemma and Lemma 1 of 30 imply the following summation formula on B: for
α ∈ A×, f ∈ QA and finite S′ we get∫

f (αβ) dµB(β) =
1
|α|

∫
F(f )(α−1β) dµB(β),

where F(f ) is the transform of f on A, | | is the module on A defined in 30.
If f = charOA? the previous formula and Remark in 27 immediately give the Riemann–Roch

formula for the curve ?.
We can easily extend the previous constructions to the adelic object A× A.

Proposition. Let f ∈ QA×A. Let S′ be finite. Then∫
f (β) dµB×B(β) =

∫
F(f )(β) dµB×B(β)

and ∫
f (αβ) dµB×B(β) =

1
|α|

∫
F(f )(α−1β) dµB×B(β)

for α ∈ (A× A)×, | | is the module on A× A defined in 31.

2. Two-dimensional K-delic objects

In this short part for an arithmetic surface S we introduce a K2-delic object CS = JS/PS which via
two-dimensional class field theory describes abelian extensions of the field of rational functions of S.
In 35 we modify JS/PS to another object J/P which will be used in the study of the zeta integrals.
Similar to the one-dimensional case, in the study of the zeta integrals one does not use class field
theory, but rather appropriate K-delic objects which naturally originate from it. We continue to
follow the agreement on the notation in 24.

33∗. It is easy to see (using, for example, the argument in the proof of Lemma 5 in [27]) that

K1(AS) = A×S , K1(AS) = A×S ;

K2(AS) is the quotient of A×S ⊗ A×S (the tensor product of is taken in the adelic sense, i.e. it is
generated by symbols α1 ⊗ α2 with αi ∈ A×S ) modulo the submodule generated by α ⊗ (1 − α),
where α, 1− α are elements of A×S ;
K2(AS) is the quotient of A×S ⊗ A×S (the tensor product of is taken in the adelic sense, i.e. it is
generated by symbols α1 ⊗ α2 with αi ∈ A×S ) modulo the submodule generated by α ⊗ (1 − α),
where α, 1− α are elements of A×S .

We also have similarly properties for K2(BS) and K2(BS).

Definition of IS. The topological Kt
2-groups of two-dimensional local fields were defined in

14 and 22. For their basic properties see [10], [67].

* this subsection contains a simplified version of the original text
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Let

IS =
∏
y

∏
x∈y

Kt
2(Kx,y)×

∏
σ,ω

Kt
2(Kω,σ),

where y runs through curves on S and x runs through places of k(y).

Our aim is to define a subobjectJS of IS which plays the role of the idele group in one-dimensional
class field theory and which can be viewed as the restricted product of Kt

2(Kx,y), Kt
2(Kω,σ).

Denote by AS,na (resp. AS,na) the nonarchimedean part of AS (resp. of AS), i.e. the parts
associated to all the closed points and curves passing through them on S.

Definition of JS. The local symbol maps (α, β) 7→ {α, β} induce the adelic symbol map

A×S,na ×A×S,na −→ IS.

Denote the image of this adelic symbol map as JS,na, the non-archimedean part of JS.
Introduce the archimedean part JS,a of JS:

JS,a = ⊕ω,yKt
2(Kω,y)⊕⊕σ,ωKt

2(Kω,σ).

Denote

JS = JS,na ⊕ JS,a.

Recall that for a two dimensional (non-archimedean) local field Kx,z and its rings of integers
Ox,z of rank 1 and with local parameters t2x,z , t1x,z , there exists a continuous vertical map which
makes the following commutative diagramme

K×x,z ⊗K×x,z

�� ((PP
PPP

PPP
PPP

P

O×x,z × O×x,z
qx,z // Kt

2(Kx,z).

Here the diagonal map is the symbol map, the horizontal homomorphism qx,z can be defined as

(α1x,z, α2x,z) 7→ {t1x,z, α1x,z} + {α2x,z, t2x,z}

(alternatively, one can work with the homomorphism tx,z of sect. 36).
Moreover, the horizontal map qx,z is surjective, the topology of Kt

2(Kx,z) induced via qx,z from
the topology of O×x,z×O×x,z does not depend on the choice of local parameters, and it coincides with
the topology of Kt

2(Kx,z) which is the strongest topology in which the diagonal symbol map and its
subtraction are sequentially continuous, see sect. 4 of [10] and sect. 6 Part I of [15].

In addition, it is straightforward to see the image of O×x,z ⊗K×x,z generates Kt
2(Kx,z).

Define A×S,na as the nonarchimedean part of A×S associated to closed points x of y. The local
nonarchimedean maps diagrams give us an adelic diagramme of continuous maps

A×S,na ×A×S,na

�� %%J
JJ

JJ
JJ

JJ
J

A×S,na × A×S,na
q // IS.
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Lemma. The image of A×S,na×A×S,na with respect to q equals JS,na. Every element of JS,na has only
finitely many (x, y)-components not lying in qx,y(O×x,y ×O×x,y) = Kt

2(Ox,y).
JS is isomorphic to

Kt
2(AS) = K2(AS)/Λ2(AS), Λ2(AS) = ∩l>1lK2(AS).

Proof. Use the well-known formula

{α, 1 + αβ/(1− α)} = −{1− α, 1− β} + {1− β, 1 + αβ/(1− α)}.

Definition. Define the topology of JS,na as the sequential saturation of the topology induced via
q from A×S,na × A×S,na.

Lemma. This topology on JS,na does not depend on the choice of local parameters and it coincides
with the strongest topology on JS,na in which its subtraction and the diagonal symbol map are
sequentially continuous.

Definition of Kt
2(Kω,y)0. Denote by Kt

2(Kω,y)0 (resp. Kt
2(Kω,σ)0) the kernel of the border

map from Kt
2(Kω,y) (resp. Kt

2(Kω,σ)) to K1 of the residue field , i.e. the cyclic group generated
by {−1,−1}. Then Kt

2(Kω,y) is the direct sum of Kt
2(Kω,y)0 and {ky(ω)×, ty} where ty is a local

parameter of Kω,y, and similarly for Kt
2(Kω,σ).

Definition of the topology of JS. Define the topology of Kt
2(Kω,y) as the product of

the discrete topology on Kt
2(Kω,y)0 and the induced topology via ky(ω)× → {ky(ω)×, ty} of the

topology of ky(ω)× which is the preimage of the discrete topology on ky(ω)×/ky(ω)×2. Define
the topology of JS,a as the sequential saturation of the direct sum topology of the topologies of
Kt

2(Kω,y) and Kt
2(Kω,σ).

Define the topology of JS as the sequential saturation of the product topology of its archimedean
and nonarchimedean parts.

34. Definition of PS. Define

PS = ∆

∏′

y

K2(Ky) + ∆

∏′

x

K2(Kx) + ∆

∏
σ

K2(Kσ),

where the restricted product signs mean the intersection of the product with ∆−1(JS) and ∆ are
obvious diagonal maps induced by field embeddings.

Endow JS/PS with the induced topology from JS.

Using Kato–Saito’s higher class field theory [29], [30] and working with the adelic version of
explicit higher local class field theory [9] one can prove the following

Theorem. Let S be as in 24. Let K be its function field.
The product ΦS of the local reciprocity maps Φx,z:Kt

2(Kx,z) −→ Gal(Kab
x,z/Kx,z) vanishes on

PS.
Characters of finite order of the Galois group of K are in one-to-one correspondence with

characters of finite order of the K-delic class group CS = JS/PS via the reciprocity map

ΦS: JS/PS −→ Gal (Kab /K).

For a finite Galois extension L/K the homomorphism ΦS induces

JS/(PS +NS×KL/SJS×KL) →̃Gal (L ∩Kab /K).
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The reciprocity map restricted on
∏
σ

∏′
ωK

t
2(Kω,σ) factorizes through the quotient of the group∏

σ real
∏′
ωK

t
2(Kω,σ)/2.

This Theorem is not used in this text, and its proof is not included.

35. Using border homomorphisms, consider the composite map

ix,z:Kt
2(Kx,z) −→ K1(Ex,z) −→ K0(kz(x)) −→ K0(k(x)),

where the last map is multiplication by the degree of kz(x)/k(x). Denote by UKt
2(Kx,z) the kernel

of ix,z .
Set ix =

∑
y3x

∑
z∈y(x) ix,z and i = ⊕x∈S0 ix. Thus we get

i: JS,na −→ C0(S) = ⊕x∈S0K0(k(x)).

The group UJS,na is defined as the intersection with JS,na of the product of the local groups
UKt

2(Kx,y) over all nonarchimedean data (x, y). The kernel of the homomorphism i containsUJS,na.
If w is a local (i.e. formal or infinitesimal) curve passing through x, i.e. a prime ideal of height

1 of Ox, not necessarily coming from a curve on the surface, we can work with a two-dimensional
local field Kx,w and similarly define the map ix,w.

The K-localization theory, see e.g. [47], for SpecOx gives the exact sequence for regular points
x of S

K2(Ox) −→ K2(K ′x) −→ ⊕w3xK1(Ex,w) −→ K0(k(x)) −→ 0,

where w runs through all local curves passing through x (see 24 for the definition of K ′x). We get
the induced exact sequence

K2(Kx) −→ ⊕y3x ⊕z∈y(x) K1(Ex,z) −→ K0(k(x)) −→ 0.

Definition of S∗ and S′. Choose a finite set S∗ of horizontal curves. In characteristic zero
include in S∗ at least one horizontal curve.

Put
S′ = Sp ∪ S∗.

The set S′ will be further specified in 36 and then in 40.

Definition of J and P . Put UKt
2(Kω,y) = Kt

2(Kω,y). Denote by J the subgroup of JS such
that every its (x, y)-components for every horizontal curve y ∈ Sh \S∗ lies in UKt

2(Kx,y). We have

J =
∏′

y∈S′

∏′

x∈y
Kt

2(Kx,y)⊕
∏′

y 6∈S′

∏′

x∈y
UKt

2(Kx,y)⊕
∏
σ

∏′

ω

Kt
2(Kω,σ).

Denote by Jna := J ∩ JS,na the nonarchimedean part of J , and by Ja := J ∩ JS,a the archimedean
part of J .

Denote
P = J ∩ PS.

Definition of | |2. Using the local modules | |2,x,y defined in 15 and the modules | |2,ω,σ defined
in 22, and the norm maps from kz(x) to k(x), define the following homomorphism

| |2: JS −→ R×>0 = (0,+∞)

as their product.



Analysis on arithmetic schemes. II I. Fesenko 37

Denote the kernel of | |2 by J1
S. Put UJS = J1

S ∩ (JS,a + UJS,na). Then we have UJS < J .
Denote J1 = J ∩ J1

S, UJ = UJS.

Lemma. The homomorphism i induces

J1
S/(PS + UJS) = J1

S,na/(PS ∩ JS,na + UJS,na) ' CH0(S)0,

where the right hand side is the (degree zero in positive characteristic) part of the Chow group of
zero cycles of S.

Suppose that all singular points x of fibres ? are split, i.e. there is z ∈ ?(x) such that kz(x) = k(x).
Then for x ∈ S0

ix(Jna + ∆

∏′
K2(Kx)) = ix(JS,na),

JS,na = (J + PS) ∩ JS,na + UJS,na,

JS/(PS + UJS) ' J/(P + UJ),

so J1/(P + UJ) ' CH0(S)0.

Proof. Follows immediately from the definitions, the localization sequence and the description of
the kernel of i.

Definition of N . Denote
N = |JS|2 = |J |2.

The | |2-module value group N is a relatively nice group: the cyclic group {qn, n ∈ Z} generated
by the appropriate power q of p in positive characteristic p and R×>0 in characteristic zero. This is
due to the assumption that there is at least one horizontal curve in S′, i.e. |S∗| > 1.

We get

J/J1 ' JS/J1
S ' N.

Definition. Define

| |0:C0(S) −→ R ,
∑

axx 7→
∏
|k(x)|−ax .

Then | |2 = | |0 ◦ i on JS,na.

3. Two-dimensional zeta integral and its first properties

From now on we assume that every singular point (if it exits) of every fibre of S −→ B is split
ordinary double, if necessary by blowing up at singular points of fibres and passing to a finite
extension of the ground field k.∗ The set S′ of curves and fibres on S will consist of all the fibres and
of finitely many nonsingular horizontal curves.

Keeping in mind extensions of the theory, several more general objects will be used than strictly
necessary for the case of split ordinary double points.

This part consists of seven subparts.
We sketch below the construction of the local zeta integral given in [11]. In 3.1 we introduce

adelic versions of the local objects of [11]. The zeta integral will be a certain integral over a subgroup

* this is a well-known property, see, in particular, "well-adjusted models", Def. 2.2 of [75].
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T of a subgroup T of (A× A)×; T coincides with (A× A)× if all singular points of fibres are split
ordinary double. The subgroup T is a twisted version of T , and we use a twisted module map || ||
with different scaling for horizontal and vertical curves.

In 37 we define integrals
∫
T
g and

∫
T
g. These integrals differ from

∫
charT g dµ(A×A)× ,∫

charT g dµ(A×A)× at the local data associated to singular x ∈ ?. It is natural and inevitable that at
the local singular data we have to use new objects.

Subsection 3.3 introduces the two-dimensional zeta integral

ζ(g, χ) =
∫
T

g χt

for a good function g on A × A and a character χ of the K2-dele group J ; the function χt on T is
the result of using the composite of χ with t and some twisting.

In the rest of the text, except 57, we work with a scheme E corresponding to a proper regular
model of an elliptic curve over a global field. In 3.4 we perform the first calculation of the zeta
integral. Its horizontal components satisfy the functional equation s → 2 − s. Each of its fibre
components equals the square of the zeta function of the fibre times an exponential factor if the fibre
contains singular points. Thus we get a comparison of the zeta integral and the square of the zeta
function of E, and in particular the convergence of the zeta integral on the half plane <(s) > 2.
For arithmetic schemes which are proper regular models of curves of higher genus, the zeta integral
diverges and has to be renormalized, see 57.

As a preparation for the second calculation of the zeta integral, 3.5 introduces a local-global
subgroup T0 of T . To ensure convergence of integrals over T0 we have to use an appropriate
rescaling of the lifting measure from the counting discrete measure at the residue level. Lemma 41
shows that the K2-objects J and P are compatible modulo units via the map t with the K1 ×K1-
objects T and T0. In 43 we define various integrals for the filtration T > T1 > T0 = T0 and its
quotient filtration, and Lemma 43 connects the integrals with each other. We work with the spaces
R(A×A)× ⊃ QA×A and spaces R0

(A×A)× ⊃ Q
0
A×A ⊃ Q∗A×A, the last three are defined in 37 and 43.

In 3.6 using the summation formulas from 32, we establish a two-dimensional theta formula for
integrals over T0. It is of independent interest and is supposed to play an important role in future
developments. In particular, its structure takes into account both the adelic duality and the class field
theory structures.

The second calculation of the zeta integral is performed in 3.7. The two calculations together
imply that the analytic properties of the zeta function and the analytic properties of the zeta integral
are now reduced to the analytic properties of a certain two-dimensional boundary term defined in 3.7.
In the one-dimensional case the corresponding boundary term is of almost trivial structure. In higher
dimensions the distance between the additive andK-delic structures is larger and the boundary term
structure in dimension two is much more complicated.

Now we briefly review appropriate parts of the local theory of [11]. Assume that F is a
nonarchimedean two-dimensional local field, and let O, O be the rings of integers of F with respect
to the discrete valuation of rank one and with respect to a discrete valuation of rank two; O ⊂ O

are preimages with respect to the residue map of the ring of integers of the one-dimensional local
field and of the field. As in [11], put T = O× × O×, so choosing local parameters t2, t1 in the
nonarchimedean residue field case we get T = {(tj1u1, t

l
1u2) : j, l ∈ Z, u1, u2 ∈ O×}. Instead of

integrating over the topological MilnorK2-group whose structure is not completely known in mixed
characteristic, we integrate over K1 ×K1-objects using the local surjective homomorphism defined
in 16

t:T −→ Kt
2(F ), (ti1u1, t

j
1u2) 7→ (i + j){t1, t2} + {t1, u1} + {u2, t2}.
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The kernel of t consists of units which can be ignored as far as the unramified theory is concerned.
The homomorphism t is related to the homomorphism q defined and used in 33.

Using the translation invariant measure µF×F on F × F and the associated module | | we get
the measure

µF××F× = (1− q−1)−2 µF×F /| |
on F× × F×, where q is the cardinality of the last finite residue field of F .

For f ∈ RF×F , the space defined in 10, and a quasi-character χ ofKt
2(F ), the local zeta integral

is

ζ(f, χ) =
∫
T

f χ◦t dµF××F× .

This is equivalent to the several other definitions in 17. In general, the zeta integral takes values
in C((X)), if converges. If f belongs to QF×F , the two-dimensional local Bruhat–Schwartz space
defined in 10, then the integral takes values in C, if converges. In the adelic theory this local zeta
integral will appear on points of fibres.

For example, if χ = χ0 | |s2, where χ0 is of finite order and trivial on {t1, t2}, then

ζ(f, χ) = (1− q−1)−2
∑
j,l∈Z

(q−s)j+l
∫
O××O×

f (tj1u1, t
l
1u2)χ0

(
t(u1, u2)

)
dµF×F (u1, u2).

For more details see [11], [12]. See also [39] for the lifting approach to the local theory.

3.1. Group T and integrals over it

Under the assumption about the type of singular points of fibres stated at the beginning of this part
3, Lemma 35 shows that the quotient JE/(PE + UJE), the analogue of the idele class group, is
isomorphic to the quotient J/(P + UJ). Working with all the vertical curves and finitely many
horizontal curves is also compatible with unramified class field theory for curves over global fields
contained in [28].

36. In this and the next section we define various adelic multiplicative analogues of the local objects
from [11]; they will be useful for the two-dimensional adelic zeta integral.

Definition of archimedean T . For a two-dimensional local field L = E((t)), where E is an
archimedean local field, its ring of integers is OL = E[[t]]. Let p:OL −→ E, p:O×L −→ E× be the
residue maps. We slightly extend the definition in 23 and put

TL := O×L × O×L .

Definition of local v, u, Qx, Tx,?. For a nonsingular point x ∈ ?we use the localK1-objects
Tx,? := (K1 ×K1)(Ox,?) = K1(Ox,? × Ox,?) = O×x,? × O×x,?. For a singular x ∈ ? and z ∈ ?(x) put
Tx,z := (K1 ×K1)(Ox,z).

At archimedean ω ∈ y we use the Tω,y = TKω,y as in the previous definition.
Now we treat the case of a split ordinary double point x of a fibre ?. At the level of groups

the object Tx,? will be O×x,? × O×x,?, but integrals over these two groups will be different. We also
introduce several related constructions, which are expected to be useful in the general case of singular
points of fibres as well.
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Denote the branches of ? at x by z, z′. Choose an element t = tx ∈ Ox such that its image in
Ox,z is a t1x,z-element there and its image in Ox,z′ is a t1x,z′-element there; in other words, the
images with respect to p of the image of t are uniformizers of the local fields Ex,z and Ex,z′ .

Denote

Qx := Ox[t−1]

the subring of K ′x. Even though it is defined non canonically, computations of the unramified zeta
integral won’t depend on the choice of t.

We have O? ⊂ Ox ⊂ Qx.
The ring Ox is isomorphic to the ring O[[X,Y ]]/(XY − π) where O is the ring of integers of

the completion kv with respect to the place v corresponding to the fibre, π is a prime element of O,
and z = (Y ), z′ = (X). Every element of O[[X,Y ]]/(XY − π) can be uniquely represented by a
series in O + XO[[X]] + Y O[[Y ]]. The two-dimensional local ring of integers Ox,z = O{{X}} is
the completion of O((X)) with respect to its prime ideal πO((X)), and similarly is Ox,z′ = O{{Y }}.
We have a natural embedding

z:Ox −→ O{{X}}, g(X,Y ) 7→ g(X,πX−1)

and similarly z′:Ox −→ O{{Y }} and using them both we get the ‘diagonal map’ (already used in
the definition of Ox,? in 25)

x = (z, z′):Ox −→ O{{X}} ×O{{Y }}.

It is easy to see x(α) ≡ 0 mod π if and only if α ≡ 0 mod π.
The embeddings z, x extend to ring homomorphisms:

z:Qx −→ O{{X}}, z′:Qx −→ O{{Y }}, x:Qx −→ O{{X}} ×O{{Y }}.

The definitions in 25 imply Ox,? = p−1
? (p?(x(Ox))). We also easily get p−1

? (p?(x(Qx))) = Ox,?.
The subring z(Qx) is a dense subset of Ox,z , the subring x(Qx) is a dense subset of Ox,?, both

in their two-dimensional topology and in their π-adic topology. While the ring Qx is isomorphic to
z(Qx) and x(Qx), at the residue level p?(Qx) is not isomorphic to a subring of p?(Ox,z) = k(x)((X)),
so we have more relations between these 2-dimensional objects than between their 1-dimensional
images.

Denote the isomorphism v: z(Qx) −→ x(Qx) and denote the inverse isomorphism by u.

Ox,z Ox,?

z(Qx)
?�

OO

oo u v // x(Qx)
?�

OO

Qx

z

``AAAAAAAA
x

>>}}}}}}}}

The map v is not continuous, e.g. z(t−2iY i) tends to 0 and x(t−2iY i) does not tend to 0 when i
goes to infinity. If α ≡ β mod π then u(α) ≡ u(β) mod π.

By abuse of notation use x for (x, x), similarly for z, u,v.



Analysis on arithmetic schemes. II I. Fesenko 41

We could have defined Tx,? as x(Q×x × Q×x ), but it is slightly more convenient to work with its
saturated version with respect to p. We define

Tx,? := O×x,? × O×x,?.

Thus, if all singular points of fibres are split ordinary double, we have the uniform description

Tx,? = (K1 ×K1)Ox,?, x ∈ ? ∈ S′,

at the level of the group structure. However, at the level of the integration, the integral over Tx,? will
be quite different from the integral over O×x,? × O×x,? for singular x ∈ ?.

We deduce that the subgroup z(Q×x ×Q×x ) of Tx,z is isomorphic to the subgroup x(Q×x ×Q×x ) of
Tx,?, while at the residue level p?(x(Q×x ×Q×x )) = p?(Tx,?) 6= p?(Tx,z).

Remark 1. The reciprocity map ΦS =
∏
x

∏
y3x

∏
z∈y(x) Φx,z vanishes on the image of K2(Kx)

in ⊕z∈y(x),y3xK
t
2(Kx,z), see 34. In particular, if x is a singular point of ? then the image of the

element {X,Y } ∈ K2(Kx) is trivial in Kt
2(Kx,y) if y 6= ? and is ({X,πX−1}, {πY −1, Y }) =

({X,−π},−{Y,−π}) ∈ Kt
2(Kx,?), which should then go to the identity Galois automorphism in

Kab/K via the reciprocity map ΦS. Using local tx,z with t2 = t? = −π we can write {X,−π} =
tx,z(X, 1), −{Y,−π} = tx,z′ (Y −1, 1). Hence (Xi, Xj , Y k, Y l) ∈ Tx,z × Tx,z′ should go to the
identity Galois automorphism with respect to the composite of (tx,z, tx,z′ ) and the global reciprocity
map, if i + j + k + l = 0. Factorizing Tx,z × Tx,z′ by the subgroup Nx,? generated by such elements
and byO×x,?×O×x,?, which do not matter for the unramified class field theory, we arrive at the object
which is isomorphic to the quotient of Tx,z modulo units. Thus, from the point of view of class
field theory, at singular points the minimal K1 ×K1-object which would cover the Kt

2-object and
is compatible with the reciprocity map is not the full (K1 ×K1)(Ox,?) and its image with respect
to (tx,z, tx,z′ ), but rather some of its subgroups which is isomorphic (perhaps modulo units) with
(K1 ×K1)(Ox,z). It will be natural at the (x, ?)-components of the unramified zeta integral to use
the integration over Tx,z , using the map u.

Remark 2. The definition of Tx,? at singular x ∈ ? and the definitions of u, v above differ from
the abbreviated description given in 4.3 of [14].

Remark 3. For simplicity, in this text we treat the case of split ordinary double points only. An
appropriate definition of Tx,? and integration over it can be given for any singular point x ∈ ?, see
also Remark 2 in 40.

Definition of tx,? and associated commutative diagrammes. For nonarchimedean
(x, z), section 16 and the introduction of this part 3 contain the definition of the surjective homo-
morphism

tx,z:Tx,z = O×x,z × O×x,z −→ Kt
2(Kx,z)

for x ∈ ? and z ∈ ?(x). We get the following commutative diagramme

O×x,z ⊗K×x,z/O×x,z

�� **UUU
UUUU

UUUU
UUUU

UU

Tx,z // O×x,z × O×x,z/O
×
x,z

// Kt
2(Kx,z)/UKt

2(Kx,z),

where the vertical map sends α⊗ tm? to (αm, 1), the horizontal map is induced by t and the diagonal
map is induced by the symbol map. Indeed, the symbol map sends α ⊗ tm2 to m{α, t2}, t2 = t?,
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and the homomorphism tx,z sends (αm, 1) to m{α, t2} + UKt
2(Kx,z). This diagramme relates the

symbol map with the map tx,z which we will use for the integration.
For a fibre ? and singular x ∈ ? define tx,? as

(tx,z)z∈?(x):
∏
z∈?(x)

Tx,z = Tx,? −→
∏
z∈?(x)

Kt
2(Kx,z) = Kt

2(Kx,?).

Using (x, z)-diagrammes for all z ∈ ?(x) we get the following commutative diagramme

O×x,? ⊗K×x,?/O×x,?

�� **UUU
UUUU

UUUU
UUUU

UU

Tx,? // O×x,? × O×x,?/O
×
x,?

// Kt
2(Kx,?)/UKt

2(Kx,?),

where the left horizontal map is induced by the inclusion Tx,? = O×x,? × O×x,?.

Finally, for Kω,y = Eω,y((tω)) with archimedean local field Eω,y as in 24, we have a homomor-
phism

tω,y:Tω,y = O×ω,y × O×ω,y −→ E×ω,y × E×ω,y −→ Kt
2(Kω,y),

where the first map is (p, p), p is the residue map, and the second map is (α, β) 7→ {αβ, tω}, it was
denoted by t in 23. The following diagramme is commutative

O×ω,y ⊗K×ω,y/O×ω,y

�� **UUU
UUUU

UUUU
UUUU

UU

Tω,y // O×ω,y × O×ω,y
// Kt

2(Kω,y)/Kt
2(Kω,y)0,

where Kt
2(Kω,y)0 is defined in 33, the vertical map sends α⊗ tmω to (αm, 1), and the diagonal map

is induced by the symbol map.

Definition of T?, TS′ , TSo . In general, define

T? :=
∏
x∈?

Tx,? ∩
(
A?×A?

)×
, TS′ :=

∏
?∈S′

T? ∩
(
AS′×AS′

)×
, TSo =

∏
?∈So

T? ∩
(
ASo×ASo

)×
,

where So is a subset S′.
If all singular points of fibres are split ordinary double, then

T? = (A? × A?)×, TS′ = (AS′ × AS′ )×.

Define the topology on TS′ as the topology induced from (AS′ × AS′ )×.
Recall that, as agreed in 24, we include objects associated to archimedean points on horizontal

curves in the list of data (x, y). No information associated to Kσ, i.e. archimedean curves, is
contained in TS′ .

Definition of VA×S , V A×S , A
×
S ×A×S , A

×
S ⊗A×S /VA

×
S . Using the adelic object AS of 28,

put VA×S = A×S ∩
∏

O×x,y ×
∏

A×σ . Define a subgroup V A×S of A×S which at the nonarchimedean
data equals A×S ∩

∏
O×x,y and whose archimedean components are all equal 1.

We will work with the product and tensor product of adelic objects, taken in the adelic sense.
Define

A×S ×A×S = {(αx,?, βx,?)x∈?∈S1 , (αx,?) ∈ A×S , (βx,?) ∈ A×S }.
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The quotient A×S /VA
×
S is isomorphic to ⊕?∈S1Z, it forgets about the Aσ-components of A×. For

an abelian group R the tensor product R⊗ Z consists of tensor elements. Define

A×S ⊗A×S /VA
×
S = {(αx,? ⊗ γx,?)x∈?∈S1 , (αx,?) ∈ A×S , (γx,?) ∈ A×S /VA

×
S }.

Similarly define objects for S′, e.g.

A×S′ ⊗A×S′/VA
×
S′

= {(αx,? ⊗ γx,?)x∈?∈S′ , (αx,?) ∈ A×S′ , (γx,?) ∈ A×S′/VA
×
S′
}.

Definition of t, V JS. Using all tx,z we get the adelic morphism

t:TS′ = (AS′ × AS′)× −→ J −→ JS.

Define V JS as the image with respect to q defined in 33 or equivalently with respect to t of
V A×S × V A×S intersected with A×S,na × A×S,na.

When we work modulo V JS, we can replace A×S,na × A×S,na from 33 by A×S,na × A×S,na/V A×S,na.
The following diagramme is the adelic version of the previous diagrammes for tx,?

A×S ⊗A×S /VA
×
S

�� ))RR
RRR

RRR
RRR

RRR

TS′ // A×S × A×S /V A×S // JS/V JS.

Here we use a map A×S′ ×A×S′ −→ A×S ×A×S which is the identity map on the S′-data with added 1
on the complement of S′.

Definition of S′. From now on, the set S′ of curves on S, on which all the adelic objects are
defined, contains all fibres and a positive number of nonsingular horizontal curves. Set

S′ = Sp ∪ S−
where S− = Sh ∩ S′ is the subset of horizontal curves in S′.

We abbreviate A = AS′ .
The set S′ will be further specified in 40 for proper regular models of elliptic curves.

Definition of T and JS′ . This K1 ×K1-object is just

T := TS′ .

The restriction of t gives

t:T −→ JS′ := J ∩
∏′

?∈S′

∏′

x∈?
Kt

2(Kx,?).

Lemma. The induced map T −→ JS′/(JS′ ∩ (PS + V JS)) is surjective. The following diagramme,
whose bottom line is induced by t , is commutative

A× ⊗A×S′/VA
×
S′

�� **TTT
TTTT

TTTT
TTTT

T // A× × A×/V A× // JS′/(JS′ ∩ V JS).
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Proof. The local tx,? are surjective.

Definition of | |, NSo , N, q, qy. Define

| |: (A× A)× −→ N, (α1, α2) 7→ |α1||α2|,

N is defined in 35, |α| is defined in 30. In particular, N = |T |.

Similarly, for a set So of fibres and horizontal curves define | |So and put NSo = |TSo |.
If k(y) is of positive characteristic then Ny is a cyclic group generated by qy > 1.
In positive characteristic the group N is generated by q > 1, as in 35.

Definition of T1x,z, T1,?, and M?. Define a subgroup

T1x,z = {(α1, α2) ∈ Tx,z : |(α1, α2)|x,z = |α1|x,z|α2|x,z = 1}

of Tx,z .
For a fibre or a horizontal curve ? denote by T1,? the kernel of the restriction of | | on T?.
Choose a subgroup M? of T? which is isomorphic to N? = |T?|; this gives the splitting T? '

T1,? ×M?. The choice of T? is non canonical. Recall that in the one-dimensional theory [57] one
makes a similar non canonical choice of representatives of N?.

Finally, we will need the following rescaled module and group.

Definition of || ||, T. For a fibre ? put || ||? = | |? and denote T? = T?.

For a horizontal curve ? put || ||? = | |1/2
? and choose a maximal subgroup T? of T? such that

||T?|| = |T?|. In other words, T? = T? for horizontal curves in characteristic zero andT? = T1,?×M2
?

(of course, this depends on the choice of M?) for horizontal curves in positive characteristic.
Put

T = T ∩
∏
?∈S′

T? =
∏′

?∈S′

T?, || || =
∏
?∈S′

|| ||?.

37. Now we define integrals
∫
T
g,
∫
T
g for g ∈ R0

(A×A)× . They are not
∫
g charT dµ(A×A)× , etc.,

but differ at the (x, ?)-data for singular points x ∈ ?. It is important that we have to use a new
integration at singular points, since the theory cannot come as the lift of a one-dimensional theory.
This new integration will be used in the zeta integrals. In the first approximation, quite imprecisely,∫
T?
g is the integral of g ◦ v over

∏′
x∈?,ns Tx,? ×

∏
x∈?,s Tx,z .

We define certain subspaces R0 and certain diamond modifications of their elements, which we
then use to define the new integration.

Definition of space Q0
Kx,?×Kx,? and modification g 7→ g�. The local (x, z)-spaces Q

were defined in 9 and 10.
If x is a nonsingular point of ?, put Q0

Kx,?×Kx,? = QKx,?×Kx,? and let the diamond operator be
the identity one.

For a singular x ∈ ? choose a subspace Q0
Kx,?×Kx,? of QKx,?×Kx,? , which includes the

characteristic functions of (x(t)iOx,?, x(t)jOx,?), i, j ∈ Z, and such that for each of its elements
of the type hx,? =

∑
aicharAi with Ai = p−1

? (p?(Ai)) the function h�x,? =
∑
aicharBi , where

Bi = p−1
? (p?(u(Ai ∩ im(x)))), is a well defined element of QKx,z×Kx,z .
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For example, one can take the subspace generated by the characteristic functions of all Ox,? ×
Ox,?-submodules of Ox,?×Ox,? asQ0

Kx,?×Kx,? (note that such characteristic functions are linearly
independent). Since this space is enough for the purposes of this text, we fix it from now on.

Using the density of x(Qx) in Ox,? we can choose generators of every Ox,? × Ox,?-submodule
to lie in x(Qx)× x(Qx). For every function hx,? in the space of the previous paragraph we have the
property h�x,? = hx,? ◦ v on z(Qx).

In particular, the function char(x(t)iOx,?,x(t)jO⊥x,?) belongs to Q0
Kx,?×Kx,? and its image with

respect to the diamond operator is char(z(t)iOx,z,z(t)j−1Ox,z) (recall that O⊥x,? = x(t)−1Ox,?).

Definition of space R0
(Kx,?×Kx,?)× and modifications g 7→ g�, g 7→ �g. The local

(x, z)spaces R were defined in 6 and 10.
If x is a nonsingular point of ?, denote R0

(Kx,?×Kx,?)× = RKx,?×Kx,? and let the diamond
modifications be the identity ones.

If x is a singular point of ?, denote by R0
(Kx,?×Kx,?)× the subspace of the space RKx,?×Kx,? =

⊗z∈?(x)RKx,z×Kx,z generated by products hx,?πx,?, where hx,? ∈ Q0
Kx,?×Kx,? and πx,? is the

extension by zero of a quasi-character (Ox,? × Ox,?)× −→ C× which lifts a quasi-character of
E×x,? × E×x,? at the residue level.

Note that if h(i)
x,? are linearly independent elements of QKx,?×Kx,? , then h(i)

x,?π
(i)
x,? are linearly

independent elements of the space R (Kx,?×Kx,?)× for any π(i)
x,? as above, since the same fact is true

at the residue level.

Introduce the linear operator R0
(Kx,?×Kx,?)× −→ R0

(Kx,z×Kx,z)× , g 7→ g�: let first gx,? =

hx,?πx,? with hx,? ∈ Q0
Kx,?×Kx,? , then put g�x,? := h�x,? πx,z; extend by linearity to the space

R0
(Kx,?×Kx,?)× .

Introduce the linear operator R0
(Kx,?×Kx,?)× −→ R0

(Kx,?×Kx,?)× , g 7→
�g: for a function gx,? ∈

R0
(Kx,?×Kx,?)× define �gx,? as �gx,?(α, β) = g�x,?(α) charO×

x,z′
×O×

x,z′
(β), where α ∈ Kx,z ×Kx,z ,

β ∈ Kx,z′ ×Kx,z′ .

Definition of spaces R0
(A?×A?)× , R

0
(A×A)× , g

�, �g. Denote byR0
(A?×A?)× the subspace of the

space R(A?×A?)× defined in 31, which is generated by ⊗x∈?gx,? with gx,? ∈ R0
(Kx,?×Kx,?)× .

For a function g? = ⊗x∈?hx,? ∈ R0
(A?×A?)× define g�? = ⊗x∈?g�x,?, �g? = ⊗x∈?�gx,? and extend

by linearity.

Denote by R0
(A×A)× the subspace of R(A×A)× defined in 31, which is generated by ⊗?g? with

g? ∈ R0
(A?×A?)× .

For an element g = ⊗?g? ∈ R0
(A×A)× define g� = ⊗?g�? , �g = ⊗?�g? and extend by linearity.

Definition of Q0
A×A, Q

0
ASo×ASo

. Recall that the space QA×A is a subspace of R(A×A)× , see
31. Define Q0

A×A as the subspace of QA×A, whose local components belong to the local Q0- local
subspaces.

In particular, if h ∈ Q0
A×A then h | |s ∈ R0

(A×A)× and �(h | |s) = �h | |s.
Similarly define Q0

ASo×ASo
for a subset So of S′.

The group T acts on the spaces R0
(A×A)× , Q0

A×A: f −→ fα, fα(γ) = f (αγ).
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Definition of
∫
T
g. For gx,? ∈ R0

(Kx,?×Kx,?)× define∫
Tx,?

gx,? :=
∫
g�x,? dµ(Kx,z×Kx,z)× =

∫
�gx,? dµ(Kx,?×Kx,?)× ,

where µ(Kx,z×Kx,z)× was defined in 31, µ(Kx,?×Kx,?)× = ⊗z∈?(x) µ(Kx,z×Kx,z)× .
At nonsingular x ∈ ? this is just the integral

∫
gx,? dµ(Kx,?×Kx,?)× . At singular x ∈ ? the

integral of gx,? is the integral of g�x,? over O×x,z × O×x,z .

For g = ⊗x∈?gx,? ∈ R0
(A?×A?)× define∫

T?

g? :=
∏
x∈?

∫
Tx,?

gx,?

and extend the definition to linear combinations. For g = ⊗?∈S′g? ∈ R0
(A×A)× define∫

T

g :=
∏
?∈S′

∫
T?

g?

and extend to linear combinations.

From the definitions we obtain ∫
T

g =
∫
�g dµ(A×A)× .

In particular, if h ∈ Q0
A×A then

∫
T
h | |s =

∫ �h | |s dµ(A×A)× .

Definition of
∫
T
g. If g = gp ⊗ g− ∈ R0

(A×A)× with gp ∈ R0
(ASp×ASp )×

, g− ∈ R0
(AS−×AS− )× ,

define ∫
T

g :=
∫
�gp dµ(ASp×ASp )×

∫
g− charTS− dµ(AS−×AS− )×

and extend to linear combinations.
Thus, if g = ⊗g? then

∫
T
g =

∏∫
T?
g? with the following factors. If ? is a fibre or a horizontal

curve in characteristic zero then T? = T? and
∫
T?

=
∫
T?

. If ? is a horizontal curve in positive
characteristic and g = u ◦ p? ∈ R0

(A?×A?)× with a function u at the residue level then the integral∫
T?
g is equal to the one-dimensional integral

∫
p?(T?) u. For g ∈ R0

(A×A)× we can also write∫
T

g =
∫
T

charT g.

3.2. Zeta function

38. Recall that the (unramified) zeta function of a scheme X of finite type over Z is

ζX(s) =
∏
x∈X0

(
1− |k(x)|−s

)−1
.

If X is a scheme over an open subscheme C of B, with B as fixed in 24, then ζX(s) is equal to
the product

∏
b∈C0

ζXb (s), where Xb = X×C b. This arithmetic zeta function ζX(s) was introduced
by Hasse in the thirties, published in [21], and extended to schemes by Serre in [50].
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Definition of χ and its finite and unramified parts. Let S be as in 33. For the Kt
2-

delic group JS defined in 33 consider those continuous homomorphisms χ: JS −→ C×, χ(PS) = 1,
such that

χ = χ0 | |s2, χ0: JS −→ C×,

where the character χ0 is of finite order and is a lift of a character of J1
S/PS of the same finite

order, | |2 was defined in 35. It is easy to see that for such χ both χ0 and | |s2 are uniquely
determined. We call | |s2 an unramified quasi-character of JS. Put s = s(χ) ∈ C. It is uniquely
determined by χ if K is of characteristic zero, and uniquely up to 2πi/ log q, q is defined in 36,
if K is of positive characteristic. Set χ̂ = χ−1| |22. For each (x, z) denote by χx,z the composite
Kt

2(Kx,z) −→ JS −→ C×, sometimes we denote it just by χ.

Definition of the zeta function twisted by χ. The following zeta function is a com-
mutative two-dimensional analogue of the Dedekind zeta function twisted by a Dirichlet character.
Let χ be as above. Define

ζS(χ) = ζS(χ0, s) =
∏
?∈Sp

∏
x∈?

(
1− χx,?(Πx,?)

)−1
.

To explain the formula, let first ?(x) = {z}, i.e. x is a unibranch point of fibre ?. If χx,z is unramified
with respect to the two-dimensional structure (i.e. it is trivial on the subgroup ofKt

2(Kx,z) generated
byK1(Ox,z)), then by definitionχx,z(Πx,z) is just the image of a “prime” element Πx,z ∈ Kt

2(Kx,z),
i.e. an element which is mapped to 1 ∈ K0(kz(x)) with respect to the composite of two border
maps defined in 33. If the quasi-character χx,z is not unramified, then by definition χx,z(Πx,z) = 0.
Now let x be a singular point of ?. Then the (x, ?)-factor 1− χx,?(Πx,?) is by definition fx,?(q−sx )
where fx,?(t) is the greatest common divisor of polynomials fx,z(t) ∈ C[t] for all z ∈ ?(x) and
fx,z(q−sx ) = 1− χx,z(Πx,z) with the right hand side as above.

This definition has an obvious extension to any integral projective scheme X of finite type over
Spec(Z).

In particular, if S is as fixed in the beginning of this part then via the reciprocity map ΦS in
34 the character χ0 corresponds to a character of the absolute Galois group of K and we have
ζS(| |s2) = ζS(s), and ζS(χ) coincides with the twist of ζS(s) by that character as defined in [50].

The function ζS(χ) absolutely converges on <(s(χ)) > 2, this follows from the similar property
of ζS(s). Recall that we even know a stronger property of ζS(s): it extends to a meromorphic
function on <(s) > 3/2 with the only simple pole(s) at s = 2 in characteristic zero and qs = q2 in
positive characteristic, see e.g. [50].

3.3. Definition of the zeta integral

In dimension one the zeta integral plays a major role in the study of the meromorphic continuation
and functional equation of the twisted Dedekind zeta functions, and its calculation also gives a
simple proof of the finiteness of class number and Dirichlet’s theorem on units; however, it is not of
much use for the study of the zeros of the zeta functions. In dimension two the zeta integral defined
in this section and 57 is supposed to play a major role in the study of many open properties of the
zeta functions of arithmetic surfaces which include the meromorphic continuation and functional
equation, location of poles, behaviour at the central point and various finiteness results.
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39. Definition of χt. For a continuous homomorphism χ: J −→ C× as in 38, write χ = χ0| |s2
as the product of the unramified quasi-character | |s2 and χ0. Define

χt := (χ0 ◦ t) || ||s :T −→ C×,

|| || and T are defined in 36. By 38, χ uniquely determines | |s2 and χ0, and hence || ||s and χt as
functions on T are uniquely determined by χ. On the vertical part of T we have χt = χ ◦ t.

In particular, if g ∈ Q0
A×A and χ: J −→ C× is a continuous homomorphism as in 38, then

g χt ∈ R0
(A×A)× and the previous section gives the definition of the integral

∫
T
g χt.

Definition. Let S be as in 24. Let the set of curves S′ be as in 36. For g ∈ R0
(A×A)× and a

continuous homomorphism χ: JS −→ C× as in 38, such that χ(PS) = 1, the zeta integral is

ζ(g, χ) = ζS,S′ (g, χ) =
∫
T

g χt.

It takes values in C((X)) where convergent. The integral ζ(g, | |s2) for g ∈ Q0
A×A takes values in C.

For a subset So of S′ similarly define ζS,So (g, χ).

In particular, if g ∈ Q0
A×A then

ζ(g, | |s2) =
∫
T

g || ||s.

It is equal to ∫
�gp | |s dµ(ASp×ASp )×

∫
g− charTS− || ||

s dµ(AS−×AS− )×

when g = gp ⊗ g− with g− ∈ Q0
AS−×AS−

, gp ∈ QASp×ASp .

Curve factor product representation of the zeta integral. If g is ?-decomposable,
i.e. g = ⊗?∈S′g?, where ? runs through horizontal curves in S′ and fibres, then

ζS,S′ (g, χ) =
∏
?∈S′

ζS,?(g?, χ), ζS,?(g?, χ) =
∫
T?

g? χt,

where the notation in the last integral means that one first restricts χ to the ?-part of JS.
Assume that g? = ⊗x∈?gx,? ∈ Q0

A?×A? .

(1) If ? is a fibre then ζS,?(g?, χ) =
∫
T?
g? χt and

ζS,?(g?, χ) =
∏
x∈?

ζx,?(gx,?, χ),

where the local zeta integrals are ζx,?(gx,?, χ) =
∫
Tx,?

gx,? χtx,? .At nonsingular x ∈ ? this coincides
with

∫
Tx,z

gx,z χtx,z dµK×x,z×K×x,z , which is reviewed at the beginning of this part. We have the
following computational formula

ζx,?(gx,?, χ) = (1− q−1
x,?)−2

∑
bn,rrq

−n(s−1)
x,? ,

bn,r = µKx,?×Kx,?
(
{α ∈ Tx,? : |α|x,? = q−nx,? , gx,?(α)χ0(tx,?(α)) = r}

)
.

At a split ordinary double point x of ? we get

ζx,?(gx,?, χ) =
∫
g�x,? χtx,z dµK×x,z×K×x,z .
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(2) If ? = y is horizontal in characteristic zero then ζS,y(gy, χ) =
∫
Ty
gy χt and

ζS,y(gy, χ) =
∏
x∈y

ζx,y(gx,y, χ),

where the local zeta integral ζx,y(gx,y, χ) =
∫
Tx,y

gx,y χtx,y dµK×x,y×K×x,y . In particular, we obtain

ζS,y(gy, | |s2) =
∫
Ty

gy | |s/2.

(3) If y is horizontal in positive characteristic then ζS,y(gy, χ) =
∫
Ty
gy χt, hence ζS,y(gy, | |s2) =∫

Ty
gy | |s/2. It is convenient to introduce and use an auxiliary zeta integral

ζaS,y(gy, χ) =
∫
Ty

gy χt.

The latter is the product of the local integrals
∫
Tx,y

gy χt dµK×x,y×K×x,y to calculate which we can use
the formulas similar to those for horizontal curves in characteristic zero.

Write

ζaS,y(gy, | |s2) =
∑
n∈Ny

cnn
−s/2, where cn =

∫
charT1,y gy(mnγ) dµ(γ)

and mn ∈ Ty are such that |mn|y = n. Then we immediately get

ζS,y(gy, | |s2) =
∑
n∈Ny

cn2n−s

(see also the proof of Theorem 40 for more detail about this integral).

Remark 1. As in the local case [11], we integration over the K1 ×K1-objects, using the homo-
morphism t which relates them to Kt

2-objects in class field theory.

Remark 2. The horizontal part of the zeta integral plays less significant role than its vertical part,
the latter is closely related to the Euler factors for the zeta function. In the functional equation the
horizontal zeta integrals contributions will cancel each other.

Remark 3. The zeta integral ζ(g, χ) defined above is a simplified version of the zeta integral
which was described in Remark 5.1 of [14]. Its vertical part coincides with the vertical part of the
zeta integral defined in [14], but their horizontal parts are slightly different.

3.4. First calculation of the zeta integral

40. From now on we assume that S = E −→ B corresponds to a proper regular model of an elliptic
curveE over a global field k. Even though it is not really necessary, for simplicity we further assume
that every singular point of of every fibre is a split ordinary double point. Finally, we also impose
the restriction that the reduction in residual characteristic 2 and 3 is good or multiplicative.

Sections of the morphism E −→ B correspond to k-points of E. We include in the set S− the
image of the zero section of E −→ B. Later on, in 50–55 we will assume that S− consists of the
image of the zero section.
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For the description of special fibres of a minimal proper regular model and minimal proper
regular model with normal crossings of E see section 10.2 of [37].

The reason why S′ includes horizontal curves is to ensure that the module value group |TS′ | is a
complete group R×>0 in characteristic zero: notice that if S− is empty then |TS′ | is generated by Nb,
where Nb is a cyclic multiplicative group with generator |k(b)| and b runs through nonarchimedean
places of k, and so in characteristic zero it is not a complete group. The reason why S− is finite is
that to ensure the convergence of the horizontal part of the zeta integral: notice that in characteristic
zero the zeta integral on each of horizontal curves contributes a gamma-factor.

A more general construction of the zeta integral in the case of hyperbolic curves over k is in 57.

Definition of c?, cE. In general, for a horizontal curve in S′ or a fibre ? define

c? =
∏
x∈?,ns

q
dx,?
x,? ·

∏
x∈?,s

(
qx

∏
z∈?(x)

q−1
x,z

)
=
∏
x∈?,ns

q
dx,?
x,? ·

∏
x∈?

(
qx

∏
z∈?(x)

q−1
x,z

)
,

where the first product is taken with respect to nonsingular closed points x ∈ ?, dx,? are defined in 27,
and the second product is taken with respect to singular x ∈ ?. In the product

∏
x∈?
(
qx
∏
z∈?(x) q

−1
x,z

)
only finitely many factors, corresponding to singular points, are different from 1.

Following the proof of Proposition 27 and the definition of dx,?, we get the following formula
for a fibre ? over b ∈ B0

c? =
∏
y⊂?

q2(1−gy)
y

∏
x∈?,s

(
qx

∏
z∈?(x)

q−1
x,z

)
,

where qy was defined in 36, it is the cardinality of the maximal finite subfield of k(y), gy is the genus
of the normalization ŷ of y. Here we use the formula

∏
x∈y,ns q

dx,y
x,y = q2(1−gy)

y which follows from
the classical one-dimensional formula and part (c) of Proposition 27. Thus, c? does not depend on
the choice of character of A? and associated numbers dx,?.

When all singular points are ordinary double, we obtain

c? =
∏
x∈?

qdx,zx,z =
∏
y⊂?

q2(1−gy)
y

∏
x∈?,s

q−1
x ,

where the product is taken in accordance with 24, i.e. for a singular point x of ? only one branch is
involved.

If qy for all y ⊂ ? and qx for all singular points x of ? are equal to |k(b)|, then c? is just |k(b)|
raised to the Euler number of the dual graph of the fibre ?.

In particular, for every nonsingular fibres of E we get c? = 1. Put

cE =
∏
?∈Sp

c?.

Example. When all singular points are ordinary double, for a singular fibre ? of E → B we get
gy = 0 for all y ⊂ ?, so c? =

∏
y⊂? q

2
y

∏
x∈?,s q

−1
x . If in addition E→ B is a minimal proper regular

model with normal crossings then it is easy to check directly the equality c? = |k(b)|fb+mb−1, where
mb is the number of components of the geometric fibre, and fb is the (the exponent of the) conductor
of E over Kb, using the well known description of fibres of minimal proper regular models with
normal crossings, e.g. 10.2 of [37]. Using 9.3.4 of [37] we then get the equality c? = |k(b)|fb+mb−1

for every proper regular model with normal crossings E → B satisfying the assumption at the
beginning of this section, since blowing up at a point of such a model which gives another such
model results in the same factor to appear on the left and right hand sides of the desired equality.
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Definition of preliminary function fpr. As a preparation for a centrally normalized
function f ∈ Q0

A×A, define a preliminary function fpr ∈ Q0
A×A. Put

fpr = ⊗?∈S′ ⊗x∈? fprx,?:A× A −→ C

with the following local components. At nonarchimedean nonsingular x ∈ ? the component fprx,? is
char(Ox,?,Ox,?). At split ordinary double x ∈ ? put

fprx,? = q−1
x char(Ox,?,O⊥x,?)

where O⊥x,? is the orthogonal complement of Ox,? with respect to ψ? as in 27, qx = |k(x)|. So then
fprx,?

� = q−1
x char(Ox,z,t1

−1
x,zOx,z), where t1x,z is a local t1-parameter in Kx,z .

Using the notation in Example 2 of 30, define the components of fpr over archimedean places

fprω,y(α, β) = exp
(
−eω π

(
|py(α)|2 + |py(β)|2

))
,

for (α, β) ∈ Oω,y × Oω,y, where py is the projection map.

Since c? = 1 for almost all fibres ? in S′, the function fpr is in the space Q0
A×A.

By 30 at nonsingular x of ? we get

Fx,z
(
char

(tcx,z1 Ox,z,t
c′x,z
1 Ox,z)

)
= q

dx,z−cx,z−c′x,z
x,z char

(tdx,z−cx,z1 Ox,z,t
dx,z−c′x,z
1 Ox,z)

and

Fx,?(char(Ox,?,O⊥x,?) ) = char(O⊥x,?,Ox,?)

at singular x of ?.
Now we define a centrally normalized function f ∈ Q0

A×A which is a two-dimensional analogue
of the centrally normalized function in [25].

Definition of f and ν. We consider several cases.

(a) For a nonsingular fibre ? put f? = ⊗x∈?fx,?, fx,? = fprx,?. We have

F(f?)(α) = f?(ν−1
? α)

with ν? ∈ T1,?. In fact, ν? = (t1
dx,?
x,? , t1

dx,?
x,? ) = (ρ?, ρ?), ρ is as in Remark 3 of 30.

(b) Let ? be a singular fibre. Using the formula for F, choose a modification fx,? of fprx,? in finitely
many nonsingular points x ∈ ?, such that for all x ∈ ?

fx,?(α) = fprx,?(εx,? α)

with some ε? = (εx,?)x∈? ∈ T? where εx,z = (t−cx,z1,x,z , t
−c′x,z
1,x,z ), and such that for f? = ⊗x∈?fx,? we

have

F(f?)(α) = f?(ν−1
? α)

with |ν?| = 1. Just choose finitely many nonzero cx,?, c′x,? at nonsingular x ∈ ? such that∏
x∈?

qdx,zx,z =
∏
x∈?

q
cx,z+c′x,z
x,z .

Put cx,z = cx,z′ = c′x,z = c′x,z′ = 0 at singular x ∈ ?.

In particular, νx,? = (νx,z, νx,z′ ), νx,z = (t1−1
x,z, t1x,z), νx,z′ = (t1−1

x,z′ , t1x,z′ ) at singular x ∈ ?.
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(c) Similarly, using the formula for F, on a horizontal curve y in positive characteristic choose a
modification of fprx,y in finitely many points x on y, such that for all x ∈ y

fx,y(α) = fprx,y(εx,y α)

with (εx,y) ∈ Ty, such that for fy = ⊗x∈yfx,y we have

F(fy)(α) = fy(ν−1
y α)

for an appropriate νy ∈ T1,y.

(d) On a horizontal curve y in characteristic zero put ηy = 2n
√
cy ∈ R>0 where n = |k(y) : Q|, cy

was defined above, in this case it is the inverse of the discriminant of k(y). Define fy as having the
same components as fpr at nonarchimedean data and as

fω,y(α) = fprω,y((ηy, ηy)α)

at archimedean (ω, y). Then on horizontal curves in characteristic zero we have

F(fy)(α) = fy(ν−1
y α)

with appropriate νy ∈ T1,y.

Now put

f = ⊗?∈S′f?, f− = ⊗y∈S−fy, fp = ⊗?∈Spf?.

Define

ν = (ν?)?∈S′ ∈ T.

For every ? ∈ S′ we get ν? ∈ T1,?.

The functions f and fν−1 belong to the space Q0
A×A and we get

F(f ) = fν−1 , F(fα)(γ) = |α|−1F(f )α−1 (γ) = |α|−1f (ν−1α−1γ).

It is easy to see that for the transform F of any function g ∈ Q0
A×A we get F(g)|x,? = gν−1 |x,? at

nonsingular x ∈ ?.

As in the one-dimensional case [57], [25] the zeta integral ζ(f, χ) can be calculated in two ways.
The first calculation uses the fibre integrals to compare the zeta integrals ζS,?(f, | |s2), ζ(f, | |s2)

with the zeta functions ζ?(s) of the fibre ? and ζE(s). The following theorem justifies the previous
definitions.

Theorem. Let S = E as in the beginning of this section. Let f be the centrally normalized function
defined above.

For every fibre ? we have

ζS,?(f, | |s2) = c1−s
? ζ?(s)2 = c1−s

?

∏
x∈?

(
1

1− q−sx,z

)2

and c? = |k(b)|fb+mb−1 where mb is the number of components of the geometric fibre, and fb is the
(the exponent of the) conductor of E over Kb. Thus,

ζS,?(f, | |s2) = ζ?(s)2, for a nonsingular fibre ? over b ∈ B0

ζS,?(f, | |s2) = |k(b)|(fb+mb−1)(1−s)ζ?(s)2, for a singular fibre ? over b ∈ B0.
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For every nonsingular horizontal curve y the zeta integral ζS,y(f, | |s2) is a meromorphic function
which satisfies the functional equation ζS,y(f, | |s2) = ζS,y(f, | |2−s2 ) and which is holomorphic
outside its poles of multiplicity two at s = 0, 2 in characteristic zero and at qs = 1, q2 in positive
characteristic. For a horizontal curve y in characteristic zero the zeta integral ζS,y(f, | |s2) is the
square of a certain one-dimensional Iwasawa–Tate zeta integral at s/2 on the adeles Ak(y).

Thus,

ζE,S′ (f, | |s2) = cE,S′ (| |s2) ζE(s)2, <(s) > 2,

where

cE,S′ (| |s2) = cE,Sp (| |s2) cE,S− (| |s2).

The first factor

cE,Sp (| |s2) = c1−s
E .

The second factor is has a meromorphic continuation to the complex plane and satisfies the functional
equation

cE,S− (| |s2) = cE,S− (| |2−s2 ),

and is holomorphic outside its poles at s = 0, 2 in characteristic zero and at qs = 1, q2 in positive
characteristic.

The zeta integral ζE,S′ (f, | |s2) absolutely converges on <(s) > 2. The same is true for the zeta
integral ζ(g, | |s2) for every g ∈ Q0

A×A.

Proof. From the definitions of the local measures in 30 and the zeta integrals in 39 we get at
nonsingular x of a fibre ?

ζx,?
(
char

(tcx,?1 Ox,?,t
c′x,?
1 Ox,?)

, | |s2
)

= q
dx,?−(cx,?+c′x,?)s
x,?

(
1

1− q−sx,?

)2

and we get

ζx,?
(
q−1
x char(Ox,?,O⊥x,?), | |s2

)
=
∫
Tx,z

q−1
x char(Ox,z,t1

−1
x,zOx,z)| |

s dµK×x,z×K×x,z

= q−1+s
x

(
1

1− q−sx

)2

at singular x of ?.

The definition of cx,z above implies that
∏
x∈?,ns q

dx,z−(cx,z+c′x,z)s
x,z

∏
x∈?,s q

−1+s
x = c1−s

? .

If y is a horizontal curve in characteristic zero then its zeta integral is the product of the local
zeta integrals for nonarchimedean data

ζ(char
(tcx,y1 Ox,y,t

c′x,y
1 Ox,y)

, | |s2, µx,y) = q
dx,y−(cx,y+c′x,y)s
x,y

(
1

1− q−s/2
x,y

)2

,

and for archimedean data

ζ(fω,y, | |s2, µω,y) =

{ (
c
−s/4n
y π−s/4Γ(s/4)

)2
if ω is real(

c
−s/2n
y (2π)1−s/2Γ(s/2)

)2
if ω is complex.

Hence the zeta integral ζS,y(f, | |s2) is proportional (up to a power of 2π) to the square of the
appropriate one-dimensional zeta integral, defined in [25], p.446, at s/2 on k(y). Since F(fy)(0) =
fy(0) and |νy| = 1, the one-dimensional theory [57] implies that ζS,y(f, | |s2) = ζy(f, | |2−s2 ).
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Let y be a horizontal curve in characteristic p. We will use the fact that the integral over Ty
equals the double integral over M and over T1,y, this directly follows from the same property at
the residue level since we are in the unramified case, for more general results see 43. Compare the
integral

ζS,y(f, | |s2) =
∫
Ty

f (α) |α|s/2 dµ(α)

with another integral

ζaS,y(f, | |s2) =
∫
Ty

f (α) |α|s/2 dµ(α).

The latter is the product of the local integrals
∫
Tx,y

f (α) |α|s/2 dµK×x,y×K×x,y (α) to calculate which

we can use the formula in the previous paragraph. Hence ζaS,y(f, | |s2) = c1−s
y ζy(s/2)2, and it has

the meromorphic continuation and the functional equation with respect to s → 2 − s and it is
holomorphic outside its poles of multiplicity two at qs = 1, q2. We can also write ζaS,y(f, | |s2) as a
series

∑
n∈Ny cnn

−s/2 with cn =
∫
T1,y

f (mnγ) dµ(Ay×Ay)× (γ), where mn ∈ Ty, |mn| = n. Now,
returning back to the original integral we deduce from the displayed formulas that ζS,y(f, | |s2) =∑
n∈Ny cn2n−s. It is easy to show that then the latter satisfies the functional equation with respect

to s→ 2− s and is holomorphic outside its poles of multiplicity two at qsy = 1, q2
y, as required.

Continuing the proof notice that for S = E the factor c? equals 1 for every nonsingular fibre. The
definition of f implies

ζE,S′ (f, | |s2) = cE,S′ (| |s2) ζE(s)2, cE,S′ (| |s2) = cE,Sp (| |s2)cE,S− (| |s2),

where cE,Sp (| |s2) =
∏
?∈Sp

c1−s
? . For y ∈ S− the y-part of cE,S− (| |s2) is ζy(| |s2) described above and

so cE,S− (| |s2) = cE,S− (| |2−s2 ).
The well known absolute convergence of ζE(χ) for <(s(χ)) > 2 implies the assertion about the

convergence of the zeta integral.
To deduce the last assertion note that if g = ⊗gx,? ∈ Q0

A×A, then for almost all x ∈ y ∈ S′ the
x, y-factor of ζ(g, | |s2) equals the x, y-factor of ζ(f, | |s2).

Remark 1. The order of the pole of ζ(f, | |s2) at s = 2 equals 2 + 2|S−|.

Remark 2. The definitions can be extended to to the more general case of proper regular models
of elliptic curves with the analogous comparison formulas between the fibre zeta integrals and the
zeta functions, at least if the wild part of the conductor of the curve is trivial. In such an extension for
an arbitrary singular point x of a fibre ? over b one can define an object Qx, extending the definition
in 36, and the integration over Tx,?, and then work with the corresponding fibre zeta integral ζE,?. If
the wild part of the conductor at b is trivial, as an extension of the formulas in the previous theorem
it is expected that we would get

ζE,?(f, | |s2) = c1−s
? ζ?(s)2, |k(b)|fb+mb−1 = c?,

which in particular gives a new formula for the tame part of the conductor. It is very interesting to
investigate whether there is an adelic interpretation of the wild part of the conductor.

Remark 3. For regular models of curves of higher genus the factor c? 6= 1 for almost all fibres ?
and hence

∏
?∈Sp

c? diverges, so one needs to renormalize the zeta integral, see 57.
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3.5. Subgroups of T and associated integrals

In order to perform the second calculation of the zeta integral we use the filtration T > T1 > T0
where T0 is the lift of units of the function ring of ?. The integration over T0 will differ from the lift
of the counting integration at the residue level: we will rescale the counting discrete measure on the
function fields of fibres and then work with the limit of the rescaled measures.

41. In this section we define a local-global subgroup T0 of T which in certain sense plays the role
of the group of global elements in the one-dimensional case. We have the following objects and
maps which will be useful in the study of integrals over subgroups and quotient groups of T .

Definition of x, z, u, v, T r? , T?. For a singular ?, using the local maps of 36, denote by x the
homomorphism from

(∏
x∈?,ns Ox,? × Ox,? ×

∏
x∈?,s Qx × Qx

)
∩ A? × A? to A? × A?, which

is the local x at every local singular data and is the identity map elsewhere. Similarly define the
homomorphism z. As in 36, we get the isomorphisms v,u between the images of x and z.

Denote

T? = x
( ∏
x∈?,ns

Tx,? ×
∏
x∈?,s

Q×x ×Q×x
)
∩
(
A? × A?

)×
,

this is a subgroup of T?.
Put

T r? :=
∏′

x∈?
Tx,z,

following the notation in 24.

Then u(T?) is a subgroup of T r? , and using 36 we obtain p?(u(T?)) = p?(T r? ).

Definition of T0. Denote

T0 := B× × B×.

Its ?-component is equal to x(O×? × O×? ) where O? is identified with its diagonal image in∏
x∈?,ns Ax,? ×

∏
x∈?,s Qx. Thus, T0 is a subgroup of T.

For a subset So of S′ denote T0,So = T0 ∩ TSo .

Definition of T1, M , y0. Using | | defined in 36 put

T1 = {α ∈ T : |α| = 1}.

For a subset So of S′ introduce

T1,So = {α ∈ TSo : |α|So = 1}

which coincides with the kernel of | | on TSo . In particular, for a fibre or a horizontal curve ? the
definition of T1,? is compatible with the definition given in 36.

Using the definition of S′ in 36 and 40 (S− contains the zero section y0) choose a subgroup M
of Ty0 which is in bijection with N via | |. This gives the splitting

T = M × T1.
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Definition of UT . Denote byUT the intersection of T1 with the product of the nonarchimedean
part of T ∩

∏
T1x,z and the archimedean part of T (which corresponds to the data for all (ω, y),

where ω runs through the archimedean places of the horizontal curves y ∈ S′). The group UT is
open in T1.

Lemma.

(a) T0 is a subgroup of T1.
(b) The homomorphism t of 37 induces homomorphisms T1 −→ J1, T0 +UT −→ P +UJ and
a surjective homomorphism

T1/(T0 + UT ) −→ J1/(P + UJ) ' CH0(E)0,

the latter isomorphism comes from Lemma 35.
(c) The diagramme of Lemma 36 induces a commutative diagramme

B× ⊗ B×S′/(B×S′ ∩VA×S′ )

�� **VVVV
VVVV

VVVV
VVVV

VV

T0 // B× × B×/(B× ∩ V A×) // PS′/(PS′ ∩ V JS),

where PS′ = P ∩JS′ , the diagonal map is the symbol map, and the maps are the induced restrictions
of the appropriate maps in the diagramme of Lemma 36.

Proof. (a) follows from the definitions. The homomorphism t induces the isomorphism T1/UT −→
J1/UJ . Since t(α, β) ≡ {αβ, t2} mod UKt

2(Kx,y), we have t(T0 + UT ) ⊂ P + UJ , and (b), (c)
follow from Lemma 36.

Remark. Notice that t−1(P + UJ) ∩ T is different from T0 + UT and t−1(P ) ∩ T is different
from T0.

42. Definition of T1, T0, M. Using the twisted module || || defined in 36 put

T1 = {α ∈ T : ||α|| = 1}.

Similarly, for a subset So of S′ define

T1,So = {α ∈ TSo : ||α||So = 1}.

Then T1,So = T1,So ∩ TSo if and only if So ⊂ Sp or So ⊂ Sh.
We have T1,? = T1,? for every fibre or curve ?. Since T0,? < T1,?, we define T0 = T0.

Denote

M = M2

The definition of M in the previous section implies that M < Ty0 . We get ||M|| = |M | = N . If
k(y0) is in characteristic zero then M = M .

The choices give the splitting

T = M× T1.

Definition. For a horizontal curve y endow the group Ny < R defined in 36 with the induced
ordering. If Ny is discrete, generated by qy > 1, then we say that a function f :Ny −→ R is
nonincreasing (resp. nondecreasing) at n ∈ Ny if f (q−1

y n) > f (n) (resp. f (q−1
y n) 6 f (n)).
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Definition of o o, T1,1. Let o o be the homomorphism

(A× A)× −→ N ×N, (α1, α2) 7→ (||α1||, ||α2||).

Denote T1,1 = ker o o.
Similarly for a horizontal curve y define o oy:Ty −→ Ny ×Ny and T1,1,y = ker o oy. Similarly

define o ox,z .

Definition (choice of representatives mn ∈ M of N). Choose elements mn ∈ Ty0 ,
such that M = {mn : n ∈ N} and |mn|y0 = n ∈ Ny0 = N , and each of the two components
of o oy0 (mn) is a nondecreasing function at n and o oy0 (mn) = (

√
n,
√
n) if n is a square in

N . In characteristic zero in addition we choose mn such that the components of o ox,y0 (mn) for
nonarchimedean points x ∈ y0 are 1 and the components of o oω,y0 (mn) for all archimedean places
ω of k(y0) are equal to each other positive real numbers.

Definition of m, mn. For m ∈ M define m = m2 ∈ M. In particular mn = m2
n and

M = {mn : n ∈ N}.

43. Now we define several integrals on subobjects and quotient objects of T.

Definition of µN , µM , µM. Let µN be the appropriate measure on the group N , as in the
one-dimensional theory, corresponding to the counting measure in positive characteristic and corre-
sponding to the induced from R×, dn/n in characteristic zero.

Let the measure µM onM be | |∗µN where | |:M −→ N . Let the measure µM on M correspond
to µN via the restriction of the map || ||:M −→ N , i.e. µM = || ||∗µN . Raising to the second power
gives an isomorphism s:M −→M. Thus we get µM = s∗µM.

Definition of
∫
T1
g. Let g be an element of R0

(A×A)× , the space defined in 37. Let So be a
finite subset of nonsingular curves in S′ such that y0 ∈ So. We get TSo = M × T1,So . Denote
So = S′ \ So. Let µT1,So be the lift of the Haar measure on its residue image p(T1,So ), the latter
measure is normalized in such a way that the Haar measure on p(TSo ) is the product of it and the
measure p∗µM on p(M). For α ∈ TSo introduce

go(α) =
∫
T1,So

g(α0γ) dµT1,So (γ)

where α0 ∈ TSo is such that ||α0||So = ||α||−1
So

. The definitions imply that go ∈ R0
(ASo×ASo )× .

Define ∫
T1

g :=
∫
TSo

go,

where we restrict go defined in 37 to TSo . It is easy to check that the integral does not depend on the
choice of So.

Note that for a nonsingular fibre ? and the function fpr defined in 40 the value of the integral∫
(B?×B?)× f

pr dµ(B?×B?)× is (q?−1)2, q? is defined in 36, since {β ∈ k(?)× : div(β) > 0} = q?−1.
Hence the product of all such fibre integrals diverges. Therefore we have to rescale the measure
µ(B?×B?)× fibrewise in order to have a useful measure on T0.

Definition of dy, dSo . Put d? = 1 for horizontal curves and singular fibres. For a nonsingular
fibre ? denote

d? = (q? − 1)−2,
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where q? is defined in 36, it is the cardinality of the maximal finite subfield of k(?).
For a finite subset So ⊂ S′ put

dSo =
∏
?∈So

d?.

Definition of µ′(B×B)× . Recall that the measure µ (B×B)× , defined in 31, is induced from the
measure µB×B.

For a finite subset So ⊂ S′ define

µ′(BSo×BSo )× = dSo µ (BSo×BSo )× .

In particular, if So includes nonsingular fibres only then µ′(BSo×BSo )× ((BSo × BSo )× ∩ (OA? ×
OA?)×) = 1, with OA? defined in 25.

Now define
µ′(B×B)× = lim

So⊂S′
µ′(BSo×BSo )× = ⊗?∈S′µ′(B?×B?)× .

The ring of measurable subsets in (B× B)× with respect to µ′(B×B)× is generated by
∏
?∈S′ B?,

B? are measurable subsets of (B?×B?)× almost all of which equal to (B?×B?)×∩ (OA?×OA?)×.
Thus, the measure µ′(B×B)× is the limit of the rescaled measures and differs significantly from

µ (B×B)× .

Remark. The measure µ′(B×B)× is not the lift of the discrete counting measure on
∏
?∈S′ (k(?)×

k(?))×, due to the nontrivial factor d? for all nonsingular vertical curves. Compare this with the
relation between the measures on the idele group and on the idele group viewed as a subset of the
adele group in dimension one.

Definition of spaces Q∗A×A, Q
∗
ASo×ASo . For g = ⊗?g? ∈ Q0

A×A consider the following
restriction: there is a finite set of fibres and horizontal curves Sg ⊂ S′ which includes all singular
fibres such that the integral dy

∫
(By×By)× g? dµ(By×By)× = 1 for all y ∈ S′ \ Sg.

Denote the subspace of Q0
A×A generated by the functions g satisfying this restriction by Q∗A×A.

Similarly define Q∗ASo×ASo .
For example, fpr, f defined in 40, belong to the space Q∗A×A.∗

Let r? be the group of roots of unity of B×? , it is isomorphic to the group of roots of unity of k(?).
Assume that for every vertical ? the action of T? on g?, defined in 37, factorizes through the action
of T?/r? × r?, i.e. for every α ∈ T? the value g?

(
(θ1, θ2)α

)
is constant when θi run through roots

of unity in k(?). Then we have g?(α) = d?
∑

(θ1,θ2)∈r?×r? g?
(
(θ1, θ2)α

)
, so the value of g? at α is

the mean value of g? on the r? × r?-orbit of α.

Definition of
∫
T0
g. Define for g = ⊗g? ∈ Q∗A×A∫

T0,So

g := dSo

∫
(BSo×BSo )×

g dµBSo×BSo ,

∫
T0

g :=
∫

(B×B)×
g dµ′(B×B)× = lim

So⊂S′

∫
T0,So

g.

Thus,
∫
T0
g = dSg

∫
(BSg×BSg )× g dµBSg×BSg , and the integral does not depend on the choice of

Sg. We get
∫
T0
g =

∏
?∈Sg

∫
T0,?

g?.

* the space Q∗A×A is larger than in the published version
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Extend by linearity to the vector space generated by such functions g.

Keeping in mind the definition of µ(B×B)× in 31, for a function g ∈ Q∗A×A which is the pullback
of a Bruhat–Schwartz function l at the residue level we obtain

∫
T0,?

g = d?
∑
b∈k(?)××k(?)× l(b)

where b runs through a set of representatives of k(?)× × k(?)× in (B? × B?)×.

Definition of µ′(A×A)×/(B×B)× . For the group (Ak(?)×Ak(?))×/(k(?)×k(?))× choose a transla-
tion invariant measure µ(Ak(?)×Ak(?))×/(k(?)×k(?))× such that the one-dimensional normalized measure
µ(Ak(?)×Ak(?))× equals the product of it and of the discrete counting measure µ(k(?)×k(?))× .

Let µ (A?×A?)×/(B?×B?)× be its pullback with respect to p?, p? is defined in 31. So measurable sets
belong to the ring of sets generated by p−1

? (A1, A2) whereAi are measurable subsets of A×k(?)/k(?)×,
and µ (A?×A?)×/(B?×B?)× (p−1

? (A1, A2)) is equal to the product of the measures of A1 and A2.
Put

µ′(A?×A?)×/(B?×B?)× = d−1
? µ (A?×A?)×/(B?×B?)× .

Then the weak measure µw(A?×A?)× defined in Remark 1 of 31 is the tensor product of it and the
measure µ′(B?×B?)× .

Define

µ′(A×A)×/(B×B)× = ⊗?∈S′ µ′(A?×A?)×/(B?×B?)× .

Definition of
∫
T?/T0,?

g?. Let g? be the pullback of an integrable function on (Ak(?)×Ak(?))×,
such that g?β = g? for every β ∈ T0,?.

If ? is a nonsingular fibre or a horizontal curve, define∫
T?/T0,?

g? :=
∫
g? charT?/T0,? dµ

′
(A?×A?)×/(B?×B?)× .

Hence
∫
T?/T0,?

∫
T0,?

=
∫
T?

.

Let ? be a singular fibre. Then T? = T?. We use the ring isomorphism u to transfer the
additive and multiplicative measures using more options open at the two-dimensional level than at
the one-dimensional residue level.

Denote by µT r? the measure on the group T r? which is the tensor product of the local normalized
measures on Tx,z . The subgroup u(T?) of µT r? gets the induced measure µu(T?): its measurable
subsets are S′ = S ∩ u(T?) where S runs through measurable subsets with respect to µT r? and
µu(T?)(S′) = µT r? (S), S = p−1(p(S′)).

Using µu(T?) define the translation invariant measure µT? = u∗µu(T?) on T?.
Note that if for two µT?-measurable sets B1, B2 we have p(B1) = p(B2), then u(B1) and u(B2)

have the same p-images, so their µu(T?)-measures are equal, hence µT? (B1) = µT? (B2). Thus we
get the well defined measure p∗µT? on p(T?).

The images p(T?), p(T?) are equal. Denote by T0,? the preimage in T? of p(T0,?), so T0,? =
T0,? ∩ T? = T0,?. Consider the measure µT0,? which lifts with respect to p the discrete counting
measure µp(T0,?) on p(T0,?).

Choose a splitting of

1→ T0,? → T? → T?/T0,? → 1
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and denote by R? the image of T?/T0,?. Denote by µ the translation invariant measure on p(R?)
such that for the two previously defined measures p∗µT? and µp(T0,?) we have

p∗µT? = µ⊗ µp(T0,?).

Denote by µR? be the translation invariant measure on R? which lifts µ.

Then ∫
T?

g dµT? =
∫
R?

∫
T0,?

g(γβ) dµT0,? (β) dµR? (γ)

for functions g ∈ Q∗A?×A? .

Now define ∫
T?/T0,?

g? =
∫
T?/T0,?

g? :=
∫
R?

g? dµR? .

Definition of
∫
T/T0

g,
∫
T1/T0

g. Let g = ⊗?∈S′g?, where g? is the pullback of an integrable
function on (Ak(?) × Ak(?))× at the residue level, such that g?β = g? for every β ∈ T0,? and ? ∈ S′.
Define ∫

T/T0

g :=
∏
?∈S′

∫
T?/T0,?

g?,

where the factor integrals are defined as above. Extend to linear combinations.
Similar to the definition of

∫
T1
g and using go defined above, define

∫
T1/T0

g :=
∫
TSo/T0,So

go.
This does not depend on the choice of So = S′ \ So.

Lemma. Let g ∈ R0
(A×A)× and suppose that the integral

∫
T
g absolutely converges. Then∫

T

g =
∫
M

∫
T1

g(mα) dµ(α) dµM(m) =
∫
M

∫
T1

g(mα) dµ(α) dµM (m).

Let g = ⊗g? ∈ Q∗A×A be such that at every singular x ∈ ? the (x, ?)-component of g equals
char(x(t)iOx,?,x(t)jOx,?). Let π = || ||s:T −→ C×, s ∈ C. Suppose that the integral

∫
T
g π absolutely

converges. Then∫
T

g π =
∫
T/T0

∫
T0

g(γβ) dµ(β)π(γ) dµ(γ) =
∫
M

∫
T1/T0

∫
T0

g(mγβ) dµ(β)π(γ) dµ(γ) dµM (m),∫
T1

g =
∫
T1/T0

∫
T0

g(γβ) dµ(β) dµ(γ).

Proof. The formula
∫
T

=
∫
T/T0

∫
T0

follows from
∫
T?

=
∫
T?/T0,?

∫
T0,?

which for a singular fibre ?
follows from∫

T?

g?(α) ||α||s =
∫
u(T?)

g�?(α) |α|s dµu(T?)(α) =
∫
T?

g?(α) |α|s dµT? (α)

=
∫
R?

(∫
T0,?

g?(γβ) dµ(β)
)
|γ|s dµR? (γ) =

∫
R?

(∫
T0,?

g?(γβ) dµ(β)
)
|γ|s dµR? (γ),

since g�? = g? ◦ v on u(T?) and
∫
T0,?

g?(γβ) dµT0,? (β) =
∫
T0,?

g?(γβ) dµ(β).
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3.6. Two-dimensional theta formula

The one-dimensional theta formula relates the integral over k× with the integral over ∂k× = k \
k× = {0}. In dimension one the set-theoretical difference between the additive and multiplicative
structures, the latter is of course important for class field theory, is relatively small, and the classical
theta formula is very close to the summation formula. In dimension two the difference between
the additive and class field theory structures (i.e. K2 or K1 × K1 in the unramified theory) is
much larger. So is the difference between the two-dimensional summation formula in 32, which
follows from additive analytic duality, and the two-dimensional theta formula of this section. The
theta formula will be derived for an integral over T0 of a certain combination of functions, which
naturally originate in the study of the zeta integral and is partially motivated by class field theory.
The two-dimensional theta formula takes into account some class field theoretical structures and the
summation formulas for all infinitely many finite subsets of S′. It also glues together differently
scaled data on vertical and horizontal curves. The theta formula will play a fundamental role in the
study of analytic properties of the zeta integral.

44. First we define an integral
∫
∂T0

over the (weak) boundary ∂T0 of T0.

In dimension one ideles are dense in adeles, but k is a discrete subset of Ak and the closure of
k× does not include 0. Define the weak topology on adeles as the weakest topology in which every
character of adeles is continuous. It is easy to show that k× is dense in k with respect to the weak
topology on adeles. Since the dual of Ak/k is k, the closure of k× with respect to the weak topology
is k. Hence {0} = k \ k× can be viewed in this sense as the weak boundary ∂k× of k×.

Definition of the weak topology on ASo and ASo × ASo for So ⊂ S′. The weak
topology on ASo is the weakest topology of ASo in which every its character which is the lift of a
character of p(ASo ) is continuous. So this weak topology is the lift of the weak topology of p(ASo ).

Similarly define the weak topology on ASo × ASo .

The set A×? is a dense subset of A? both in its topology and its weak topology. Using Lemma 29
we derive that B? is the closure of B×? in the weak topology of A?.

Definition of ∂T0. For a finite subset So ⊂ S′ we define

∂T0,So := BSo × BSo \ (BSo × BSo )×.

Similarly to the above ∂T0,So can be viewed as the boundary of T0,So in the weak topology of
ASo × ASo .

Define the ‘boundary’ of T0

∂T0 :=
⋃

So⊂S′

∂T0,So × T0,S′\So ,

where So runs through all finite subsets of S′.

Definition. For a non empty subset So of S′ put

∆So = ∂ (ASo × ASo )× = ASo × ASo \ (ASo × ASo )×.

For every y ∈ S1 we get

∂T0,y = ∆Sy ∩ By × By = My × Oy ∪ Oy ×My,
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hence

∂T0,So = ∆So ∩ B× B

=
(⋃
y1

∏
y 6=y1

(
Oy × Oy

)
×
(
My1 × Oy1 ∪ Oy1 ×My1

))
∩ BSo × BSo

for every finite So, here y1, y run through irreducible curves in So.

By 43 for a function g ∈ Q∗A×A we have∫
T0

g =
∫
T0

g µ′(B×B)× = lim
So⊂S′

dSo

∫
(BSo×BSo )×

g dµBSo×BSo .

Then it is natural to introduce

Definition of µ′BSo×BSo . For a finite subset So ⊂ S′ put µ′BSo×BSo = dSo µBSo×BSo .

We can also define µ′B×B = ⊗?∈S′µ′B?×B? , even though unlike µ′(B×B)× this object is less useful,
since µ′B?×B? (B? × B?) 6= 1 for infinitely many ?.

Definition of
∫
∂T0

g. Let g ∈ Q∗A×A. For a finite subset So ⊂ S′ define∫
∂T0,So

g :=
∫
∂T0,So

g dµ′BSo×BSo = dSo

∫
∂ (BSo×BSo )×

g dµBSo×BSo .

Put ∫
∂T0

g := lim
So⊂S′

∫
∂T0,So

g.

The limit is not finite already for the function f defined in 40.

Let f be as fixed in 40. Using the defining property of T0 in 41 and 43 and the definition of f we
obtain that if ? is a nonsingular fibre then∫

T0,?

f (β) dµ(β) =
∫
T0,?

f (ν−1β) dµ(β) = 1,

ν is defined in 40.

Definition of Sα. Recall that all m ∈M lie on one horizontal curve y0, the zero section.
For each α = (α(1)

x,z, α
(2)
x,z) ∈ T choose a finite set Sα of fibres and horizontal curves in S′ such

that
(a) Sα includes all horizontal curves in S′ and all singular fibres.
(b) α(m)

x,z ∈ O×x,z for all z ∈ ?(x), x ∈ ? 6∈ Sα. In particular |α?|? = 1 if ? 6∈ Sα.
(c) Sα = Sα−1 .

In particular,∫
T0,y

f (αβ) dµ(β) =
∫
T0,y

f (ν−1α−1β) dµ(β) =
∫
T0,y

|α|−1 f (ν−1α−1β) dµ(β) = 1

for all y 6∈ Sα. So the integrals
∫
T0

of fα and fν−1α are defined, and in their calculation it is sufficient
to use any finite set So which contains Sα.
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Theorem (two-dimensional theta formula on T0). Let S = E as above. Let f be as in 40.
Then for α ∈ T the integral

∫
∂T0

(
|α|−1 f (ν−1α−1β)− f (αβ)

)
dµ(β) exists and∫

T0

(
f (αβ)− |α|−1 f (ν−1α−1β)

)
dµ(β) =

∫
∂T0

(
|α|−1 f (ν−1α−1β)− f (αβ)

)
dµ(β).

Equivalently, ∫
T0

(
fα(β)− F(fα)(β)

)
dµ(β) =

∫
∂T0

(
F(fα)(β)− fα(β)

)
dµ(β).

Proof. For a fixed α ∈ T to compute the left hand side and right hand side in the first displayed
formula in the statement of the Theorem, one is reduced to the case of the finite set Sα as above,
since almost all fibre factors are equal to 1. Then we can use the summation formula of 32. Of
course, when α runs through all T , the set of finitely many fibres where those factors are not 1 can
be arbitrarily large.

Let α = (α?), α? ∈ T?.
If y is a nonsingular fibre or a horizontal curve then T0,y = T0,y. Using the summation formula

in 32 and the formula for the transform of f in 40 we obtain∫
f (αyβ)dµBy×By (β) = |αy|−1

∫
F(f )(α−1

y β)dµBy×By (β) = |αy|−1
∫
f (ν−1

y α−1
y β)dµBy×By (β).

If ? is a singular fibre then apply the formulas in 32 to the function β 7→ f (α?β) on B? × B?
similarly to the above calculation for a nonsingular fibre. It will contain |α?|−1 as the factor on the
right hand side.

Now for g(β) = f (αβ) and g(β) = |α|−1 f (ν−1α−1β) we get∫
T0

g +
∫
∂T0,So

g =
∫
T0,So

g +
∫
∂T0,So

g = dSo

∫
g dµBSo×BSo

for every finite So which contains Sα. Thus, for every such finite subset So of S′ we obtain∫
∂T0,So

(
|α|−1 f (ν−1α−1β)− f (αβ)

)
dµ(β) =

∫
T0

(
f (αβ)− |α|−1 f (ν−1α−1β)

)
dµ(β).

3.7. Second calculation of the zeta integral

The second calculation of the zeta integral uses the decomposition T = T1 ×M and the two-
dimensional theta formula. The boundary term which we will get at the end of the second calculation
has a very different structure in comparison to the structure of the boundary term in dimension one.

45. To slightly simplify the notation it will be convenient to work with the zeta integral

ζ(g, π) =
∫
T

g π,

where g ∈ Q0
A×A and π:T −→ C× is a continuous homomorphism such that π(T0) = 1 and

π ∈ R0
(A×A)× . Denote

π̂ = π−1|| ||2.
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The definitions and Remark 41 imply that in the general case of ramified χ the quasi-character
χt does not vanish on T0, but in the unramified case we get

Lemma. Let g be as in 39. Then ζ(g, | |s2) = ζ(g, || ||s).

Till the end of this section we fix π = | |s2t = || ||s.

Thus, the zeta integral ζ(f, π) exists and absolutely converges for <(s) > 2, by the preceding
Lemma and Theorem 40.

For m ∈M denote

ζm(f, π) :=
∫
T1

f (mα)π(mα) dµ(α).

As in the one-dimensional theory, the integral ζm(f, π) absolutely converges for any s = s(π),
since it converges for some s.

The second calculation starts with the following representation of the zeta integral

ζ(f, π) =
∫
M

ζm(f, π) dµM (m),

for <(s(π)) > 2; here we have applied Lemma 43.
Note that the zeta integral was defined as the product of the fibre factors. The second calculation

involves integrals over T1 which are not the product of the fibre factors.

Definition. Introduce

M± = {m ∈M : ±(|m| − 1) > 0}

with the measure induced from M on M \M ∩ T1 and half of the measure µM on M ∩ T1 for each
of M+ and M−. So the measure space M is the disjoint union of the spaces M− and M+ which are
mapped to each other by the involution m 7→ m−1.

Similarly define measure spaces N±, M±. In particular, in characteristic zero N− is (0, 1] with
the measure dx/x and in positive characteristic N− is {qk, k 6 0}, q as in 36, with µN− ({qk}) = 1
for k < 0 and µN− ({1}) = 1/2.

Similar to the one-dimensional case, see e.g. [57], we observe that the absolute convergence of
ζ(f, π) for <(s(π)) > 2 implies the absolute convergence of the integral

∫
M+ ζm(f, π) dµM+ (m) in

the same area, and therefore this integral and the integral
∫
M+ ζm(f, π̂) dµM+ (m) absolutely converge

for all s = s(π).
Define

ωm(π) : = ζm(f, π)− ζm−1 (f, π̂).

Note that∫
T1

f (mα)π(mα) dµ(α) =
∫
T1

f (mαν−1)π(mαν−1) dµ(α) =
∫
T1

f (mα−1)π(mα−1) dµ(α).
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In particular, we obtain

ωm(π) = ζm(f, π)− ζm−1 (f, π̂)

=
∫
T1

f (mα)π(mα) dµ(α)−
∫
T1

f (m−1α−1) π̂(m−1α−1) dµ(α)

=
∫
T1

(
f (mα)− |m|−2 f (m−1α−1)

)
π(mα) dµ(α)

=
∫
T1

(
|m|2 f (mα)− f (m−1α−1)

)
π̂(m−1α) dµ(α)

We get ∫
M−

ζm(f, π) dµM− (m) =
∫
M−

(
ζm−1 (f, π̂) + ωm(π)

)
dµM− (m).

Proposition. Let π = | |s2t = || ||s. Then on the right half plane <(s) > 2

ζ(f, π) =
∫
M+

ζm(f, π) dµM+ (m) +
∫
M−

ζm(f, π) dµM− (m) = ξ(π) + ξ(π̂) + ω(π),

where

ξ(π) =
∫
M+

ζm(f, π) dµM+ (m)

absolutely converges for all s and therefore extends to an entire function on the whole complex plane.
The boundary term ω(π) for <(s(π)) > 2 is given by

ω(π) =
∫
M−

ωm(π) dµM− (m),

where

ωm(π) = |m|s
∫
T1/T0

∫
T0

f (mγβ) dµ(β) dµ(γ)

− |m|s−2
∫
T1/T0

∫
T0

f (m−1ν−1γ−1β) dµ(β) dµ(γ)

= |m|s
∫
T1/T0

∫
T0

(
f (mγβ)− |m|−2 f (m−1ν−1γ−1β)

)
dµ(β) dµ(γ),

which due to the two-dimensional theta formula is equal to

ωm(π) = |m|s−2
∫
T1

(
|α|−1 − 1

)
f (m−1α−1) dµ(α)

+ |m|s
∫
T1/T0

∫
∂T0

(
|mγ|−1f (m−1ν−1γ−1β)− f (mγβ)

)
dµ(β) dµ(γ),

and, alternatively,

ωm(π) = |m|s
∫
T1

(
1− |α|

)
f (mα) dµ(α)

+ |m|s
∫
T1/T0

∫
∂T0

(
|m|−2 f (m−1ν−1γ−1β)− |γ|f (mγβ)

)
dµ(β) dµ(γ).
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Proof. Using Lemma 43 and making change of variables α 7→ αν we get the first portion of
equalities for ωm(π).

Rearranging terms, we obtain

ωm(π) = |m|s−2
∫
T1/T0

(
|γ|−1 − 1

) ∫
T0

f (m−1ν−1γ−1β) dµ(β) dµ(γ)

+ |m|s
∫
T1/T0

∫
T0

(
f (mγβ)− |mγ|−1 f (m−1ν−1γ−1β)

)
dµ(β) dµ(γ)

= |m|s
∫
T1/T0

(
1− |γ|

) ∫
T0

f (mγβ) dµ(β) dµ(γ)

+ |m|s
∫
T1/T0

∫
T0

(
|γ| f (mγβ)− |m|−2 f (m−1ν−1γ−1β)

)
dµ(β) dµ(γ).

By Theorem 44 we get∫
T0

f (mγβ) dµ(β)− |m|−2|γ|−1
∫
T0

f (m−1γ−1ν−1β) dµ(β)

=
∫
∂T0

(
|m|−2|γ|−1 f (m−1γ−1ν−1β)− f (mγβ)

)
dµ(β).

Now we deduce the formulas of the second set, and similarly of the third set.

Remark. The advantage of the second set of formulas for ωm is that the integral∫
M−
|m|s−2 ∫

T1
f (m−1α−1)

(
|α|−1− 1

)
dµ(α) dµM− (m) extends to an entire function on the com-

plex plane. Indeed, this integral equals

−
∫
M+
|m|2−s

∫
T1

f (mα) dµ(α) dµM+ (m) +
∫
M+
|m|2−s

∫
T1

f (mα) |α| dµ(α) dµM+ (m),

the first integral absolutely converges as noted above, and the second integral absolutely converges
since |α| = |α|1/2

− for α ∈ T1 and there is c > 0 such that f (mα)|α| 6 cf (mα) uniformly for all

m ∈ M+, α ∈ T1. Indeed, e−|α|
2
− |α|1/2

− goes to zero very fast when |α|1/2
− → ∞ in characteristic

zero and f (α) = 0 for all sufficiently large |α|− in positive characteristic.

Thus, the analytic properties of the zeta integral, including the meromorphic continuation and
functional equation, are reduced via the second calculation to the analogous properties of the
boundary term ω(π). The structure of the boundary term is more complicated and richer than that in
dimension one, see the next part.

From now on we assume that χ is trivial on J1, so χ = | |s2. Then

ζ(f, χ) = ζ(f, | |s2t) = ζ(f, || ||s).

Denote

ξ(| |s2) := ξ(| |s2t), ω(| |s2) := ω(| |s2t), ζm(f, | |s2) := ζm(f, | |s2t), ωm(| |s2) = ωm(| |s2t).

Using the Proposition we obtain

Theorem. Let S = E and f be as in 40. On the half plane <(s) > 2

ζ(f, | |s2) = ξ(| |s2) + ξ(| |2−s2 ) + ω(| |s2),
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where

ξ(| |s2) =
∫
M+

ζm(f, | |s2) dµM+ (m).

The integral ξ(| |s2) absolutely converges for all s and is an entire function on the complex plane.
The boundary term ω(| |s2) for <(s) > 2 is given by

ω(| |s2) =
∫
M−

ωm(| |s2) dµM− (m),

ωm(| |s2) = |m|s
∫
T1

(
f (mα)− |m|−2 f (m−1α−1)

)
dµ(α),

with the further formulas for ωm(| |s2) as in the previous Proposition.

These two calculations of the zeta integral form a two-dimensional analogue of the (unramified
part of the) theory of Tate and Iwasawa for E. For the case of fibered regular models of hyperbolic
curves over global fields see 57. Due to the connections between the zeta integral and zeta function
ζE(s) (see 40) and the L-function of E (see the introduction), the study of the appropriate analytic
properties of the zeta function and L-function is reduced to their study for the boundary term. In
particular, all the information about the meromorphic continuation, functional equation and poles
of the zeta integral is contained in the boundary term ω(| |s2) whose study is a new aspect of the
two-dimensional theory in comparison to the classical theory.

4. The boundary term and first applications

Except 57 we will assume that S = E as in 40.
From now on let χ = | |s2 be the unramified quasi-character.
In this part we try to build bridges from the study of the zeta integral and its calculation in part

3 to several important directions of the arithmetic of elliptic curves: the meromorphic continuation
and functional equation of the zeta function ζE(s), the location of its poles, and its behaviour at the
central point.

Almost all the material of part 4 can be read more or less independently of the previous parts,
just using the description of the boundary term in 46. There are already several papers which further
develop the material of this part, see [54]–[56].

In 46 we describe an integral representation of the boundary term as
∫
N−

h(n)ns−2 dµN− (n)
where h(n) is given by an adelic integral. We easily get a functional equation for h(n). A more
explicit description of h(n) will be obtained in Proposition 49, Proposition 50 and their proofs, in
section 51 (the fourth derivative of h(e−t)) and sections 52–54.

In 47–48 we discuss the analytic shape of the function h. It is expected that a functionH which is
obtained from h via the exponential change of variable is a mean-periodic function in an appropriate
functional space. The mean-periodicity would imply that the zeta integral, after change of variable
s→ s + 1, is the sum of a symmetric entire function and the Laplace–Carleman transform of an odd
mean-periodic function. The latter transform is a symmetric meromorphic function. All this would
imply the meromorphic continuation and functional equation of the zeta integral and hence of the
square of the zeta function of E, see 48. The recent work [56] shows that, in turn, the functional
equation of the zeta function and the analytic shape of its denominator (i.e. the L-function of E)
imply the mean-periodicity of the associated function H . Thus, in the first approximation, the
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meromorphic continuation and functional equation of the zeta integral is equivalent to the mean-
periodicity of H in the space of smooth functions of exponential growth on the real line. The recent
work [55], assuming the cuspidality property of the L-function, derives a homogeneous convolution
equation for a function related to h and a function originating naturally in the theory of Connes and
Soulé in their spectral interpretation of zeros of L-functions, thus exhibiting some duality between
the two theories.

In 50–55 we assume without loss of generality that the set S′, fixed in 36 and 40, contains only
one horizontal curve: the image of the zero section. We describe the behaviour of h(n) and its
derivatives near zero. In 51 we introduce hypothesis (∗) which says that the fourth derivative ofH(t)
keeps its sign for all sufficiently large t. We discuss various analytic and computational aspects of
this hypothesis in 52–53, relating it to the behaviour of associated Bessel series. In 54 we prove
that hypothesis (∗) and the real part of the Riemann hypothesis imply the full Riemann hypothesis
for the zeta integral. Results in the opposite direction are established in [54]. In 55, interpreting
the boundary term as the Laplace–Carleman transform, we derive some implications for the analytic
continuation of the zeta integral, zeta function and L-function and their functional equations.

We briefly indicate in 57 how to treat the case of curves of higher genus.
Section 58 contains a sketch of a new method aiming to relate the analytic and arithmetic ranks

of elliptic curve over a global field via the boundary term and the previous theory.

4.1. The boundary function h

46. Definition. For every n ∈ N we use the definition of mn in 42, make in appropriate places
change of variable γ → γ−1 and γ → νγ, and apply Lemma in 43 to define and deduce the following
equalities

h(n) :=
∫
T1

(
n2 f (mnγ)− f (m−1

n γ)
)
dµ(γ) =

∫
T1

(
n2 f (mnγ)− f (m−1

n γ−1)
)
dµ(γ)

=
∫
T1

(
n2 f (mnγ)− f (m−1

n ν−1γ−1)
)
dµ(γ)

=
∫
T1/T0

(∫
T0

(
n2 f (mnγβ)− f (m−1

n ν−1γ−1β)
)
dµ(β)

)
dµ(γ).

The function h(n) does not depend on the choice of mn corresponding to n.
Using the two-dimensional theta formula of 44, as in 45 we get

h(n) = h1(n) + h2(n),

h1(n) =
∫
T1

(
|α|−1 − 1

)
f (m−1

n α−1) dµ(α)

h2(n) = n2
∫
T1/T0

∫
∂T0

(
|mnγ|−1f (m−1

n ν−1γ−1β)− f (mnγβ)
)
dµ(β) dµ(γ).

The integral
∫
N−

h1(n)ns−2 dµN− (n) extends to an entire function on the complex plane, see
Remark 45.

Remark. The integral over the boundary ∂T0 of T0 of the function |mnγ|−1f (m−1
n ν−1γ−1β) −

f (mnγβ) and then the subsequent external integral
∫
N−

ns
∫
T1/T0

contains the full information on
the meromorphic continuation, functional equation and location of poles of the zeta integral.
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Proposition. The boundary term ω(| |s2) of Theorem 45 has the following integral presentation
for <(s) > 2

ω(| |s2) =
∫
N−

h(n)ns−2 dµN− (n).

Hence ω(| |s2) is equal to (Laplace or Laplace–Stieltjes transform in variable t) for <(s) > 2∫
N−

h(n)ns−2 dµN− (n) =
∫ ∞

0
e−st dj(t)

=


∫ 1

0
n−2 h(n) · ns dn

n
=
∫ ∞

0
e2t h(e−t) · e−st dt in characteristic 0,

h(1)/2 +
∑
k>1

h(q−k) q−k(s−2) in characteristic p,

where q is as in 36, j(t) which depends on h is defined as

j(t) =


∫ t

0
e2u h(e−u) du in characteristic zero,

h(1)
2

λ(t) +
∑
k>1

h(q−k) q2k λ(t− k log q) in positive characteristic,

where the classical

λ(t) =
{

0, t 6 0
1, t > 0.

The function h(n) is equal to l(n)n2 − l(n−1) where the function l(n) is the inverse transform of
ζ(f, | |s2): ∫

N

l(n)ns dµN (n) = ζ(f, | |s2).

Proof. Use the formula for ωm(π) in 45 and the definition of µM in 43. The representation for h(n)
as the inverse Mellin transform of the zeta integral follows from 45.

For several more explicit formulas for h(n) see 51–53.

Lemma. We have

h(n−1) = −n−2 h(n), n ∈ N.

Proof. Use the definition (the first line) of h.

Remark. Singularities of the zeta integral correspond to singularities of the boundary term and the
boundary term is given in its integral representation of adelic type. Notice the very different nature
of this description of poles of the zeta function of the two-dimensional E from the known integral
representation formulas in dimension one for poles of the Dedekind zeta function: the classical
formula

− ζ ′(s)
s ζ(s)

=
∫ ∞

0
ψ(et) e−st dt,

where ζ(s) is the Riemann zeta function and ψ(x) =
∑
n6x Λ(n), Λ(pk) = log p if k > 0, p is prime,

and equals 0 otherwise, is far away to be of adelic type.
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4.2. Mean-periodicity and meromorphic continuation of the zeta integral

47. Lemma 46 shows that functions eth(e−t) in characteristic zero and qth(q−t) in positive charac-
teristic are odd functions of t. So ω(| |1+s

2 ) is the Laplace–Stieltjes transform of the odd function. It is
therefore natural to ask the following question: for which subclass of the class of odd infinitely differ-
entiable functions g:R −→ R with finite exponential growth bound inf{c ∈ R : supt>0 |e−ctg(t)| <
∞} their Laplace–Stieltjes transformG(s) extends to a meromorphic function on the plane satisfying
G(s) = G(−s)? Mean-periodic functions in appropriate spaces X of functions on R satisfy this
property. Note that in general the mean-periodicity is only a sufficient but not a necessary condition
for a function to have its Laplace–Stieltjes transform extending to a meromorphic function on the
plane. However, assuming the standard hypothetical behaviour of the L-function ofE one can show
that the functions above are indeed mean-periodic in those spaces, [56]. In this section we discuss
the concept of mean-periodicity, which is supposed to play a much more prominent role in number
theory, approaching the significance of the role played by automorphicity.

Let X be a space of complex valued functions on R or on Z endowed with its appropriate
topology. Below X will be the inductive or projective limit of Fréchet spaces. Denote by X∗ the
dual space of X . Classical examples of functional spaces relevant for the zeta functions are:
– the space C(R) of continuous functions on the real line endowed with the topology of uniform
convergence on compact subsets and the corresponding set of seminorms, then X∗ is the space of
Radon measures with compact support,
– the space E(R) = C∞(R) of infinitely differentiable functions, thenX∗ is the space of distributions
with compact support,
– the space Cexp(R) of continuous functions of (not more than) exponential growth at ±∞, then X∗

is the space of measures with more than exponential decay at ±∞,
– the space C∞exp(R) of infinitely differentiable functions of (not more than) exponential growth at
±∞, then X∗ is the space of distributions with more than exponential decay;
– the space F(Z) of functions on Z and the space Fexp(Z) of functions of exponential growth.

Definition of a mean-periodic function in X. A complex valued function g ∈ X is
called mean-periodic in X if one of the following two equivalent conditions (in the presence of the
Hahn–Banach theorem) is satisfied:
(a) there exists a closed proper translation invariant linear subspace of X which contains g;
(b) g is a solution of a homogeneous convolution equation g ∗ τ = 0 where τ is a nonzero element
in the dual space X∗.

Homogeneous convolution equations can be viewed as a natural extension of homogeneous
differential equations with constant coefficients; already Euler used exponential polynomials to find
solutions of differential equations with constant coefficients.

Harmonic analysis studies analogues of Fourier series for mean-periodic functions. Spectral
analysis is said to hold inX if every translation invariant subspace ofX contains a finite dimensional
translation invariant subspace. Spectral synthesis is said to hold in X if every translation invariant
subspace of X is generated by its finite dimensional translation invariant subspaces.

The theory of mean-periodic functions initiated by Delsarte was developed by Schwartz, Kahane
and many other mathematicians. For the theory of mean-periodic functions in C(R) see [26] and a
short review in [38], p.169–181; for mean-periodic functions in E(R) see e.g. Ch. 6 of [2], [3]; for
the general case of functional spaces see [42], [43]. It is known that spectral synthesis and spectral



Analysis on arithmetic schemes. II I. Fesenko 71

analysis hold in all of the listed above spacesX; in particular forX = C∞exp(R) it follows from results
of [17], see also p.202 of [42].

In all these functional spaces onR finite dimensional translation invariant subspaces are generated
by exponential monomials xjezix, 0 6 j 6 mi, zi ∈ C. Spectral synthesis means that every
mean-periodic function g can be approximated by an appropriately grouped series of exponential
polynomials each of which belongs to the closure of the space generated by translations of g. Such
series of exponential polynomials generalize Fourier series. The class of mean-periodic functions in
C(R) is an extension of the class of periodic functions; it is related to but does not contain the class
of almost periodic functions.

Define the so called causal function g+ associated to a function g on the real line:

g+(t) = g(t) for t > 0, g+(0) = g(0)/2, g+(t) = 0 for t < 0.

If g is mean-periodic in X and if g is of finite exponential growth then g+ ◦ τ ∈ X∗ and for
sufficiently large <(s) its Laplace–Stieltjes transform

∫∞
0 g(t) e−st dt equals

G(s) =

∫ ∞
−∞

g+ ◦ τ (t) e−st dt∫ ∞
−∞

τ (t) e−st dt
.

This does not depend on the choice of τ 6= 0. Both the numerator and denominator extend to entire
functions on the plane, and hence G(s) is a meromorphic function on the complex plane. It is called
the Laplace–Stieltjes–Carleman transform of g. It serves as the meromorphic continuation of the
Laplace–Stieltjes transform of the mean-periodic function g.

In the case of an odd mean-periodic function g the function G(s) is a symmetric: G(−s) = G(s),
and G(s) coincides with the Laplace–Carleman transform of g, the latter is defined in 55.

The set of poles of G(s) is a subset of the set of zeros of the denominator. The complex numbers
zi above are some of the poles of G(s) and its principal part at zi is a polynomial of degree mi.

It is known that G(s) is entire if and only if the function g is zero.

Now we state the following 6 years old

Hypothesis. The zeta integral ζ(f, | |1+s
2 ) is the sum of an entire symmetric function and a

symmetric meromorphic function which is the Laplace–Stieltjes–Carleman transform of a mean-
periodic function of an appropriate functional space in which spectral analysis and synthesis hold.

If such a functional space is fixed, then these mean-periodic function and entire function are then
uniquely determined.

More precisely, the spaces X = Cexp(R) and X = C∞exp(R) as well as some other spaces (but
not C(R), C∞(R), see Remark 5.12 of [56]) should do the job in characteristic zero and the space
X = Fexp(Z) does the job in positive characteristic. See also Remarks 2 and 4 in 48.

If the hypothesis holds true, then by the above discussion the zeta integral (and hence the square
of the zeta function of E, see 48) extend meromorphically to the complex plane and satisfy the
appropriate functional equations.

Keeping in mind Theorem 45, to verify the hypothesis one only needs to show that the bound-
ary term ω(| |1+s

2 ) is the sum of a symmetric entire function and the Laplace–Stieltjes–Carleman
transform of an odd mean-periodic function in the appropriate functional space; see also 55.
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48. Define ζE(s) =
∏
b∈B0

ζEb (s) where ζEb (s) is the zeta function of the minimal Weierstrass
model ofE at b; if the class number of k is 1 then ζE(s) is the zeta function of the minimal Weierstrass
model of E. The zeta function of E determines the L-function via

ζE(s) =
ζP 1(B)(s)
LE(s)

=
ζB(s) ζB(s− 1)

LE(s)
.

This historically first approach to the zeta and L-function of E does not require to specify explicitly
the (mysteriously looking in its traditional definition) bad factors at all.

Using Thms 3.7, 4.35 in Ch. 9 and section 10.2.1 in Ch. 10 of [37], one can easily deduce
that the quotient ζE(s)/ζE(s) is the product of finitely many zeta functions of affine lines over finite
extensions of the residue field of b, where b runs through those closed points of the base for which the
special fibre Eb is singular. More precisely, denote by mb the number of components in the reduced
part of the geometric fibre E×B k(b)sep of E over a closed point b of B; so mb = 1 for almost all b.
Then

ζE(s) = nE(s) ζE(s), nE(s) =
∏

b∈B0,16i6nb

(1− |k(b)|ni,b(1−s))−1.

Here ifmb 6= 1, i.e. the special fibre Eb is singular, then ni,b are certain positive integers, 1 6 i 6 nb,
such that

∑
16i6nb ni,b = mb − 1, the number nb is the number of (k(b)-rational) components of

the special fibre Eb with the component intersecting the zero section excluded. For other related
points of view see e.g. [50], [51], [58], and for a cohomological interpretation see e.g. [4], p.300.
In particular, the functions nE(s) and nE(s)−1 are holomorphic for <(s) > 1.

Now we obtain

Theorem. Let S = E be as in 40. Suppose that the function

H(t) =
{
h(e−t), t ∈ R, in characteristic zero,

h(q−t), t ∈ Z, in positive characteristic,

is a mean-periodic function in an appropriate functional space in which spectral analysis and
synthesis hold (e.g. C∞exp(R) and Fexp(Z)).

Then the zeta integral ζ(f, | |s2) of E, the zeta function ζE and the L-function of E meromorphi-
cally extend to the plane and satisfy the functional equations:

ζE,S′ (f, | |s2) = ζE,S′ (f, | |2−s2 ),

cE(s) ζE(s)2 = cE(2− s) ζE(2− s)2,

mE(s) ζE(s)2 = ζE(2− s)2,

where cE(s) = cE,Sp (| |s2) is the vertical part of cE,S′ (| |s2) defined in Theorem 40,

mE(s) =
cE(s)

cE(2− s)
nE(s)2

nE(2− s)2 = N (condE)2−2s

where N (condE) =
∏
|k(b)|fb is the norm of the conductor of E, see Theorem 40.

Remark 1. The conjectural constants in the conjectural functional equations of ζE(s) and ζE(s)
do not depend on the archimedean data and do not involve Γ-functions; the same is true for the
zeta functions of abelian varieties over global fields. In characteristic zero the completed L-function
ΛE(s) is the product of LE(s) and a certain factor ΓE(s), see e.g. [51]. However, the ratio
ΓE(s)/ΓP1(B)(s), where ΓP1(B)(s) = Γk(s)Γk(s−1), is a simple rational function; for example equal
to (s − 1)/(4π) if k = Q. Its square is invariant with respect to s → 2 − s. Thus, the factor ΓE(s)
in the functional equation of the denominator LE(s) of the zeta function is essentially due to the
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factor ΓP1(B)(s) in the functional equation of the numerator of the zeta function. See also Remark 57
about Γ-factors for zeta functions of arithmetic surfaces. Using the formula for cE(s) in Theorem 40,
we see that the mean-periodicity of H(t) implies the functional equation of ζ2

E with its conjectured
exponential factor exactly as described in [51], for more details see 5.4 of [56].

Remark 2. In characteristic zero the material of [56] shows that if the L-function of E extends
to a holomorphic function of order one and satisfies the functional equation then the function H is
mean-periodic in Cexp(R), C∞exp(R) and other spaces. The proof uses convexity bounds for Dedekind
zeta functions and L-functions of elliptic curves. For modular curves the convolutor for H can be
obtained using the spectral interpretation of zeros of GL(2) cuspidal automorphic representations,
see [55].

More generally, [56] demonstrates new links between zeta functions which extend meromorphi-
cally and satisfy the functional equation and mean-periodic functions. Namely, a rescaled completed
zeta function of an arithmetic scheme extends to a meromorphic function of order 1 of the expected
analytic shape (in particular, with at most exponential growth in vertical strips) and with the func-
tional equation with respect to s→ 1− s and the sign ε if and only if the function f (e−t)− εetf (et)
is a mean-periodic function in C∞exp(R), where f (x) is the inverse Mellin transform of the product
of an appropriate sufficiently large positive power of the completed Riemann zeta function and the
completed and rescaled zeta function.

Of course, when complex multiplication is available and in the case of elliptic curves over Q the
well known theorems imply the holomorphic continuation and the functional equation of LE and
hence they imply the mean-periodicity of H in C∞exp(R).

Remark 3. If f is a modular function of weight two, then the function g(z) = f(iz) satisfies the
two functional equations: g(z−1) = −z2g(z) and g(z + i) = g(z). The analogue of the first equation
for the function h is h(n−1) = −n−2h(n) in Lemma 46. The analogue of the second equation is the
mean-periodicity of the function H(t). It is expected that to prove the mean-periodicity of H(t) and
get the meromorphic continuation and functional equation of the zeta function of E is easier than to
get the full automorphic properties of its factor LE(s).

The study of relations between mean-periodic and automorphic properties can bring many fruits.
One of the main open problems is how far one can go from the mean-periodicity of H to the
automorphic properties of LE .

Remark 4. Let K be of positive characteristic. Using the rationality (as functions of q−s) and
the functional equations for the zeta function ζE(s) and zeta functions of global fields of positive
characteristic it is straightforward to deduce that the function H(t) in mean-periodic in the spaces
F(Z) and Fexp(Z).

Namely, using the above facts and Theorem 40 we can write the zeta integral as L(u)/L(v)
where L is the Laplace–Stielties transform as in 46, and u, v are complex valued functions on
{q−k : k ∈ Z} with finite support and such that u(n) = n−2u(n−1), v(n) = n−2v(n−1). Then the
function H satisfies the homogeneous convolution equation H ∗ w = 0 with w(n) = v(n−1).

Remark 5. For another approach towards the analytic continuation and functional equation of the
boundary term see 55.
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4.3. Monotone behaviour of log derivatives of the boundary function
and poles of the zeta integral

Choose the set S′ such that it contains exactly one horizontal curve y0, the image of the zero section.
Then we get the decomposition T = Ty0 × TSp . The zeta integral in this case lifts the square of
the zeta function ζE(s) to a much better from analytic point of view object

∑
n∈cEN c(n

2)An2 (x) in
characteristic zero, which we now describe. Recall that ζE(s)2c1−s

E is the vertical part of the zeta
integral by Theorem 40, cE is defined in 40. Write

ζE(s)2c1−s
E =

∑
n∈cEN

c(n2) n−s

as a generalized Dirichlet series with coefficients c(n2). Below in 51 we obtain

ζE,S′ (f, | |s2) = e
∑

n∈cEN
c(n2)

∫ ∞
0

Yn2 (n)ns
dn

n
, where Yn(n) =

∫ ∞
0

ya,na−1 (n)
da

a
,

where e is the square of the normalized classical measure of the idele class group of k,

ya,b(n) = (Θ(n2a2)− 1)(Θ(n2b2)− 1)

and Θ is the theta-function of k, see 51. Compare with the classical case k = Q, where one passes
from the zeta function

∑
n∈N n−s to the integral

∫∞
0 ns(θ(n2)− 1)dnn .

In 51 we also deduce

h(n) = −e
∑

n∈cEN
c(n2)Vn2 (n),

Vn(n) =
∫ ∞

0
wa,na−1 (n)

da

a
,

wa,b(n) = (Θ(n−2a2)− 1)(Θ(n−2b2)− 1)− n2(Θ(n2a2)− 1)(Θ(n2b2)− 1),

see 51.
We look at the behaviour of the first two logarithmic derivatives of h in 49 and 50 and check

that it is monotone near 0. In 51 we state hypothesis (∗) that the third logarithmic derivative of h
is monotone near 0+. This hypothesis is partially motivated by the fact that the boundary ∂T0 in
dimension two is very large and integrals over it are expected to result in ‘nicely behaved’ functions,
unlike the dimension one case where the boundary ∂k× is so small. In characteristic zero we include
more formulas for the fourth logarithmic derivative of h and its approximation in 52. We discuss
hypothesis (∗) in the case of characteristic zero in 52, and also include there a reference to some
computational data, and we discuss the hypothesis in the case case of positive characteristic in 53.

In 54 we show that hypothesis (∗) implies the following: if the zeta integral extends meromorphi-
cally to the half-plane <(s) > 1 and if it does not have real poles in the open interval (1, 2) then the
zeta integral does not have complex poles in the strip <(s) ∈ (1, 2). The real part of the generalized
Riemann hypothesis (i.e. no real poles in (1, 2)) is easy to check computationally for a modular el-
liptic curve, so in this case (∗) implies the GRH for the zeta integral. Conversely, [54] shows that the
generalized Riemann hypothesis and some technical condition imply hypothesis (∗), see Remark 2
in 54. In 55 we show that if (∗) holds and the zeta integral extends meromorphically without new real
poles to the half-plane <(s) > 1 and the Carleman spectrum of the Laplace–Carleman transform of
a function p related to h is not dense on the real line, then the zeta integral extends meromorphically
to the complex plane and satisfies the functional equation.
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49. In this section we derive some first information about a function wγ(n). We will use this for
the study of the function h which can be written as an integral whose integrand involves the function
wγ(n), see the last part of 51.

Recall that in 42 we denote by y0 ∈ S′ the image of the zero section, and we choose representatives
mn of n ∈ N in Ty0 .

Proposition. For γ ∈ T put

uγ(n) =
∫
T0,y0

f (m−1
n γβ) dµ(β),

vγ(n) = −n2
∫
T0,y0

f (mnγβ) dµ(β),

wγ(n) = uγ(n) + vγ(n).

In characteristic zero for all n for every γ ∈ T the functions uγ(n), vγ(n) are nondecreasing.
The function wγ(n) is nondecreasing nonpositive for n 6 1.

In positive characteristic for all sufficiently small n for every γ ∈ T the function wγ(n) is
nonpositive.

Proof. Denote

mn = (n1, n2), γ = (γ1, γ2), o oy0 (mn) = (r1, r2), o oy0 (γ) = (c1, c2),

with ni, γi ∈ A×y0
, o o was defined in 42.

In positive characteristic we get

uγ(n) = (|L(n−1
1 γ1)| − 1)(|L(n−1

2 γ2)| − 1), vγ(n) = −n2 (|L(n1γ1)| − 1)(|L(n2γ2)| − 1),

where L(δ) is the classical space L for the divisor on y0 which corresponds to the idele δ. Denote by
g the genus of y0. The one-dimensional Riemann–Roch theorem, which is part of the adelic analysis
theory in dimension one, implies

|L(δ)| − 1 =
{
q1−g|δ|−1 − 1, if |δ| < q2−2g

0, if |δ| > 1,

where q = qy0 is as in 36.
This implies in the case g = 0 that the functions uγ(n), vγ(n) are nondecreasing. Sincewγ(1) = 0,

the function wγ(n) is nonpositive for n 6 1. For the rest of the discussion of positive characteristic
in this proof we assume that g > 1.

Denote b = maxq2−2g6|δ|61(|L(δ)| − 1). Impose the following condition on n:

n 6 min
(
q−2, q−1−g, q−g(b2 + q1−g)−1/2).

We will show that wγ(n) 6 0 for all γ.
Due to the definition of mn in 42 we get ri 6 qn. In particular, ri < 1.
If r−1

1 c1 > 1 or r−1
2 c2 > 1 then uγ(n) = 0 and wγ(n) 6 0.

Suppose that c1 6 r1, c2 6 r2, then ciri 6 r2
i < q2−2g and

−vγ(n) = (q1−gc−1
1 − r1)(q1−gc−1

2 − r2).

If r−1
1 c1, r

−1
2 c2 < q2−2g then

uγ(n) = (q1−gc−1
1 r1 − 1)(q1−gc−1

2 r2 − 1).
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Since q1−gc−1
i − ri > q1−gc−1

i ri − 1, we deduce −vγ(n) > uγ(n).

If 1 > r−1
1 c1 > q2−2g then the first factor in uγ(n) is 6 b. Since c1 6 r1 and r1 6 q1−g(b2 +

q1−g)−1/2 6 (−b + (b2 + 4q1−g)1/2)/2, we get q1−gc−1
1 − r1 > q1−gr−1

1 − r1 > b. This and the
previous argument imply −vγ(n) > uγ(n) for all values of c2.

Thus, wγ(n) 6 0 for all γ. See also Proposition 50 which gives another proof in positive
characteristic.

In characteristic zero the function uγ(n) is obviously nondecreasing.
Consider first the case of k = Q. To show that vγ(n) is nondecreasing, we look at the function

v1(x) = −x2(ϑ(x2)− 1
)2
, where ϑ(x) =

∑
k∈Z

exp
(
−πk2x

)
.

Note that the function y(x) = x
(
ϑ(x) − 1

)2 is nonincreasing for x > 1/π: indeed, we have
y(x) =

∑
km 6= 0 x exp

(
−π(k2+m2)x

)
, its derivative is

∑
km 6= 0

(
1−πx(k2+m2)

)
exp
(
−π(k2+m2)x

)
,

and 1 − πx(k2 + m2) 6 0 for πx > 1, km 6= 0. Hence v1(x) is nondecreasing for x > 1/
√
π . To

show that

z(x) = x
(
ϑ(x2)− 1

)
is nonincreasing for x 6

√
2π/3 use the classical xϑ(x2) = ϑ(x−2) for x > 0 to deduce z(x) =

ϑ(x−2)− x. The derivative of ϑ(x−2) equals
∑
k 2πk2x−3 exp

(
−πk2x−2) whose derivative equals∑

k 2πk2x−3(−3x−1 + 2πk2x−3) exp
(
−πk2x−2) and −3x−1 + 2πk2x−3 > 0 for x 6

√
2π/3 ,

k 6= 0. Therefore it is sufficient to check that
∑
k 2πk2x−3 exp

(
−πk2x−2) 6 1 for x =

√
2π/3 .

But we already know that this is so for x > 1/
√
π <

√
2π/3 . Thus, v1(x) is nondecreasing for all

x > 0. We have also proved that the function z(x) is nonincreasing positive for all x > 0. Then the
function vγ(x) = −c−1

1 c−1
2 z(xc1)z(xc2) is nondecreasing for x > 0.

In the general case of k, due to the definition of f , we get

v1(x) = −x2(
Θ(x2)− 1

)2

and the argument goes exactly as above. Here Θ(x2) is the theta function associated to k as in [25],
Θ = ΘOk where for a fractional ideal I of k

ΘI (x) =
∑
α∈I

exp
(
−π c1/n

k |α|2 x
)
,

where, similar to 40, c−1
k is the discriminant of k, n is the degree of k, |α|2 =

∑
ω eω|ω(α)|2 where ω

runs through archimedean places of k and we use the notation eω of Example 2 of 30. The functional
equation is ΘOk (x2) = x−1 Θ

d−1
k Ok

(c−2/n
k x−2), x > 0, where dk is the different of k.

Since wγ(1) = 1, the nondecreasing property of wγ(n) implies its nonpositivity for n 6 1.

50. In sections 50–55 we assume that |S−| = 1. In this section we study the asymptotic behaviour
of h(n) near 0.

Definition. For n ∈ N define

Log (n) =
{

logn in characteristic zero,
logq(n) in positive characteristic,

where q is as in 36.
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Definition. In positive characteristic define the derivative of a function g:Z −→ R as g′(k) =
g(k)− g(k − 1).

Proposition. Let S = E be as in 40 and let |S−| = 1 as in the beginning of this section.
Then there is a polynomial w of degree 3 with the leading coefficient c such that for the function

H(t) defined in Theorem 48 (t ∈ Z in positive characteristic) we have

H(t)(i) −w(t)(i) → 0 when t→∞, for all i > 0.

If we use the classical property of LE(s) to extend holomorphically to the half plane <(s) > 3/2,
then in characteristic zero the left hand sides in the above formulas are o(e−t(1/2−ε)) for any ε > 0.

In positive characteristic the third derivative h(n)−3h(nq) + 3h(nq2)−h(nq3) tends to 6c when
n→ 0. In characteristic zero the third derivative h(e−t)′′′ tends to 6c when t→ +∞.

In particular, h(n) and its first two derivatives are monotone functions for all sufficiently small
n.

Proof. The singular behaviour of
∫
N−

h(n) ns−2 dµN− (n) at s = 2 (resp. qs = q2 in positive
characteristic) corresponds to the singular behaviour of the zeta integral, and hence by Remark 1 of
40 its principal part at s = 2 is

∑
16i64 ai(s − 2)−i with nonzero a4. Let w(t) =

∑
06i63 cit

i be
a polynomial of degree 3 such that

∫
N−

w(−Log n) ns−2 dµN− (n) equals this principal part. Put
c = c3.

In characteristic zero the analytic functions (s−2)i
∫
N−

(
h(n)−w(−Log n)

)
ns−2 dµN− (n) are

holomorphic in the half-plane <(s) > 2− ε for some ε > 0. For i > 1 we can rewrite the integrals
as−

∑
06j6i−1(s− 2)i−1−j(h(e−t)−w(t)

)(j)
(0) +

∫∞
0 e−t(s−2) d

(
h(e−t)−w(t)

)(i−1). Since they
are holomorphic near s = 2, the latter integrals converge at s = 2, so the standard properties of the
Laplace transform imply h(e−t)(i) − w(t)(i) → 0 when t → ∞, for all i (e.g. [64], Ch.5, Lemma
5.2). If we use the cited above property of the L-function and zeta function of E, see 38, then those
integrals are holomorphic for <(s) > 3/2 + ε. This together with loc.cit. imply the corresponding
statement in the Proposition.

In positive characteristic proceed similarly, multiplying by (1− q2−s)i.

51. In this section we get more explicit information about the functionh(n) and then state hypothesis
(∗).

Recall that we assume that the set S′ consists of all the vertical curves in Sp and one horizontal
curve y0, the image of the zero section.

For each ε ∈ TSp choose an ε ∈ Ty0 such that the element (ε, ε) of TS′ belongs to T1,S′ , the
latter was defined in 42. So |ε|Sp = ||ε||Sp = ||ε||−1

y0
. Each time when we have (ε, ε) in this section,

they will satisfy this relation.
We get the following decomposition

T1,S′ = {(γ, 1) : γ ∈ T1,y0} × {(ε, ε) : ε ∈ TSp}.

Denote

e =
∫
T1,1,y0

/T0,y0

dµ = µ(T1,1,y0/T0,y0 ),

T1,1,y was defined in 42. The number e is the square of the normalized one-dimensional measure of
the idele class group I1,k(y0)/k(y0)×.

Recall that T1,y0 = T1,y0 . The integral over T1,y0/T0,y0 of f (mnγ) equals e times the integral
over T1,y0/T1,1,y0 , and T1,y0/T1,1,y0 ' N .
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Using the decomposition of T1,S′ above and the definition of the integral over T1 in 43, we derive∫
T1,S′

f (mnγ) dµ(γ) =
∫
TSp

(∫
T1,y0

f (mnγε) dµ(γ)
)
f (ε) dµ(ε)

=
∫
TSp

(∫
T1,y0

/T0,y0

uγε(n−1) dµ(γ)
)
f (ε) dµ(ε)

= e

∫
TSp

(∫
T1,y0

/T1,1,y0

uγε(n−1) dµ(γ)
)
f (ε) dµ(ε).

For n ∈ NSp denote

c(n2) =
∫
T1,Sp

f (εγ) dµ(γ) > 0,

where |ε|Sp = n−1, so for the corresponding ε ∈ Ty0 as above we have |ε|y0 = n2.
Using the definitions from 40 and 45 we get

ζE(s)2c1−s
E = ζE,Sp (f, | |s2) =

∑
n∈NE

c(n2)n−s

for an appropriate index-set NE ⊂ Q defined in the next paragraph.
The definition of f in 40 shows that if f (ε) 6= 0 for ε ∈ TSp then |ε|? 6 c−1

? for each fibre ? ∈ Sp,
c? was defined in 40, and so ||ε||Sp = |ε|Sp 6 c−1

E and so ||ε||y0 > cE, cE was defined in 40. If
n < cE then, as we have seen, c(n2) = 0. Put NE = cE N ∩NSp , the definitions show that c(n2) = 0
if n 6∈ NE.

Recall that ζE,S′ (f, | |s2) =
∫
N
ns
∫
T1
f (mnγ) dµ(γ)dµN (n). So in characteristic zero, using

uγ(n−1) = ya,b(n) = (Θ(n2a2)− 1)(Θ(n2b2)− 1) from 49, where oγoy0 = (a, b), we obtain

ζE,S′ (f, | |s2) = e

∫ ∞
0

ns
( ∑

n∈NE

c(n2)Yn2 (n)
)
dn

n
, Yn(n) =

∫ ∞
0

ya,na−1 (n)
da

a
,

Yn(n) corresponds to applying
∫
T1,y0

/T1,1,y0
. This is the formula at the beginning of 4.3.

In every characteristic we similarly deduce

h(n) =
∫
T1,S′

(
n2f (mnγ)− f (m−1

n γ)
)
dµ(γ)

=
∫
TSp

(∫
T1,y0

(
n2f (mnγε)− f (m−1

n γε)
)
dµ(γ)

)
f (ε) dµ(ε)

= −
∫
TSp

(∫
T1,y0

/T0,y0

wγε(n) dµ(γ)
)
f (ε) dµ(ε) = −e

∫
TSp

∫
T1,y0

/T1,1,y0

wγε(n) dµ(γ) f (ε) dµ(ε),

where wδ(n) is defined in 48. Denote

Wn(n) =
∫
T1,y0

/T0,y0

wγε(n) dµ(γ), Bn(n) =
∫
T1,y0

/T1,1,y0

wγε(n) dµ(γ), ||ε||y0 = n,

then

h(n) = −
∫
NSp

c(n2)Wn(n) dµNSp (n) = −e
∑
n∈NE

c(n2)Bn(n).
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In particular, the description ofwγ(n) in Proposition 49 implies that the function h(n) is nonnegative
for all sufficiently small n.

In the previous section we observed the monotone behaviour of the function H(t) − w(t) and
its two derivatives when t → +∞. It is natural to look at the behaviour of the third logarithmic
derivative of h(n). As we will see later in 54, its monotone behaviour for all small n is closely
related to the Riemann hypothesis for the zeta function ζE(s). On the other hand, we will see in 52
and 53 that the Riemann hypothesis and some other condition imply the monotone behaviour of the
third logarithmic derivative.

Hypothesis (∗) = (∗)E. The fourth derivative of the functionH(t) keeps its sign for all sufficiently
large t.

52. Now we discuss hypothesis (∗) in characteristic zero. First we define several functions.

Definition of wa,b, Vn, Zn. Let k be a number field. Following 49 and 51, let Θ be the theta
function associated to k. For positive real a, b denote

wa,b(n) =
(
Θ(n−2a2)− 1

)(
Θ(n−2b2)− 1

)
− n2(

Θ(n2a2)− 1
)(

Θ(n2b2)− 1
)
.

For n > 0 denote

Vn(x) =
∫ ∞

0
wa,na−1 (x)

da

a
, Zn(e−t) = Vn(e−t)′′′′,

the derivative is taken with respect to t. So

Zn(x) =
(
x
d

dx

)4

Vn(x).

Recall that c(n2), n ∈ NE, are the coefficients of ζE,Sp (f, | |s2) =
∑

n∈NE
c(n2)n−s.

Definition of Z({c(n)}). For a set of coefficients c(n2), n runs through a subset I = cN, define
the function

Z({c(n)}) =
∑
n∈I

c(n2)Zn2 (x).

When c(n2) are the coefficients associated to E as in 51, we use the notation ZE(x).

Since Vn2 (x) equals Bn(x) defined in 51, we obtain

h(n) = −e
∑
n∈NE

c(n2)Vn2 (x).

and so
h(e−t)′′′′ = −eZE(e−t)

which gives a more explicit description of the fourth logarithmic derivative of h.
Thus, in characteristic zero hypothesis (∗) is equivalent to the single sign property of ZE(x) near

0: for all sufficiently small positive x the function ZE(x) keeps its sign. From Proposition 50 we also
know that for every ε > 0 ZE(x) = o(x1/2−ε) when x→ 0.

Discussion 1. Similar to the zeta integral description in 51, the series ZE(x) involves a modifica-
tion of the Dirichlet series associated to E using relatively nicely behaved functions including K0-,
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K1-Bessel functions, coming from a horizontal curve on E. The following description appeared
after conversations with Zagier and Suzuki in 2004.

Let, for simplicity, k = Q.
Let K0 be the Bessel function

K0(x) =
1
2

∫ ∞
0

e−x
(
t+ 1
t

)
/2 dt

t
.

It is easy to see that∫ ∞
0

(
ϑ(xa2)− 1

)(
ϑ(xn2a−2)− 1

) da
a

= 4
∑
l1,l2>1

K0(2πl1l2nx) = 4
∑
l>1

σ0(l)K0(2πlnx),

where σ0 is the number of positive divisors. Using this, we get

Vn(x) = 4
∑
l>1

σ0(l)
(
K0(2πlnx−2)− x2K0(2πlnx2)

)
.

Thus we have a more explicit description of the function h(x) = −e
∑

n∈cEN∩NSp
c(n2)Vn2 (x) for

k = Q.

Since (
x
d

dx

)4(
x2K0(ax2)

)
= a−1K1(ax2),

(
x
d

dx

)4(
K0(ax−2)

)
= K2(ax−2),

where
K1(x) =

(
16x + 288x3 + 16x5)K0(x)−

(
64x2 + 128x4)K1(x),

K2(x) =
(
64x2 + 16x4)K0(x)− 64x3K1(x),

with K1-Bessel function involved, we obtain

Zn(x) = 4
∑
l>1

σ0(l)
(
K2(2πlnx−2)− 1

2πln
K1(2πlnx2)

)
.

When x→ 0 we get Zn(x)→ 0. Denote

Ṽn(x) = −4x2
∑
l>1

σ0(l)K0(2πlnx2), Z̃n(x) =
(
x
d

dx

)4

Ṽn(x).

Then

Z̃n(x) = − 2
πn

∑
l>1

σ0(l)
l

K1(2πlnx2), Z̃n(x) =
1
n
Z̃1
(
x
√
n
)
,.

Define

Z̃(x) =
∑
n∈NE

c(n2) Z̃n2 (x) =
∑
n∈NE

c(n2)
n2 Z̃1

(
x n
)
.

The behaviour of Zn(x) and Z(x) when x→ 0 is determined by the behaviour of Z̃n(x), Z̃(x).

Discussion 2. From the definitions we get

ZE(x) =
∑
n>1

c(c2
En

2)Zc2
E
n2 (x), where

∑
n>1

c(c2
En

2)
ns

= cE ζE(s)2
∏

b∈B0,i

(1− |k(b)|ni,b(1−s))−2,
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see 48 and 51.
Denote

zE(x) =
∑
n>1

c(n2)Zn2 (x), where
∑
n>1

c(n2)
ns

= ζE(s)2

ZE(x) =
∑
n∈cEN

d(n2)Zn2 (x), where
∑
n∈cEN

d(n2)
ns

= c1−s
E ζE(s)2

where cE is the norm of the conductor of E and we still assume that k = Q. Similarly define z̃E(x)
and Z̃E(x) using Z̃n2 (x). Similarly to the above, the function ZE(x) tends to Z̃E(x) when x → 0,
and hence tends to c−1

E z̃E(cEx) when x→ 0.

As far as the computational data are concerned, for a table of values of function zE(x) associated
to elliptic curves E over Q with small conductor the reader can inspect [13] and p.311 of [14]. See
also Remark 2 in 54.

53. This section includes some material about hypothesis (∗) in positive characteristic, which is
not such an interesting case since we already know the Riemann Hypothesis for ζE(s). Let E be as
in 40 and let |S−| = 1 as in the beginning of section 50. Let K be of positive characteristic.

Using the notation of 51, abbreviate Wk(n) = Wq−2k (n). Then

Wk(n) =
∫
T1,1,y0

/T0,y0

∑
a=ql,l∈Z

w(a,a−1) γε(n) dµ(γ),

where |ε|y0 = q−2k, w was defined in 48.

Put ck = c(q−2k) > 0, the coefficient c(n) is introduced in 51. Then∑
ck q

ks = ζE,Sp (f, | |s2).

We have

h(n) = −
∑
k

ckWk(n) = −
∑

k6− logq cE

ckWk(n).

Let n = q−r < cE. Let |ε|y0 = q−2k > c2
E. Then |ε|y0 > cE > n, i.e. r > k. This implies, in

the notation of the proof of Proposition 49, u(a,a−1) γε(n) = 0. To calculate Wk(n) we will use the
formulas in the same proof. Let o oy0 (mn) = (q−r1 , q−r2 ) and o oy0 ((a, a−1) γε) = (q−k1 , q−k2 ), so
r1 + r2 = 2r, k1 + k2 = 2k. Choose xi such that |xi| = q−i. Introduce nonnegative numbers

bi = µ(I1,k(y0)/k(y0)×)−1
∫
I1,k(y0)/k(y0)×

(|L(xiβ)| − 1) dµ(β),

using the one-dimensional measure on the class idele group of k(y0) and the notation of the same
proof. The latter shows bi = 0 if i < 0 and bi = q1−g+i − 1 if i > 2g − 2, where g is the genus of
y0. We then obtain

Wk(n) = −e q2k ek+r,
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where

em =



0, if m < 0,
q−2m∑

06i62m bib2m−i, if 0 6 m 6 g − 1,

q−2m∑
2(m−g+1)6i62(g−1) bib2m−i

+2
∑

06i62(m−g) bi(q
1−g−i − q−2m), if g − 1 < m 6 2g − 2,

(2m + 3− 4g)(q2−2g + q−2m)− 2(q3−3g − q−2m+g)/(q − 1)

+2
∑2g−2
i=0 bi(q1−g−i − q−2m), if 2g − 2 < m.

This gives some more information on h(n).
Denote

Zk(n) = −e−1 (Wk(n)− 4Wk(nq−1) + 6Wk(nq−2)− 4Wk(nq−3) +Wk(nq−4)).

Then

q−2kZk(n) = e(4)
k+r = ek+r − 4ek+r+1 + 6ek+r+2 − 4ek+r+3 + ek+r+4.

Using the formulas for Wk(n) we deduce that for n < cE

Zk(n) =
{

0 if r + k < −4,(
2r + 2k +B

)
q−2r(1− q−2)4 if r + k > 2g − 2,

where B = 3− 4g + 2qg
q−1 −

8
q2−1 − 2

∑2g−2
i=0 bi.

For n < cE the formula

h(n)− 4h(nq−1) + 6h(nq−2)− 4h(nq−3) + h(nq−4) = −e
∑

−r−46k6− logq cE

ckZk(n)

gives another description of the fourth derivative of H(t) in positive characteristic.

If we use the rationality in t = qs of ζE,Sp (f, | |s2) and denote by qγi all its poles inside the ball of
radius q2, then it is easy to show that

h(q−r)(4) = g0(r) + g(r)q−2r +
∑

gi(r)qr(γi−2)

with certain polynomials g, gi. Since the order of the pole of the zeta integral at s = 2 is 4, the fourth
derivative tends to zero when r → +∞ and g0(r) = 0. It is easy to obtain

Lemma. Suppose that there are no poles of the zeta function ζE(s) inside the strip 1 < <(s) < 2
and that the order of pole at s with qs = q is strictly greater than the order of pole at any other s
with qs 6= q, <(s) = 1. Then h(n)− 4h(nq−1) + 6h(nq−2)− 4h(nq−3) + h(nq−4) keeps its sign for
all sufficiently small n, i.e. hypothesis (∗) of 51 holds.

Proof. The degree of gi equals the order of the pole γi of the boundary term. Under these
assumptions the prevailing term will be the one associated to γi = 1.

The order of pole of ζE(s) at s = 1 is the sum of two, coming from ζP1(B)(s) (which do not have
poles as s with <(s) = 1 and qs 6= q), plus the order of zero of LE(s) at s = 1, plus the order of poles
of nE(s) at s = 1 (which do not have poles as s with qs 6= q). Hence, for the second condition of
Lemma to be satisfied it suffices that the order of zero of LE(s) at s = 1 is not smaller than the order
of its other zeros on the line <(s) = 1.
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54. Now we discuss applications of the previous theorems.

Theorem. Let S = E be as in 40 and let |S−| = 1 as in the beginning of section 50.
In characteristic zero let r(t) be the second derivative with respect to t of h(n) + c Log (n)3,

n = e−t.
In positive characteristic let

r(t) =
h(1)

2
λ(t) +

(
h(q−1)− 3h(1)

2
)
λ(t− log q) +

(
h(q−2)− 3h(q−1) +

3h(1)
2
)
λ(t− 2 log q)

+
(
h(q−3)− 3h(q−2) + 3h(q−1)− h(1)

2
)
λ(t− 3 log q)

+
∑
k>4

(
h(q−k)− 3h(q−k+1) + 3h(q−k+2)− h(q−k+3)

)
λ(t− k log q),

where h(n) = h(n) + c (Log n)3, c is defined in Proposition 50 and the function λ(t) is defined in
Proposition 46.

Suppose that hypothesis (∗) of 51 holds. Then in every characteristic r(t) is monotone for all
sufficiently large t.

Denote by x0 the abscissa of convergence of

R(s) =
∫ ∞

0
e−(s−2)t dr(t).

Then x0 < 2 and x0 is a real pole of R(s). The boundary term ω(| |s2) and zeta integral ζ(f, | |s2)
extend meromorphically to the right half plane<(s) > x0, have a real pole x0 and do not have poles
inside the strip <(s) ∈ (x0, 2).

Proof. As in the proof of Proposition 50 the integral
∫
N−

(
h(n) + c Log (n)3)ns−2 dµN− (n) mul-

tiplied by (s− 2)3 in characteristic zero equals∫ ∞
0

e−(s−2)t dr(t)−
∑

06j62

(s− 2)2−j(h(e−t)− ct3
)(j)

(0).

This integral multiplied by (1−q2−s)3 in positive characteristic equals
∫∞

0 e−(s−2)t dr(t) where r(t)
is as in Theorem 53. In each case R(s) is a holomorphic function near s = 2 (resp. all s such that
qs = q2 in positive characteristic). Hence its abscissa of convergence x0 is smaller than 2.

Since we assume that (∗) holds, there is t0 such that 0 does not separate the values of the fourth
derivative of h(e−t) with respect to t for t > t0. By Proposition 50 h(e−t)′′′−6c→ 0 when t→∞.
Therefore we deduce that there is t0 such that 0 does not separate the values of h(e−t)′′′ − 6c for all
t > t0. Hence in characteristic zero r(t) is monotone for t > t0.

In positive characteristic hypothesis (∗) tells that h(n) − 4h(nq−1) + 6h(nq−2) − 4h(nq−3) +
h(nq−4) keeps its sign for all sufficiently smalln. By Proposition 50h(n)−3h(nq)+3h(nq2)−h(nq3)
tends to 6cwhenn→ 0, therefore for all sufficiently smallnwe deduce thath(n)−3h(nq)+3h(nq2)−
h(nq3)−6c keeps its sign, which implies the monotone property of r(t) for t close to +∞ in positive
characteristic.

Using classical properties of the Laplace–Stieltjes transform of monotone functions, see e.g. [63],
Th. 5a,5b of Ch.II §5, we deduce that R(s) has a real singular point x0 on its line of convergence
<(s) = x0 and is holomorphic in <(s) > x0. Thus, x0 is a real pole of R(s). Using the relation
between R(s) and ω(| |s2), and the zeta integral, we deduce that all these functions are holomorphic
inside the strip <(s) ∈ (x0, 2).
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Using the relation between the zeta integral and zeta function in Theorem 40, the relation between
the zeta function andL-function, and the absence of poles for real s ∈ (1, 2) of the function cE,S′(| |s2)
defined in 40, we obtain

Corollary. Let the assumptions of the Theorem hold. Assume that the zeta function ζE(s) (or
equivalently, LE(s)) extends to a meromorphic function on the half-plane <(s) > 1. Suppose that
ζE(s) (resp. LE(s)) has no real poles (resp. real zeros) in (1, 2). Then the zeta integral ζ(f, | |s2) does
not have complex poles with <(s) ∈ (1, 2).

Assume, in addition, that the zeta function ζE(s) extends meromorphically on the plane and
satisfies the functional equation, then the poles of ζ(f, | |s2) inside the critical strip <(s) ∈ (0, 2) lie
on the critical line <(s) = 1.

Remark 1. In dimension one it is elementary to show that the zeta function does not have real
zeroes in the critical strip outside the critical line. In higher dimensions the similar property is very
far from elementary. In particular, the real zeros part of the Riemann hypothesis for theL-function of
elliptic curves over number fields is not known in general. However, from the computational point of
view it is not difficult to check the real zeros part of the Riemann hypothesis for a given L-function.
For computational results on low lying zeros (including real zeros) of L-functions of elliptic curves
E over rationals of conductor < 8000, see [R]. They imply the real part of the Riemann hypothesis
for those curves.

Thus, if hypothesis (∗) in 51 holds for any of thoseE then the Riemann hypothesis holds for poles
of ζk(s/2) ζE(s) and ζk(s/2) ζk(s) ζk(s− 1)/LE(s).

In positive characteristic to show the real zeros part of the Riemann hypothesis seems to be as
difficult as to show the full Riemann hypothesis, at least using the known methods. If so, the previous
Corollary is not very useful in positive characteristic.

Remark 2. For a converse result to Theorem 54 in positive characteristic see Lemma 53. Suzuki
proved the following results in [54] which are converse to Theorem 54 in characteristic zero.

Suppose that LE extends to an entire function satisfying the functional equation and let the
Riemann hypothesis hold for the L-function. If all nonreal zeros of LE(s) = LE(s)nE(s)−1 on the
critical line are of multiplicity strictly smaller than the multiplicity of its zero as s = 1 and if the
estimate

∑
0<=(z)6x |L′E(z)|−2 = O(x) holds, where z runs through all zeros of LE(s) on the critical

line, then the function ZE(x) is negative for all sufficiently small positive x. Since the factor nE(s)
is always nontrivial, the first condition in the previous sentence holds if the order of zero of LE(s)
at s = 1 is not smaller than the order of its any other zeros on the line <(s) = 1.

In relation to ZE(x) of 52, if all nonreal zeros of LE(s) on the critical line are single, LE(1) = 0
and if the estimate

∑
0<=(z)6x |L′E(z)|−2 = O(x) holds, where z runs through all zeros of LE on the

critical line, Suzuki proved that the function ZE(x) is negative for all sufficiently small positive x.
It might be true that the function Z({c(n)})(x) defined in 52 keeps its sign for a larger class of

coefficients c(n) than those which come from the zeta function of E and E, see the last section of
[54].

Remark 3. In the study of zeros of one-dimensional zeta functions one derives classical formulas
for the logarithmic derivative of the Riemann zeta function like the formula in Remark 46. It is
very well known that an application of the Ikehara–Wiener tauberian Theorem implies ψ(x) ∼ x
and hence the prime number Theorem, see e.g. [63], §17 Ch.V, and [34], Ch.III. Notice that the
behaviour of the one-dimensional function ψ(x)− x is not as good as of the expected behaviour of
the fourth derivative of the function h(n) − c (Log n)3. The latter nice behaviour is expected to be
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related to the fact that the boundary of T0 is very large in dimension two, whereas its analogue in
dimension one is very small.

55. In this section we describe another approach to verify the analytic continuation, functional
equation and Riemann hypothesis for the zeta integral of a proper regular model of elliptic curve
over a number field, without assuming its automorphic property or the mean-periodicity of h(e−t),
but assuming instead hypothesis (∗) of 51.

Definition. By Lemma 46 the function h(n)n−1 is odd with respect to the multiplicative variable
n ∈ N . Define

b(n) =
(
h(n)−w

(
−|Log n|

))
n−1,

where w is the polynomial of Proposition 50.
So b(n) is an odd function of its multiplicative argument n: b(n−1) = −b(n).
Put

p(t) =
{
b(e−t) in characteristic zero,
b(q−k) for t = k in positive characteristic.

Then p(t) is an odd function of the variable t. In the notation of Theorem 54 the abscissa of
convergence of the Laplace transform of p(t) is y0 = x0 − 1.

Recall that the Laplace–Carleman transform of p(t) is defined as

P (s) =


∫ ∞

0
p(t) e−st dt for <(s) > y0,

−
∫ ∞

0
p(−t) est dt for <(s) < −y0,

see e.g. [20], Ch.1, 5.8 and 12.1.
Then P (s) =

∫
N−

b(n)ns dµN− (n) for <(s) > y0 and P (−s) = P (s) for <(s) > y0.
In positive characteristic we can define similarly the Laplace–Stieltjes–Carleman transformP (s).

Now we describe the method. Assume that hypothesis (∗) of 51 holds. Check (using computers,
for example) that x0 = 1, i.e., in accordance with Theorem 54, the function R(s) does not have
real poles in (1, 2). Then 54 implies that the zeta function extends meromorphically to <(s) > 1,
and that the abscissa of convergence of P (s) is x0 − 1 = 0, so P (s) is a holomorphic function on
<(s) > 0 and on <(s) < 0. Recall that the Carleman spectrum spc of the transform P (s) of p(t) is
the complement on the real line of the set of those y such that the function P (s) has a holomorphic
extension in a neighbourhood of iy. Then

{y ∈ R : 1 + iy is a pole of ζ(f, | |s2)} = poles part of spc(P (s))

Now suppose that we can check that the closed set of singularities of the Laplace–Stieltjes–Carleman
transform P (s) is not the whole imaginary line, e.g. near 0. Since p(t) is an odd function, we deduce
that P (s) = P (−s) at nonsingular points s lying on the imaginary line. The value of P (s) at those
points on the imaginary line is the boundary value of the Laplace–Carleman transform. Thus,
we can analytically extend P (s) to the complex plane, the extended function satisfies the equation
P (s) = P (−s). Therefore, the zeta integral can be extended to the plane and satisfies the functional
equation ζ(f, | |s2) = ζ(f, | |2−s2 ).

In summary we obtain

Proposition. Let S = E be as in 40 and let |S−| = 1 as in the beginning of section 50.
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Suppose that hypothesis (∗) of 51 holds.
Suppose that the abscissa x0 of convergence of R(s) in Theorem 54 is 1, i.e. the zeta integral

does not have real poles inside <(s) ∈ (1, 2). Suppose that the Carleman spectrum of the Laplace–
Stieltjes–Carleman transform of p(t) is not the whole real line.

Then ζ(f, | |s2), ζE(s) and LE(s) have meromorphic extension to the complex plane and satisfy
the functional equations of Theorem 48.

4.4. Supplementary comments

56. Remark 1. One can try to develop a two-dimensional version of Weil’s interpretation [59]
of parts of the work of Tate and Iwasawa in the language of distributions. Recall that in [59] the
one-dimensional zeta function ζ(s) is represented as

ζ(s) =
ζ(f, | |s)

ζ(W (f ), | |s)
,

where W is the operator introduced by Weil, it is the product of local Wv, and for almost all local
data

Wv(fv)(α) = fv(α)− fv(π−1
v α)

with a prime πv with respect to v. If one uses a function f with the property f (0) = f̂ (0) = 0, then
both the numerator and denominator are entire functions satisfying the functional equations.

In dimension two one has an analogue of the mapW , for the local part see Example 3 in 17. The
problem is to find a suitable function f such that the zeta integrals ζ(f, | |s2) and ζ(W (f ), | |s2) either
satisfy the functional equation and extend meromorphically to the plane or have boundary terms
which extend meromorphically. This would give then the meromorphic continuation and functional
equation for the zeta integral.

Remark 2. Better understanding of local zeta integrals for ramified characters (see 21) will lead to
the theory of adelic zeta integrals for arbitrary quasi-characters, which would also have applications
to higher ramification theory.

Remark 3. The one-dimensional theta formula is directly related to the Riemann–Roch formula.
In dimension two the theta formula of 44 is related to the Riemann–Roch theorem for zero cycles.
Using the notation of 35 write the zeta function ζE(s) as

ζE(s) =
∑

C∈C0(E),C>0

|C|s0 =
∑
I>0

aI |I|s0,

where I runs through representatives of nonnegative cycles with respect to the equivalence relation
given by the degree. The study of the zeta function and a recurrent formula for aI in the positive
characteristic is closely related to the study of∑

I>0

bI |I|s0, bI =
∫
T0

f (αIβ) dµ(β),

where αI corresponds to the cycle I via the map i of 35. Then the two-dimensional theta formula of
44 gives a certain recurrent relation for bI and hence for aI .
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Remark 4. The adelic structures A, (A × A)× take into account the (local and adelic) integral
structures of rank two on the surface, whereas the adelic object A rather takes into account the
integral structures of rank one. Depending on applications, one should use either the adelic object
A (geometry and arithmetic) or A (analysis and arithmetic), or their mixture as in the commutative
diagrammes of 36 and 41.

One can keep wondering about a new refined algebraic geometry on arithmetic surfaces, a
geometry in which the structure sheaf would take into account more information at the residue level
and thus more information about integral structures of rank two. The Riemann–Roch theorem in
such a refined algebraic geometry on arithmetic surfaces would be closely related to properties of
the zeta function of the surface.

57. We very briefly sketch how to proceed in the general case of proper regular models of curves
over k.

Let S −→ B, as in 24, be a proper regular model of a smooth projective curve of genus g over
k. As discussed in 40, in the calculation of the zeta integrals on every nonsingular fibre ? we get
the factor c1−s

? , which, if c? is different from 1, makes the product of the factors over all the fibres
divergent. In particular, it diverges for S0 = P1(B) whose zeta function is very simple: it is just
ζB(s)ζB(s− 1), the product of the one-dimensional zeta functions. Interestingly, from the point of
view of the adelic analysis, the simplest case in dimension two is not the projective line over the
base, but an elliptic surface.

For proper regular models of hyperbolic curves of genus g > 1, to compensate the nontrivial
factor for the zeta integrals on almost all the fibres we will work with a renormalized zeta integral
using the (g − 1)st power of the zeta integral of S0 for the fibrewise renormalization.

Definition. Let S′ be a subset of curves on S which includes all the fibres and finitely many
horizontal curves.

Fix f = ⊗char(Ox,y,Ox,y), a function on the adelic object associated to P1(B). Let g be a finite
sum of functions of type ⊗(f (1)

x,y, f
(2)
x,y), as in the definition of RA×A in 31, but without the condition∫

f? dµA?×A? = 1 for almost all ? ∈ S′. Note that unless S corresponds to an elliptic curve, g does
not belong to the space QAS′×AS′ , due to the divergence issues. Let | |2,S: JS −→ R×>0 be as in 35.

Using the definition of ζS,y in 39, introduce a (renormalized) zeta integral (depending on the
choice of S′)

ζ̃S,S′ (f, | |
s
2,S) =

∏
b∈B0

(
ζP 1(B),P 1(B)b

(
f, | |s2,P 1(B)

)g−1
ζS,Sb

(
f, | |s2,S

) )
·
∏

y∈S′\Sp

ζS,y
(
f, | |s2,S

)

If ? is a nonsingular fibre over b ∈ B0, then the ?-factor c1−s
? of ζS,?(f, | |s2,S) (calculate similar

to Theorem 40) is cancelled out by the b-factor of ζP 1(B)
(
f, | |s2

)g−1 which is equal to its inverse.

Let now f be similar to the normalized function f in 40. Similar to the calculation in 40 one
deduces that for<(s) > 2 the zeta integral ζ̃S,S′

(
f, | |s2,S

)
equals the product of ζP 1(B)(s)

2g−2 ζS(s)2

and of cS,S′ (| |s2) which is the product of an exponential factor for singular fibres and of appropriate
factors for horizontal curves in S′.

The second calculation of ζ̃S,S′
(
f, | |s2,S

)
goes along the lines of 45 using the formula

ζ̃S,S′
(
f, | |s2,S

)
=
∫
M

ζ̃m(| |s2,S) dµM (m),
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where

ζ̃m
(
| |s2,S

)
:=
∫
L

ζl
(
f, | |s2,P 1(B)

)g−1
ζml−1

(
f, | |s2,S

)
dµL(l).

Here L is the module value group associated to P 1(B), and M is the module value group associated
to S.

As an analogue of Theorem 48, the functional equation for the zeta integral and zeta function
ζS(s) in this general case would be

ζ̃S,S′ (f, | |
s
2) = ζ̃S,S′ (f, | |

2−s
2 ),

cS(s)
(
ζS(s) ζP 1(B)(s)

g−1)2
= cS(2− s)

(
ζS(2− s) ζP 1(B)(2− s) g−1)2

,

the factor cS(s) is the product of an exponential vertical factor and the zeta integrals for horizontal
curves.∗

Remark. This functional equation, which is not proved in this text, is of course compatible with
the conjectural functional equation for ζS(s). Note that the Γ-factors in the functional equation are
(g−1)st power of the Γ-factors of the product of the one-dimensional zeta functions ζB(s)ζB(s−1).
More generally, it is expected that the Γ-factors in the functional equation of the zeta function of
every proper regular over B arithmetic scheme come from the Γ-factors of the one-dimensional zeta
functions, i.e. there are no new Γ-factors for the zeta functions in higher dimensions.

4.5. Behaviour at the central point

58. We have three levels of objects associated to E: the adelic objects A and A which are the
restricted products of two-dimensional local objects, then the adelic objects C, B, B which have
features of both local and global objects, and finally the discrete object K, see 28. In the previous
study of the zeta integral of the surface and in class field theory of its field of rational functions the
objects related to the first two levels play a dominant role. Using the previous theory and objects
of the third level is important for the study the zeta function at s = 1 or automorphic functions and
representations on E.

The Tate form of the BSD conjecture relates the analytic and arithmetic–geometric ranks of
E. Via the adelic analysis in this work the former rank is related to the pole of the boundary
term which involves the integral over

∫
∂T0

and T0 is isomorphic to (K1 × K1)(B). On the other
hand the arithmetic–geometric rank is related by the Picard group of E to a quotient of the space
K1(B)/K1(K). The additive groups of A- and A- adelic spaces are very far away from each other,
but their and their subspaces multiplicative groups intertwine via K2 in the diagrammes of 36 and
41.

Using the formulas in Proposition 45, we get ω(| |s2) =
∫
M−

ωm(| |s2) dµM− (m) where

ωm(| |s2) = ω(1)
m (| |s2) + ω(2)

m (| |s2),

ω(1)
m (| |s2) = |m|s−2

∫
T1

f (m−1α−1)
(
|α|−1 − 1

)
dµ(α),

ω(2)
m (| |s2) = |m|s

∫
T1/T0

∫
∂T0

(
|mγ|−1 f (m−1ν−1γ−1β)− f (mγβ)

)
dµ(β) dµ(γ).

* see [74] for a complete theory of the sketched approach in this section
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Recall that the integral
∫
M−

ω(1)
m (| |s2) dµM− (m) extends to an entire function on the complex

plane, see Remark 1 of 45.
Let r be the arithmetic rank of E, the rank of the free part of E(k). Choose horizontal curves

yi, i ∈ I , |I| = r + 1, the images of sections of p:E −→ B which include the image of the zero
section and the curves on the surface, corresponding to a choice of free generators of the groupE(k).
Denote S− = {yi : i ∈ I} and let S′ be the union of it and all the fibres.

For every singular fibre Eb take all the components of its reduced part except one which intersects
the zero section and denote them by yj , 1 6 j 6 nb, where nb is as in 48 and b runs through closed
points in the base for which the special fibre Eb is singular. In addition, choose one nonsingular fibre
y∗, and if K is of positive characteristic add it to the above curves. Denote the whole collection of
curves in this paragraph by yj , j ∈ J ; then |J | =

∑
nb in characteristic zero and |J | =

∑
nb + 1 in

positive characteristic.
Immediately from the definitions we see that the Picard group of E is isomorphic to the cokernel

of the map

K× −→
B×E

B×E ∩ VA×E
,

see 28, 36 for the notation. So B×E is the product of B×E ∩ VA×E , a discrete group, isomorphic to the
quotient of K×, and the image of Pic (E). The quotient of Pic(E) by p∗Pic(B) is a finitely generated
group. This group in positive characteristic is commensurable with the quotient of the Neron-Severi
group of E modulo its subgroup generated by y∗. Its rank is equal to r+ 1 +

∑
nb and free generators

are classes of yi, yj , i ∈ I, j ∈ J , without y? (for the functional field case see [58] and [70] for more
detail; see also [52] for the case of minimal models in the geometric situation).

Now we briefly sketch a method to establish the relation between the order of the pole of the zeta
integral at s = 1 and the arithmetic rank. See [69] for details.

In the following we assume that the boundary term ω(| |s2) (and hence ζE(s) and LE(s)) extend
meromorphically and satisfy the functional equation. Using the previous paragraph, it is easy to see
that the group B×E is generated by the product of B×E ∩VA×E , of a compact group (corresponding
to p∗Pic(B) in characteristic zero and to p∗Pic0(B) in positive characteristic), of the image of K×,
and of the images of B×yi , i ∈ I , and B×yj , j ∈ J . Using the commutative diagramme in Lemma 41
and the above description of B×E we can get more information about the boundary integral: namely,
the main contribution to the pole of

∫
M−

ω(2)
m (| |s2) at s = 1 is expected to come from∫

M−
||m||s

(∫ (∫
∂Q0

(
|mγ|−1 f (m−1ν−1γ−1β)− f (mγβ)

)
dµ(β)

)
dµ(γ)

)
dµM− (m),

where ∂Q0 is the boundary ofQ0 which is the product of the image K in T0 of theK×-part, of T0,S′

where S′ = {yi, i ∈ I} ∪ {yj , j ∈ J} and of a lift to T0 of a compact group.
Then we compute the order of the pole at s = 1 of the zeta integral and compare it with 2(|I|+|J |),

taking into account the structure of the group of units of the ring of integers of k. The relation between
the zeta integral, the zeta function of E and the L-function of E in 48 would then imply that the
analytic rank of E equals r.

Remark on automorphic functions on E. Section 10 of [14] introduces an object which
generalizes the idele class group to dimension two, not from the more narrow point of view of class
field theory (the corresponding object is just JE/PE) but from the wider point of view of the zeta
integral and hence the zeta function of E. This object shows up naturally in the study of the zeta
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integral and it involves the three levels of objects associated to E. Functions (in one or another sense)
on it should be closely related to GL(1)-automorphic functions on E.
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