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Abstract. A new theory to understand fundamental properties of the zeta functions of arithmetic
schemes is proposed and developed in the case of a regular model of an elliptic curve over a
global field. This is a two-dimensional commutative K2 and K1 × K1 extension of the classical
adelic analysis of Iwasawa and Tate. Using structures from the explicit two-dimensional class field
theory and working with a new R((X))-valued translation invariant measure, integration theory
and harmonic analysis on various complete objects associated to arithmetic surfaces we define and
study zeta integrals which are closely related to the zeta function of the regular model. The two-
dimensional adelic analysis and geometry reduces the study of poles of the zeta function to the study
of poles of a boundary term which is an integral of a certain arithmetic function over the boundary
of an adelic space. The structure of the boundary and function determines the analytic properties of
the boundary term and location of the poles of the zeta function, which results in applications of the
theory to several key directions of arithmetic of elliptic curves over global fields.

0. Introduction

0.1. To study properties of the Riemann zeta function

ζZ(s) =
∑
n>1

1
ns
.

one can work with the completed zeta function

ζ̂Z(s) = π−s/2
Γ(s/2) ζZ(s)

which has an integral representation∫ ∞
0

(θ(x2)− 1)xs
dx

x
, θ(x) =

∑
n∈Z

exp(−πn2x).

The integral can be rewritten as∫ ∞
1

(
θ(x2)− 1

)
xs
dx

x
+
∫ ∞

1

(
θ(x2)− 1

)
x1−s dx

x
+ ω(s)

where

ω(s) =
∫ 1

0

(
(θ(x2)− 1)x− (θ(x−2)− 1)

)
xs−1 dx

x
.
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The first two integrals are absolutely convergent and their sum is an entire function on the complex
plane symmetric with respect to s→ 1− s.

The Gauss–Cauchy–Poisson summation formula, i.e the functional equation for the theta function
θ(x2)x = θ(x−2) implies

ω(s) =
∫ 1

0
(1− x)xs−1 dx

x
= −

(
1
s

+
1

1− s

)
is a rational function symmetric with respect to s → 1 − s, hence the functional equation and
meromorphic continuation of the completed Riemann zeta function.

This method, the only one among seven methods of the proof of the functional equation of ζZ(s)
listed in Ch. II of [Ti], can be rewritten in the adelic language, and so can be applied to the study of
zeta function of an arbitrary global field. The completed zeta function can be viewed as the adelic
zeta integral

ζ̂Z(s) =
∫
A×Q

f (x)|x|sdµA×Q
(x)

with respect to an appropriately normalised Haar measure on the group of ideles A×Q , where f (x) is
the tensor product of the characteristic functions of the integer p-adic numbers and of exp(−πx2)
at the archimedean prime. The functional equation of the theta function (and of the zeta integral)
corresponds to the analytic duality furnished by Fourier transform on the adelic spaces and its
subspaces.

0.2. The study of adelic integrals associated to automorphic representations of algebraic groups
over adeles is an important part of activity in the Langlands programme. In the commutative case the
classical adelic method by Tate and Iwasawa [T1], [I2], [W1,W2] gives an easy proof of meromorphic
continuation and functional equation of a twisted by character zeta function of a global field. Even
though the method uses objects originating from the one-dimensional class field theory, it does not
use the class field theory. For a quasi-character χ of the class group of ideles and a function f in an
appropriate space one derives

ζ(f, χ) = ξ(f, χ) + ξ(f̂ , χ̂) + ω(f, χ), <(s(χ)) > 1

where the first two terms are absolutely convergent integrals on the plane. The integral ζ(f, χ) can
be written as a triple integral corresponding to the flitration of A×: ideles of norm one and global
elements; correspondingly it involves an integral over the multiplicative group of the global field.
Similarly to 0.1 using harmonic analysis on the adelic space one obtains that the corresponding
internal integral for ω(f, χ) is an integral over 0 of an appropriate function. One can view 0 as
the boundary of the multiplicative group of the global field with respect to the weakest topology
on adeles in which every character is still continuous. The boundary term ω is a simple rational
function either of s or of q−s. The meromorphic continuation, location of poles of the zeta integral
and their residues, and the functional equation follow from easy to establish analytic properties of
the boundary term. Thus, to study properties of the zeta functions, one can use zeta integrals on
appropriate adelic spaces and then using appropriate duality property reduce the properties to adelic
geometry and analysis.

In the general case of algebraic groups the analogue of the boundary term is an integral over the
weak boundary of an algebraic group over a global field, it has finitely many poles in s or in q−s.
In particular, a cuspidal function has the property that the corresponding boundary term vanishes.
Similarly to the commutative case one gets the functional equation and analytic properties of the
zeta integral [GJ], [So], [D].
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0.3. Instead of going from the one-dimensional commutative theory, GL1 or K1, to the one-
dimensional noncommutative theory, i.e. algebraic groups over one-dimensional global fields, as in
the Langlands direction, this work develops a higher dimensional commutative theory using higher
algebraic K-groups. The latter play the central role in higher class field theory (those of its versions
which include a compatibility between the global and local theories, which in turn correspond to
the Euler factorization of the zeta function and zeta integral). Whereas the L-factors of the zeta
functions of arithmetic schemes are normally treated as 1-dimensional noncommutative objects,
the zeta functions can be treated as commutative n-dimensional objects where n is the Kronecker
dimension of the function field of the scheme.

A new translation invariant measure and integration on higher-dimensional local and adelic
objects associated to arithmetic schemes are employed to define and study properties of higher
dimensional zeta integrals which translate fundamental properties of the zeta function into geometric
and analytic properties of adelic subquotients. The zeta integral is an object which takes into account
both additive analytic structures and class field theoretical adelic structures, and both analytic and
geometric adelic structures and an interplay between their multiplicative groups.

In dimension higher than one, one can talk about two different worlds, one ofL-functions and one
of the zeta functions of arithmetic schemes. The latter factorize into products and quotients of their
L-factors, up to an auxiliary easier factor. The L-functions are traditionally studied using concepts
of the Langlands correspondence, and hence noncommutative representation theoretical methods.
Langlands wrote that "progress in functoriality has been largely analytic, exploiting the more abstract
consequences of abelian class-field theory but developing very few arithmetic arguments" [La]. More
recently, the fundamental lemma was proved using geometric representation theoretical arguments
and algebraic geometry, but the first nontrivial case of the Langlands correspondence for GL(2)
over rationals is still not completed. The study of automorphic properties is related but separated
in terms of its methods from the study of special values, and little is known about the generalized
Riemann hypothesis, especially in relation to the special values. Successful partial methods of the
study of the arithmetic automorphic and special values of L-functions are typically indirect, local
and/or noncommutative and work over small number fields (such as totally real) only. In contrast,
all the main conjectures on automorphic properties, location of zeros and special values are stated
over an arbitrary number field.

It is the main new concept of the current work and related works [F3,F4,F5], [FRS] to study the
zeta functions of arithmetic schemes via lifting them to appropriate (commutative) zeta integrals on
higher adelic spaces and reducing then the fundamental properties of the zeta functions to those of
certain boundary terms which are integrals over subquotients of adelic spaces. The adelic objects
of analytic and geometric type come naturally from explicit higher class field theory. An interplay
between the multiplicative groups of the adelic objects via a map related to the symbol map in
algebraic K-theory allows to study analytic properties of the zeta functions in terms of geometric
adelic spaces. One of the key advantages of adelic methods is that they work over an arbitrary global
field. Another key advantage is that all the three aspects, functional equation and meromorphic
continuation, generalized Riemann hypothesis and the special values are closely intertwined in the
zeta integral theory.

This text presents the main features of the two-dimensional commutative theory of zeta integrals.
For a very short review see [F7]. The text consists of ten sections based on the theory of [F3–F5]
and related papers.

I am grateful to D. Kazhdan, A. Beilinson, D. Gaitsgory, D. Goldfeld, V. Snaith, M. Flach,
M. Morrow, A. Borichev, M. Suzuki, G. Ricotta for discussions of topics of this work.
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0.4. The central case discussed in this paper is the case of a regular model of elliptic curve over
a global field. From the point of view of underlying Galois structures, this work is based on the
maximal abelian extension of a two-dimensional global field, the field of rational function on the
model, whereas the prevailing methods to deal with arithmetic of elliptic curves have been to use the
(noncommutative in general) extension of a global field generated by points of finite order of elliptic
curve.

Let E be an elliptic curve over a global field k and let E be a regular model of it. Let ζ(s) be
the square of the Hasse–Weil zeta function ζE(s) or of the Hasse zeta function ζE(s), each of them
multiplied by c1−s where c is the conductor associated to ζE or ζE. So ζ(s) is a generalized Dirichlet
series

ζ(s) =
∑
m∈cN

cm
ms

.

A simple way to describe a two-dimensional analogue of the procedure applied in 0.1 to the Riemann
zeta function is the following. Let, for simplicity, k = Q. According to the theory of this work, up to
an exponential factor and the product of finitely many zeta functions of affine lines over finite fields
corresponding to the structure of bad reduction fibres of E the zeta integral can have the form of

ζ̂(s) = ζ̂Z(s/2)2ζ(s)

(more generally, the first factor can be the product of squares of several completed zeta functions of
global fields at s/2). It has an integral representation∫ ∞

0
u(x)xs

dx

x
, u(x) = 4

∑
j,l∈N,m∈cN

cmK0(2πjlm2x2)

which involves the K0-Bessel function. The integral can be written as the sum∫ ∞
1

u(x)xs−2 dx

x
+
∫ ∞

1
u(x)x−s

dx

x
+ ω(s)

where

ω(s) =
∫ 1

0
h(x)xs−2 dx

x
, h(x) = x2u(x)− u(x−1).

The first two integrals are absolutely uniformly convergent and are entire functions on the complex
plane. See [FRS] for a very simple presentation of related analytic features.

Using adelic duality on arithmetic surfaces and a two-dimensional Fourier transform one studies
the boundary term ω(s). In particular, a two-dimensional theta formula plays a fundamental role,
similar to the one-dimensional theta formula role in the calculation for the Riemann zeta function,
see Theorem in section 6.

The two-dimensional method includes applications in several directions. Four of them are listed
in this paragraph, for more see the file referred to on the first page.
• functional equation and meromorphic continuation of the zeta functions and mean-periodicity
(in appropriate functional spaces). A conjectural mean-periodicity implies the meromorphic con-
tinuation of the zeta function, without any need to establish automorphic properties of its factors.
Moreover, the zeta functions of arithmetic schemes which have the functional equation and mero-
morphic continuation correspond to mean-periodic functions.
• location of poles of the zeta function and the generalized Riemann hypothesis for elliptic curves
over global fields. Analytically, the poles of the zeta integral in dimension two, given its integral
representation, are easier to understand than the zeros of the zeta function in dimension one. An
expected permanence of the sign of the fourth log derivative of the boundary function is essentially
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the reason for the GRH to be true provided one knows the only real pole inside the critical strip is at
the central point.
• special value at the central point, understanding of the Birch and Swinnerton-Dyer conjecture
using the boundary integral which encodes and relates the arithmetic-geometric and analytic data.
• a two-dimensional version of the double quotient of algebraic group adeles, a theory of automor-
phic functions in dimension two and its applications in various directions.

See the introduction of [F5] for more introductory information.

0.5. Now we go briefly through the content of the sections.
Section 1 introduces main features of higher dimensional local fields and then sketches the theory

of the translation invariant R((X))-valued measure on them. The measure takes into account the
arithmetic structure of two-dimensional local field. In this text we discuss some of the main features
of the theory, for more details and different approaches see [F3], [F4], [Mo1].

Section 2 introduces basic adelic spaces in dimension two and their properties. For an arithmetic
scheme S corresponding to a model of a smooth projective curve over a global field k we introduce
an adelic space A, this space in dimension two satisfies two adelic conditions, one of which is taken
with respect to the rank two integral structure. Using the two-dimensional local theory of section
1 and in parallel to the one-dimensional theory of Tate, in section 3 we define an R((X))-valued
measure, C((X))-valued integration and transform of certain functions on the adelic spaces. Those
functions are essentially tensor products over a set of irreducible curves on the arithmetic surface of
pullbacks with respect to residue maps of functions on residue adelic objects. This adelic space is
good for analytic theory, and its multiplicative version is related to 0-cycles on the surface and its
zeta function.

There is another adelic object which is more of geometrical nature and whose multiplicative
version is more related to 1-cycles on the surface, see 2.2. In two-dimensional adelic analysis and
geometry "relations between the analytic theory and the arithmetical" one are more straightforward in
comparison to what is mentioned at the end of 0.2. The multiplicative groups of the two adelic objects
are blended via adelic K2, which plays the role of the ideles in the two-dimensional commutative
class field theory, see commutative diagrammes of 4.3 and 6.1.

An explicit two-dimensional class field theory is sketched in section 4, its initial knowledge is
useful but not necessary for understanding the theory of this paper. Abelian extensions of S are
described by open subgroups of finite index in a certain Kt

2-delic group JS/PS associated to S, and
for the purposes of the unramified theory one can work with even a simpler quotient object J/P .

The main object of the study, a two-dimensional zeta integral

ζ(f, χ) =
∫
T

fχt dµ

for a function f in a two-dimensional extension of the space of Bruhat–Schwartz functions, and a
quasi-character χ of JS/PS is introduced in section 5. We discuss its properties in the central case
of arithmetic scheme E corresponding to a regular model of an elliptic curve over a global field.

The first calculation of ζ(f, | |s2) in the case of arithmetic scheme E compares it with the zeta
function ζE(s) and proves its existence on the half plane <(s) > 2. For curves of higher genus g one
should do a renormalization of the zeta integral using the (g− 1)-st power of the zeta function of the
projective space over the base.

The second calculation of the zeta integral for a centrally normalized function f and a two-
dimensional theta formula are described in section 6. There we show that ζ(f, | |s2) is the sum of
three terms

ξ(| |s2) + ξ(| |2−s2 ) + ω(| |s2)
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on the half-plane <(s) > 2 with an entire function ξ(| |s2). Thus, similar to the theory of Tate and
Iwasawa, the study of the functional equation and meromorphic continuation of the zeta integral
for the unramified character in dimension two and of its poles are reduced to the study of the
corresponding properties of the boundary term ω(| |s2). The boundary term up to a non-zero constant
factor equals the integral ∫

N−
h(n)ns−2 dµN− (n)

where h(n) is a real valued function which comes from adelic integration on the scheme. In
characteristic zero the boundary term is the (one-sided) Laplace transform of h(e−t)e2t. Using
a two-dimensional theta formula we get a representation of the boundary term which involves
integration over the (weak) boundary ∂T0 of a certain adelic space T0. This adelic space is of
local-global nature, which should be studied in relation to the adelic object T and to a discrete object
K× of invertible rational functions of E.

0.6. Sections 7–9 present results, methods, ideas and hypotheses in three central directions of
the further development of applications of the theory: meromorphic continuation and functional
equation, location of poles, and the behaviour at s = 1. In the first and second direction we state
concrete hypothesis in sections 7–8 which together with the theory of this work are aimed to imply
meromorphic continuation and functional equation and Riemann Hypothesis for the poles of the zeta
integral. In the third direction of the rank part of the conjecture of Birch and Swinnerton–Dyer in
section 9 we propose a concrete new method to deduce it using the theory of this work.

In section 7 we easily get the first functional equation for the functionh: h(n−1)n = −h(n)n−1 is
straightforward. The issue is what are additional properties of hwhich would imply the meromorphic
continuation and functional equation of ω. Note that the zeta integral corresponds to the square of
the zeta function, which itself mixes the automorphic structures of its factors and hence h cannot be
expected to possess any clean automorphic properties. As a replacement of the second functional
equation for classical modular forms, a new hypothesis on mean-periodicity in an appropriate
functional space of a function related to h is proposed in section 7. The general theory shows that
the mean-periodicity of H implies meromorphic continuation and functional equation of the zeta
integral, the square of the zeta function of E, of the zeta function of E and of the L-function of
E. In positive characteristic the function H is indeed mean-periodic in the space of functions on
integers. In characteristic zero a recent work of M. Suzuki, G. Ricotta and the author [FRS] shows
that if the zeta-function of E has meromorphic continuation of expected shape and satisfies the
functional equation then the corresponding functionH is indeed mean-periodic in several functional
spaces, which include the space of infinitely differentiable functions on R of exponential growth.
The hypothesis can be viewed as a weak version of the Taniyama conjecture since the conjectured
mean-periodicity of a certain function H , which in characteristic zero equals h(e−t), is weaker than
the automorphic property of the L-function of elliptic curve. In particular, one can say that this new
hypothesis addresses one of the issues raised by Langlands about getting meromorphic continuation
of LE without proving their full automorphic properties.

The functionH and its first two derivatives are monotone functions near infinity, and it is natural
to study the monotone behaviour of its third derivative. In section 8 we show that the permanence
of the sign of the fourth derivative of H near infinity and the real part of the Riemann hypothesis
for the zeta integral (i.e. the only real pole inside the critical strip is at s = 1, this condition is
easy to check computationally for any given E) imply the Riemann hypothesis for the zeta integral.
It is expected that the difficulty of proving the permanence of the sign of the fourth derivative of
H near infinity is essentially smaller than the difficulties associated with the work on the classical
Riemann hypothesis. One of the reasons is that in dimension two the weak boundary ∂T0 of T0 is
very large unlike the dimension one case, which results in smoothening of the behaviour of related
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functions, like H and its derivatives. For analytic study of several aspects of the positivity of the
fourth derivative of H near infinity see the recent paper [Su1]. In particular, assuming that the
L-function of E has holomorphic continuation and functional equation and satisfies the Riemann
hypothesis and assuming that the multiplicity of the real zero on the critical line is strictly greater
than the multiplicity of nonreal zeros, M. Suzuki has proved the positivity of the fourth derivative of
H near infinity, modulo a technical condition.

The analytic behaviour of the zeta integral at s = 1 is completely described by the behaviour at
s = 1 of the boundary term, which itself involves an integral over the weak boundary of the space T0.
The boundary decomposes into the product of a finite number (related to the rank of E) of spaces
associated to curves and some other simple spaces. The boundary term at s = 1 serves as a bridge
between the analytic rank and arithmetic rank of E. Thus we get a new, adelic, complex valued
approach to study the conjectured equality of the analytic and arithmetic ranks of E. This method
is sketched in section 9.

It is a remarkable phenomenon of the two-dimensional theory that the study of three aspects:
meromorphic continuation and functional equation, location of poles and local behaviour at s = 1
becomes much more related to each other in the two-dimensional theory than in the traditional
approaches, where they are quite separated.

On the basis of the two-dimensional adelic analysis and geometry in section 10 we suggest new
concrete objects functions on which should be related to the space of automorphic Gm ×Gm- and
G × G-functions on the surface E. These objects mix in a nontrivial way two integral structures
on the arithmetic surface E: one structure which corresponds to divisors and is more of geometric
nature, and another structure which corresponds to 0-cycles on the surface and which is of more
arithmetic nature.

1. Local theory

1.1. Two dimensional local fields. A local field (archimedean, R, C) or nonarchimedean, with
finite residue field, can be geometrically viewed as associated to a closed point x (including in one
or another way archimedean valuations) of a one-dimensional arithmetic scheme B, i.e. of the
spectrum of the ring of integers of algebraic number field or a smooth projective curve over a finite
field.

Let S be an integral normal scheme of dimension two. We assume that we are in a relative
situation: there is a proper flat morphism S −→ B with fibre dimension one, where B is a one-
dimensional arithmetic scheme as above, and the generic fibre of S is a nonsingular projective
geometrically irreducible curve over the field of functions k on B. Unless stated otherwise, we
assume in addition that S is a regular scheme.

Denote by K the field of rational functions of the arithmetic scheme S. We will use the word
"fibre" for closed fibres, and we will denote the fibre ofS over b ∈ B0 bySb. Unless stated otherwise,
we will assume that the components of every fibre intersect transversally if necessary performing
blowing ups.

A two-dimensional local field is associated to a point x on an irreducible curve y on S. For
example, consider the completion Ox of the local ring of S at x and localize and complete this ring
with respect to the prime ideal corresponding to a local branch of y at x, the field of fractions of
the latter ring is a two-dimensional local field. Alternatively, consider the completion Oy of the
local ring of S at a curve y, its residue field is k(y); given its completion associated to a point on
the curve one can form a two-dimensional completed version of Oy whose fraction field will be a
two-dimensional local field, isomorphic to the previous one if x is a nonsingular point of y.
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There are four types of two-dimensional local fields:
(1) power series field in two variables over a finite field Fq((t1))((t2)), these fields are associated to
points on vertical and horizontal curves on S when K is of positive characteristic;
(2) power series field in one variableE((t)) over a local nonarchimedean number fieldE, these fields
are associated to points on horizontal curves on S when K is of characteristic zero;
(3) power series field in one variable E((t)) over a local archimedean field E, these fields are
associated to "archimedean points" on horizontal curves on S and to points on "vertical curves" on
S over archimedean primes of B when K is of characteristic zero;
(4) mixed characteristic fields – finite extensions of the field Qp{{t}} which is the fraction field of
the completion of the local ring Zp[[t]] with respect to its prime ideal generated by p, these fields
are associated to points on vertical curves when K is of characteristic zero.

For a detailed presentation of main properties of two-dimensional fields see [IHLF] and references
therein.

Power series fields over one-dimensional local fields can be viewed as arithmetic loop fields.
Recall that the space of complex valued continuous functions on the unit circle contains the space of
complex functions continuous on the unit circle which have meromorphic continuation to the unit
ball and holomorphic outside its centre, the latter space is a subspace (via Taylor series at the origin)
of a formal loop space C((t)).

Let F be a two-dimensional local field. Denote by O = OF the ring of integers with respect
to the discrete valuation of rank one of F . Call fields of type (1), (2), (4) nonarchimedean two-
dimensional local fields. For a nonarchimedean two-dimensional local field denote by O = OF the
ring of integers with respect to any discrete valuation of rank two of F . For example, for fields of
the second type O = E[[t2]] and O = OE + t2E[[t2]], where OE is the ring of integers of E. Even
though a surjective discrete valuation v from F× to the lexicographically ordered group Z⊕Z (with
(1, 0) > (0, 1)) is not unique, the ring of integersOv does not depend on the choice of v. A choice of
a surjective discrete valuation v corresponds to a choice of two local parameters t2, t1: v(t2) = (1, 0),
v(t1) = (0, 1). For example, if F = Qp{{t}} then one can take t2 = p, t1 = t.

For a nonarchimedean two-dimensional local field we have the following 2d picture ofO-modules
inside F :

· · · · · · · · ·

∪j t2t
j
1O = t2O · · · ⊃ t2t

−1
1 O ⊃ t2O ⊃ t2t1O ⊃ · · · t22O = ∩jt2t

j
1O

∪j tj1O = O · · · ⊃ t−1
1 O ⊃ O ⊃ t1O ⊃ · · · t2O = ∩jtj1O

∪j t−1
2 tj1O = t−1

2 O · · · ⊃ t−1
2 t−1

1 O⊃ t−1
2 O⊃ t−1

2 t1O⊃ · · · O = ∩jt−1
2 tj1O

· · · · · · · · ·

Denote by E the residue field of O and by p:O → E the residue map. So, for nonarchimedean
fields, O is the preimage of OE with respect to p. Denote by Fq the residue field of O, which is the
same as the residue field of OE , its cardinality is q.

Every two-dimensional local fieldF can be endowed with a two-dimensional translation invariant
topology which takes into account the topology of the one-dimensional local residue field E. For
example in the equal characteristic case take a sequence of open subgroups Ui in the residue field E
and declare all subgroups of typeF ∩

(∑
i6i0

Uit
i
2 +ti0+1

2 E[[t2]]
)

open inF . Every element ofF can

be written as a convergent with respect to this topology series
∑
θi,jt

j
1t
i
2 where θi,j are from a set of

representatives of the finite residue field. Normally we take multiplicative representatives. The set
of coefficients θi,j satisfies a certain condition of being zero outside an admissible set of indices i, j.
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So we can view F not just as an infinite dimensional topological space (in the equal characteristic
case) but as a more refined topological structure which in particular incorporates certain arithmetic
information in it. Define a topology on the multiplicative group F× as induced from the topology
of F by F× → (F, F ), α 7→ (α, α−1). In dimension two the group F× is a topological group with
respect to this topology. In the nonarchimedean case F× is the product of discrete cyclic groups
generated by t1 and t2 and the group of units O× with the induced topology from F .

Let ψ be a nontrivial continuous complex character of F . We can choose it such that it has
conductor O, i.e. O is the largest O-submodule of F on which this character is trivial. One can
show that every continuous character of F can be uniquely written as a multiplicative shift of ψ, i.e.
as α→ ψ(βα) for some β ∈ F . In this sense the field F is self dual.

1.2. Measure and integration on two-dimensional local fields. Suppose we had a translation
invariant real valued measure µ on F in which principal O-modules are measurable sets. If, say,
µ(O) = 1 then since the index of t1O in O is q, µ(tm1 O) = q−m tends to zero when m tends to
infinity. Then, due to the monotone property of the measure we would have µ(ti2t

j
1O) = 0 for all

i > 0, which is not good.
A way out is to work with R((X))-valued translation invariant measures on two-dimensional

local fields, viewing R((X)) endowed with a two-dimensional topology. Define a function µ on the
ring A of sets generated by closed balls a + ti2t

j
1O with respect to the rank two integral structure

µ(a + ti2t
j
1O) := q−jXi.

Then the function µ is well defined, translation invariant and finitely additive. Moreover, it is
countably additive in the following refined sense. Call a series

∑
αn, αn =

∑
ai,nX

i ∈ C((X)),
absolutely convergent in the two-dimensional local field C((X)) if there is i0 such that ai,n = 0
for all i < i0 and all n and if for every i the series

∑
n ai,n absolutely converges in C. Then for

countably many disjoint sets An in A such that ∪An ∈ A and
∑
µ(An) absolutely converges in

C(X)) we have µ(∪An) =
∑
µ(An). See [F3,F4] for more details.

We define the space of integrable functions in several steps. First, consider the space RF of all
functions f :F −→ C((X)) which can be written as a sum of a function which is zero outside finitely
many points and of

∑
cn charAn with countably many disjoint measurable sets An, cn ∈ C((X)),

such that the series
∑
cnµ(An) absolutely converges in C((X)). Define

∫
f dµ =

∑
cnµ(An), this

definition is consistent. For example,
∫
charOdµ = 1 and

∫
charOdµ = 0, but note that O 6∈ A.

In order to have an analogue of the Fourier transform, we have to extend this class of integrable
functions to include functions of type α 7→ ψ(βα), where ψ is a continuous character of F with
conductor O. This larger space is generated by functions f :F −→ C((X)) which are zero outside
a subgroup A in A, such that the function g(x) =

∑
i f (ai + x) for some ai ∈ F , 1 6 i 6 m,

belongs to the previously defined space of functions. Then define
∫
f dµ = 1

m

∫
g dµ and check the

consistency, see [F3,F4].
In particular, if a function f1:E −→ C is (absolutely) integrable over E with respect to the

normalized Haar measure µE , then the function f1 ◦ p extended by zero outside O is integrable
and

∫
O
f1 ◦ p dµ =

∫
E
f1 dµE . Denote by QF the subspace of integrable functions consisting of

functions f with support in O and such that f |O = g ◦ p|O for a Bruhat–Schwartz complex valued
function g on E.

Now for an integrable function f define its transform

F(f )(β) =
∫
F

f (α)ψ(αβ) dµ(α).
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Given f ∈ QF , the function F(f ) belongs to QF , and reducing to the one-dimensional case one
easily gets a double transform formula F2(f )(α) = f (−α).

For two-dimensional local fields of type (3) F = E((t)), where E is an archimedean local field,
the ring of measurable sets is generated byB = a+tiD+ti+1K[[t]] whereD is an open ball inE. The
measure is a translation invariant additive measure µ on this ring such that µ(B) = µE(D)Xi where
µE is the ordinary Lebesgue measure on E if E is real, and is twice the ordinary Lebesque measure
on E if E is complex. Define a character ψ:E((t)) −→ C× as

∑
aiT

i 7→ exp(−2πiTrE/R (a0)).
The transform of an integrable function f is defined by the same formula as above.

More generally, given an integral domain A with principal ideal P = tA and projection p:A −→
A/P = B and an R-valued translation invariant measure on B, similar to the previous theory one
defines a measure and integration on A and its field of fractions. For example, the analogue of the
ring A is the minimal ring which contains sets α + tip−1(S), where S is from a class of measurable
subsets of B, its measure is by definition XiµB(S); the space of integrable functions is generated
by functions α → g ◦ p(t−iα) extended by zero outside tiA, where g is an integrable function on
B. Such an R((X))-valued measure and integration on A is natural to call a lift of the measure and
integration from B to A. See [Mo1] for a systematic development of this point of view.

Let α ∈ F×. Then for any A ∈ A the set αA is measurable and µ(αA) = |α|µ(A) with |α|
independent of A. Thus we get a two-dimensional module | |:F× → R((X))×, |0| = 0; it is a
generalization of the usual module on locally compact fields.

1.3. Remarks.

1. There are several other related approaches to translation invariant measures on higher dimensional
local fields and algebraic groups over them (where many new interesting phenomena show up).

For a nonstandard approach to measure and integration on higher local fields see Remark 1 sect.
4 and Remark 3 sect. 13 of [F3]. A related theory of Hrushovski–Kazhdan unifies the translation
invariant measure with the so called motivic measure, and it uses model theory, therefore it best
works when the residue field E is of characteristic zero. For this and representation theoretical
applications see [HK1], [HK2].

Another direction of applications to representation theory is due to Kim–Lee, see [KL1], [KL2].
The third lifting approach was stated in sect. 13 of [F3] and systematically developed by M.

Morrow in [Mo1], its great advantage is that is leads to measure and integration theory satisfying
Fubini property on finite dimensional vector spaces over higher local fields, see [Mo2-Mo3].

For the purposes of working with translation invariant measures on algebraic groups over two-
dimensional local fields the class of measurable sets of a finite dimensional vector space over it
should be a much larger set than the ring of sets generated by products of measurable sets in F .
However, for the purposes of the study of the (commutative) zeta integral in dimension two it is
sufficient to work with the latter ring. Thus, extend in the natural way the measure on F to a measure
on F × F . Define spaces of functions RF×F and QF×F similarly to the previous definitions.

2. The Feynman measure is a translation invariant measure on the loop space of continuous functions
on the unit circle. This measure still lacks a solid mathematical foundation which would justify
all its applications in physics. The translation invariant R((X))-valued measure µ on the arithmetic
loop fields, i.e. two-dimensional local fields, has a number of striking similarities to the desired
properties of the Feynman measure, for their list see sect. 18 of [F4].

3. Using projective and inductive limits constructions one can easily define the Fourier transform
on spaces of functions and distributions over a two-dimensional local field algebraically, without
defining and using a translation invariant measure and integration, see [Kz], [GK]. A crucial under-
lying feature of the approach of this work is to make the integration theory on arithmetic surfaces
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as explicit and simple as possible, often being motivated by arithmetical considerations which in
particular come from the explicit higher class field theory.

2. Adelic spaces in dimension two

2.1. General notation. Let S → B be as in 1.1. Irreducible closed subschemes of dimension one
of S endowed with the structure of an integral scheme will be called curves y, and we call closed
points of S points x. We will also use notation y for fibres. Denote by Sp the set of vertical curves
of S −→ B.

If y is a curve on S, denote by Ky the field of fractions of the completion Oy of the local ring of
S at y. The field Ky is a complete discrete valuation field with residue field k(y). For a closed point
x denote by Kx the field of fractions of the completion Ox of the local ring of S at x. For x ∈ y and
a local branch z of y at x let Kx,z be the z-adic completion of Kx, so Kx,z a two-dimensional local
field. Denote by Ox,z the ring of integers of Kx,z with respect to the two-dimensional structure and
by Ox,z be the ring of integers in Kx,z with respect to the discrete valuation of rank 1. Denote by
Ex,z the residue field of Ox,z and by kz(x) the finite residue field of Ox,z .

For a map K from the set of all x ∈ z, z a local branch of a curve or fibre y on S passing through
a point x, to abelian groups we denote by Kx,y the direct sum of Kx,z where z runs through the
local branches of y at x. We write

∏
x∈yKx,z for the direct sum (= direct product) of Kx,z where

for each x one branch z of y at x is taken (in this case the data on each of the branches will be the
same).

Let y be a horizontal curve in characteristic zero and let ty be a local parameter of the discrete
valuation field Ky. Take an embedding σ: k −→ C and extend it to an embedding ω: k(y) −→ C.
Denote byEω,y the archimedean completion of k(y) with respect toω and byKω,y the corresponding
two-dimensional local field Eω,y((ty)). Denote by Oω,y its ring of integers. To simplify notation we
often view ω as a "point x on y" and include the field Kω,y in the list of fields Kx,z associated to y.
We get natural embeddings Kx −→ Kx,y,Ky −→ Kx,y.

2.2. Adelic spaces in dimension two. We will define several adelic spaces in dimension two, as
we will be working with several of them. One of them, AS in the case of positive characteristic was
introduced 30 years ago by Parshin.

For a nonsingular curve y on S and integer r define an adelic space

Ary =
{∑
i>r

ait
i
y : where ai are lifts of ai ∈ Ak(y) to ai ∈

∏
x∈y

Ox,y

}
.

Here Ak(y) is the one-dimensional adelic space of the one-dimensional global field k(y). In charac-
teristic zero the lifts have to be defined in a suitably nice way, see sect. 25 of [F5] for details.

Put

Ay = ∪r∈ZAry =
{ ∑
i>i0∈Z

ait
i
y : where ai are lifts of ai ∈ Ak(y) to ai ∈

∏
x∈y

Ox,y

}
.

Denote by py:Ay → Ak(y) the projection map
∑
ait

i
y → a0.

If y is a singular curve define Ay similarly working with all two-dimensional local fields Kx,z

associated to y, i.e. associated to the normalization of the curve. So for every branch z of y at a
singular point x we get such a field. We will identify two such fields associated to transversally
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intersected branches at a singular point, mapping a local parameter of the residue field of the first
field to a local parameter of the residue field of the second field. Define py similarly to the above.

If y is a fibre, define the adelic space Ay consisting of {(ax,y)x∈y} with ax,z ∈ Kx,z , so that for
every component of y the corresponding local elements belong to the adelic space on the curve.

Define a large adelic space AS associated to the integral structure of rank one on S. As a
subspace of

∏
Kx,z it is the restricted product of Ay, where y runs through all fibres and horizontal

curves on S, with respect to A0
y in the following sense: (ax,y)x∈y with ax,z ∈ Kx,z belongs to AS

if and only if
(a) for almost all y the element ax,y belongs to Ox,y for all x ∈ y and
(b) there is an integer r such that (ax,y)x∈y belongs to Ary for every y.

For a set S′ of fibres and horizontal curves define the adelic space AS′ similarly to the above
replacing everywhere y by y ∈ S′.

Define OAS′ = AS′ ∩
∏

Ox,y. In particular, OAy = A0
y. The space AS is the restricted product

of Ay with respect to OAy.
Here in characteristic zero we ignore certain data which come from "archimedean fibres" over

archimedean places of k, as this is not relevant for the study of the zeta integral.
The adelic space AS in positive characteristic was introduced in [P1–P3], [Be]; in [P2] and [P3]

this space is denoted by A012.

Using diagonal embeddings
∏
Ky →

∏
Kx,y,

∏
Kx →

∏
Kx,y, inside the space AS we have

two smaller local-global spaces BS and CS as the intersection of AS ⊂
∏
Kx,y with the image of

the first and second product:

AS

��
� ??

?

BS

??
? CS

��
�

K

For a subset S′ of the set of curves on S define the adelic space BS′ as the diagonal image of the
intersection of

∏
y∈S′ Ky with AS′ .

The adelic spaces denoted above by the bold font are one of two types of adelic spaces on
arithmetic surfaces. They are predominantly associated to the integral structures of rank 1 on the
surface, i.e. to divisors on the surface, and are quite useful for algebraic geometric studies. In
dimension two there are adelic spaces A,B of the second type, they take into account a more refined
information associated to the integral structures of rank 2 on the surface. We will have the following
picture of adelic spaces

AS AS

BS BS

K

in which K = k(S).
The spaces A, B will be very useful in the study of the zeta function of the surface. As sets they

are subsets of the bold font adelic spaces, but their adelic structure is not the induced one. One of
their important features is that one can integrate over them, unlike the adelic spaces of the first type
A, B.
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Now we introduce an adelic space A as follows. For a curve y let Ay = A0
y = OAy and for a fibre

y let Ay be the product of the A-spaces associated to its components. Denote by py:Ay −→ k(y)
the restriction of the homomorphism py defined above. Put Oω,y = Oω,y. At singular x of a fibre
y let Ox,y be the preimage with respect to py of the completion of the localization of the curve y at
its singular point x. Define OAy as the intersection of Ay with the product of Ox,y at nonsingular
x ∈ y and of Ox,y at singular x ∈ y.

Introduce a two-dimensional adelic object AS , a subset of AS , as the restricted product of Ay,
y ∈ S, with respect to the integral structure OAy of rank 2: an element (ax,y), ax,y ∈ Kx,y belongs
to AS if
(a) for almost all x, y such that y 3 x the element ax,y belongs to Ox,y;
(b) for every y the element (ax,y)x∈y belongs to Ay.

These conditions imply that if (ax,y)x∈y∈S ∈ AS then for almost all y the elementαy = (ax,y)x∈y
can be written as

∑
i>0 ait

i
y where ai are lifts of ai ∈ Ak(y) to ai ∈

∏
x∈y Ox,y and a0 ∈

∏
x∈y Ox,y.

For a subset S′ of curves define

AS′ =
∏′

y∈S′
Ay := AS ∩

∏
y∈S′

Ay.

The space AS′ is the restricted product of Ay with respect to OAy, y ∈ S′.
If S′ is infinite then the adelic structure of AS′ is not induced from AS′ , AS′ 6= AS′ ∩

∏
y∈S′ Ay.

From now on fix a subset S′ of the set of all fibres and finitely many horizontal nonsingular curves
on S . Put

A = AS′ , OA = A ∩
∏
y∈S′

OAy.

For a horizontal curve or a fibre y put By = Oy and define B = BS′ as the intersection of
∏

By
in
∏

Ay with AS′ .

2.3. Additive duality. For each horizontal curve and fibre y one can choose a complex character
ψy = ⊗x∈yψx,y of Ay trivial on By, this character is just an appropriate lift of a character on Ak(y)
trivial on k(y). For a singular fibre one can choose an appropriate character which corresponds to
the canonical (in this case = dualizing) sheaf on its reduced part, see sect. 27 of [F5]. Of course, this
is related to dualities of AS , see Remark 3 in sect. 28 of [F5] and [Mo4], [Mo5] for nicely written
texts.

The conductor Ax,z of the local character ψx,z equals Ox,z for almost all x ∈ y. However, since
there are infinitely many vertical curves on S, in general the local conductor Ax,z = t1

dx,z
x,z Ox,z

differs from Ox,z for infinitely many (x, z). We may choose ψy so that dx,z = 0 at singular x ∈ y
and such that the orthogonal complement O⊥x,y of Ox,y is t−1Ox,y where t serves at t1 parameter
both in Ox,z and Ox,z′ .

Endow AS ,A with the following translation invariant topology: it has
(∏

Wx,z

)
∩ A as a

fundamental system of neighbourhoods of zero, where Wx,z are open neighbourhoods of zero in
Kx,z with respect to its topology and Wx,z = Ox,z for almost all x ∈ y. Then A is a reflexive
space: the dual to the dual of it (in the topological sense) is canonically isomorphic to it. Unlike
the one-dimensional case, since S′ contains infinitely many curves, the space A is not self dual with
respect to ⊗ψy, but it is easy to describe the dual space to A, see sect. 29 of [F5].

We also have a stronger topology on AS : it has
(∏

Wx,z

)
∩ A as a fundamental system of

neighbourhoods of zero, where Wx,z are open neighbourhoods of zero in Kx,z with respect to its
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topology andWx,z =
∑ry
i=0 t

i
yU + try+1

y Ox,z , U are the lift ofOAk(y) = p(OAy) for almost all x ∈ y,
with ry > 1 not depending on x. This topology is the restricted product topology of Ay with respect
to OAy where these groups are endowed with the topology in which open neighbourhoods of zero
are
∑ry
i=0 t

i
yUi + try+1

y Ay, Ui are lifts of open subgroups in Ak(y), ry > 1.

Denote by the same notation | |x,z the module on Kx,z × Kx,z which is the product of the
modules of the components. Denote by | |:A×S → R (note that the image is in R× ⊂ R((X))×) and
| |: (AS × AS)× → R the product of the local modules.

Define a topology on the multiplicative group A×S as (the sequential saturation of) the induced
topology from the stronger topology of AS via A×S → AS × AS , α 7→ (α, α−1).

3. Measure and integration on adelic spaces

From now on we will assume that the singular points of of every fibre of S −→ B are split ordinary
double. We will use the notation y for a horizontal curve in the finite horizontal part S− of S′ fixed
in the previous section or for a fibre.

Certain parts of the following theory are parallel to the classical theory in [T1] and [W2].
To work with the zeta integral we will need measure and integration on A × A, (A × A)×, and

on B×B and (B×B)×. The central object of two-dimensional adelic analysis is an unramified zeta
integral. The zeta integral will be an integral with respect to a measure on (A× A)×.

Define normalized additive and multiplicative measures: let the measure µx,z be normalized by
the condition µx,z(Ox,z) = q

dx,z/2
x,z , dx,z is defined in 2.3, and let µKω,y

be as defined in section 1.
Let µ (Kx,z×Kx,z)× = (1− q−1

x,z)−2µKx,z×Kx,z
/| |x,z for nonarchimedean x, z, and µ (Kω,y×Kω,y)× =

µKω,y×Kω,y
/| |ω,y.

If y is a nonsingular curve then the spaceA×y coincides with the preimage of its image with respect
to the projection map py. Functions which we will integrate in the study of the zeta integral will all be
constant on groups associated to A1

y. Hence for the purposes of this work it is sufficient to work with
an R-valued measure on (Ay × Ay)× which is the pullback with respect to (py, py) of a normalized
one-dimensional adelic measure on (Ak(y) × Ak(y))× (of course the integral of the function against
it equals the integral against the measure which is the tensor product of µ (Kx,y×Kx,y)× , x ∈ y) and
with the measure on (A× A)× which is their tensor product.

3.1. Space QA×A of functions on A × A and adelic transform F. Using the local transforms
Fx,z associated to the fixed in the previous section local characters ψx,z and normalized measures
µx,z defined above one gets an adelic transform F.

Define the spaceQA×A of functions on A×A generated by functions⊗x∈y∈S′ (f (1)
x,y, f

(2)
x,y) where

f (m)
x,z are in the local space QKx,z

, nonarchimedean-archimedean components f (m)
ω,y are of the form

h(m)
ω,y ◦ (pω,y, pω,y) where pω,y is the projection to the first residue field and h(m)

ω,y is in its Schwartz
space, and for almost all x, y we have f (m)

x,z = chart1
cx,z,m
x,z Ox,z

, such that for all y for almost all

x ∈ y the integer cx,z,m equals zero, and
∏
x∈y q

dx,y/2−cx,y,1−cx,y,2
x,y = 1 for almost all y.

For a function f as above define its adelic transform F(f ) as the product of its local transforms
and then extend to the space QA×A.
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For example,

if f = ⊗x∈ychar
(t1

cx,y
x,y Ox,y,t1

c′x,y
x,y Ox,y)

then F(f ) = ⊗x∈y q
dx,y−cx,y−c′x,y
x,y char

(t1
dx,y−cx,y
x,y Ox,y,t1

dx,y−c′x,y
x,y Ox,y)

.

3.2. Space R (A×A)× and measure and integration on (A × A)×. From the definition of A we
deduce that the multiplicative group A× is the restricted product of A×y with respect to (OAy)×,
y ∈ S′. Similarly to the definition of Ay = A0

y define an adelic space

Ay × Ay := {(α(1)
x,y, α

(2)
x,y)x∈y : α(m)

x,y ∈ Kx,y, (α(m)
x,y ) ∈ Ay,m = 1, 2}.

Define (A×A)× as the restricted product of (Ay×Ay)× with respect to (Ay×Ay ∩ OAy×OAy)×.
Define µ (Ay×Ay)× as the tensor product of the normalized local measures µ(Kx,y×Kx,y)× , x ∈ y.

The definition of (Ay × Ay)× implies that µ (Ay×Ay)× is a real valued measure.
Define µ (A×A)× as the tensor product of µ (Ay×Ay)× , y ∈ S′. Define a space of functions

R (Ay×Ay)× as the linear space generated by gy = ⊗x∈y(f (1)
x,y, f

(2)
x,y) with gy = hy ◦ (py, py) for an

integrable functionhy on (Ak(y)×Ak(y))×, and such that f (m)
x,z is continuous onK×x,z , f (m)

x,z charK×x,z
∈

RKx,z
for all x ∈ y and f (m)

x,z |O×x,z
= 1 for almost all x ∈ y, m = 1, 2. For fy = ⊗x∈yfx,y ∈

R (Ay×Ay)× define
∫
fy dµ (Ay×Ay)× =

∏
x∈y

∫
fx,y dµ(Kx,y×Kx,y)× and extend by linearity to the

space R (Ay×Ay)× .

Define a space of functions R (A×A)× as the space generated by ⊗fy with fy = (f (1)
y , f (2)

y ) ∈
R (Ay×Ay)× such that ⊗fy induces a continuous map (A × A)× −→ C and

∏∫
fy dµ(Ay×Ay)×

absolutely converges in the compactified complex plane C ∪ {∞}.
For f = ⊗fy ∈ R (A×A)× with fy ∈ R (Ay×Ay)× define∫

f dµ(A×A)× =
∏∫

fy dµ(Ay×Ay)×

and extend by linearity to R (A×A)× .

3.3. Example. Let f = ⊗x∈yfx,y where for all nonarchimedean x, z

fx,z = | |sx,z char(t1
cx,z,1
x,z Ox,z,t1

cx,z,2
x,z Ox,z),

and for all y ∈ S′ cx,z,m = 0 for almost all x ∈ y, m = 1, 2, for almost all y ∈ S′
∏
x∈y q

cx,y,m
x,y = 1,

m = 1, 2; and cx,z,m = cx,z′,m for two local branches z, z′ of a fibre at x. Define the components of
f over archimedean places as

fω,y(α, β) = | |sω,y exp
(
−eω π

(
|py(α)|2 + |py(β)|2

))
,

for (α, β) ∈ Oω,y × Oω,y where | | is the usual absolute value, py is the projection map, eω = 1 if ω
is a real embedding and eω = 2 if ω is a complex embedding. Then∫

fy dµ (Ay×Ay)× =
∏
y∈S′

∏
x∈y,na

q
dx,y−(cx,y,1+cx,y,2)s
x,y

(
1

1− q−sx,y

)2 ∏
ω∈y

Γω,y(s),

where for y ∈ S− the factor Γω,y(s) = π−sΓ(s/2)2 if ω is a real embedding and Γω,y(s) =
(2π)2−2sΓ(s)2 if ω is a complex embedding. So we get∫

f dµ (A×A)× =
∏
x∈y

q
dx,y−(cx,y,1+cx,y,2)s
x,y

(
1

1− q−sx,y

)2 ∏
ω∈y∈S−

Γω,y(s).
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The product of the Euler factors equals the square of the Hasse zeta function of S times additional
factors at singular points on fibres; we take care of the latter factors later in 4.3 and 5.1 where we
introduce a subgroup T of (A× A)× over which the zeta integrals will be taken.

For the product
∏
x∈y∈S′ q

dx,y−(cx,y,1+cx,y,2)s
x,y to converge we need to impose the following

condition:
∏
x∈y q

dx,y−(cx,y,1+cx,y,2)s
x,y = 1 for almost every fibre y. For a nonsingular fibre

∏
x∈y q

dx,y
x,y

equals 1 only if S is a regular model E of elliptic curve over a global field, see 5.3 below. Hence the
study of zeta integrals will be the simplest in the case of such arithmetic surfaces. If S = E then the
function f belongs to the space R(A×A)× for <(s) > 2. In the general case one has to renormalize
fibre integrals to ensure the convergence of their infinite product, see 5.6.

3.4. Measure and integration on B×B. Using 1.2 define an R ((X))-valued translation invariant
measure µBy×By on By ×By which lifts the discrete counting measure on k(y)× k(y). Components
of a measurable set with respect to this measure for almost all y ∈ S′ are sets (py, py)−1(pt). Define
a measure µB×B = ⊗µBy×By .

For a subset So of S′ of fibres and horizontal curves and a function f = ⊗fy ∈ QA×A,
fy = ⊗x∈y(f (1)

x,y, f
(2)
x,y), f (m)

x,y ∈ QKx,y
, fy = gy ◦ (py, py), where gy = (g(1)

y , g(2)
y ), g(m)

y are integrable
functions on Ak(y), define

∫
BSo×BSo

f (β) dµB×B(β) as equal to
∏
y∈So

∫
k(y)×k(y) gy dµk(y)×k(y) and

extend to the space generated by such functions. The right hand side can diverge if So is infinite.
Since the measure on k(y) is discrete counting, it induces the measure on k(y)×. Define the

measure on (By×By)× as induced from the measure on By×By. So this measure is just the pullback
with respect to (py, py) of the discrete measure on (k(y)× k(y))×. Define the measure on (B×B)×

as the induced from the measure on B × B. For a subset B =
∏

(py, py)−1(By) of (B × B)× and
f = ⊗fy as above, define

∫
B
f dµ(B×B)× =

∏
y

∫
By
gy dµk(y)×k(y).

3.5. Summation formula. For a function f ∈ QA×A and a finite subsetSo ofS′,α ∈ (ASo
×ASo

)×

we get a summation formula, which follows from the one-dimensional formula and the duality
associated with the canonical sheaf on a fibre (see sect. 32 in [F5])∫

BSo×BSo

f (αβ) dµBSo×BSo
(β) =

1
|α|

∫
BSo×BSo

F(f )(α−1β) dµBSo×BSo
(β).

If we use f which is the tensor product of char(Ox,y,Ox,y) at nonsingular x ∈ y and char(Ox,y,Ox,y)
at singular x ∈ y then the summation formula corresponds to the Riemann–Roch theorem for y.

For more details on the measure and integration see [F5].

4. Explicit two-dimensional class field theory

The higher class field theory is not used in the study of the zeta integral, one just uses some of its
objects or related objects. However, some basic knowledge of the higher class field theory can help
a broader understanding of the whole theory. By various reasons the two-dimensional class field
theory is still not well known to number theorists. Some of objects of higher class field theory in
positive characteristic are due to Parshin, this approach is very explicit and uses topological Milnor
K-groups and the higher Artin–Schreier–Witt pairing, as a higher dimensional generalization of
the classical explicit approach to the one-dimensional class field theory in positive characteristic
by Kawada and Satake, see sections of [IHLF] for a review. A comprehensive treatment of higher
class field theory is due to Kato and Saito, see [K2] for a review. We rather need an explicit higher



Analytic adelic study in dimension two I. Fesenko 17

class field theory, and we now briefly sketch the main local and global theorems in the explicit
two-dimensional class field theory.

4.1. Local theory. Let F be a nonarchimedean two-dimensional local field with one-dimensional
residue field E. The one-dimensional reciprocity map is an injective homomorphism E× −→
Gal (Eab/E) with dense image, such that for a finite abelian extensionR/E it induces an isomorphism
E×/NR/ER

× −→ Gal (R/E). To implement a natural idea of lifting it to the level ofF such that the
right hand side is replaced by Gal (F ab/F ) one more or less quickly understands that E× = K1(E)
should be replaced by something close to the Milnor K2-group of F . Recall that K2(F ) is the
quotient of F× ⊗ F× by its subgroup generated by x ⊗ 1 − x. The image of x ⊗ y in K2(F ) is
denoted by {x, y}, and the map F× × F× −→ K2(F ), (x, y) 7→ {x, y} is called the symbol map.
The group operation in K2(F ) is normally called addition and one uses the additive notation.

There is a natural boundary mapK2(F ) −→ K1(E) which serves as one side of the commutative
diagramme connecting the reciprocity maps in dimension two and one. The two-dimensional
reciprocity map K2(F ) −→ Gal (F ab/F ) is not injective but its image is dense. It can be proved
that the kernel of the reciprocity map for two-dimensional fields whose first residue field is of
positive characteristic equals ∩l>1lK2(F ), and this subgroup equals the intersection of all open
neighbourhoods of zero in the strongest topology on K2(F ) in which the addition in K2(F ) is
continuous and the symbol map is continuous in each argument with respect to the topology on
F× defined in the first section, see [F1] for more details. Thus, even before developing the class
field theory it makes sense to introduce a topological Kt

2-group Kt
2(F ) as K2(F )/Λ2(F ), where

Λ2(F ) = ∩l>1lK2(F )+ the intersection of all neighbourhoods of zero, with the induced topology. It
is much easier to work with the topological K-groups, since using topological generators one can
operate with infinite topologically convergent products and sums. Using explicit pairings: the higher
dimensional tame symbol, the Artin–Schreier-Witt and Vostokov pairings (see sect. 6 of [IHLF])
one can get various information on the structure of Kt

2(F ), which are stronger than the results on its
natural factor filtration obtained in purely algebraic way.

In the explicit class field theory (see sect. 10 of [IHLF]) a major role is played by a surjective
homomorphism

t:T = (O× O)× −→ Kt
2(F ).

In the nonarchimedean case we have O× = tZ1O
×. Define t as (ti1u, t

j
1v) 7→ (i+ j){t1, t2}+ {t1, u}+

{v, t2}, u, v ∈ O×. Denote byUKt
2(F ) the image of (O×O)×. We have a commutative diagramme

O× ⊗ F×/O×

�� ))TTT
TTTT

TTTT
TTTT

O× × O× = T // O× × O×/O× // Kt
2(F )/UKt

2(F ).

The vertical map sends α ⊗ t2m to (αm, 1); the surjective diagonal map is induced by the symbol
map; the first horizontal map is the projection on the second component, and the composition of the
first and second horizontal maps is induced by t. The second horizontal map does not depend on the
choice of local parameters. An analogue of the unramified quasi-character in the classical theory is
a homomorphism | |s2:Kt

2(F ) −→ C×, s ∈ C, which sends {t1, t2} to q−s, q is the cardinality of
the finite residue field of F , and which sends UKt

2(F ) to 1.
In the case of fields of type (3), F = E((t)) where E is an archimedean local field, define

t:T = O× × O× −→ E× × E× −→ Kt
2(F ), where the first map is (p, p), p is the residue map and

the second map is (α, β) 7→ {αβ, t}. Denote by Kt
2(F )0 is the cyclic group generated by {−1,−1},
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it is nontrivial if and only if E is real. We have a commutative diagramme

O× ⊗ F×/O×

�� ))SSS
SSSS

SSSS
SSSS

O× × O× = T // O× × O× // Kt
2(F )/Kt

2(F )0

where the vertical map sends α ⊗ tm to (αm, 1), and the surjective diagonal map is induced by the
symbol map. Define a homomorphism | |2:Kt

2(F ) −→ C×, it sends the image of t, {α, t}, α ∈ E×,
to |α|E , and it sends its orthogonal complement Kt

2(F )0 to 1. Here |α|E is the module associated to
the measure µE defined in section 1.

In each case the composite | |2 ◦ t is the module map | | on T . The group N = |T | equals the
multiplicative group of positive real numbers or the cyclic group generated by q > 1.

If χ:Kt
2(F ) −→ C× is a continuous quasi-character, then similar to dimension one it is easy to

show that it is the product of | |s2 and a character χ0 of finite order which is trivial on {t1, t2}.

One can show that the topology of Kt
2(F ) on the level of subgroups coincides with the induced

via t topology of T (which is induced from F× × F×).
The symbol {t1, t2} modulo units plays in the two-dimensional class field theory the role of a

(Kt
2-) prime element: its image in the Galois group restricted to the purely unramified extension F ′

of F corresponding to the maximal algebraic extension of the finite residue field is the Frobenius
automorphism. For a nonarchimedean two-dimensional local fieldF the inverse morphism ΨF to the
reciprocity homomorphism ΦF :Kt

2(F ) −→ Gal (F ab/F ) has a very explicit description, ΨF sends
an element σ of a finite Galois extension L of F to the norm of a prime element in an appropriate
finite extension of F , the fixed field of a good lifting of σ to LF ′/F , see sect. 10 of [IHLF].

When F is of type (3) its topological K2-group is not too useful for a description of abelian
extension of F , which are anyway very easy to describe.

4.2. Global theory. Now we turn to the global two-dimensional class field theory for an arithmetic
surfaceS as in section two (even though the main theorems of this theory can be stated more generally
for integral schemes projective over Z). For main general results see [KS1], [KS2]. We actually need
an adelic (K-delic) form of the main theory, which is not explicitly available from those sources.
We will define two objects JS and PS which are analogues of the idele group and the multiplicative
group of global elements.

Using the local maps t define

t: (AS × AS
)× ∩∏Tx,y −→

∏
Kt

2(Kx,y).

Denote by

JS =
∏′

Kt
2(Kx,y)

the image of this homomorphism. This JS is a simplified and a reduced version of JS introduced in
[F5]: the difference is that in the case where K has a structure of ordered field we ignore a part of
the Galois group of K which corresponds to the symbol {−1,−1} ∈ Kt

2(R((t))) locally associated
to the ramified extension R((t1/2))/R((t)). Anyway, we will soon concentrate on the unramified part
only. Below the word "almost" means that we ignore this part of the Galois group of K.

Define the topology of JS as induced via t from the topology of
(
AS × AS

)×. Define

PS = ∆

∏′

y

K2(Ky) + ∆

∏′

x

K2(Kx)
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where the restricted product signs mean the intersection of JS with the image with respect to ∆

induced by diagonal field embeddings. Endow JS/PS with the induced topology.
Then we have the global reciprocity map

ΦS =
∏

Φx,y: JS −→ Gal (Kab /K)

where Φx,z are local reciprocity maps. The map ΦS vanishes on PS . Continuous characters of finite
order of the Galois group of the function field K of S are (almost) in one-to-one correspondence
with continuous characters of finite order of theK-delic class groupCS = JS/PS via the reciprocity
map. For (almost) every finite Galois extensionL/K the map ΦS induces an isomorphism JS/(PS +
NS⊗KL/SJS⊗KL) −→ Gal (L

⋂
Kab /K). This follows from the results of Kato and Saito.

Denote by | |2: JS → R× the product of the local modules | |2,x,y. Every continuous quasi-
character χ on JS/PS is the product of | |s2, s ∈ C and a character χ0 of finite order trivial on
{t1, t2}.

4.3. Objects for the unramified theory. As we will be mainly interested in the unramified
situation we now describe a simplified version of objects JS , PS which provides background objects
for the definition of the unramified zeta integral in dimension two.

Recall that for regular points x one has the following exact sequence

K2(Ox) −→ K2(Kx) −→ ⊕w3xK1(Ex,w) −→ K0(k(x)) −→ 0,

where w runs through all prime ideals of height 1 in the ring Ox, see e.g. [Bl1]. Note that the
image of ⊕K1(Ex,z) coincides with the image of its vertical part. This gives an exact sequence
K2(Kx) −→ ⊕z3xK1(Ex,z) −→ K0(k(x)) −→ 0 where z runs through all local branches at x of
curves y on S. Thus, in JS/PS we can move modulo K2(Kx) the contribution of local (Kt

2-) prime
elements in Kt

2(Kx,z) for branches z of all horizontal curves y passing through x to the vertical
branches. Then we are left with UKt

2(Kx,z) on branches of all horizontal curves on S. Also, if x is
a singular point of a fibre then factorizing the product ofKt

2(Kx,z) for the local branches of the fibre
at x modulo the image of K2(Kx) we see that that we can work modulo units with just one copy of
Kt

2(Kx,z) for every x in every fibre. In the rest of the paper we will assume that every singular point
of a fibre is a rational (split) ordinary double point.

For a subset So of curves on S define

TSo
=
(
ASo
× ASo

)×
.

Denote NSo
= |TSo

|.
For S′ as in section 2, denote

T = TS′ , J = JS ∩
∏
y∈S′

∏
Kt

2(Kx,y), P = J ∩ PS .

The K2-delic object J equals JS′ defined in sect. 35 of [F5].

Denote by J1
S the kernel of | |2 and J1 = J ∩ J1

S . Then PS < J1
S , P < J1. Define a

subgroup UJS = t
(
T ∩

∏
(Ox,y ×Ox,y)×

)
∩ J1

S of J1
S (recall that Oω,y = Oω,y by definition). Put

UJ = UJS∩J . Denote by V JS the sum of the image t
(
TS∩

∏
(Ox,y×Ox,y)×

)
and⊕y,ωKt

2(Kω,y)0
and put V J = V JS ∩ J .

Define a subgroup V A×S of A×S which at nonarchimedean data equals A×S ∩
∏
O×x,y and whose

mixed archimedean-nonarchimedean data components are 1. Put V A× = A× ∩ V A×S . Using the
adelic space AS in the previous section define VA×S = A×S

⋂∏
O×x,y and let AS′ , VA×S′ be the

S′-part of AS and the previously defined object. Define A×S ×A
×
S as the subspace of the adelic space
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(
AS×AS

)× consisting of (αx,y, βx,y) with (αx,y), (βx,y) ∈ A×S ; similarly define A×S ×A×S /VA
×
S .

Note that A×S /VA
×
S is isomorphic to ⊕x,zZ and hence A×S ⊗A×S /VA

×
S consists of (αx,y ⊗ γx,y),

(γx,y) ∈ A×S /VA
×
S .

Then the following diagrammes are the adelic version of the diagrammes in 4.1

A×S ⊗A×S /VA
×
S

�� ))RR
RRR

RRR
RRR

RRR

TS // A×S × A×S /V A×S // JS/V JS

and

A× ⊗A×S′/VA
×
S′

�� ((RR
RRR

RRR
RRR

RR

T // A× × A×/V A× // J/V J.

These commutative diagrammes glue together in a special and important way the adelic structures of
the first and second type, corresponding to the integral structures of rank 1 and rank 2 on the surface.

For the unramified (with respect to the structure of rank two) theory elements of UKt
2(Kx,z) do

not matter, and hence for this purpose we can replace JS/PS by J/P . The induced homomorphisms
fromTS toJS/(PS+UJS) and fromT toJ/(P +UJ) are surjective. We also deduce thatJ1/(P +UJ)
is naturally isomorphic to J1

S/(PS+UJS). The latter is isomorphic to the (zero degree part in positive
characteristic) CH0(S)0 of the Chow group of 0-cycles on S, which from the point of view of class
field theory plays the role of the (zero degree) class group in dimension one. In dimension one the
finiteness of the class group, as well as the Dirichlet theorem follow from the calculation of the zeta
integral, see [I2]. Similarly in dimension two the finiteness of several groups including CH0(S)0

can be deduced from a calculation of the two-dimensional zeta integral.

5. Zeta integrals

We will define zeta integrals in the local case and then in the adelic case.

5.1. The generic formula. The general formula for the zeta integral has a shape similar to the
dimension one zeta integral:

ζ(g, χ) =
∫
T

gχt dµ

where g is a function in the spaces R or Q defined in 1.3 and 2.2, χ is a quasi-character on the group
which describes abelian extensions (Kt

2(F ) or JS/PS) and χt is its pullback to a quasi-character on
the group T , local or adelic; tildes and T is a certain rescaled version of T and the local integrals at
singular points of fibres are modified appropriately. In the unramified theory without essential loss
one can work with the zeta integral

ζ(g, | |s) =
∫
T

g | |s/2 dµ.

We will have different rescaling on vertical and horizontal curves. For a curve y denote by T1,y
the kernel of the module map on Ty. Choose a set of multiplicative representatives My < Ty of
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Ny = |Ty|. So if k(y) is of positive characteristic then Ny is a cyclic group generated by qy > 1, if
k(y) is of characteristic zero then Ny is the multiplicative group of positive real numbers.

For a fibre ? put || ||? = | |? and denote T? = T?. We also have to modify the local integrals at
singular points of fibres appropriately, for details see sect. 37 of [F5].

For a horizontal curve ? put || ||? = | |1/2
? and choose a maximal subgroup T? of T? such that

||T?|| = |T?|. In other words, T? = T? for horizontal curves in characteristic zero andT? = T1,?×M2
?

(of course, this depends on the choice of M?) for horizontal curves in positive characteristic. Put

T = T ∩
∏
?∈S′

T? =
∏′

?∈S′

T?, || || =
∏
?∈S′

|| ||?.

For a continuous homomorphism χ: J −→ C× write χ = χ0| |s2 as the product of the unramified
quasi-character | |s2 and χ0. Define

χt := (χ0 ◦ t) || ||s :T −→ C×,

χ uniquely determines | |s2 and χ0, and hence || ||s and χt as functions on T are uniquely determined
by χ.

On the vertical part of T we have χt = χ ◦ t.

Now, for a function g inRF×F or inR (A×A)× , spaces defined in 1.3 and 3.2, and a quasi-character
χ:Kt

2(F ) −→ C× or χ: JS −→ C×, χ|PS
= 1, define a generic local zeta integral as

ζ(g, χ) = ζ(g, χ, µ) =
∫
T

gχt dµ(F×F )×

and an adelic zeta integral as

ζ(g, χ) = ζS,S′ (g, χ, µ) =
∫
T

gχt dµ(A×A)× .

The latter for a singular fibre is not
∫
gχt charT dµ(A×A)× , but differs at the (x, ?)-data for singular

points x ∈ ?. See sect. 37 of [F5] for details.
Of course, the adelic zeta integral depends on the choice of the set S′ of curves, which includes

all vertical curves and finitely many horizontal curves, and which was fixed in section 2.
For g ∈ QF×F and g ∈ R (A×A)× the zeta integrals take complex values if converges.
Note that for a function g which is the product of its local components the adelic zeta integral

is not the product of the generic local zeta integrals: it differs at singular points of fibres and on
horizontal curves. For a subset So of S′ define similarly ζS,So

(g, χ).

5.2. Examples. All these formulas are very easy to use for concrete calculations of zeta integrals.
For example, for the local nonarchimedean zeta integral

ζ(g, χ) = (1− q−1)−2
∑
j,l∈Z

(q−s)j+l
∫
O××O×

g(tj1u1, t
l
1u2)χ0

(
t(u1, u2)

)
dµF×F (u1, u2),

where χ = χ0 | |s2, χ0 is of finite order and trivial on {t1, t2}. If, moreover, for fixed j, l the value
g(tj1u1, t

l
1u2) is constant = g0(j, l), then

ζ(g, χ) = (1− q−1)−2
∑
j,l∈Z

(q−s)j+l g0(j, l)
∫
O××O×

χ0
(
t(u1, u2)

)
dµF×F (u1, u2).
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Keeping in mind the normalization of the self dual measure µx,z we also easily get

ζ(char
(tcx,z

1 Ox,z,t
c′x,z

1 Ox,z)
, | |s2x,z, µx,z) = q

dx,z−(cx,z+c′x,z)s
x,z

(
1

1− q−sx,z

)2

.

One can show, see [F3], that if g ∈ QF×F , then the local zeta integral is a rational function of
q−s, and for two such functions f, g one has a local functional equation

ζ(f, χ) ζ(ĝ, χ̂) = ζ(f̂, χ̂) ζ(g, χ)

where χ̂ := | |s2 χ−1 and where for g its transform ĝ is F(g) composed with a certain rescaling map.

Instead of integrating over Kt
2-objects we integrate over K1×K1-objects using the morphism t.

The kernel of t consists of units which can be ignored as far as the unramified theory is concerned. If
one wants to develop a full theory, certain modifications of the previous constructions are required.

There are several alternative approaches to a ramification theory in dimension two, none of
which is sufficiently general and satisfactory. A development of a comprehensive theory of ramified
C((X))-valued zeta integral is likely to be closely related to such a general higher ramification theory.
In relation to the ramification issues see also Theorem 5.5, which contains a new interpretation of
the (tame part of the) conductor of elliptic curve.

5.3. Zeta integrals on curves and fibres. If g = ⊗y∈S′gy, where y runs through all horizontal
curves in S′ and all fibres, then

ζS,S′ (g, χ) =
∏
y∈S′

ζy(gy, χ), ζy(gy, χ) =
∫
Ty

gyχt dµ(A×A)× .

Note that this integral diverges unless S is a model of elliptic curve over a global field, see below
in this subsection, thus in the general case of arithmetic surfaces one will have to renormalize it as
explained in the end of this section.

Write the quasi-characterχ as⊗χx,y. If, furthermore, gy = ⊗x∈ygx,y, then we have the following
formulas for fibre and curve integrals.

If y is a nonsingular fibre then ζy(gy, χ) =
∏
x∈y ζx,z(gx,z, χx,z) is the product of the generic

local zeta integrals. For a fibre y we get

ζy(gy, χ) =
∏
x∈y

ζx,z(gx,z, χx,z),

where if x lies on several components/branches then only one local zeta integral ζx,z(gx,z, χx,z)
participates in the product.

If y is horizontal in characteristic zero then ζy(gy, | |s) is equal to
∏
x∈y ζx,z(gx,z, | |s/2).

If y is horizontal in positive characteristic, introduce an auxiliary zeta integral ζay (gy, | |s2) =∫
Ty
gy(α) |α|s/2 dµ(Ay×Ay)× (α). The latter is the product of

∫
Tx,z

gy(α) |α|s/2 dµK×x,z×K×x,z
(α), to

calculate which one can use the formulas for horizontal y in characteristic zero. If ζay (gy, | |s2) =∑
n∈Ny

cnn
−s/2, cn =

∫
T1,y

gy(mnγ) dµAy×Ay)× (γ), mn ∈ Ty, |mn|y = n, then ζy(gy, | |s2) =∑
n∈Ny

c2nn
−s.

Denote by qx,z the cardinality of the finite residue fieldkz(x) of a nonarchimedean two-dimensional
field Kx,z . For a horizontal curve or a fibre y define

cy =
∏
x∈y

qex,z
x,z ,
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where each point x participates only once, and ex,z = dx,z at nonsingular x ∈ y as fixed in 2.3,
and ex,z = −1 at singular x ∈ y. From the classical one-dimensional theory it is very easy to see
that for a nonsingular fibre cy equals q2(1−gy)

y , where qy > 1 defined in 5.1 is the cardinality of
the algebraic closure of Fp in k(y) and gy is the genus the curve y. For a singular fibre cy equals∏
q

2(1−gy′ )
y′

∏
x q
−1
x , where y′ runs through irreducible components of y, x runs through all singular

points of the fibre y, qx is the cardinality of the residue field at x.
The example in 3.3 discusses an integral over (A × A)× which is closely related to the adelic

zeta integral. In order that the integral converges we need to have
∏
x∈y q

dx,z
x,z = 1 for almost every

fibre y. Hence gy should be 1 for almost every fibre y. This explains why we introduce from now
on the following restriction.

Now we specialize to the case where S = E is a regular model of elliptic curve E over a global
field k. We will assume the set S− of horizontal curves in S′ contains the image of the zero section
of E→ B. We continue to assume that singular points of its fibres are split ordinary double points.
See the end of this section for a sketch of the general case.

5.4. A centrally normalized function f . Now we define a centrally normalized function f ∈
QA×A for which the calculation of the adelic zeta integral is straightforward. We will work with its
zeta integral in the sections to follow. Put

f = ⊗y∈S′fy, fy = ⊗x∈yfx,y

and define the local factors as follows.
For nonarchimedean (x, z) on vertical curves y in a nonsingular fibre and horizontal curves in

characteristic zero put fx,z = char(Ox,z,Ox,z). Then on a vertical curve y in a nonsingular fibre
fy = fy and F(fy)(α) = fy(ν−1

y α) with some νy ∈ T1,y.

Let y be a singular fibre. At singular x ∈ y put fx,y = q−1
x char(Ox,y,O⊥x,y). The transform F(fx,y)

is q−1
x char(O⊥x,y,Ox,y). The pull-back of fx,y with respect to v in 4.3 is q−1

x char(Ox,z,t
−1
1,x,z

Ox,z). At

appropriate finite number of nonsingular x ∈ y modify char(Ox,z,Ox,z):

fx,z(α) = char(Ox,z,Ox,z)(εx,zα)

with (εx,z) ∈ Ty, εx,z = (t−cx,z

1,x,z , t
−c′x,z

1,x,z ), such that for fy = ⊗x∈yfx,y we have

F(fy)(α) = fy(ν−1
y α)

where νy ∈ T1,y. Just choose cx,z, c′x,z such that
∏
x∈y q

dx,z
x,z =

∏
x∈y q

cx,z+c′x,z
x,z .

On a horizontal curve y in positive characteristic define fx,z(α) = char(Ox,z,Ox,z)(εx,zα) with
(εx,z) ∈ Ty such that for fy = ⊗x∈yfx,y we have F(fy)(α) = fy(ρ−1

y α) with ρy ∈ T1,y.

Using the notation of 3.3, put over archimedean places fprω,y(α, β) = exp
(
−eω π

(
|py(α)|2 +

|py(β)|2
))
, for (α, β) ∈ Oω,y × Oω,y. For a fixed archimedean σ choose ηω,y ∈ R>0 equal each

other, such that
∏
ω η

2eω
ω,y = η2n

ω,y = cy where n = |k : Q| and cy is defined in 5.3.
For a horizontal y in characteristic zero define fy as having components char(Ox,z,Ox,z) at

nonarchimedean data and fω,y(α) = fprω,y(( ηω,y, ηω,y)α) at ω, y. Then on horizontal curves in
characteristic zero we have F(fy)(α) = fy(ρ−1

y α) with ρy ∈ T1,y. Put ρy = νy and define

ρ = ⊗y∈S′ρy ∈ T.

It is easy to check that f and f belong to the space QA×A defined in 3.1.
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5.5. The first calculation of the zeta integral. Now, using the previous formulas it is easy to
obtain the following description of ζ(f, | |s2).

Theorem. Let E be a regular model of elliptic curve E over a global field, as in 5.3. Assume in
addition that E has good or multiplicative reduction in residue characteristic 2 and 3.

For every fibre y we have

ζy(f, | |s2) = c1−s
y

∏
x∈y

(
1

1− q−sx,z

)2

.

For a nonsingular fibre cy = 1. For a singular fibre y = Eb we get cy = |k(b)|fb+mb−1 where mb is
the number of irreducible geometric components of the fibre, and fb is its conductor.

For every horizontal curve y the zeta integral ζy(f, | |s2) is a meromorphic function which satisfies
the functional equation ζy(f, | |s2) = ζy(f, | |2−s2 ) and which is holomorphic outside its poles of
multiplicity two at s = 0, 2 in characteristic zero and at qsy = 1, q2

y in positive characteristic. For a
horizontal curve y in characteristic zero the zeta integral ζy(f, | |s2) is the square of a one-dimensional
integral at s/2 on k(y).

Recall that the (unramified) Hasse zeta function of a scheme S of finite type is

ζS(s) =
∏
x∈S0

(
1− |k(x)|−s

)−1
,

where x runs through the set of closed points on S. It is equal to the product
∏
b∈B0

ζSb
(s),

Sb = S ×B b.
If S is an arithmetic surface it is easy to see that ζS(s) absolutely and normally converges on

<(s) > 2. If E is a model of elliptic curve over a global field then it is well know that ζE(s) extends
to a meromorphic function on<(s) > 3/2 with the only simple pole(s) at s = 2 in characteristic zero
and qs = q2 in positive characteristic.

The Hasse-Weil zeta function ζE(s) factorizes as
∏
b∈B0

ζEb
(s) and ζEb

(s) is the Hasse zeta
function of the model corresponding to a minimal Weierstrass equation of E at b. If E has a global
minimal Weierstrass equation then ζE(s) = ζE0 (s) whereE0 is it the arithmetic scheme corresponding
to such an equation.

The previous theorem implies a comparison of the zeta integral and the square of the Hasse
function of E which, in particular, shows the convergence of the zeta integral on the half plane
<(s) > 2.

Corollary. Let E be as in the theorem. On <(s) > 2 we get

ζE,S′ (f, | |s2) = cE,S′ (| |s2) ζE(s)2, cE,S′ (| |s2) = cE,Sp (| |s2) cE,S− (| |s2).

The first factor cE,Sp (| |s2) is c1−s
E , the product of c1−s

y over all fibres. The second factor is the product
of zeta integrals for horizontal curves and hence has a meromorphic continuation to the complex
plane and satisfies the functional equation cE,S− (| |s2) = cE,S− (| |2−s2 ) and is holomorphic outside its
poles at s = 0, 2 in characteristic zero and at qs = 1, q2 in positive characteristic. The zeta integral
ζE,S′ (f, | |s2) absolutely and normally converges on <(s) > 2.
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5.6. A very short sketch of the general case. In the general case of S whose generic fibre is a
curve of genus g > 1 the adelic zeta integral diverges, due to the appearance of the same factor c1−s

y

for infinitely many vertical curves.
Let f be the tensor product of char(Ox,z,Ox,z) for P1(B). In the general case of S introduce a

(renormalized) zeta integral

ζS,S′ (f, | |s2,S) =
∏
b∈B0

ζP 1(B),P 1(B)b

(
f, | |s2,P 1(B)

)g−1
ζS,Sb

(
f, | |s2,S

)
·
∏

y∈S′\Sp

ζS,y
(
f, | |s2,S

)
.

For a nonsingular fibre y the y-factor c1−s
y of ζS,y(f, | |s2,S) is cancelled out by the y-factor of

ζP 1(B)
(
f, | |s2

)g−1 which is equal to its inverse, and the product over the fibres in the definition of the
renormalized zeta integral converges for <(s) > 2. Similar to the previous calculation one deduces
that for<(s) > 2 the zeta integral ζS,S′

(
f, | |s2,S

)
equals the product of ζP 1(B)(s)

2g−2 ζS(s)2 and of a
factor cS,S′ (| |s2) which is the product of exponential and Euler factors for vertical curves in singular
fibres and of the factors for horizontal curves in S′.

6. Second calculation of the zeta integral and the boundary term

We continue to assume that S = E as fixed in 5.3. As in the one-dimensional theory the second
calculation of the zeta integral uses the decomposition of T into the product of the group T1 of
elements of module 1 and of the module value group N = |T |, and decomposition of T1 into the
product of T0 and of T1/T0 where T0 = (B × B)×, and then when integrating over T0 one uses the
summation formula of 3.5.

6.1. More adelic objects and integrals. Denote by T1 the kernel of || ||◦:T −→ R and by T1 the
kernel of | |◦:T −→ R. Similarly define local T1x,z . Put N = |T | = ||T||. Via the diagonal map T0
is a subgroup of T1. Denote T0 = (B× B)×.

Denote by UT the intersection of T1 with the product of the nonarchimedean part of T ∩
∏
T1x,z

and of the archimedean part of T for (ω, y)’s. The group UT is open in T1.
Since t(α, β) ≡ {αβ, t2} mod UKt

2(Kx,z), we have t(T0 + UT ) ⊂ P + UJ and a surjective
homomorphism T1/(T0 + UT ) −→ J1/(P + UJ) induced by t. Thus we have the compatibility of
the K1 ×K1-objects T and T0 and the K2-objects J and P , up to units.

From the adelic commutative diagramme in 4.3 we get a commutative diagramme

B× ⊗ B×S′/(B×S′ ∩VA×S′ )

�� **UUU
UUUU

UUUU
UUUU

UU

T0 // B× × B×/(B× ∩ V A×) // P/(P ∩ V J),

where the diagonal map is the symbol map, and the maps are the restriction of the appropriate maps
in that diagramme.

Let M be the unique subgroup of M such that ||M|| = |M |. Then T = T1M. Introduce similar
objects for y ∈ S′.

Let y0 be the image of the zero section, y0 ∈ S−; then Ny0 = N . Choose multiplicative
representatives mn ∈ Ty0 of N such that ||mn||y0 = n ∈ Ny0 = N . The groups N,M are locally
compact groups. Let µN be the appropriate measure on the group N , as in the one-dimensional
theory, corresponding to the counting measure in positive characteristic case and corresponding to
the induced from R×, dn/n in characteristic zero case.
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As in dimension one, but with a little more effort, see sect. 43 in [F5], one can define in-
tegrals

∫
T1

,
∫
M

,
∫
M

such that
∫
T
g(α) dµ (A×A)× (α) =

∫
M

(∫
T1
g(mα) dµ (A×A)× (α)

)
dµM(m) =∫

M

(∫
T1
g(mα) dµ (A×A)× (α)

)
dµM (m), ||m|| = |m|. Let µM = || ||∗µN and µM = | |∗µN .

6.2. Two dimensional theta formula. It is easy to see that for a vertical curve y and for the function
g = ⊗char(Ox,y,Ox,y) the integral

∫
By×By

g dµBy×By
is > q2

y, qy is the cardinality of the maximal
finite subfield of k(y). Therefore the product of such fibre integrals for all vertical y diverges. We
will have to introduce on T0 a rescaled measure so that the integral is 1 for almost all vertical curves.

Put dy = 1 for horizontal curves. For a vertical curve y put dy = (qy − 1)−2. Let So be a finite
subset of S′ which contains all horizontal curves in S′ and all vertical curves in singular fibres.
Denote dSo

=
∏
y∈So

dy. Suppose that g = ⊗gy ∈ QA×A and there is a finite set of curves outside
which dy

∫
g dµ(By×By)× = 1. Define∫

T0,So

g dµT0 := dSo

∏
y∈So

∫
(By×By)×

g dµBy×By
,

∫
T0

g dµT0 = lim
So

∫
T0,So

g dµT0 .

Denote ∂ (BSo × BSo )× := BSo × BSo \ (BSo × BSo )×, this is the boundary with respect to the
weakest topology of A× A in which every character is still continuous.

Define ∫
∂T0

g dµ∂T0 := lim
So

dSo

∫
∂ (BSo×BSo )×

g dµB×B

and for two such function g1, g2 define
∫
∂T0

(g1 − g2) dµ∂T0 :=
∫
∂T0

g1 dµ∂T0 −
∫
∂T0

g2 dµ∂T0 .

Let f be as fixed in 5.4. If y is a nonsingular fibre then both integrals
∫
T0,y

f (β) dµT0 (β),∫
T0,y

f (ρ−1β) dµT0 (β) are equal to 1, where ρ is defined in 5.4. The functions β 7→ f (αβ) and

β 7→ f (ρ−1α−1β) satisfy the conditions in the previous paragraph and for them (denote it by g) we
get ∫

T0

g dµT0 +
∫
∂T0

g dµ∂T0 = lim
So

dSo

∫
BSo×BSo

g dµB×B.

Note that the measures µT0 , µ∂T0 , and limSo dSoµBSo×BSo
are not the lifts of the discrete counting

measure on
∏
y∈S′ k(y)× k(y).

Using the summation formula of 3.5 for infinitely many finite subsets of horizontal and vertical
curves in S′ we obtain the following two-dimensional theta formula for α ∈ T

∫
T0

f (αβ) dµT0 (β)− |α|−1
∫
T0

f (ρ−1α−1β)dµT0 (β)

=
∫
∂T0

(
|α|−1f (ρ−1α−1β)− f (αβ)

)
dµ∂T0 (β).

6.3. The second calculation of the zeta integral. As in dimension one, but with more effort, see
sect. 43 of [F5], one can define µT1/T0 , such that for appropriate functions g∫

T1

g dµ =
∫
T1/T0

∫
T0

g(βγ) dµT0 (β) dµT1/T0 (γ).

Introduce "halves" of M :

M± = {m ∈M : ±(|m| − 1) > 0}
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with the measure induced from M on M \M ⋂
T1 and half of the measure µM on M

⋂
T1 for each

of M+ and M−. So the space M is the disjoint union of the spaces M− and M+ which are mapped
to each other by the involution m 7→ m−1. Similarly define measure spaces N±, N±, M±. In
particular, in characteristic zero N− is (0, 1] with the measure dx/x and in positive characteristic
N− is {qk, k 6 0} with µN− ({qk}) = 1 for k < 0 and µN− ({1}) = 1/2.

For m ∈M denote

ζm(f, | |s2) :=
∫
T1

f (mα) |m|s dµ(α)

where, as agreed earlier, m ∈M, ||m|| = |m|. Then for <(s) > 2

ζ(f, | |s2) =
∫
M

ζm(f, | |s2) dµM (m),

Following the classical path we observe that the absolute convergence of ζ(f, | |s2) for <(s) > 2
implies the absolute convergence of the integral

∫
M+ ζm(f, | |s2) dµM+ (m) in the same area, and

therefore this integral as well as the integral
∫
M+ ζm(f, | |2−s2 ) dµM+ (m) absolutely converge for all

complex s.
Section 45 in [F5] contains the proof of the two-dimensional version of the main result of

one-dimensional adelic analysis.

Theorem. On the half plane <(s) > 2

ζ(f, | |s2) = ξ(| |s2) + ξ(| |2−s2 ) + ω(| |s2)

where

ξ(| |s2) =
∫
M+

ζm(f, | |s2) dµM+ (m)

is an entire function on the complex plane. The boundary term ω(| |s2) for <(s) > 2 is given by

ω(| |s2) =
∫
M−

ωm(| |s2) dµM− (m),

ωm(| |s2) = |m|s
∫
T1

(
f (mα)− |m|−2 f (m−1α−1)

)
dµ(α)

= |m|s
∫
T1/T0

∫
T0

(
f (mγβ)− |m|−2 f (m−1γ−1β)

)
dµT0 (β) dµT1/T0 (γ).

Using the theta formula established earlier we can rewrite it as

ωm(| |s2) = |m|s−2
∫
T1

(
|α|−1 − 1

)
f (m−1α−1) dµ(α)

+ |m|s
∫
T1/T0

∫
∂T0

(
|mγ|−1f (m−1ρ−1γ−1β)− f (mγβ)

)
dµ∂T0 (β) dµT1/T0 (γ)

and the integral
∫
M−

of first term on the right hand side extends to an entire function on the complex
plane.

Thus, the meromorphic continuation and functional equation of ζ(f, | |s2) and the study of its
poles are reduced to establishing those properties for ω(| |s2).

The structure of the boundary term is more complicated and much richer than that in dimension
one. Its study is a new challenge.



28 I. Fesenko Analytic adelic study in dimension two

7. Hypothesis on mean-periodicity and meromorphic continuation

In this section we state a hypothesis about mean-periodicity of a function h. When this hypothesis
is proved it will imply meromorphic continuation and functional equation for the zeta function of E.
In the case when k = Q mean-periodicity of h is implied by modularity of the L-function; and the
hypothesis on mean-periodicity can be viewed as a weaker version of the Taniyama conjecture.

7.1. The function h. For every n ∈ N make in appropriate places change of variable γ → γ−1

and γ → ργ and define an important object of study, a function h(n)

h(n) :=
∫
T1

(
n2 f (mnγ)− f (m−1

n γ)
)
dµ(γ)

=
∫
T1/T0

(∫
T0

(
n2 f (mnγβ)− f (m−1

n ρ−1γ−1β)
)
dµT0 (β)

)
dµT1/T0 (γ)

= h1(n) + h2(n),

h1(n) =
∫
T1

(
|α|−1 − 1

)
f (m−1

n α−1) dµ(α),

h2(n) = n2
∫
T1/T0

∫
∂T0

(
|mnγ|−1f (m−1

n ρ−1γ−1β)− f (mnγβ)
)
dµ∂T0 (β) dµT1/T0 (γ).

The function h(n) does not depend on the choice of mn corresponding to n, described in 6.1, and as
mentioned above, the integral

∫
N−

h1(n)ns−2 dµN− (n) extends to an entire function on the complex
plane, see sect. 46 of [F5].

The boundary term ω(| |s2) has the following integral presentation for <(s) > 2

ω(| |s2) =
∫
N−

h(n)ns−2 dµN− (n).

Hence for <(s) > 2 c−1
0 ω(| |s2) equals the Laplace–Stieltjes transform

∫∞
0 e−st dj(t), where j(t) =∫ t

0 e
2u h(e−u) du in characteristic zero and h(1)

2 λ(t) +
∑
k>1 h(q−k) q2k λ(t − k log q) in positive

characteristic, where q > 1 is the generator of N in positive characteristic, λ(t) is the characteristic
function of positive real numbers.

The function c0h(n) is equal to l(n)n2 − l(n−1) where the function l(n) is the inverse Mellin
transform of ζ(f, | |s2): ∫

N

l(n)ns dµN (n) = ζ(f, | |s2).

For more explicit formulas for h see the next section.
Immediately from the definition we get the following functional equation

h(n−1) = −n−2 h(n).

Hence eth(e−t) in characteristic zero and qth(q−t) in positive characteristic are odd functions of t,
and ω(| |1+s

2 ) is the Laplace–Stieltjes transform of an odd function.

7.2. Mean-periodic functions. Now we discuss the analytic shape of the function h. We are
interested to see what should be an additional condition on an odd infinitely differentiable function
g so that its Laplace–Stieltjes transform extends to a meromorphic function on the plane satisfying
G(s) = G(−s). There is no necessary condition, apparently, but there is a reasonably sufficient one
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which we describe below. Recall the definition of a mean-periodic function in a classical space
of functions on R. Start with the space C(R) of continuous functions on the line endowed with
the topology of uniform convergence on compact subsets. A complex valued function g is called
mean-periodic in C(R) if one of the following equivalent conditions is satisfied: a) there exists a
closed proper linear subspace of C(R) which contains all translates of g; b) g is a solution of a
homogeneous convolution equation g ∗ µ = 0 where µ is a non-zero element in the dual space of
C(R), i.e. µ is a non-zero complex valued regular Radon measure carried by a compact subset on the
line. These two conditions imply and are implied by the following condition c) g is the limit in C(R)
of linear combinations of polynomial exponentials pi(x)ezix each of which is annihilated by µ.

In the case of C(R) the class of mean-periodic functions is an extension of the class of periodic
functions; it is related to but does not contain the class of so called almost periodic functions.

Similarly one gives the definition of a mean-periodic function in other spaces of functions on R
and on Z. An element g of a given functional space X is called mean-periodic if it is a solution of a
homogeneous convolution equation g ∗ τ = 0 where τ is a non-zero element of the dual space X∗.

For the theory of mean-periodic functions in C(R) see [Kh], for a short review see [Me, p.169–
181]; for mean-periodic functions in E(R) see [BG], [BT], [BS]; for more general case of functional
spaces see [N1], [N2].

Define the causal function g+ associated to g

g+(t) = g(t) for t > 0, g+(0) = g(0)/2, g+(t) = 0 for t < 0.

If g is mean-periodic in X and if g is of finite exponential growth then g+ ◦ τ ∈ X∗ and for
sufficiently large <(s) its Laplace–Stieltjes transform equals to the function

G(s) =

∫ ∞
−∞

g+ ◦ τ (t) e−st dt∫ ∞
−∞

τ (t) e−st dt
.

This does not depend on the choice of τ 6= 0. Both the numerator and denominator extend to
entire functions on the plane, and hence G(s) has meromorphic extensions to the plane. It is called
the Laplace–Stieltjes–Carleman transform of g.

In the case of an odd mean-periodic function g the function G(s) is a symmetric: G(−s) = G(s).

7.3. A hypothesis on mean-periodicity. Now we state

Hypothesis. The zeta integral ζ(f, | |1+s
2 ) is the sum of an entire symmetric function and the

Laplace–Stieltjes–Carleman transform of an odd mean-periodic function in an appropriate func-
tional space.

More precisely, the spacesX = C∞exp(R) of infinitely differentiable functions on R of exponential
growth and X = F(Z) of functions on Z should do the job in characteristic zero and positive
characteristic.

These mean-periodic function and entire function are then uniquely determined.
If the hypothesis were proved then by the above discussion the zeta integral and hence the square

of the zeta function of E would have meromorphic extension to the plane and satisfy appropriate
functional equations.

Keeping in mind the material of the previous section, to verify the hypothesis one only needs to
show that the boundary term ω(| |1+s

2 ) is the sum of a symmetric entire function and the Laplace–
Stieltjes–Carleman transform of an odd mean-periodic function.
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Recall that one can define the Hasse–Weil zeta function

ζE(s) =
ζP 1(B)(s)
LE(s)

=
ζk(s) ζk(s− 1)

LE(s)

of E which depends only on the generic fibre of E, unlike the zeta function ζE(s), see [Se2–3]. See
5.5 for its description as the Hasse zeta function of a model of E. Denote by mb the number of
irreducible components without multiplicities in the geometric fibre Eb over a closed point b of B;
so mb = 1 for almost all b. Then

ζE(s) = nE(s) ζE(s), nE(s) =
∏

b∈B0,16i6nb

(1− |k(b)|ni,b(1−s))−1,

where if mb 6= 1 then ni,b are certain positive integers, 1 6 i 6 nb (nb is the number of irreducible
components in the singular fibre Eb with the component intersecting the zero section excluded),
such that

∑
16i6nb

ni,b = mb − 1. This easily follows from [Li, Thms 3.7, 4.35 in Ch. 9 and sect.
10.2.1 in Ch. 10], see also [Se2–Se3], [T2], and for a cohomological interpretation [Bl2, p.300]. In
particular, nE(s) and nE(s)−1 are holomorphic for <(s) > 1.

Thus in view of the previous discussion we get (see also sect. 48 in [F5])

Theorem. Let S = E be as above. Suppose that the function

H(t) =
{
h(e−t), t ∈ R, in characteristic zero,

h(q−t), t ∈ Z, in positive characteristic,

is a mean-periodic function in an appropriate functional space on R and Z.
Then the zeta integral ζ(f, | |s2) of E and the zeta function of E and of E extend meromorphically

to the plane and satisfy the functional equations:

ζE(f, | |s2) = ζE(f, | |2−s2 ),

cE(s) ζE(s)2 = cE(2− s) ζE(2− s)2,

mE(s) ζE(s)2 = ζE(2− s)2,

where cE(s) = cE,Sp (| |s2) is the vertical part of cE,S′(| |s2) defined in Corollary in 5.5,

mE(s) =
cE(s)

cE(2− s)
nE(s)2

nE(2− s)2 = N (condE)2−2s

where N (condE) =
∏
|k(b)|fb is the norm of the conductor of E, see 5.5.

To establish the mean-periodicity of H further study of the integral over ∂T0 will be useful.

7.4. Remarks. 1. Pursuing an analogy with L-functions, the Laplace transform of h in some
sense corresponds to the Mellin transform for a modular L-function, and the functional equation of
h and mean-periodicity of H is in some sense a weak analogue of the automorphic property of the
L-function.

2. In positive characteristic the known rationality in qs and functional equation of the zeta function
imply the mean-periodicity of H in the space F(Z).

3. The functional equations of ζE(s) and ζE(s) do not involve Γ-functions. In characteristic zero
the completed L-function ΛE(s) is the product of LE(s) and a certain factor ΓE(s), see e.g. [Se3].
However, the ratio ΓE(s)/ΓP1(B)(s), where ΓP1(B)(s) = Γk(s)Γk(s−1), is a simple rational function;
for example (s− 1)/(4π) if k = Q. Its square is invariant with respect to s→ 2− s. Thus, the factor
ΓE(s) in the functional equation of the denominator LE(s) of the zeta function is essentially due
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to the factor ΓP1(B)(s) in the functional equation of the numerator of the zeta function. Using the
previous Theorem and the formula for cE,S′(s) in 5.5, one can easily see that the mean-periodicity
of H(t) implies the functional equation of L2

E with its conjectured exponential factor exactly as
described in [Se2–Se3]. For more detail see 5.4 of [FRS].

4. An analogue of this theorem in the case of an arbitrary regular model S of a curve of genus g > 1
would be

ζS,S′ (f, | |s2) = ζS,S′ (f, | |2−s2 ),

cS(s)
(
ζS(s) ζP 1(B)(s)

g−1)2
= cS(2− s)

(
ζS(2− s) ζP 1(B)(2− s) g−1)2

,

the factor cS(s) is the product of exponential factors associated to curves in singular fibres, see
sect. 57 of [F5] for more details.

5. In characteristic zero work [FRS] shows that if the zeta-function of E has meromorphic con-
tinuation of expected shape and satisfies the functional equation then the corresponding functions
h and H are indeed mean-periodic as elements of appropriate functional spaces. In particular the
function H is mean-periodic in the space C∞exp(R). More generally, [FRS] demonstrates new links
between Hasse zeta functions which have meromorphic continuation of expected shape and satisfy
the functional equation and mean-periodic functions in C∞exp(R). Let g(x) is the inverse Mellin
transform of the product of an appropriate positive power of the completed Riemann zeta function
and the completed Hasse zeta function of an arithmetic surface which is rescaled to have the expected
functional equation with respect to s→ 1−swith sign ε. Then g(e−t)− εetg(et) is a mean-periodic
function in C∞exp(R) if and only if the completed zeta function extends to a meromorphic function of
expected shape and satisfied the functional equation.

For modular curves the convolutor forH can be obtained using the Connes–Soulé approach ([C],
[So], [D]) to zeros of GL(2) cuspidal automorphic representations, which in this sense is dual to the
two-dimensional commutative theory, see [Su2].

8. Monotone behaviour and poles of the zeta integral

In this section we will assume without loss of generality that S′ contains one horizontal curve, the
image of the zero section.
We study the asymptotic behaviour of h(n) near 0. The weak boundary ∂T0 of the space T0 is very
large in dimension two, which is likely to result in more decent (monotone) behaviour of certain
integrals of functions on it, and functions associated to h, and therefore to give more information on
the location of poles of the zeta integral which essentially correspond to zeros of the L-function.

For n ∈ N define

Log (n) =
{

logn in characteristic zero,
logq(n) in positive characteristic.

In positive characteristic define the derivative of a function g:Z −→ R as g′(k) = g(k)−g(k−1).
The singular behaviour of

∫
N−

h(n) ns−2 dµN− (n) at s = 2 (resp. qs = q2 in positive character-
istic) corresponds to the singular behaviour of the zeta integral and hence its first pole from the right
is at s = 2 of order 4. Let its principal part at s = 2 be

∑
16i64 ai(s − 2)−i with nonzero a4. Let

w(t) =
∑

06i63 cit
i be a polynomial of degree 3 such that

∫
N−

w(−Log n) ns−2 dµN− (n) equals
this principal part. Put c = c3. It is then easy to deduce that for the function H(t) defined in the
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previous section (t ∈ Z in positive characteristic) we have

H(t)−w(t)→ 0, t→∞,
H (i)(t)−w(i)(t)→ 0, t→∞, i > 1.

In particular, in positive characteristic the third derivative h(n)− 3h(nq) + 3h(nq2)− h(nq3) tends
to 6c when n→ 0 and in characteristic zero the third derivative h(e−t)′′′ tends to 6c when t→∞.
We also deduce that H(t) and its first derivatives are monotone for all sufficiently large t.

8.1. The monotone behaviour of the third derivative of H(t). We can ask a natural question
about the monotone behaviour of the third derivative of H(t) near infinity.

Hypothesis (∗) = (∗)E. The fourth derivative of H(t) keeps its sign for all sufficiently large t.

In characteristic zero this hypothesis can be translated into the following. Let k be of a number
field. Let Θ be the the theta function associated to k, so if k = Q then Θ(x) is the classical
ϑ(x) =

∑
k∈Z exp

(
−πk2x

)
.

For positive real a, b denote

wa,b(x) =
(
Θ(x−2a2)− 1

)(
Θ(x−2b2)− 1

)
− x2(

Θ(x2a2)− 1
)(

Θ(x2b2)− 1
)
.

For ν > 0 denote

Vν(x) =
∫ ∞

0
wa,νa−1 (x)

da

a
, Zν(e−t) = Vν(e−t)′′′′ =

(
x
d

dx

)4

Vν(x)
∣∣∣∣
x=e−t

.

Denote by c(ν) the coefficients of the generalized Dirichlet series

ζE,Sp (f, | |s2) = ζE(s)2c1−s =
∑
ν∈cEN

c(ν2)ν−s

where cE is defined in section 5, for all fibres. One can show that

h(x) = −e
∑
ν∈cEN

c(ν2)Vν2 (x),

where e is the square of the one-dimensional normalized measure of the norm one idele class group
of the field k(y0), see sect. 51–52 of [F5]. This implies that h(e−t)′′′′ = −eZ(e−t), where

Z(x) = ZE(x) =
∑
ν∈cEN

c(ν2)Zν2 (x).

Hence the hypothesis (∗) is equivalent to permanence of the sign of Z(x) in some open interval
(0, xc), with xc depending on the sequence c(ν).

See [Su1] for various analytic aspects of condition (∗).

8.2. A presentation of h as a Bessel series. Condition (∗) involves a modification of the Dirichlet
series associated to E, ν−s → Zν(x), using relatively nicely behaved functions coming from a
horizontal curve on E. Let, for simplicity, k = Q. Let K0 be the Bessel function

K0(x) =
1
2

∫ ∞
0

e−x(t+ 1
t )/2 dt

t
.

Then∫ ∞
0

(
ϑ(xa2)− 1

)(
ϑ(xν2a−2)− 1

) da
a

= 4
∑
l1,l2>1

K0(2πl1l2νx) = 4
∑
l>1

σ0(l)K0(2πlνx),
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where σ0 is the number of positive divisors. We get

Vν(x) = 4
∑
l>1

σ0(l)
(
K0(2πlνx−2)− x2K0(2πlνx2)

)
.

and using the formula for h(x) above one gets the explicit presentation of the function h(x) in 0.4
involving the K0-Bessel functions.

Now we have easy equalities(
x
d

dx

)4(
x2K0(ax2)

)
= a−1K1(ax2),

K1(x) =
(
16x + 288x3 + 16x5)K0(x)−

(
64x2 + 128x4)K1(x)

with K1-Bessel function involved. Define

Z̃ν(x) = − 2
πν

∑
l>1

σ0(l)
l

K1(2πlνx2), Z̃ν(x) =
1
ν
Z̃1
(
x
√
ν
)
,

Z̃(x) =
∑
ν∈cN

c(ν2) Z̃ν2 (x) =
∑
ν∈cN

c(ν2)
ν2 Z̃1

(
x ν
)
.

It is easy to show that the behaviour of Zν(x) and Z(x) when x→ 0 is determined by the behaviour
of Z̃ν(x), Z̃(x).

Denote

zE(x) =
∑
n>1

c(n2)Zn2 (x), where
∑
n>1

c(n2)
ns

= ζE(s)2

ZE(x) =
∑
n∈cEN

d(n2)Zn2 (x), where
∑
n∈cEN

d(n2)
ns

= c1−s
E ζE(s)2

where cE is the norm of the conductor of E. Then when x → 0 the function ZE(x) is essentially
Z̃E(x) which is defined similar to Z(x) above, and hence when x → 0 the function ZE(x) is
essentially c−1

E zE(cEx).

8.3. Computational results. The values of zE for elliptic curves over Q of conductor 11, 14 and
15; see [F6] for more data.

0.0001 -0.02209936 -0.00430284 -0.01224467
0.00015 -0.03239639 -0.01762461 -0.00690680
0.0002 -0.04033723 -0.02019897 -0.03442790
0.00025 -0.06067197 -0.03836163 -0.02397859
0.0003 -0.05233928 -0.03681643 -0.00666095
0.00035 -0.05038168 -0.04857686 -0.05275435
0.0004 -0.07032783 -0.02993865 -0.08676343
0.0005 -0.12873965 -0.06429276 -0.01910193
0.0006 -0.08550765 -0.07625369 -0.01575656
0.0007 -0.05162608 -0.08042476 -0.09561303
0.0008 -0.16379852 -0.07117065 -0.14347671
0.0009 -0.24833464 -0.09863808 -0.09859195
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0.001 -0.23124762 -0.13265245 -0.02801169
0.002 -0.37692750 -0.25255845 -0.07654677
0.003 -0.36465433 -0.30605619 -0.17510329
0.004 -0.50204280 -0.24187774 -0.22879872
0.005 -0.37769569 -0.24376896 -0.52118535
0.006 -0.60951615 -0.56471421 -0.26714385
0.007 -1.27808818 -0.67356415 -0.37544907
0.008 -0.61599746 -0.16889861 -0.24828527
0.009 -0.47875874 -0.52690224 -0.27983453
0.01 -1.06504316 -0.90987143 -0.93162037
0.02 -2.04246175 -2.04235986 -1.62653748
0.03 -2.78921872 -1.34496918 -0.27099005
0.04 -4.31556183 -2.22605813 -3.21836209
0.05 +1.21262051 -2.20966702 -1.14605886
0.06 -2.76069819 -2.32130104 -0.44322476
0.07 -5.73792947 +1.29951014 -1.21297325
0.08 -7.83473755 -3.04100641 -4.37079971
0.09 -4.32440954 -6.03835417 -4.03242881
0.1 +4.05851635 -2.82394023 +0.94470596

8.4. The role of hypothesis (∗). In positive characteristic sect. 53 of [F5] contains a similar more
explicit description of H (4)(t) and the proof of the following property: Suppose that there are no
poles of the zeta function ζE(s) inside the strip 1 < <(s) < 2 and that the order of the pole at qs = q
is greater than the order of any other s with qs 6= q, <(s) = 1. Then H (4)(t) keeps its sign for all
sufficient large t.

Theorem. In characteristic zero let r(t) be the second derivative with respect to t of h(n) +
c Log (n)3, n = e−t.

In positive characteristic let

r(t) =
h(1)

2
λ(t) +

(
h(q−1)− 3h(1)

2
)
λ(t− log q) +

(
h(q−2)− 3h(q−1) +

3h(1)
2
)
λ(t− 2 log q)

+
(
h(q−3)− 3h(q−2) + 3h(q−1)− h(1)

2
)
λ(t− 3 log q)

+
∑
k>4

(
h(q−k)− 3h(q−k+1) + 3h(q−k+2)− h(q−k+3)

)
λ(t− k log q),

where h(n) = h(n) + c (Log n)3 and the function λ(t) is the characteristic function of positive
integers.

Suppose that hypothesis (∗) holds. Then in every characteristic r(t) is monotone for all sufficiently
large t.

Denote by x0 the abscissa of convergence of

R(s) =
∫ ∞

0
e−(s−2)t dr(t).

Then x0 < 2 and x0 is a real pole of R(s). The boundary term ω(| |s2) and zeta integral ζ(f, | |s2)
extend meromorphically to the right half plane<(s) > x0, have a real pole x0 and do not have poles
inside the strip <(s) ∈ (x0, 2).
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Proof. The integral
∫
N−

(
h(n) + c Log (n)3)ns−2 dµN− (n) multiplied by (s− 2)3 in characteristic

zero equals
∫∞

0 e−(s−2)t dr(t)−
∑

06j62(s−2)2−j(h(e−t)− ct3
)(j)

(0). This integral multiplied by
(1− q2−s)3 in positive characteristic equals

∫∞
0 e−(s−2)t dr(t) where r(t) is as above. In each case

R(s) is a holomorphic function near s = 2 (resp. all s such that qs = q2 in positive characteristic).
Hence its abscissa of convergence x0 is smaller than 2.

If r(t) is monotone for t close to infinity, then the classical properties of the Laplace–Stieltjes
transform of monotone functions imply thatR(s) has a real singular pointx0 on its line of convergence
<(s) = x0 and is holomorphic in <(s) > x0. Thus, x0 is a real pole of R(s). Using the relation
between R(s) and ω(| |s2), and the zeta integral, we deduce that all these functions are holomorphic
inside the strip <(s) ∈ (x0, 2). See also sect. 54 in [F5].

8.5. From the relation between the zeta integral and zeta function and the relation between the zeta
function and L-function in the previous section we obtain

Corollary. Let the assumptions of the theorem hold. Assume that the zeta function ζE(s) (or
equivalently, LE(s)) extends to a meromorphic function on the half-plane <(s) > 1. Suppose that
ζE(s) (resp. LE(s)) has no real poles (resp. real zeros) in (1, 2). Then the the zeta integral ζ(f, | |s2)
does not have complex poles with <(s) ∈ (1, 2).

Assume, in addition, that the zeta function ζE(s) extends to a meromorphic function on the plane
and satisfies the functional equation, then the poles of ζ(f, | |s2) inside the critical strip <(s) ∈ (0, 2)
lie on the critical line <(s) = 1.

In dimension one it is elementary to show that the zeta function does not have real zeroes in
the critical strip outside the critical line. In contrast, the real zeros part of the Riemann hypothesis
for the L-function of elliptic curves E over number fields is not known in general. However, from
the computational point of view it is not difficult to check the real part for a given L-function. For
computational results on low lying zeros (including real zeros) of L-functions of elliptic curves over
rationals of conductor< 8000, see [R]. They imply the real part of the Riemann hypothesis for those
curves.

Thus, if condition (∗) holds for any of those elliptic curves then the Riemann hypothesis holds
for poles of ζk(s/2) ζE(s) and ζk(s/2) ζk(s) ζk(s− 1)/LE(s).

M. Suzuki proved the following result in [Su1] which gives an inverse result to the preceding
statement. Suppose that LE extends to an entire function satisfying the functional equation and let
the Riemann hypothesis hold for the L-function. If all nonreal zeros of LE(s) = LE(s)nE(s)−1 on
the critical line are single, and if the estimate

∑
0<=(z)6x |L′E(z)|−2 = O(x) holds, where z runs

through all zeros of LE(s) on the critical line, then the function ZE(x) is negative for all sufficiently
small positive x. If all nonreal zeros of LE(s) on the critical line are single, LE(1) = 0 and if the
estimate

∑
0<=(z)6x |L′E(z)|−2 = O(x) holds, where z runs through all zeros of LE on the critical

line, then the function ZE(x) is negative for all sufficiently small positive x.
Even if the analytic rank ofE is zero, the computations in 8.3 indicate that sometimes the function

ZE(x) tends to keep its sign near zero.
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9. Boundary integral and the pole at s = 1

Recall (section 2) that there are three levels of objects associated to S: the full adelic space A, the
space B which has a feature of both local and global objects, and finally the countable object K.
In the preceding study of the zeta function of the surface (and the class field theory of the field of
rational functions on the surface) the objects related to the first two levels play a dominant role.
This corresponds to the work with 0-cycles on S, and with structures of codimension two or integral
structures of rank two. Now we will involve the bottom level K and its relation to the middle level
B as well. The study of functoriality issues is usually quite separated from the study of special
values of zeta functions, and in the terminology of this work they proceed on different levels of
adelic objects. Using the objects of all three levels and the integral representation of the boundary
term this section outlines a new method to settle the equality of the analytic and arithmetic ranks of
the zeta function of E at s = 1.

We assume that E is as fixed in 5.3. In addition, we assume that the boundary term ω(| |s2) =∫
N−

h(n)ns−2 dµN− (n) and hence ζE(s) and LE(s) have analytic continuation and satisfy the
functional equation.

As in 6.3 we get ω(| |s2) =
∫
M−

ωm(| |s2) dµM− (m) where ωm(| |s2) = ω(1)
m (| |s2) + ω(2)

m (| |s2) and

ω(1)
m (| |s2) = |m|s−2

∫
T1

f (m−1α−1)
(
|α|−1 − 1

)
dµ(α),

ω(2)
m (| |s2) = |m|s

∫
T1/T0

∫
∂T0

(
|mγ|−1 f (m−1ρ−1γ−1β)− f (mγβ)

)
dµ∂T0 (β) dµT1/T0 (γ).

Recall that the integral
∫
M−

ω(1)
m (| |s2) dµM− (m) extends to an entire function on the complex plane,

see 7.1.

Let r be the arithmetic rank of E.
Choose horizontal curves yi, i ∈ I , |I| = r + 1, which include the image of the zero section of

p:E −→ B, and the curves corresponding to a choice of free generators of the group E(k), so r is
the arithmetic rank of the E. Take S− = {yi : i ∈ I}.

For every singular fibre take all its components, except one which intersects the zero section, and
denote them yj , 1 6 j 6

∑
nb, nb as in 7.3, b runs through closed points in the base for which the

fibre Eb is singular. In addition, in positive characteristic choose one nonsingular fibre y∗. Denote
the whole collection by yj , j ∈ J .

Now we sketch a new method to prove the equality of the arithmetic and analytic ranks of E
which is based on the theory of this work. We would like to show that the order of the pole of
the zeta integral at s = 1 equals 2|I| + 2|J |. If so, then using the comparison of the zeta integral
ζE,S′(f, | |s2) with the zeta function of E in section 5, and the relation between the zeta function of E
and L-function of E in section 7, we would obtain that the analytic rank of E equals r. The desired
equality would follow from (a) and (b).

(a) The Picard group of E is isomorphic to the cokernel of the map K× −→ B×E /
(
B×E ∩ VA×E

)
.

The quotient of the Picard group of E by the image of the Picard group of B with respect to p∗ is a
finitely generated group, which in positive characteristic is the quotient of the Neron–Severi group
of E modulo its subgroup generated by y∗. So we obtain that B×E is generated by the product of
B×E ∩VA×E , of a discrete group, of a compact group, corresponding to p∗Pic(B) in characteristic
zero and to p∗Pic0(B) in positive characteristic, and of the images of B×yi , i ∈ I and B×yj , j ∈ J .
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Recall that in positive characteristic the rank of the free part of the Neron–Severi group of E is equal
to r + 2 +

∑
nb, see [T2] and [Shi].

(b) Using the commutative diagramme in 6.1 and the description of B×E , the pole of the integral∫
M−

ω(2)
m (| |s2) dµM− (m) at s = 1 is expected to be equal to the pole at s = 1 of the integral in which

the internal integral
∫
∂T0

is replaced by
∫
∂T0

where T0 is the image of the product of T0,yi , T0,yj .
Using all this, the order of the pole at s = 1 of ω(| |s2) is expected to be equal to the order of the pole
at s = 1 of the product of the zeta integrals ζE,yi (f, | |s), i ∈ I , and of ζE,yj (f, | |1+s), j ∈ J , i.e. to
2(|I| + |J |).

See [F8] for more detail.

10. Automorphic functions of the surface E

It is an important fundamental open problem to understand what is a two-dimensional analogue of
spaces A×k /k×, G(OAk)\G(Ak)/G(k) where OAk are integral adeles.

In dimension two unlike in dimension one we cannot go directly, in one step, from the level of
K = k(S) to the level of the full adelic space AS . For some of the first attempts, which used the
levels A and B only, but not the level of K, see [Ka1], [G], see also [Sh].

We now suggest a candidate for an object functions on which can be viewed as automorphic
functions of E. This object comes from the study of the zeta integral in the previous sections.

Let the set S′ of curves on S be sufficiently large to include all vertical curves and the curves yi
as in the previous section. Denote

T× = A× × A×/V (A× × A×),

where V (A× × A×) is defined similar to V A in subsection 4.3. Let K× be the image of B× ×K×
with respect to the map

B× ×K× −→ A× ×A×/VA× −→ T×,

where the second map is the vertical map in the commutative diagramme in section 4.
In light of the work with the zeta integral it is natural to propose to study the space of continuous

C((X))-valued functions, possibly satisfying some restrictions, on T×/K× as a candidate for the
space of unramified automorphic forms associated to GL1 and E.

The quotient space T×/K× glues together the structure of the space T/T0 useful in the study of
the zeta integral and associated to the upper A and middle B level of the rhombus diagramme in
2.2 for integral structures of rank 2 with the structure of objects associated to the middle and bottom
level for integral structures of rank 1 including the quotient B×/K×(B× ∩ VA×) isomorphic to
Pic (E) in positive characteristic.

More generally, let G = GLn (or even more generally an algebraic reductive group). Let
TG = G(A)×G(A)/V (G(A)×G(A)), V (G(A)×G(A)) is defined similarly to V (A×A) but with
appropriate data at archimedean points of curves. Let KG be the image of the map

G(B)×G(K) −→ G(A)×G(A)/G(OA) −→ TG,

where the second map is the G-analogue of the vertical map in the commutative diagramme in 4.3.
Its local description is this: using Cartan decomposition for a two-dimensional local fieldGLn(F ) =
disjoint union ofGLn(O)Ml1,...,lnGLn(O),Ml1,...,ln is the diagonal matrix with entries tl12 , . . . , t

ln
2 ,

l1 6 . . . 6 ln, similarly GLn(O) = disjoint union of GLn(O)Nj1,...,jnGLn(O), Nj1,...,jn is the
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diagonal matrix with entries tj1
1 , . . . , t

jn
1 , j1 6 . . . 6 jn, and Ml1,...,ln acts on Nj1,...,jn sending it

to Nj1l1,...,jnln .

Irreducible representations of G × G in the space of continuous C((X))-valued functions on
TG/KG, satisfying some restrictions, could be viewed as a candidate for unramified automorphic
functions associated to G and E.
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