
Measure, integration and elements of harmonic analysis
on generalized loop spaces

Ivan Fesenko

In this work we extend the first part of the previous paper [F4] to higher dimensional local fields.
We introduce a nontrivial translation invariant measure on the additive group of higher dimensional
local fields, and then develop elements of integration and harmonic analysis. We also discuss its
relation with several other measure theories.

For an n-dimensional local field F a translation invariant measure µ is defined on a certain ring
A of measurable sets and takes values in R ((X1)) . . . ((Xn−1)) (which itself is an n-dimensional
local field whose last residue field is the archimedean field R). The ring A in the case of higher
dimensional fields with finite last residue field is the ring generated by characteristic functions of
shifts of fractional ideals, i.e. a + bO with a, b ∈ F and O the ring of integers of F with respect
to the n-dimensional structure. The measure is countably additive in a refined sense (see sections 7
and 8). Elements of integration theory are introduced in sections 9–13.

The additive group of a higher dimensional field has a certain topology on it with respect to
which it is not locally compact for n > 1. This topology plays a key role in higher class field theory
[F1–F3]. The additive group of F is self dual, which together with the measure and integration leads
to analogs of many classical results in Fourier analysis (section 14). In particular, for functions in
certain space we introduce their transform

F(f )(α) =
∫
ψ(αβ) f (β) dµ(β)

and show that F2(f )(α) = f (−α).
In section 16 we discuss the theory in the case where the last residue field is R or C.
In sections 17–21 we extend the previous theory to the case of generalized algebraic loop and

path spaces (including in particular the complexified space of smooth loops), and indicate how the
measure of this work can be used to extend p-adic zeta integrals associated to schemes over complete
discrete valuation fields, and how it is related to nonarchimedean measures on spaces of arcs, which
have recently found applications in algebraic geometry.

Theory of this paper can be viewed as a part of yet unknown general theory of harmonic analysis
on certain classes of non locally compact groups. It is expected to find further applications, in
particular towards integration on path spaces, which is important for mathematical explanation of
quantum physics (see section 18).
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Analysis on higher dimensional local fields

For various results about higher local fields see sections of [IHLF].

1. Let F be an n-dimensional local field, i.e. a complete discrete valuation field whose residue
field Fn−1 is an (n− 1)-dimensional local field; we include R and C in the class of one dimensional
local fields. Assume n > 1. Fix a local parameter tn of the discrete valuation field F . Choosing
lifts of local parameters of the residue fields of F gives a system of local parameters tn, . . . , t1 of
F (tn, . . . , t2 if the 1-dimensional residue field K of F is archimedean). Fix a lift of elements of
the last finite residue field to F (e.g. as multiplicative representatives); or fix a coefficient field for
the archimedean 1-dimensional residue field K in F . In the latter case F is isomorphic to the field
of formal power series K((t2)) . . . ((tn)). In all other cases F is isomorphic to E((tm+1)) . . . ((tn))
where either m = 0 and E is a finite field, or m > 1, E is of characteristic 0 with residue field
of positive characteristic; E is a finite extension of a field of type Q p{{t1}} . . . {{tm−1}} (for the
definition see [F1, sect. 17], [Z2]). Note that if if m > 1 then E is not a power series type field.

2. The previous choices supply a set S of representatives of the (n − 1)-dimensional local field
Fn−1 in F and every element of F can be uniquely written as

∑
sit

i
n, si ∈ S, with finitely many

non-zero coefficients for negative i.
Define a shift invariant topology on the additive group ofF by induction on dimension in two steps

(the topology on 1-dimensional local fields is the usual one). First, a sequence α(m) =
∑
s(m)
i tin,

m ∈ N, converges to 0 iff the residue of s(m)
i tends to 0 in the topology of Fn−1 for every i, and there

is i0 such that s(m)
i = 0 for all i < i0 and all m. Similarly one defines fundamental sequences. It is

easy to see that every fundamental sequence converges. Now consider on F the so called sequential
saturation topology (sequential topology for short): a subset of F is open iff every sequence which
converges to any element of it has almost all its elements in the set. For more details on the topology
see [F1–F3], [IHLF].

3. From now on assume that the 1-dimensional residue field F1 of F is non-archimedean (for the
remaining case see section 15). Denote by q the cardinality of the last finite residue field of F .
Denote the ring of integers of F by OF or even O, the maximal ideal by MF or M , and the group
of units by U ; denote by R the set of multiplicative representatives of the last finite residue field.
The multiplicative group F× is the product of infinite cyclic groups generated by tn, . . . , t1 and the
group of units U .

Denote by O the ring of integers of F with respect to the discrete valuation of rank one (so tn
generates the maximal ideal M of O). There is a projection p:O −→ O/M = Fn−1.

Fractional ideals of F are of two types: principal tinn . . . t
i1
1 O and nonprincipal

tinn . . . t
im+1
m+1p

−1(Fm) = ∪i tinn . . . t
im+1
m+1 t

i
mO = ∩j tinn . . . t

im+1+1
m+1 tjmO.

4. For a field L((t)) denote by resi = resti :L((t)) −→ L the linear map
∑
ajt

j → ai. Similarly
define res = res−1:L{{t}} −→ L in the case where L is a complete discrete valuation field of
characteristic zero (for the definition of L{{t}} see section 17 or [F1], [Z2]).

Let ψL be a complex valued character of the additive group L (L is a multi-dimensional local
field) with conductor OL (here and below the conductor of a character is by definition the largest
fractional ideal on which the character is trivial). Introduce

ψ′ = ψL ◦ res0:L((t)) −→ C×, ψ′ = ψL ◦ (π−1
L res):L{{t}} −→ C×,



Analysis on generalized loop spaces 3

where πL is a prime element of L. The conductor of ψ′ is the ring O of the corresponding field: i.e.
ψ′(O) = 1 6= ψ′(t−1

1 O).
The field E of section 1 has a finite extension of type M{{t1}} . . . {{tm−1}} which is the

compositum ofE and a finite extension of Q p [sect. 3 of Z2], so the restriction of ψ′M{{t1}}...{{tm−1}}
on E has conductor OE .

Thus by induction on dimension for an n-dimensional local field F there is a character (not
uniquely determined, of course)

ψ:F −→ C×

with conductor OF .

5. The additive group F is self-dual:

Lemma. The group XF of continuous characters on F is isomorphic to F :

XF = {α 7→ ψ(aα) : a ∈ F}.

Proof. Given a continuous character ψ′, there are i1, . . . , in such that ψ′(tinn . . . t
i1
1 O) = 1, and

so we may assume that the conductor of ψ′ is O. If F has the same characteristic as Fn−1
(equal characteristic case) then the restriction of ψ′ on O induces a continuous character on Fn−1
which by the (n − 1)-dimensional theory is a shift of ψFn−1 . Hence there is a0 ∈ O such that
ψ1(α) = ψ′(α) − ψ(a0α) is trivial on O. Similarly by induction, there is ai ∈ tinO such that
ψi+1(α) = ψi(α)− ψ(aiα) is trivial on t−in O. Then ψ′(α) = ψ(aα) with a =

∑+∞
0 ai.

In the mixed characteristic case it suffices to consider the case of L{{tn−1}}. The restriction of
ψ′ on tin−1L is of the form α 7→ ψ(aiα) with ai ∈ t−i−1

n−1 ML, and ai → 0 when i → +∞; hence
ψ′(α) = ψ(aα) for a =

∑+∞
−∞ ai.

Remark. Equip the group of characters of F with the topology of uniform convergence on
compact subsets (with respect to the sequential topology) of F . It is easy to verify that the map
a 7→ (α 7→ ψ(aα)) is a homeomorphism between F and the group of its characters.

6. To introduce a measure on F we first specify a nice class of measurable sets.

Definition. A distinguished subset is empty or a shift of a principal fractional ideal of O, i.e. is
of the form α + tinn . . . t

i1
1 O. Denote by A the minimal ring (i.e. closed with respect to finite union

and difference) containing all distinguished sets.

The following properties are easy to check, and we indicate proofs of only some of them.

It is straightforward to see that if the intersection of two distinguished sets is nonempty, then it
equals to one of them.

Call a set of type A =
⋃

i
Ai \ (

⋃
j
Bj) with distinguished disjoint sets Ai and distinguished

disjoint sets Bj such that
⋃
Bj ⊂

⋃
Ai a dd-set. One can arrange that each Bj is a subset of some

Ai: Ai \Bj = Ai \ (Ai ∩Bj) and Ai ∩Bj , if nonempty, is a distinguished set.
One easily checks that if A is also of the similar form

⋃
l
Cl \ (

⋃
k
Dk) then A =

⋃
(Ai
⋂
Cl) \(⋃

(Ai
⋂
Bj
⋂
Cl
⋂
Dk)

)
.

Call a disjoint union of dd-sets a ddd-set.

Lemma. The set of dd-sets is closed with respect to intersection, but not with respect to difference.
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The set of ddd-sets is closed with respect to intersection, difference and union, and thus coincides
with A.

A nonempty ddd-set B can be written as a disjoint union of matreshkas B(Ai) with disjoint
distinguished sets Ai. Here “matreshka" B(Ai) is defined as

B(Ai) = (Ai \ ∪jAij) ∪j (∪kAijk \ ∪lAijkl) ∪ . . .

where Ai...yz are some disjoint distinguished subsets of Ai...y.

Notice the misprint in the published version of [F4, sect. 4] where in the description of A the
words "disjoint union of" sets of type A are omitted.

Every element of A is a disjoint (maybe infinite countable) union of some distinguished subsets.
For n > 1 distinguished sets are closed but not open.

Alternatively, A is the minimal ring which contains sets α + tinp
−1(S), i ∈ Z , where S is in the

ring of sets of Fn−1.

Definition–Lemma. There is a unique measure µ with values in R ((X1)) . . . ((Xn−1)) which is
a shift invariant finitely additive measure on A such that µ(∅) = 0,

µ(tinn . . . t
i1
1 O) = q−i1Xin

n−1 . . . X
i2
1 .

The proof immediately follows from the properties of the distinguished sets. The measure does
depend on the choice of t2, . . . , tn.

We get µ(tinn p
−1(S)) = Xin

n−1µFn−1 (S) where µFn−1 is the normalized Haar measure on Fn−1
such that µFn−1 (OFn−1 ) = 1.

Definition. Let v:R((X1)) . . . ((Xn−1))→ Zn−1 be the discrete valuation of rankn−1 associated
to the local parameters Xn−1, . . . , X1. For a distinguished set A call I = v(µ(A)) its level.

Every set in A is a disjoint union of elementary dd-sets A of the form B \C with B ⊃ C, where
B is a distinguished set and C is a disjoint union of distinguished sets Ci. If the level of A equals
the level of every distinquished Ci, then

A = A′ \A′′

where A′′ = ∅ and A′ is a finite disjoint union of distinguished sets of the same level. Otherwise
A = A′ \ A′′ where A′ is a finite disjoint union of distinguished sets of the same level as A, and
A′′ ⊂ A′ is a finite disjoint union of distinguished sets of higher level. In both cases for every I we
have

0 6 resI µ(A′) 6 | resI µ(A)|, 0 6 resI µ(A′′) 6 | resI µ(A)|.

7. Remarks.

1. This measure can be viewed as induced (in appropriate sense) from a measure which takes
values in hyperreals ∗R . If one fixes a set of positive infinitesimals ω1, . . . , ωn−1 ∈ ∗R , each next
infinitesimally smaller than the previous one, then a surjective homomorphism from the fraction field
of approachable polynomials R [X1, . . . , Xn−1]ap to R ((X1)) . . . (Xn−1)), ωi 7→ Xi, determines
an isomorphism of a subquotient of ∗R onto R ((X1)) . . . ((Xn−1)).

2. The measure µ takes values in R ((X1)) . . . ((Xn−1)) which has the following total ordering:∑
n>n0

anX
n > 0, an ∈ R ((X1)) . . . ((Xn−2)), an0 6= 0, iff an0 > 0 in R ((X1)) . . . ((Xn−2)). For
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every non-empty A ∈ A we have µ(A) > 0; this property can be viewed a generalization of positive
real measures.

Notice that for n > 1 not every subset bounded from below has an infimum. Thus, the standard
concepts in real valued (or Banach spaces valued) measure theory, e.g. the outer measure, do not
seem to be useful here.

3. The choice of distinguished sets reflects in a way the structure of valued field. These sets are
different from cylinder sets which are used in analysis on infinite dimensional Hilbert spaces.

4. The set O ∈ A of measure 1 is the disjoint union of tnO ∈ A of measure Xn−1, tnt
−j
n−1O \

tnt
−j+1
n−1 O of measure qj(1− q−1)Xn−1 for j > 0, and tln−1O \ tl+1

n−1O of measure q−l(1− q−1) for
l > 0. Since

∑
j>0 q

j diverges, the measure µ is not countably additive.
A very important property of the measure µ is its countably additivity in the following refined

sense (which takes into consideration the topology on R ((X1)) . . . ((Xn−2))): for countably many
disjoint sets Ai in the ring of sets A such that their union ∪Ai is in A and

∑
µ(Ai) absolutely

converges we have µ(A) =
∑
µ(Ai) (see section 9).

5. The measure µ on elements of A takes values in R[X1][X−1
1 ] . . . [Xn−1][X−1

n−1]. So, at the
current stage (but not for the following material) one can choose positive real numbers r1, . . . , rn−1
and using the ring homomorphism

R[X1][X−1
1 ] . . . [Xn−1][X−1

n−1] −→ R, Xi 7→ ri

define a real valued finitely additive measure µr1,...,rn−1 on A. This measure is not positive and is
not countably additive; and the measure µ might be viewed as a range extension/lift of the measure
µr1,...,rn−1 to a countably additive measure in the sense of the previous remark.

The following theory cannot be directly applied to the measure µr1,...,rn−1 , since starting from
section 8 the integrals will take values in R((X1)) . . . ((Xn−1)), and then the substitution in such
power series is not defined in general.

8. For A ∈ A, α ∈ F× one has αA ∈ A and µ(αA) = |α|µ(A), where | | is an n-dimensional
module: |0| = 0, |tinn . . . t

i1
1 u| = q−jX

i2
1 . . . Xin

n−1 for u ∈ U . The module is a generalization
of the usual module on locally compact fields. For example, every α ∈ F can be written as a
convergent series

∑
αi1,...,in with αi1,...,in ∈ tinn . . . t

i1
1 O and |αi1,...,in | → 0.

9. Introduce a space RF of complex valued functions on F and their integrals against the measure
µ.

Definition. Call a series
∑
ci, ci ∈ C ((X1)) . . . ((Xn−1)), absolutely convergent if it converges

and if the series
∑

resXj

n−1
(ci) absolutely converges in C ((X1)) . . . ((Xn−2)) for every j.

For an absolutely convergent series
∑
ci and every subsequence ij the series

∑
cij absolutely

converges and the limit does not depend on the terms order.
If Ai are disjoint elementary dd-sets of the form A′i \ A′′i as in section 6, and if

∑
i µ(Ai)

absolutely converges, then
∑

i µ(A′i),
∑

i µ(A′′i ) absolutely converge.
From this it is easy to deduce that if A is a similar disjoint union of Bj = B′j \B′′j and

∑
j µ(Bj)

absolutely converges, then so does
∑
µ(Ai ∩Bj).

Lemma. Suppose that a function f :F −→ C can be written as
∑
ci charAi

with countably many
disjoint dd-sets Ai, ci ∈ C , where charC is the characteristic function of C, and suppose that the
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series
∑
ciµ(Ai) absolutely converges. If f has a second presentation of the same type

∑
dj charBj

,
then

∑
ciµ(Ai) =

∑
djµ(Bj).

Proof. We have the following property: if a distinguished set C is a coset of tknO and is represented
as the disjoint union of distinguished sets Ci such that

∑
µ(Ci) absolutely converges, then each

Ci contains a coset of tknO. By reducing the proof to the previous dimension, we then obtain
µ(C) =

∑
µ(Ci). Also notice that if

⋃
Ai =

⋃
Bj for distinguished disjoint sets, then for every i

eitherAi equals to the union of some ofBj , or the union ofAi and possibly several otherA’s equals
to one of Bj .

Let ei,j = ci if Ai ∩ Bj 6= ∅ and ei,j = 0 otherwise. Then similarly to the paragraph preceding
the Lemma one deduces that

∑
ei,jµ(Ai ∩Bj) absolutely converges. Hence we can assume that as

soon as Ai ∩Bj 6= ∅ then Bj ⊂ Ai and dj = ci. Concentrating on one Ai it is sufficient to show that
if O is the disjoint union of elementary dd-sets Ei = E′i \ E′′i and µ(Ei) absolutely converges, then
1 =

∑
µ(Ei). Then O is the disjoint union of E′i of level 0, and the disjoint union of E′′i of level

0 equals the disjoint union of Ei of positive level. To complete the proof use the first paragraph,
induction of the level and absolute convergence.

Definition. Define RF as the vector space generated by functions f as in the previous lemma
and by functions which are zero outside finitely many points. For an f as in the previous lemma
define its integral ∫

f dµ =
∑

ci µ(Ai),

and for f which are zero outside finitely many points define its integral as zero.

The previous definition implies that the integral is an additive function on RF .

Remark. Denote by A′ the ring of subsets A of F which are disjoint unions of countably many
Ai ∈ A such that

∑
µ(Ai) absolutely converges. Extend the measure µ on A′ by µ(A) =

∑
µ(Ai);

this measure is well defined by the previous lemma and one can show it is countably additive in the
sense of Remark 4 in section 7.

10. Remark. One can generalize the previous measure theory. Let C be a complete discrete
valuation ring with field of fractions K, and let t be its local parameter. Suppose that there is a shift
invariant R ((X1)) . . . ((Xn−1))-valued measure on the residue fieldB = C/tC. Similar to the theory
of the previous sections one defines a shift invariant R ((X1)) . . . ((Xn−1))((Xn))-valued measure
and integration on K. For example, the analog of the ring A is the minimal ring which contains sets
α + tip−1(S), where p:C → B is the residue map, S is from a class of measurable subsets of B; the
space of integrable functions is generated as a vector space by functions α→ g ◦ p(t−iα) extended
by zero outside tiC, where g is an integrable function on B.

11. Some important for harmonic analysis functions do not belong toRF , for example, the function
α 7→ ψ(aα) charA(α) for, say, A = O ∈ A, a 6∈ O. In the one dimensional case all such functions
do belong to the analog of RF .

We now extend the space RF .

Definition. Suppose that a function f :F → C is zero outside a distinguished subgroup A of F .
Suppose that there are finitely many a1, . . . , am ∈ A such that the function g(x) =

∑
i f (ai + x)

belongs to RF . Denote the space of such functions by R′F . For f ∈ R′F define∫
f dµ =

1
m

∫
g dµ.
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Lemma. The integral is well defined. If f ∈ RF then the integral coincides with the one defined in
the previous section. The integral is additive. For f ∈ R′F∫

f (α + a) dµ(α) =
∫
f (α) dµ(α)

and ∫
f (α) dµ(α) = |a|

∫
f (aα) dµ(α).

Proof. The integral is well defined: if h(x) =
∑

j f (bj +x) belongs toRF for bj ∈ A, j = 1, . . . ,m′,
then

∑
h(ai + x) =

∑
g(bj + x). So from h(ai + x) ∈ RF and the shift invariant property and the

similar property for g one gets m
∫
h dµ = m′

∫
g dµ.

The integral is additive: for two functions f1, f2:A→ C if∑
i

f1(ai + x),
∑
j

f2(bj + x) ∈ RF ,

then
∑

i,j fl(ai + bj + x) ∈ RF for l = 1, 2 and so∫
(f1 + f2) dµ =

∫
f1 dµ +

∫
f2 dµ.

The rest is clear.

For a subset S of F put ∫
S

fdµ =
∫
f charSdµ.

12. Remark. Alternatively, one can define the integral by analogy with the one dimensional
property: the integral of a nontrivial character over an open compact subgroup is zero.

Put ψ(C) = 0 if ψ takes more than one value on a distinguished set C and = the value of ψ if it
is constant on C. For a distinguished set A and a ∈ F× define∫

ψ(aα) charA(α) dµ(α) = µ(A)ψ(aA).

Extend the definition of the integral of ψ(aα) charA(α) by linearity to dd-sets A.
We claim that for a function f =

∑
cn ψ(anα) charAn

(α), with finite set {an} and with countably
many disjoint dd-sets An such that the series

∑
cnµ(An) absolutely converges, the sum∑

cn
∫
ψ(anα) charAn

(α) dµ(α) does not depend on the choice of cn, an, An.
Indeed, one can reduce to sets on which |f | is constant, then use the following property: if a

distinguished set C is the disjoint union of distinguished sets Ci, and

ψ(aα) charC(α) =
∑

diψ(biα) charCi (α)

with |di| = 1, absolutely convergent series
∑
di µ(Ci) and finitely many distinct bi, then

ψ(aC)µ(C) =
∑

di ψ(biCi)µ(Ci).

To deduce this property, one can assume bi = a, di = 1, C = O, a ∈ O, and then as in the proof
of Lemma in section 9 all Ci are cosets of tnO, and therefore everything is reduced to the previous
dimension n− 1.
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Thus we can define ∫
f dµ =

∑
cn

∫
ψ(anα) charAn (α) dµ(α).

This definition is compatible with the previous one: of course, for nontrivial characters on a
distinguished subgroup one has g = 0.

13. Examples.

1. We have
∫
tinn ...t

i1
1 O

ψ(aα) dµ(α) = q−i1X
i2
1 . . . Xin

n−1 if a ∈ t−inn . . . t
−i1
1 O and = 0 otherwise

(since then ψ(aα) is a nontrivial character on tinn . . . t
i1
1 O). Hence

∫
tinn ...t

i1
1 U

ψ(aα) dµ(α) =


0 if a 6∈ t−inn . . . t

−i1−1
1 O,

−q−1−i1X
i2
1 . . . Xin

n−1 if a ∈ t−inn . . . t
−i1−1
1 U ,

q−i1 (1− q−1)Xi2
1 . . . Xin

n−1 if a ∈ t−inn . . . t
−i1
1 O.

2. We get
∫
tinO

dµ = 0 for every i. Either one can argue as in [F4, sect.8] or use
∫
char{0} dµFn−1 = 0

and Lemma below. Of course, the sets tinO are not in A for n > 1.
If two functions f, h:O −→ C are constant on tnO\{0} and their restriction to O\tnO coincide,

then ∫
O

f dµ =
∫
O

h dµ.

Indeed, if (f − h)|tnO\{0} = c, then∫
O

(f − h)dµ =
∫
O

(f − h)dµ =
∫
O\tnO

(f − h) dµ +
∫
tnO

c dµ = 0.

From the definitions and Lemma in [F4, sect. 8] we immediately get

Lemma. Suppose that a function g:Fn−1 −→ C is inR′Fn−1
if n > 2 and is absolutely integrable if

n = 2 with respect to the normalized measure µFn−1 as in section 6. Then the function g ◦p extended
by zero outside O belongs to R′F and∫

O

g ◦ p dµ =
∫
Fn−1

g dµFn−1 .

14. It is more natural to extend the class of functions to C ((X1)) . . . ((Xn−1))-valued functions on
F .

Definition. Denote by RF the space of C ((X1)) . . . ((Xn−1))-valued function{
f =

∑
fi1,...,in−1X

i1
1 . . . X

in−1
n−1 , fi1,...,in−1 ∈ R

′
F

}
.

For f ∈ RF define ∫
F

fdµ =
∑

X
i1
1 . . . X

in−1
n−1

∫
F

fi1,...,in−1 dµ.

Similarly to the previous text one checks the correctness of the definition and the properties of
the integral.
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Definition. Denote by QF the subspace RF of C ((X1)) . . . ((Xn−1))-valued functions

f =
∑
fi1,...,in−1X

i1
1 . . . X

in−1
n−1 with fi1,...,in−1 ∈ RF generated by the characteristic functions of

shifts of fractional ideas of F .
For f ∈ QF introduce the transform function

F(f )(β) =
∫
F

f (α)ψ(αβ) dµ(α).

In particular,

F(char
tinn ...t

i1
1 O

) = q−i1X
i2
1 . . . Xin

n−1 chart−in
n ...t

−i1
1 O

.

Theorem. Given f ∈ QF , the function F(f ) belongs to QF and we have a double transform
formula

F2(f )(α) = f (−α).

Proof. First note that ψ(α) = ψFn−1 ◦ p(α) for all α ∈ O where ψFn−1 is an appropriate character
on Fn−1 with conductor OFn−1 .

It is sufficient to check the theorem for a complex valued function f . Furthermore, we can
assume that f has support in O, so f |O = g ◦ p for a function g ∈ QFn−1 .

We shall verify that

if β 6∈ O then F(f )(β) = 0;
if β ∈ O then F(f )(β) = Fn−1(g) ◦ p (β) (where Fn−1(g) denotes the transform of g with respect to
ψFn−1 and µFn−1).

For β 6∈ O the definitions imply

F(f )(β) =
∫
O

f (α)ψ(αβ) dµ(α) = 0.

For β ∈ O \ O×

F(f )(β) =
∫
O

f (α) dµ(α) =
∫
O

g ◦ p(α) dµ(α)

=
∫
Fn−1

g(α) dµFn−1 (α) = Fn−1(g)(0) = F(f )(0).

For β ∈ O×

F(f )(β) =
∫
F

f (α)ψ(αβ) dµ(α) =
∫
O

f (α)ψ(αβ) dµ(α)

=
∫
O

g ◦ p(α)ψE ◦ p(αβ) dµ(α) =
∫
Fn−1

g(α)ψFn−1 (αβ) dµFn−1 (α) = Fn−1(g)( p(β)).

It remains to use the (n− 1)-dimensional double transform formula.

15. Remarks.

1. In general we need to work with normalized measures corresponding to shifted characters. Similar
to the one dimensional case, if we start with a character ψ with conductor aO then the dual to µ
measure µ′ on F is normalized such that |a|µ(O)µ′(O) = 1. The double transform formula of
section 14 holds.
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2. Of course, one has an appropriate change of variable property of the integral. For example,
suppose that for a map h:F → F there are distinguished sets Ai = ci + tinn . . . t

i1
1 O (in, . . . , i1

depend on i) such that a) F is the disjoint union of Ai and finitely many points; b) h(Ai) is a
distinguished set or an element of F ; c) h|Ai is a map of type a 7→

∑
j>0 aj(a − ci)j , a ∈ Ai,

aj ∈ F such that h′ =
∑

j>1 ajj(a − ci)j−1 is defined on Ai and its module |h′(a)| is constant on
Ai. Then it is straightforward, similar to the one dimensional case, to show that for f ∈ RF∫

h(F )
f (β) dµ(β) =

∫
F

f (h(α)) |h′(α)| dµ(α).

3. By the well known theorem of Weil one can restore the topology of a group endowed with a
shift invariant nonzero separated real valued measure: it is induced from a locally compact group in
which the original group is thick (for more precise statements see e.g. [H, §62]). Relations between a
shift invariant R((X1)) . . . ((Xn−1))-measure on groups which are iterated inductive projective limits
of locally compact groups and their (higher dimensional) topology remains unclear, and would be
interesting to study.

Analysis on fields over archimedean local fields

Now assume that the 1-dimensional residue field K = F1 of F is archimedean.

16. Define a character ψ:K((t2)) . . . ((tn)) −→ C× as the composite of several res0:

K((t2)) . . . ((tn)) −→ K((t2)) . . . ((tn−1)) −→ . . . −→ K

and the archimedean character ψK(α) = exp(2πiTrK/R (α)) on K. The role of distinguished sets is
played by A = a + tinn . . . t

i2
2 D + tinn . . . t

i2+1
2 K[[t2]] where D is an open ball in K. In this case if the

intersection of two distinguished sets is nonempty then it equals either to one of them, or to a smaller
distinguished set. The measure is the shift invariant additive measure µ on the ring A generated by
distinguished sets with values in R ((X1)) . . . ((Xn−1)) such that µ(A) = µK(D)Xin

n−1 . . . X
i2
1 . It

can be extended to

µ
(
a + tinn . . . t

i2
2 C + tinn . . . t

i2+1
2 K[[t2]]

)
= µK(C)Xin

n . . . X
i2
2 ,

where C ⊂ K is a Lebesgue measurable set.
The module is∣∣ ∑

(i2,...,in)>(j2,...,jn)

ai2,...,int
i2
2 . . . t

in
n

∣∣ = |aj2,...,jn |KX
j2
1 . . . Xjn

n−1, aj2,...,jn 6= 0

where the module on the real K is the absolute value and on the complex K is the square of the
absolute value.

The definitions of spacesRF andR′F follow the general pattern of sections 9 and 10: for disjoint
dd-sets Ai such that

∑
ci µ(Ai) absolutely converges put∫ ∑

ci charAi
dµ =

∑
ci µ(Ai).

For a function f =
∑
ci ψ(aiα) charAi

(α) with finite set {ai} and with countably many disjoint
dd-sets Ai such that the series

∑
ci µ(Ai) absolutely converges put∫
f dµ =

∑
ci

∫
Ai

ψ(aiα) dµ(α),



Analysis on generalized loop spaces 11

where ∫
A

ψ(cα) dµ(α) = ψ(ca)Xin
n−1 . . . X

i2
1

∫
D

ψK(c−(i2,...,in)β) dµK(β),

c−(i2,...,in) = rest−in
n

. . . res
t
−i2
2

c,

A, a,D, i2, . . . , in are as above, and then we extend the definition to dd-sets by linearity.
We have analogs of the definitions and results of sections 9, 10.
Extend the definitions of spaces RF and QF of section 14; for example QF is the subspace RF

of C ((X1)) . . . ((Xn−1))-valued functions f =
∑
fi1,...,in−1X

i1
1 . . . X

in−1
n−1 with fi1,...,in−1 ∈ RF

generated by functions α 7→ g ◦ rest0
n

(tinn α) for a complex valued function g ∈ QFn−1 ; and QK is
the Schwarz space on K.

For example, we have

µ
(
tiR[[t]]

)
= 0 for every i,

µ
(
(−a, a)ti + ti+1R[[t]]

)
= 2aXi, a > 0;

(−a, a)ti + ti+1R[[t]] → tiR[[t]], 2aXi 6→ 0 when a → ∞, which is compatible with the above
restriction on absolute convergence. The equality∫

charR[[t]] dµ = 0

can be viewed, in physical terminology, as a renormalization of the divergent integral
∫ +∞
−∞ dx with

respect to Lebesque measure dx. One can further extend this to radiative corrections with finitely
many parameters X2, . . . , Xn playing the role of infinitesimally small elements: after an integral is
calculated, one is allowed to substitute concrete real values for Xi (see Remark 5 in section 8).

The transform of a function f ∈ QF is defined by the same formula

F(f )(β) =
∫
F

f (α)ψ(αβ) dµ(α).

The double transform formula is F2(f )(α) = f (−α) for f ∈ QF .
There is an appropriate change of variable formula for the integral.

Further extensions and relations to other measures

17. Generalized higher dimensional loop spaces. For a topological groupH define the topology
on (algebraic) loop space H((t)) similarly to section 2; extend this to the case of power series in
several variables.

If V is a discrete valuation space such that there is a prime p which is topologically nilpotent,
then introduce

V {{t}} = {
+∞∑
−∞

vit
i : vi ∈ V, vi → 0 when i→ −∞, (vi) is bounded above}

with topology defined similarly to the topology on L{{t}} in [F3].
Recall that for a finite dimensional simple Lie algebra g over C the formal loop algebra g((t)) is

defined as g⊗ C ((t)) [FZ, Ch. II].
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For a finite dimensional vector space g over a one-dimensional local field F (non-archimedean
and archimedean) the space G = g((t2)) . . . ((tn)) and for nonarchimedean g the space
g{{t1}} . . . {{tm−1}}((tm+1)) . . . ((tn)) with the defined above topology on them, and finite degree
vector spaces over them are natural to call generalized (higher dimensional, or iterated) loop spaces.
The additive group of an n-dimensional local field is a generalized loop space.

Similarly to section 5 one shows that a generalized loop space is self-dual. Similarly to sections 6–
16 one defines a shift invariant measure

µ:A→ R ((X1)) . . . ((Xn−1))

on the appropriate ring A of subsets of G, integration, transform and proves the double transform
property.

One immediately gets the extension of the measure from the algebraic loop space to the algebraic
path space, as well as to the space of an affine Lie algebra, and more generally to the space of a
toroidal Lie algebra.

18. Links to Feynman path integral. The loop space L of continuous complex valued functions
f from [0, 1], satisfying f (0) = f (1) = 0, contains a subspace of functions meromorphic in a
neighbourhood of the unit ball with a pole of finite order at the origin, which in turn is a subspace of
C((t)) by considering formal Laurent expansion. The space of paths P is the direct sum of L and C.

The measure (resp. transform) on algebraic loop space C((t)) over C introduced in this paper can
in some sense be viewed as an arithmetic analogue of the physical Feynman measure "Dx" on the
path space P , which is used in the not yet fully mathematically justified Feynman functional integral∫

P

f (x) exp(−iS(x)/~)Dx

for appropriate functions f, S on P .
Here is the list of several analogies:

(a) The (Gaussian measure if a is real) normalization for almost-eigenfunction
exp(−a||x||2), a ∈ R>0 ∪ iR>0, of Fourier transform is

(π/a)−1/2
∫

exp(−a||x||2) = 1.

Its analog for the theory of this work is

(π/a)−1/2
∫
C ((t))

exp(−a|p(x)|2) dµ(x) = 1

where p = res0:C [[t]]→ C is evaluation at 0 extended by zero outside C [[t]].
(b) Example 1 in section 13 reminds of the property of the Feynman integral to vanish on nonclassical
paths due to oscillation of the integrand.
(c) Example 8 in [F4] and the discussion in section 16 remind of renormalization issues in quantum
physics.
(d) The Wiener measure is often used in relation to the path integral, and there was an attempt to
use it for integration on two dimensional local fields [Sa]. An abstract approach [CD] to the path
integral based on prodistributions is reminiscent of an abstract approach to the Haar type measure
on two dimensional local fields in [Ka2].
(e) Feynman’s works used a translation invariant property of Dx, and there is no non trivial trans-
lation invariant countably additive real valued measure on the path space of continuous functions.
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The R((X))-valued measure µ is translation invariant and sigma additive in the refined sense (see
section 7).

For various mathematical approaches (functional analysis, stochastic, white noise, continuous
quantum measurement methods) to the path integral see [AHS], [JL], [Ko2] and references therein.
Methods involving analytic continuation can handle a wider range of potentials, but don’t normally
include the method of stationary phase and semiclassical limit when ~ → 0. The latter aspect
of Feynman integration is of utmost importance for physical applications, in particular in string
theory. It is not a part of most of mathematical approaches to the Feynman integral, with the notable
exception of the approach of Maslov–Chebotarev and its recent development by Kolokoltsov, and
the approach of Albeverio–Hoegh-Rohn–Truman and many of its extensions. However, in those
approaches the class of potentials which can be handled is smaller. None of known mathematical
approaches to the Feynman path integral goes far enough to justify numerous renormalization recipes
in physics. Recall that yet in 1930ies the problem of infinities was seen as "a gap in the understanding
of relativistic quantum field theory on the most fundamental level" [W, p. 33].

The measure µ on C((t)) takes into account structures different from those of a Hilbert or Banach
space. Still, it seems very interesting to ask the following question.

Is the translation invariant formal power series valued measure µ or its modification useful for a
mathematical description of the integration over path spaces in quantum physics, satisfactory both
from mathematical and physical point of view?

For example, the analytic duality supplied by the double Fourier transform property on loop
spaces could be related to some of dualities in string theory.

In accordance with Remark 5 in section 7 the real valued measure on the algebra of distinguished
sets will correspond to substitutionX → ~; it is not positive and not countably additive, which again
agrees with similar phenomena in many other approaches to the path integral.

One of applications of the measureµ is to the study of zeta functions of elliptic curves over number
fields [F5], and on the other hand Feynman path integral via semiclassical limit and Gutzwiller trace
formula can be used as an alternative method to random matrix theory in explanation of properties
of chaotic systems [St, Ch. 7–8]. Recall also that calculation of some of path integrals involves zeta-
regularized determinants. All this might potentially be of use in explanation of why the distribution
of the neighbour spacings of the zeros of ζ and L-functions of elliptic curves has the same statistics
as the distribution of eigenvalues of random matrices in the Gaussian unitary ensemble [LRMT].

19. Measure on generalized loop groups associated to algebraic groups. Let G be a connected
reductive split algebraic group over an n-dimensional local field F . Using the measure µ and
integration on F Kim and Lee define and study a spherical Hecke algebra of SL2(F ) and prove its
isomorphism with a spherical Hecke algebra of a maximal torus [KL]. It is expected that using the
measure µ on F one can define a translation invariant measure onG(F ). The analysis on G(F ) (and
its central extension – a generalized Kac–Moody group) is useful in the study of their representation
theory. In particular, it could lead to a refinement and extension of results of [Ka1] and [KG].

20. Higher dimensional local zeta integrals. Let F be of characteristic zero (in particular, a
formal power series field over R or C). In line with the second part of [F4] one can generalize the
p-adic zeta integral (often called Igusa zeta function) ([I], [D]) to an integral∫

A

χ(f (x)) dµ(x)

for an algebraic set A ⊂ Fm, a polynomial f and a quasi-character χ:F → C× (usually for
this theory it is assumed to be at most tamely ramified): extending the measure on F to finite
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dimensional affine spaces over it and using Hironaka’s desingularization as in [I], [D]. If F is
entirely nonarchimedean then one can do that even for semi-algebraic sets (for their definition in one
dimensional case see [DL3]).

What analogs of the known properties of the one-dimensional zeta function, stated e.g. in [D], will
hold for this higher dimensional zeta integral?

21. Links with the nonarchimedean measure. For a field k of characteristic zero and an
appropriate k-scheme S (e.g. a k-variety of pure dimension) the scheme of arcs of germs S is
the projective limit of truncated schemes Sn, which represents the functor of k-algebras R →
Mork(Spec R[t]/tn, S). A nonarchimedean measure µDL on the algebra of k[t]-semi-algebraic
subsets [DL3] of S and its applications in algebraic geometry are studied in many works, see [B],
[DL2–DL4]. The measure takes values in the separated completion M of Gk[L−1] with respect to
filtration subgroups generated by [Z]L−r, r−dimZ− r > i, i→ +∞; here Gk is the Grothendieck
ring of reduced separated schemes over k of finite type, and L is the class of A1

k. The group
M is a quotient of formal power series Gk[[L−1]]; it is endowed with the nonarchimedean norm
corresponding to the one dimensional filtration [DL3]. Similarly to the Gaussian and Wiener
measures in analysis, µDL is first defined on cylinder sets and then extended to a countably additive
measure. Sometimes the measure µDL is called "motivic", which unfortunately is a misleading
terminology.

Now let’s follow the material of section 10 and start with the discrete counting measure on k
adding to the ring of measurable sets the set k (which gets measureX). Then we obtain the measure
on k((t)) and then, as in the previous section, a measure µ0 on affine spaces and algebraic sets, this
measure takes values in Z ((X)). This measure is a weaker version of µDL (when X gets replaced
by L−1).

The measure µ of this work does take into account a non-trivial measure (and analytic topology)
of k if k is a locally compact field, because of this it has to take values in higher dimensional spaces
like R ((X)). The measure µDL takes into account the weaker Zariski topology, and its range is
essentially one dimensional.

A modification of the range of values of µDL from Gk to the group K0 of Chow motives over
k with coefficients in Qab in [DL1] leads to the definition of corresponding zeta integral such that
its specialization (L goes to q) for varieties over a one-dimensional nonarchimedean local field of
characteristic zero with good reduction gives the p-adic zeta integral of section 20, see [DL1].

A modification of the range of values of µDL from G to the group K0 of Chow motives over
k with coefficients in Q ab in [DL1] leads to the definition of corresponding zeta integral such that
its specialization (L goes to q) for varieties over a one-dimensional nonarchimedean local field of
characteristic zero with good reduction gives the p-adic zeta integral of section 20, see [DL1]. A
refinement of the measure µDL and of the zeta integral, which uses in particular elimination of
quantifiers for finite and Henselian valuation fields and Galois stratification theory is suggested in
[DL5–DL6]. It is proved that from a refined zeta function one can get uniformly p-adic zeta functions
for almost all p [DL5].

In the case of one-dimensional local fields k (archimedean or nonarchimedean) of characteristic
zero is there a kind of measure on S(k) which generalizes the measure µ of this work and simulta-
neously generalizes the nonarchimedean measure µDL or its refined version by taking into account
the analytic topology and nontrivial Haar measure on k?

Such a theory is supposed to include harmonic analysis, as does the theory of this paper. It then
can be used for analytic dualities studies, and applications, both in algebraic geometry and higher
arithmetic (for some of which see [F5]). It is clear that the values of such unknown measure should
be taken in a refined completed version M ′ of M (in particular, not integral power series type object
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but its quotient) endowed with a refined topology (not one-dimensional as in the case of the measure
µDL, but of the type similar to the sequential topology on formal power series over R), so that M ′

is self dual in appropriate sense.
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