ON ASYMPTOTIC EQUIVALENCE OF ELLIPTIC CURVES OVER \mathbb{Q}

Abstract

This short paper asks a question about a new asymptotic symmetry of the moduli space of FreyHellegouarch elliptic curves over rational numbers. If the answer to the question is positive then this allows to deduce an effective $(1+\varepsilon)$ abc-inequality from effective abc-inequalities established in [3].

1. An elliptic curve over \mathbb{Q} with all its 2-torsions points \mathbb{Q}-rational is isomorphic over an algebraic closure of \mathbb{Q} to a (Frey-Hellegouarch) curve $E_{a, b}$ with affine equation

$$
y^{2}=x(x+a)(x-b)
$$

for some coprime non-zero integers a, b. It can be written in the Weierstrass form as

$$
Y^{2}=X^{3}-27 c_{4} X-54 c_{6}, \quad c_{4}=16\left(a^{2}+a b+b^{2}\right), \quad c_{6}=32(b-a)(2 a+b)(a+2 b) .
$$

Its discriminant $\Delta=\left(c_{4}^{3}-c_{6}^{2}\right) / 1728=16(a b(a+b))^{2}$. The minimal discriminant of $E_{a, b}$ is the same if 16 does not divide $a b c$ or if $a \equiv-1 \bmod 4$ and $b \equiv 0 \bmod 16$, and $16^{-2}(a b(a+b))^{2}$ if $a \equiv 1 \bmod 4$ and $b \equiv 0 \bmod 16$.

Every elliptic curve over \mathbb{Q} all of whose 2-torsion points are in \mathbb{Q} is isomorphic over the algebraic closure of \mathbb{Q} to such a curve.

In particular,

$$
\left(a^{2}+a b+b^{2}\right)^{3}=((b-a)(2 a+b)(a+2 b) / 2)^{2}+3^{3}(a b(a+b) / 2)^{2} .
$$

The j-invariant of the Weierstrass equation is

$$
j_{a, b}=2^{8} \cdot \frac{\left(a^{2}+a b+b^{2}\right)^{3}}{(a b(a+b))^{2}}=2^{6} \cdot \frac{((b-a)(2 a+b)(a+2 b))^{2}}{(a b(a+b))^{2}}+2^{6} \cdot 3^{3} .
$$

For a non-zero integer its radical rad is the product of its prime divisors taken each with multiplicity one and its odd radical rad ${ }^{\prime}$ is the product of its odd prime divisors taken each with multiplicity one.

If $16 \times a b(a+b)$ then $\operatorname{cond}\left(E_{a, b}\right)<2^{12} \operatorname{rad}^{\prime}(a b(a+b))$. If $16 \mid a b(a+b)$ and say $4|(a-1), 16| b$ then $\operatorname{cond}\left(E_{a, b}\right)=$ $\operatorname{rad}\left(2^{-4} a b(a+b)\right) \leqslant \operatorname{rad}(a b(a+b))$. If $16 \mid a b(a+b)$ and say $4|(a+1), 16| b$ then $\operatorname{cond}\left(E_{a, b}\right) \leqslant 2^{4+2 l} \operatorname{rad}^{\prime}(a b(a+$ $b)$) where l is the maximal power of 2 dividing b. All this is very well known. See e.g. sect. 12.5 of [1]. Note that the statement "Since E has multiplicative reduction all all primes $p \mid \Delta$ " in the top line of its p. 434 is incorrect as the example of $E_{1,16}$ shows, but the inequality for the LHS and RHS of the next displayed inequality on that page is correct.

Now let in addition $0<a<b, a, b$ are still coprime. Put $c=a+b$. Define

$$
A=(b-a) / d, B=(2 a+b) / d, C=A+B=(a+2 b) / d,
$$

where $d=\operatorname{gcd}(b-a, 2 a+b)(=1$ or 3$)$. Then $0<A<B$, and A, B are coprime.

We have

$$
\begin{aligned}
& a^{2}+a b+b^{2}=d^{2}\left(A^{2}+A B+B^{2}\right) / 3 \\
& a b(a+b)=d^{3}(B-A)(A+2 B)(2 A+B) / 3^{3} \\
& (b-a)(2 a+b)(a+2 b)=d^{3} A B(A+B)
\end{aligned}
$$

The map $\phi:(a, b) \mapsto(A, B)$ is an involution: $\phi^{2}=\mathrm{id}$. It is a special map relating the two terms on the RHS of (\dagger). Thus we have an involution map on the moduli space of Frey-Hellegouarch elliptic curves: $E_{a, b} \mapsto E_{A, B}$.

From (\dagger) one gets

$$
\left(a^{2}+a b+b^{2}\right)^{3}=((b-a)(2 a+b)(a+2 b) / 2)^{2}+3^{3}(a b(a+b) / 2)^{2}
$$

and

$$
\left(A^{2}+A B+B^{2}\right)^{3}=3^{3}(A B(A+B) / 2)^{2}+((B-A)(2 A+B)(A+2 B) / 2)^{2} .
$$

We also have $j_{A, B}=12^{3} j_{a, b} /\left(j_{a, b}-12^{3}\right)=\left(12^{-3}-j_{a, b}^{-1}\right)^{-1}$.

Question (abc-ABC question). Are the following equivalent statements true?

1. $\operatorname{rad}(a b c)$ and $\operatorname{rad}(A B C)$ are effectively asymptotically equal, i.e. for every $\varepsilon>0$ there are constants $\mathfrak{c}_{\varepsilon}, \mathfrak{c}_{\varepsilon}^{\prime}$, effectively depending on ε, such that for all relatively prime positive $a<b$

$$
\operatorname{rad}(a b c)<\mathfrak{c}_{\varepsilon} \cdot \operatorname{rad}(A B C)^{1+\varepsilon}, \quad \operatorname{rad}(A B C)<\mathfrak{c}_{\varepsilon}^{\prime} \cdot \operatorname{rad}(a b c)^{1+\varepsilon}
$$

2. For every $\varepsilon>0$ there is a positive constant κ_{ε} such that for all positive coprime integers $a<b$

$$
\operatorname{rad}((b-a)(2 a+b)(a+2 b))<\kappa_{\varepsilon} \cdot \operatorname{rad}(a b(a+b))^{1+\varepsilon}
$$

with κ_{ε} effectively dependent on ε.
3. $\operatorname{rad}\left(\Delta\left(E_{a, b}\right)\right)$ and $\operatorname{rad}\left(\Delta\left(E_{A, B}\right)\right)$ are effectively asymptotically equivalent.
4. $\operatorname{rad}\left(c_{6}\left(E_{a, b}\right)\right)$ and $\operatorname{rad}\left(\Delta\left(E_{a, b}\right)\right)$ are effectively asymptotically equivalent.

The proof of the equivalences is immediate.
The involution ϕ corresponds to $x \mapsto(1-x) /(2 x+1)$ on \mathbb{P}^{1} sending the divisor $[0]+[1]+[\infty]$ to $[0]+[1]+$ $[-1 / 2]$. We have $\operatorname{rad}(a b c)=\operatorname{cond}_{[0]+[1]+[\infty]}(a: b)=\operatorname{cond}_{[0]+[1]+[-1 / 2]}(A: B)$ and $\operatorname{rad}(A B C)=\operatorname{cond}_{[0]+[1]+[\infty]}(A: B)$.

The positive answer to the Question signifies a new asymptotic symmetry of the moduli space of elliptic curves over \mathbb{Q} all of whose 2-torsion points are \mathbb{Q}-rational.
2. A recent paper [3] slightly extends the IUT theory of S. Mochizuki [2] and establishes two effective abc inequalities.

One of the established effective abc inequalities is:
for every $\varepsilon>0$ there is an effectively described constant C_{ε}^{\prime} such that for all relatively prime positive integer numbers a, b, the inequality

$$
\log (a+b)<1.5(1+\varepsilon) \cdot \log \operatorname{rad}(a b(a+b))+C_{\varepsilon}^{\prime}
$$

holds. The constant C_{1}^{\prime} is slightly larger than $8.5 \cdot 10^{29}$. A version of this inequality is also established over
quadratic imaginary fields.
Another established effective abc inequality is:
for every $\varepsilon>0$ there is an effectively described constant C_{ε} such that for all relatively prime positive integer numbers a, b, the inequality

$$
\log (a b(a+b))<3(1+\varepsilon) \cdot \log \operatorname{rad}(a b(a+b))+C_{\varepsilon}
$$

holds. The constant C_{1} is slightly larger than $1.7 \cdot 10^{30}$.
The second abc inequality implies the first one. The second inequality was stated as a conjecture by Szpiro in [4] in 1990.

Among several motivations for the Question in the previous section, one motivation comes from the study of an issue of how to deduce an effective $(1+\varepsilon)$-abc inequality from the effective abc inequalities in [3] and mentioned above. Let's see how a potential positive answer to the abc-ABC Question helps in this direction.

Fix a positive integer m. The second abc inequality above implies that for every positive ε for all non-zero integers a, b, c such that $a+b+c=0$ and $\operatorname{gcd}(a, b, c)$ divides m we have

$$
\log |a b c|<3(1+\varepsilon) \cdot \log \operatorname{rad}(a b c)+C_{\varepsilon}+3 \log m .
$$

In view of (\dagger), consider the equation

$$
x^{3}=y^{2}+3^{3} z^{2}, \quad x, y, z>0, \quad \operatorname{gcd}(x, y, z) \mid 3 .
$$

The following is a variation of arguments presented in sect. 12.5 of [1].
 Assume that $y^{2} \leqslant 3^{3} z^{2}$, then we deduce $y<_{\varepsilon} \operatorname{rad}(x y z)^{(1+\varepsilon) / 2}$, and since $x^{3} \leqslant 2 \cdot 3^{3} z^{2}$, we get $x^{6} y^{2} \leqslant x^{3}$. $2 \cdot 3^{3} z^{2} \cdot y^{2} \ll_{\varepsilon} \operatorname{rad}(x y z)^{3(1+\varepsilon)}$ and $x^{6} y^{6} \ll_{\varepsilon} \operatorname{rad}(x y z)^{5(1+\varepsilon)}$, so $x y<_{\varepsilon} \operatorname{rad}(z)^{5(1+\varepsilon)}$. Substituting the latter in the RHS of $y \ll_{\varepsilon} \operatorname{rad}(x y z)^{(1+\varepsilon) / 2}$, we obtain $y \ll_{\varepsilon} \operatorname{rad}(z)^{3(1+\varepsilon)}$. From $x^{6} y^{2}{\ll{ }_{\varepsilon} \operatorname{rad}(x y z)^{3(1+\varepsilon)} \text { we deduce }}^{2}$ $x^{3} \ll{ }_{\varepsilon} y^{1+\varepsilon} \cdot \operatorname{rad}(z)^{3(1+\varepsilon)}$ so $x^{3} \ll_{\varepsilon} \operatorname{rad}(z)^{6(1+\varepsilon)}$, hence $x \ll_{\varepsilon} \operatorname{rad}(z)^{2(1+\varepsilon)}$. Thus, (\#) implies: if $y^{2} \leqslant 3^{3} z^{2}$ then $x \lll_{\varepsilon} \operatorname{rad}(z)^{2(1+\varepsilon)}$. We obtain similarly that if $y^{2} \geqslant 3^{3} z^{2}$ then $x<_{\varepsilon} \operatorname{rad}(y)^{2(1+\varepsilon)}$. All the implied constants are explicit functions of C_{ε}.

Now, for positive coprime $a<b$ denote $x=a^{2}+a b+b^{2}, y=(b-a)(2 a+b)(a+2 b) / 2, z=a b(a+b) / 2$. Then $x^{3}=y^{2}+3^{3} z^{2}$. Note that since a and b are coprime, $\operatorname{gcd}(x, y, z)$ divides 3 , so we can apply the previous paragraph to x, y, z. We deduce from the previous paragraph: if $((b-a)(2 a+b)(a+2 b))^{2} \leqslant 3^{3}(a b(a+b))^{2}$ then $3 c^{2} / 4 \leqslant a^{2}+a b+b^{2} \ll \varepsilon \varepsilon^{\operatorname{rad}(a b c)^{2+\varepsilon}}$ and hence $c<_{\varepsilon} \operatorname{rad}(a b c)^{1+\varepsilon}$; if $((b-a)(2 a+b)(a+2 b))^{2} \geqslant$ $3^{3}(a b(a+b))^{2}$, i.e. $((B-A)(2 A+B)(A+2 B))^{2} \leqslant 3^{3}(A B(A+B))^{2}$, then $A^{2}+A B+B^{2} \lll \varepsilon^{\operatorname{rad}(A B C)^{2+\varepsilon}}$ and hence $c \ll_{\varepsilon} \operatorname{rad}(A B C)^{1+\varepsilon}$. All the implied constants are explicit functions of C_{ε}.

Therefore, the inequality (\sharp) implies:
Theorem 1. For every positive ε there is an effectively described constant K_{ε} such that for all coprime positive integers a, b and their sum $c=a+b$ and A, B, C defined for a, b as above

$$
\log c<(1+\varepsilon) \cdot \log \max \{\operatorname{rad}(a b c), \operatorname{rad}(A B C)\}+K_{\varepsilon} .
$$

Using Theorem 1 we obtain

Theorem 2. Assume that the abc-ABC Question has positive answer. Then for every positive ε there is an effectively described constant L_{ε} such that for all coprime positive integers a, b and their sum $c=a+b$ the inequality

$$
\log c<(1+\varepsilon) \cdot \log \operatorname{rad}(a b c)+L_{\varepsilon}
$$

holds.

REFERENCES

[1] E. Bombieri, W. Gubler, Heights in Diophantine geometry, CUP 2007.
[2] Sh. Mochizuki, Inter-universal Teichmüller theory I: Constructions of Hodge theaters, Publ. Res. Inst. Math. Sci. 57(2021) 3-207; II: Hodge-Arakelov-theoretic evaluation, Publ. Res. Inst. Math. Sci. 57(2021) 209-401; III: Canonical splittings of the log-theta-lattice, Publ. Res. Inst. Math. Sci. 57(2021) 403-626; IV: Log-volume computations and set-theoretic foundations, Publ. Res. Inst. Math. Sci. 57(2021) 627-723.
[3] S. Mochizuki, I. Fesenko, Y. Hoshi, A. Minamide and W. Porowski, Explicit estimates in inter-universal Teichmüller theory, RIMS Preprint 1933, November 2020, available from https://www.kurims.kyoto-u.ac.jp/~motizuki/Explicit\% 20estimates\%20in\%20IUTeich.pdf
[4] L. SzPIRO, Discriminant et conducteur des courbes elliptiques, Astérisque 183(1990) 7-18.

