
ON DEEPLY RAMIFIED EXTENSIONS

Ivan B. Fesenko

Recently J. Coates and R. Greenberg have introduced a new important class of

extensions of local number fields with finite residue field which they call deeply ramified

fields. These extensions play an essential role in their study of the arithmetics of abelian

varieties over local fields with finite residue fields [1].

The first aim of this paper is to provide an ‘elementary’ treatment of deeply ramified

extensions of local fields with arbitrary perfect residue fields using a method different

from the original approach of Coates and Greenberg. Equivalent properties-definitions

(1), (3)–(8) of deeply ramified extensions in the first section are due to them, and for

their proofs a presentation of the different as an integral was involved. We translate

the most important constructions into the language of the Hasse–Herbrand function

(Section 1) and then apply methods of the third Chapter of [3], where the Hasse-

Herbrand function is defined in terms of the norm map. Some of properties of deeply

ramified extensions (two implications in the language of this paper) have been already

studied by M. Matignon [7] and J. Fresnel, M. Matignon [5] for different purposes (see

Remark (1.6) and the beginning of the second section).

The second aim of this text is to expose relations among classes of deeply ramified

extensions, that of arithmetically profinite extensions (subsections 2.1-2.4) and that

of p-adic Lie extensions (subsection 2.5-2.7). For local fields with finite residue field

we give in (2.2) an example of a Galois deeply ramified extension with infinite residue

extension in which every Galois deeply ramified subextension is not arithmetically profi-

nite; and in (2.4) – an example of a Galois deeply ramified extension with finite residue

field extension and a nondiscrete set of breaks (that means that this extension is not

arithmetically profinite). The main result is that for local fields with finite residue field

the class of Galois deeply ramified extensions with finite residue extension and a discrete

set of breaks coincides with the class of infinite Galois arithmetically profinite exten-

sions (Proposition 2.3). However, in the case of the fields with infinite residue fields

Proposition (2.3) doesn’t hold (subsection 2.1). In (2.5) we construct an example that

shows that the class of infinite Galois totally ramified arithmetically profinite extensions

is strictly larger than the class of the most natural arithmetic origin – the class of totally

ramified p-adic Lie extensions. Subsection (2.6) contains an example of a Galois deeply
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2 I. B. FESENKO

and totally ramified extension L of a local field F with finite residue field such that the

norm group of L/E is of finite index in E∗.

1. Equivalent properties of deeply ramified extensions

Let F be a local field (in this paper — a complete discrete valuation field with

perfect residue field of characteristic p > 0). We will assume that extensions of fields

are separable. Let F/F be an extension (possibly infinite). LetMF denote the maximal

ideal of F with respect to the extension of the discrete valuation vF from F to F . For a

finite extension E/F we denote by e(E|F ) the ramification index of E/F and by hE/F
the Hasse–Herbrand function of E/F , see for example Section 3 Chapter III of [3]. For

a cyclic ramified extension L/F of a prime degree put s(L|F ) = vL(π−1L σπL− 1) with

a prime element πL of L and a generator σ of Gal(L/F ). Then the invariant s is well

defined and s = 0, > 0 for tamely totally ramified and wildly ramified extensions resp.

(see for instance Section 1 Chapter III of [3]).

1.1. Theorem. The following properties of an extension F/F are equivalent:

(1) for every m > −1 and every ε > 0 there exists a finite subextension E/F in

F/F such that hE/F (m)/e(E|F ) < ε;

(2) for every cyclic ramified extension F ′/F of prime degree and every ε > 0

there exists a finite subextension E/F in F/F such that F ′/F is defined

over E (i.e. F ′ = FE′ for a cyclic extension E′/E of the same degree) and

s(E′|E)/e(E|F ) < ε;

(3) e(F|F ) = +∞ and H1(Gal(F ′/F),MF ′) = 0 for every cyclic extension F ′/F
of prime degree;

(4) H1(Gal(F ′/F),MF ′) = 0 for every finite extension F ′/F ;

(5) TrF ′/FMF ′ =MF for every finite extension F ′/F .

1.2. Remark. It follows immediately from the properties of the Hasse–Herbrand

function (hL/F = hL/E ◦ hE/F , hL/F (x) 6 e(L|F )x) that hL/F 6 e(L|E)hE/F for

a finite extension L/E. From this we deduce that if hE/F (m)/e(E|F ) < ε, then

hL/F (m)/e(L|F ) < ε for a finite extension L/E. Note also that for a finite extension

M/F and m′ = hM/F (m)

hME/M (m′)/e(ME|M) = e(M |F )hME/F (m)/e(ME|F ).

We conclude that if property (1) holds for F/F , then it holds for F ′/F and F/M ,

where F ′/F is an extension and M/F is a finite subextension in F/F . In addition, if

(1) holds for F/F and F/F0 is finite, F ⊆ F0, then (1) holds for F0/F .

1.3. Remark. 1 Recall the well known elementary fact: if R/S and T/S are

totally ramified cyclic extensions of degree p, linearly disjoint with each other, then

1three changes, marked by footnotes, provide an improved or more detailed version; they are
due to questions from V. Edenfeld
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s(R|S) < s(T |S) implies s(RT |R) = ps(T |S)− (p− 1)s(R|S), and s(R|S) = s(T |S)

implies s(RT |R) 6 s(T |S).

Observation: s(QN |N)/e(N |F ) 6 s(Q|K)/e(K|F ) for linearly disjoint totally ram-

ified Q/K and N/K. Indeed, s(QN |N) 6 hQN/Q(s(Q|K)) 6 e(N |K)s(Q|K).

Clearly, property (2) does not depend on the finite base field F change. We will

show in the rest of this Remark that if property (2) holds for F/F and L/F is a finite

extension, then property (2) holds for L/F .

It suffices to check this when L/F is cyclic of degree p and not unramified. Abbre-

viate e(K) := e(K|F ), s(Q|N) := s(Q|N)/e(N |F ).

By the assumption, for every δ ∈ (0, (2p(p − 1))−1) there is a finite subextension

E0/F of F/F such that L/F is defined over E0 (with the same meaning as in Theorem,

so in particular L = FE′0, E′0/E0 is cyclic of degree p) such that s(E′0|E0) < δ. Due

to the observation, the same inequality holds for any finite extension E of E0 inside

F . Since L/F is assumed not to satisfy (2), there is a totally ramified cyclic extension

M/L of degree p and ε′ > 0 such that for every finite subextension P/F of L/F such

that M/L is defined over P (in particular, M = LP ′ for a cyclic extension P ′/P of

degree p) we have s(P ′|P ) > ε′. Using the observation, denote by ε the infimum of the

set of real numbers s(QP ′|Q) where Q/P are finite subextensions of L/P . Increasing

P if necessary, we can assume that for all such Q/P we have ε 6 s(QP ′|P ′) < c ε

where 1 < c < p and (c − 1)ε < p−1 − p−2. We can also assume that P is a totally

ramified cyclic extension of E as above, disjoint with F/E, and that e(E) > 4p.

Fix a totally ramified cyclic extension R/E, linearly disjoint with P/E, such that

s(R|E)+2 > pe(E)/(p−1), s(R|E) 6= s(P |E) (so then s(RP |P ) > s(R|E)). Suppose

R/E were a subextension of F/E. Then s(RP |P ) > s(P ′|P ) implies s(RP ′|RP ) 6

p−1s(P ′|P ) which contradicts c < p, and s(RP |P ) < s(P ′|P ) implies (c − 1)ε >

s(P ′|P )− s(RP ′|RP ) = (1− p−1) s(RP |P ) > 4− 2p−1 which again contradicts the

choice of c. Hence R/E is linearly disjoint with F/E.

Using the observation, property (2), the extension FR/F defined over E and P/E,

we can find a finite subextension V/P of L/P such that s(V PR|V ) < δ. We can

assume that V = Pn, P = P1, Pi+1/Pi for 1 6 i 6 n − 1 is totally ramified cyclic

of degree p. Denote Ti = RPi, si = s(Pi+1|Pi) and s′i = s(Ti|Pi). If s1 < s′1
then either for some 2 6 m < n we have si < s′i for 1 6 i 6 m − 1 and sm >

s′m = pm−1s′1 − (p− 1)
∑m−2
i=0 pism−1−i, or s′n = pn−1s′1 − (p− 1)

∑n−2
i=0 p

isn−1−i <

e(Pn)δ. Therefore (1 − p−1)
∑n−1
i=1 si/e(Pi) + ∆ > s′1/e(P ) > p−1s(R|E) where

∆ = max(δ, sn/e(Pn|F )). Thus,
∑n
i=1 si/e(Pi) > p−1.

Now denote P ′i = PiP
′, ri = s(P ′i |Pi). If si > ri then ri+1 6 ri and so

ri+1/e(Pi+1) 6 p−1ri/e(Pi) which contradicts c < p. So si < ri for all i and

ri+1/e(Pi+1) = ri/e(Pi) − (1 − p−1)si/e(Pi) for all i. Hence (c − 1)ε > s(P ′|P ) −
s(P ′n+1|Pn+1) = (1− p−1)

∑n
i=1 si/e(Pi) > (p− 1)p−2, a contradiction.

1.4. Proof of the theorem.

(1)⇒(2): (1) implies that e(F|F ) = +∞. Assume that F ′/F is defined over E0.
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Let, according to Remark 1.2, the extension E/E0 for m = s(E′0|E0) be such that the

inequality hE/E0
(m)/e(E|E0) < ε holds. Then for E′ = EE′0

s(E′|E)/e(E|F ) 6 hE/E0
(s(E′0|E0))/e(E|F ) < ε/e(E0|F ).

(2)⇒(3): (2) implies that e(F|F ) = +∞. For a tamely ramified extension F ′/F
(3) obviously holds. Assume that F ′/F is wildly ramified.

Let TrF ′/F α = 0 for α ∈ MF ′ . Take E/F for ε = vF (α) as in (2). Then

vE′(α) > s(E′|E), TrE′/E α = 0. Thanks to standard properties of s(E′|E), see for

instance (1.4) Chapter III of [3], we deduce that α ∈ (σ− 1)ME′ for a generator σ of

Gal(E′/E). Thence α ∈ (σ − 1)MF ′ .
(3)⇒(2): Assume that (2) doesn’t hold. Then there exists ε > 0 such that for

every finite extension E/F , E ⊆ F with F ′/F being defined over E the inequality

s(E′|E)/e(E|F ) > ε holds. Let E0/F be a finite subextension in F/F such that

εe(E0|F ) > 2 and F ′/F is defined over E0.

Let σ be a generator of Gal(E′0/E0), s = s(E′0|E0) > 1, and let π be a prime element

of E′0. Then α = (σ−1)πi−s ∈ME′0
for i−s prime to p, 1 6 i 6 2 and TrE′0/E0

α = 0,

vE′0(α) = i. We claim that α 6∈ (σ − 1)MF ′ . Indeed, otherwise there would exist a

finite extension E/E0 in F/F such that α ∈ (σ − 1)ME′ . This is equivalent to

vE′(α) = ie(E|E0) > s(E′|E). Then s(E′|E)/e(E|F ) < ε, a contradiction.

(2)⇒(1): Assume that (1) doesn’t hold. Then there exist m and ε > 0 such

that hE/F (m)/e(E|F ) > ε for every finite subextension E/F in F/F . Let M/F be

a finite extension in F/F such that h′E/M (x) = e(E|M) for every E/M , E ⊆ F , and

x > hM/F (m).

Let M = L0 − · · · − Ln−1 − Ln, n > 1, be an extension in which Li/Li−1 are

cyclic ramified of degree p and s(Ln|Ln−1) > hLn−1/F (m). Such an extension exists.

Indeed, in characteristic p one can take n = 1 and L1/L0 as a suitable Artin–Schreier

extension. In characteristic 0 one can take Li/Li−1 as a suitable Artin–Schreier exten-

sion with s(Li|Li−1) > pe(Li−1|Qp)/(2p− 2) (see Section 2 Chapter III of [3]). Now,

if hLi−1/F (m) > s(Li|Li−1), then

hLi/F (m)/e(Li|Qp) =
(
s(Li|Li−1) + p(hLi−1/F (m)− s(Li|Li−1))

)
/e(Li|Qp)

6 hLi−1/F (m)/e(Li−1|Qp)− 1/2.

Therefore, hLi/F (m)/e(Li|Qp) 6 hM/F (m)/e(M |Qp)− i/2 and

pe(Ln−1|Qp)/(p− 1) > s(Ln|Ln−1) > hLn−1/F (m)

for sufficiently large n.

E1 . . . E1Ln−1 E1Ln

E . . . ELn−1 ELn
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M = L0 . . . Ln−1 Ln

F

For a finite extension E/M in F/F with ELn 6= ELn−1 we get

s(ELn|ELn−1) > hELn−1/Ln−1
(hLn−1/F (m)) = hELn−1/F (m) > hE/F (m),

since s(ELn|ELn−1) = hELn−1/Ln−1
(s(Ln|Ln−1)).

If E1/E is a cyclic ramified extension of degree p with E1 ⊆ F and E1 6⊆ ELn−1,

then the choice of M/F implies that h′E1/E
(hE/M (x)) = p for x > hM/F (m) and

s(E1|E) 6 hE/F (m). Therefore,

s(E1Ln−1|ELn−1) 6 hELn−1/E(s(E1|E)) 6 hELn−1/F (m),

and hence E1Ln−1 6= ELn, E1Ln−1 6= E1Ln.

Thus, L′ = FLn is a ramified extension of degree p over L = FLn−1. Since

s(ELn|ELn−1)/e(ELn−1|F ) > ε/e(ELn−1|E), (2) doesn’t hold for L/F by Re-

mark 1.3. The same Remark shows that (2) doesn’t hold for F/F .

(1)+(2)+(3)⇒(5)+(4); (5)⇒(2); (4)⇒(3): Recall that

TrE′/EMi
E′ =Ms(E′|E)+1+[(i−1−s(E′|E))/p]

E

for |E′ : E| = p, see for instance Proposition (1.4) Chapter III of [3]. Then property

(5) for a cyclic ramified extension F ′/F of prime degree is equivalent to (2). Using

Remark 1.2 we deduce now that property (5) holds for arbitrary finite extension. Then

(5) and (3) imply (4).

It remains to show that assertion (4) implies e(F|F ) = +∞. Indeed, if e(F) > 1

then one can find a cyclic totally ramified extension F ′/F of degree p such that 1 <

s(F ′|F) < pe(F)/(p − 1). Then in the same way as in the proof of (3)⇒(2) one

obtains that (4) doesn’t hold for F ′/F . If e(F) = 1, then (4) doesn’t hold for F(ζ)/F
where ζ is a primitive p2th root of unity.

1.5. Denote by δE/F the different of a finite extension E/F . Recall that an extension

F/F has infinite conductor if and only if for every m > 0 there exists a finite subex-

tension E/F in F/F such that h′E/F (m) 6= h′E/F (m+ 1). An equivalent condition is

that GmF acts nontrivially on F for every m > 0, where GmF is the mth ramification

subgroup of the absolute group GF of F with respect to the upper numbering.
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Corollary. The following properties of an extension F/F are equivalent to the

properties (1) – (5) of the extension F/F :

(6) the extension F/F has infinite conductor;

(7) for every finite extension F ′/F and any ε > 0 there exists a finite subextension

E/F in F/F such that F ′/F is defined over E and vF (δE′/E) < ε;

(8) the different δF/F = ∩δE/F , where the intersection is taken for all finite subex-

tensions E/F in F/F , is equal to zero; in other words, for every ε > 0 there

exists a finite subextension E/F in F/F such that vF (δE/F ) > ε.

Proof. It is plain that (1) is equivalent to (6). In order to show that (2) is equivalent

to (7) one can use relations between the different and the invariant s for a cyclic

extension of prime degree, multiplicativity of the different and Remark 1.3. Finally,

similar observations imply equivalence of (6) and (8).

1.6. Remark. The implication (8)⇒(7) for the fields of characteristic 0 has been

proved by J. Fresnel and M. Matignon as Theorem 3 of [5]. For the fields of positive

characteristic this can be deduced from Theorem 3 and Proposition 10 of [7].

1.7. Remark. Remark 1.2 and Theorem imply that if H1(Gal(F sep/F),MFsep) =

1, then H1(Gal(Lsep/L),MLsep) = 1 for an extension L/F or a finite extension F/L.

1.8. An extension F/F satisfying one of the equivalent properties (1)–(8) is called

deeply ramified (after J. Coates and R. Greenberg). In particular e(F|F ) = +∞.

According to Remark 1.2, if F/F is a deeply ramified extension, then F ′/F , F/M ,

F ′′/F are deeply ramified for an extension F ′/F and finite subextensions M/F , F/F ′′.
An extension F/F is deeply ramified if and only if F/F0 is deeply ramified, where F0/F

is the maximal unramified subextension of F/F .

In the case of characteristic 0 the field F is called deeply ramified if it is a deeply

ramified extension over Qp.
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2. Deeply ramified and arithmetically profinite extensions

From now on we will discuss relations of deeply ramified extensions with arithmeti-

cally profinite (APF) extensions introduced by J.-M. Fontaine and J.-P. Wintenberger

which play a central role in their theory of fields of norms ([4], [8], see also Chapter

III of [3]). For an infinite Galois extension F/F denote by B the set of breaks of the

Galois group with respect to the upper numbering, i.e. the set of real numbers a > −1

with the property Ga+εF GF 6= GaFGF for every ε > 0. The extension F/F is deeply

ramified if and only if B is not bounded. The extension F/F is APF if and only if B

is a countable sequence (an) with an → +∞ and the fixed subfield of GanF in F is of

finite degree over F for all n. In particular, an infinite arithmetically profinite extension

has infinite conductor. Now Corollary (1.6) implies that every infinite arithmetically

profinite extension is deeply ramified. That every Galois extension with a p-adic Lie

group (which is arithmetically profinite, see (2.5)) is deeply ramified has been noted by

M. Matignon for the fields of positive characteristic in his thesis in 1979.

2.1. Using a correspondence between abelian totally ramified extension and normic

subgroups of the group of principal units established in p-class field theory [2] one can

show that for local fields F with infinite residue field there exist abelian totally ramified

p-extensions L/F which are deeply ramified and at the same time are not arithmetically

profinite. Indeed, if the residue field F of F is infinite, then f(F ) 6= 0 for any additive

polynomial f(X) ∈ F [X], and then by p-class field theory the abelian totally ramified

p-extension F1/F with the norm group 1 +M2
F in the group of principal units is of

infinite degree. Then the compositum of F1/F with an APF extension isn’t APF and

is deeply ramified.

In addition, every deeply ramified abelian extension of a local field with infinite

residue field contains an arithmetically profinite subextension.

From now on we will study deeply ramified extensions of classical local number fields

with finite residue field.

2.2.2 Consider the following example which demonstrates that Galois deeply ramified

extensions of Qp with infinite residue field extensions are very far from being related

with arithmetically profinite extensions.

Example. A Galois deeply ramified extension of Qp, p > 2, in which every Galois

subextension with infinite conductor has infinite residue field extension and therefore is

not arithmetically profinite.

For a local field K we denote by Ui,K the ith group of principal units, i.e. Ui,K =

1 +Mi
K where MK is the maximal ideal of the ring of integers OK of K. Denote by

ϕ the absolute Frobenius map.

Let Fi be the unramified extension of Qp of degree pi with the ring of integers Oi.
Put F∞ = ∪Fi. Let Tri be the trace map from pOi to pOi−1.

2this is an improved and simplified version
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Let V0 be the Zp-module pZp = pO0. Let V1 be a free Zp-submodule of pO1

generated by pω1, . . . , pωp−1, p
2 where 1, ω1, . . . , ωp−1 is a Zp-basis of O1 such that

ωi = ϕi−1ω1 for 1 6 i 6 p− 1. Since the trace map on the residue fields is surjective,

Tr1 V1 = V0. We also have ϕV1 = V1 and V1 has a ‘break’ at the level of the first

power of p. Continue in the similar way to define Vi as pi+1Oi+Wi, where Tr−1i (Vi−1)

is the direct sum of its submodules Wi and piZp, TriWi = Vi−1 and ϕ(Wi) = Wi.

Then Tri Vi = Vi−1, ϕVi = Vi and Vi has a ‘break’ at the level of pi.

Define a subgroup Ni = (pZ) × Ri × exp(Vi) of F ∗i with Ri being the group of

Teichmüller representatives in Fi. Let Li/Fi be the abelian totally ramified extension

corresponding to Ni. Put F = F0 and let L be the compositum of Li. Translating the

conditions on Vi we deduce: NLi/Fi
F ∗i is ϕ-stable, U1,Fi

∩ NLi+1/Fi
L∗i+1 = U1,Fi

∩
NLi/Fi

L∗i , Ui,FiNLi/Fi
L∗i 6= Ui+1,Fi

NLi/Fi
L∗i .

Class field theory and the properties of Vi imply that Li/F is Galois, LiFi+1 ⊂ Li+1,

for i > 1 we get Gal(Li/Fi)
i 6= {1}, Gal(Li/Fi)

i+ε = {1} for ε > 0. The field

L = LF∞ = ∪LiF∞ is abelian over F∞, and upper ramification breaks of L/F are

the set of positive integers. The Galois extension L/F has infinite conductor.

By class field theory, the norm group of any abelian totally ramified field extension

Fi inside the field L includes the intersection of U1,Fi
with the intersection of all

NLj/Fi
L∗j where j runs over all integers > i. This intersection equals NLi/Fi

U1,Li
.

Hence the norm group of the maximal abelian totally ramified extension Ri of Fi inside

L intersected with U1,Fi
is an open subgroup of U1,Fi

, hence Ri/Fi is finite.

Now for every Galois subextension E/F of L/F , if E/F has infinite conductor then

it has infinite residue field extension. Indeed, if E/F is a Galois subextension of L/F

with finite residue field extension, then the field E is abelian over its inertia subfield

Fm = E ∩ F∞ (since the Galois group of E/Fm is isomorphic to that of EF∞/F∞
which is a subextension of the abelian extension L/F∞) and hence by the previous

paragraph E/Fm is finite.

2.3. Now for local fields with finite residue fields we have the following

Proposition. Let F be a local field with finite residue field. Let L/F be a

Galois extension with finite residue field extension and with a discrete set of breaks

0 6 u1 < u2 < . . . with respect to the upper numbering. Then |Gal(L/F )uj :

Gal(L/F )uj+1 | 6 pf for all j > 1, where pf is the cardinality of the residue field of L.

Proof. First, let M/F be a finite Galois extension with two successive breaks u1 < u2
with respect to the upper numbering. Let K1,K2 be the fixed fields of Gal(M/F )u1 and

Gal(M/F )u2 corr. Then, if uj = hM/F (vj) for appropriate integers vj , the ramification

group Gal(M/F )v2 coincides with Gal(M/F )v1+1 and Gal(M/F )v1/Gal(M/F )v1+1

injects into either the additive or the multiplicative group of the residue field of M . We

deduce that |K2 : K1| isn’t greater than the cardinality of the residue field of M .

Now denote by Ej the fixed field in L of Gal(L/F )uj , put E0 = F . Note that since

the set of breaks is discrete, every break is a break of a finite Galois subextension of

L/F , c.f. [11].
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We shall prove the inequality |Ej+1 : Ej | 6 pf by induction on j. For j = 0 this is

easy. Assume that the inequality holds for all integer smaller than j, and deduce it for

j. From the inductive assumption Ej is of finite degree over E0. Choose an infinite

tower of finite Galois extensions Mn/F , Mn ⊂ Mn+1 such that L = ∪Mn. It is clear

that for a sufficiently large n the field Mn contains Ej and uj , uj+1 are two succesive

breaks with respect to the upper numbering of Gal(Mn/F ). Then Ej , Ej+1 ∩Mn are

the fixed fields of Gal(Mn/F )uj , Gal(Mn/F )uj+1 respectively. Therefore, by the first

part of the proof, we get |Ej+1 ∩Mn : Ej | 6 pf . Thus, |Ej+1 : Ej | 6 pf .

Corollary 1. Let F be a local field with finite residue field. Let L/F be a

Galois deeply ramified extension with a discrete set of breaks and with finite residue

field extension. Then Gal(L/F )u is of finite index in Gal(L/F ) for all u.

Corollary 2. For local fields with finite residue field the class of Galois deeply

ramified extensions with finite residue field extensions and a discrete set of breaks

coincides with the class of Galois arithmetically profinite extension.

The last statement doesn’t hold for the fields with infinite residue field in view of

(2.1).

2.4.3 Note that there exist infinite Galois totally ramified extensions with countable

and bounded set of breaks. We will construct such an extension F/F0 with F = ∪Fn,

where F0 has finite residue field of pp elements, p > 3, and Fn+1 is the normal closure

over F0 of a certain cyclic totally ramified extension F ′n/Fn of degree p defined as

follows.

Denote s1 = s(F ′0|F0) = 1 and F1 = F ′0. For n > 1, denote |Fn : F0| = e(Fn|F0) =

Mn, mn = logpMn. Denote by ln the smallest integer > pmn/(p− 1). By induction

on n > 1 we will construct the Fn+1 such that for the maximal upper ramification

break sn+1 of the extension Fn+1/Fn the inequality (∗)n

sn+1 6 (p/(p− 1)− δn+1)Mn with δn+1 = (1 + 2pmn+1/(p− 1))/Mn+1

holds for n > 1. Assume that this inequality is known for sj with j < n+ 1.

Put rn = hFn/Fn−1
(sn). Note that rn + ln < pe(Fn)/(p− 1) for n = 1 and odd p.

For n > 2 the inequality rn+ln < pe(Fn)/(p−1) follows from the induction hypothesis

inequality for sn and the fact rn 6 e(Fn|Fn−1)sn.

Therefore the dimension of the Fp-space Urn+1,Fn/(Urn+ln+1,Fn(Urn+1,Fn∩U
p
1,Fn

))

is at least Mn = (dimFp
Fpp)mn (use the well known description of U1,Fn

/Up1,Fn
, e.g.

as given in [3, Ch. I, sect. 5]).

Let π be a prime element of Fn, and let Ui,Fn = 1 +Mi
Fn

. Let A be the subgroup

of U1,Fn
generated by Up1,Fn

and all σ(π)/π, where σ runs through Gal(Fn/F0). The

group A/Up1,Fn
is an Fp-vector subspace of U1,Fn

/Up1,Fn
and it has Mn− 1 generators,

3this is a more detailed version
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therefore there is an integer i < pe(Fn)/(p − 1), i prime to p, rn + 1 6 i 6 rn + ln,

and such that the group (A ∩ Ui,Fn
)Ui+1,Fn

doesn’t coincide with Ui,Fn
.

Put sn+1 = i. Using class field theory, choose a totally ramified Galois extension

F ′n/Fn of degree p such that rn < sn+1 = s(F ′n|Fn) and the norm group of the

extension F ′n/Fn contains π and the group A. Let Fn+1 be the normal closure of F ′n
over F0. The extension Fn+1/Fn is the compositum of σF ′n/Fn and its norm group is

the intersection of the σ-images of the norm groups of F ′n/Fn. Since the norm group of

F ′n+1/Fn contains Usn+1+1,Fn
, the norm group of Fn+1/Fn contains Usn+1+1,Fn

. Due

to the definition of A, π ∈ (σπ)A, A ⊂ (σA)Usn+1+1,Fn ; hence, the prime element

π belongs to the norm group of Fn+1/Fn. Thus, Fn+1/F0 is totally ramified and the

maximal upper ramification break of Fn+1/Fn is sn+1 6 rn + ln.

From the construction we get s2 6 1 + l1 = 3 6 p 6 (p/(p − 1) − δ2)p, since

δ2 6 1/p2 + 2p/(p − 1) · 2/p2 6 1/(p − 1) for p > 3. This proves the inequality

(∗)1 for s2. The inequality (∗)n for sn+1 with n > 1 follows from sn+1 − ln 6

rn 6 e(Fn|Fn−1)sn 6 (p/(p − 1) − δn)Mn 6 (p/(p − 1) − δn+1)Mn − ln, since

(δn − δn+1)Mn > ln due to pmn/(p− 1) > (1 + 2pmn+1/(p− 1))M−1n+1.

Finally,

h−1Fn+1/F0
(hFn+1/Fn

(sn+1))− h−1Fn/F0
(hFn/Fn−1

(sn))

= (sn+1 − rn)/Mn 6 ln/Mn 6Mn
−1/2,

and
∑
M
−1/2
n <∞. Hence the set of upper ramification breaks of the extension F/F0

contains (h−1Fn/F0
(sn+1)) and bounded from above by suph−1Fn/F0

(sn+1) <∞.

Now the compositum of F/F with an infinite APF Galois extension furnishes an

example of a Galois deeply ramified extension with finite residue field extension and

nondiscrete set of breaks which is not arithmetically profinite.

Thus the class of Galois deeply ramified totally ramified extensions is larger than

that of Galois totally ramified APF extensions.

2.5. From Sen’s and Wintenberger’s theorems ([8], [9]) it follows that every Galois

p-adic Lie extension of a local field (with infinite Galois group being a p-adic Lie group

of positive dimension and with finite residue field extension) is strictly APF.

We consider

Example. An infinite Galois totally ramified arithmetically profinite extension of a

local number field which is not a p-adic Lie extension.

Let K/Qp be the abelian extension corresponding to pZµp−1 ⊂ Q∗p. Then the Galois

group of K/Qp has breaks 1 < 2 < 3 < . . . with respect to the upper numbering,

and hK/Qp
(x) = 1 + p + · · · + pi−1 + pi(x − i) for i 6 x 6 i + 1, i > 0. Let (πi),

π0 = p, be a sequence of prime elements compatible with the norm map in the cyclic

subextensions of K/Qp.

Let F be the unramified extension of Qp of degree 2, and M = FK. Then M/F

is an arithmetically profinite extension, and the field of norms E = N(M |F ) can be
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identified with Fp2((X)), where the prime element X corresponds to the sequence (πi).

If τ is a generator of Gal(M/F ), then π−11 τπ1 = 1 + θπ1 and the residue θ is not zero.

Denote by T the automorphism of E which corresponds to τ . We will use properties of

arithmetically profinite extensions, see for example Section 5 Chapter III of [3]. From

the previous considerations it follows that TX = XA0 with A0 = 1 + aX + . . . ,

a ∈ F∗p2 . Put Ai = A−1i−1TAi−1. Then the order of Ai − 1 is higher than that of

Ai−1 − 1. Hence the group N ∈ E∗ generated by X, F∗p2 and all Ai is invariant under

the action of T ; and

(N ∩ (1 +Mj
E))(1 +Mj+1

E )

is of index > p in 1 +Mj
E , since the residue field of E is of cardinality > p and

N ∩ (1 +ME) ⊂ Fp((X)).

Let Q/E be the abelian extension corresponding to N . By class field theory we

deduce that T (Q) = Q and Gal(Q/E) has breaks 1 < 2 < 3 < . . . . Let L/M be the

Galois extension corresponding to Q/E via the theory of fields of norms. Note that

τL = L, therefore L/F is a Galois totally ramified extension. It is also arithmetically

profinite as an arithmetically profinite extension of an arithmetically profinite extension;

and hL/F = hQ/E ◦ hM/F .

The set B of breaks of Gal(L/F ) is the set of breaks of the derivative of hL/F , and

it is straightforward that B = {n + p−nm : n > 1, 0 6 m 6 pn − 1}. We assert that

L/F is not a p-adic Lie extension. Indeed, one of the properties of a Galois extension

K ′′/K ′ with a p-adic Lie group G is that (Gi)p = Gi+e for all sufficiently large i,

where e is the absolute ramification index of K ′ (c.f. Proposition 4.5 of [8]). From

this it is easy to deduce that there exists a c such that ui+jc = ui + je, j > 1 for all

sufficiently large i, where u1 < u2 < . . . are all breaks of G (c.f. Proposition 2 of [6]).

The extension L/F obviously doesn’t satisfy this property.

2.6. We present now an example of a Galois p-extension L of a local field E

(not necessarily of characteristic 0) with finite residue field such that L/E has infinite

conductor and the norm group NL/EL
∗ which is the intersection of all NM/EM

∗ where

M/E runs finite subextensions in L/E is of finite index in E∗.

Example. A Galois deeply ramified p-extension L of a local field E with finite

residue field such that NL/EL
∗ is of finite index in E∗.

Let E be a a local field with finite fesidue field such that a primitive pth root of

unity isn’t contained in E for p 6= 2. Suppose that E has an abelian noncyclic totally

ramified extension M/E of degree p2. Assume that Q/E is a subextension of degree

p in M/E such that s2 = s(M |Q) > s1 = s(Q|E), s1, s2 are prime to p.

We will show by induction that there is a tower of totally ramified extensions

Mn − Mn−1 − · · · − M1 − M0 = E such that (1) Mi/Mi−1 is abelian of degree

a power of p, (2) Mi/M0 is Galois, (3) NMi/M0
M∗i = NMi−1/M0

M∗i−1 for i > 3,

(4) M∗0 ⊂ NMi/M1
M∗i , (5) (M∗i−1)σ−1 kerNMi−1/M1

⊂ NMi/Mi−1
M∗i where σ ∈

Gal(Mi/M0) is a lifting of a generator of Gal(M1/M0), (6) for i > 3 the maximal

ramification break of Mi/M1 with respect to the upper numbering is at least by 1
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greater than the maximal ramification break of Mi−1/M1 with respect to the upper

numbering.

Put M0 = E, M1 = Q, M2 = M . Since M2/M0 is not cyclic, M∗0 ⊂ NM2/M1
M∗2 .

Since M2/M0 is abelian, M∗1
σ−1 ⊂ NM2/M1

M∗2 . Hence M2/M0 satisfies the properties

(1) – (6) for i = 2.

Assume we have constructed Mn and construct then Mn+1. Let Ln/Mn−1 be a

subsextension of Mn/Mn−1 such that |Mn : Ln| = p and sn = s(Mn|Ln) is such

that the ramification group Gal(Mn/Mn−1)sn+1 is trivial (see [3, Chap. III, sect.

3].) Let hMn/M0
be the Hasse–Herbrand function of the extension Mn/M0. Then

h−1Mn/M0
(sn) is the maximal ramification break of Mn/M0 with respect to the upper

numbering. Take an element α ∈ 1 + Msn
Ln

such that α 6∈ NMn/Ln
M∗n. Then

ασ−1 = NMn/Ln
β for β ∈ 1 +Msn+ps1

Mn
.

We claim that β doesn’t belong to the group M∗n
σ−1N−1Mn/M1

(M∗0 ). Indeed, other-

wise NLn/M1
ασ−1 = µNMn/M1

(λσ−1) with µ ∈ M∗0 . Then NM1/M0
µ = µp =

1, hence µ = 1. Therefore, NLn/M1
(α)NMn/M1

(λ−1) belongs to M∗0 which is ⊂
NMn/M1

M∗n by the induction assumption. We get NLn/Mn−1
α ∈ NMn/Mn−1

M∗n be-

cause kerNMn−1/M1
⊂ NMn/Mn−1

M∗n by the induction assumption. Since Mn/Mn−1

is abelian, it follows that α ∈ NMn/Ln
M∗n, a contradiction.

Take now a subgroup Nn of index a power of p in M∗n such that (1) it contains some

prime element of Mn and the subgroup M∗n
σ−1N−1Mn/M1

(M∗0 ), (2) it doesn’t contain

β, (3) M∗n is generated by β and Nn. Let Nn = NMn+1/Mn
M∗n+1 for an abelian totally

ramified extension Mn+1/Mn of degree a power of p. Note that M∗n
τ−1 ⊂ Nn and

then τNn = Nn for every τ ∈ Gal(Mn/M0). Hence Mn+1/M0 is a Galois extension

and the properties (1) – (5) hold for Mn+1/M0.

Since Mn/Mn−1 is abelian, it follows from properties of the Hasse–Herbrand func-

tion [3, Ch. III, sect. 3] that Uj,Mn kerNMn/Mn−1
= Uj+1,Mn

kerNMn/Mn−1
for

j > sn, j 6∈ hMn/Mn−1
(N). Then induction on n shows that Uj,Mn kerNMn/M1

=

Uj+1,Mn
kerNMn/M1

for j > sn, j 6∈ hMn/M1
(N). Thus, we deduce that the max-

imal ramification break of Mn+1/Mn with respect to its upper numbering which is

> sn + ps1 is at least sn + |Mn : M1|. Property (6) follows.

In characteristic 0 for p = 2 take M0 = E = Q2( 4
√
−1) and R = M0( 8

√
−1). Then

s(R|M0) = 7 and the unit ω = NR/M0
(1 + ( 8

√
−1− 1)3) belongs exactly to 1 +M3

M0
.

Take M1 = Q = M0(
√
ω), then s(M1|M0) = 5. The extension M2 = M1R/M0

is noncyclic and since ω ∈ NM2/M0
M∗2 we get

√
ω ∈ NM2/M1

M∗2 . Now one can

construct a tower of fields Mn satisfying the properties (1) – (6) and property (7)√
ω ∈ NMi/M1

M∗i for i > 2. Taking the same β as above for p > 2 one needs only to

check that β doesn’t belong to M∗n
σ−1N−1Mn/M1

(M∗0 )N−1Mn/M1
(
√
ω), too. But from the

equality NLn/M1
ασ−1 = µ

√
ωNMn/M1

(λσ−1) with µ ∈M∗0 one gets ω = µ−2 ∈M∗0
2,

a contradiction.

Put L = ∪Mn. The extension L/E is a Galois p-extension and NL/EL
∗ =

NM2/EM
∗
2 is of index p2 in E∗. The sequence of the breaks of L/E with respect
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to the upper numbering tends to infinity due to property (6), therefore L/E has infi-

nite conductor.

2.7. In the example (2.5) if Qi/E is the abelian extension corresponding to N(1 +

Mi+1
E ), and Li/M is the Galois extension corresponding to Qi/E, then Li/F is a

Galois p-adic Lie extension and L = ∪Li. In the example of (2.6) the extension L/E

doesn’t contain a Zp-extension M/E, but L/M1 is an infinite abelian totally ramified

p-extension, therefore it is a Galois p-adic Lie extension.

The following basic problem has been raised by J. Coates and R. Greenberg [1]:

given a finite extension F of Qp is there a Galois deeply ramified extension K of F

which does not contain a subfield M which is a p-adic Lie extension of a finite extension

of Qp? This problem is solved in [12] using special closed subgroups of the group of

wild automorphisms of a local field of positive characteristic.

Finally we state a problem a positive answer on which will provide another solution

of Coates-Greenberg’s problem.

Problem. Let E be a finite totally ramified extension of Qp with the absolute

ramification index e(E) being odd. Is there a Galois deeply ramified extension L of E

having a subset of odd positive integers as the set of breaks with respect to the upper

numbering?

Then L is a Galois deeply ramified extension of E which does not contain a subfield

M which is a p-adic Lie extension of E, since the set of breaks ui of M/E doesn’t

satisfy the property ui+c = ui + e(E), for all sufficiently large i (see the last paragraph

of (2.5)).
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