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0. Introduction

First steps in the direction of an arithmetic noncommutative local class field theory were described
in [2] as an attempt to find an arithmetic generalization of the classical abelian class field theory; see
[3] for an exposition of its main features. In particular, [2] clarified andsimplified the metabelian
local class field theory of H. Koch and E. de Shalit [7], [8]. In the noncommutative local class
field theory [2] a direct arithmetic description of Galois extensions ofa fixed local fieldF is given
by means of noncommutative reciprocity maps between the Galois groupGal(L/F ) of a totally
ramified arithmetically profinite Galois extensionL/F and a certain subquotient of formal power
series in one variable over the algebraic closure of the residue field ofF (which, more precisely,
is the completion of the maximal unramified extension of the field of norms ofL/F ). One of the
reciprocity maps (see below for definitions) is

NL/F : Gal(L/F ) −→ U⋄

N(L/F )/UN (L/F ).

This map is an injective 1-cocycle (the right hand side has a natural actionof the Galois group). It
is not surjective, and not a homomorphism in general. In the general case ofnonabelian extensions,
the description of the Galois group in this approach is given by objectsrelated not only to the ground
field F but toL as well.

To describe the image of the reciprocity map one can use a map fromGal(L/F ) toU⋄

N(L/F )/YL/F

induced byNL/F , whereYL/F is a certain subgroup ofU⋄

N(L/F ) containingUN (L/F ), such that the
induced map is bijective. A key problem isto obtain as much information as possible about the
subgroupYL/F . Then via the reciprocity mapNL/F this information translates into a description
of the Galois group ofL/F .

In this short note we suggest a new definition of certain mapsfi (see section 2) for regular
extensionsL/F . This provides more information on the submoduleYL/F .

Needless to say, this arithmetic approach to noncommutative local class field theory is very
different from the Langlands approach, which is somehow less arithmetic. From a general point
of view it should be quite difficult to get a sufficiently explicit description of YL/F for an arbitrary
class of extensionsL/F . There is a nice explicit description in the case of metabelian extensions,
see [2],[7],[8]. It is expected there is a good explicit description in the case ofp-adic Lie extensions,
on the basis of [2] and this work. This may be of use for the local noncommutative Iwasawa theory.

We will assume that the reader has a good knowledge of basic results on local fields, as given for
example in [4, Ch.III–IV].
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1. The abelian case: interpretation

We start with a brief description of an interpretation of the abelian reciprocity maps, since it is this
interpretation which leads to the construction of noncommutative reciprocity maps.

Let F be a local field with finite residue field whose characteristic isp. Denote byF ur the
maximal unramified extension ofF in a fixed completion of a separable closure ofF and denote by
F be the completion ofF ur.

Now we briefly present two (abelian) local reciprocity maps: geometric and arithmetic. Each of
them uses the fact that for a finite Galois extensionL/F the homomorphism

Gal(L/F) −→ kerNL/F/V (L/F), σ 7−→ πσ−1

is surjective with the kernel being the derived group of the Galois group. HereV (L/F) is the
augmentation subgroup generated by elementsuσ−1 with u ∈ UL, σ ∈ Gal(L/F), andπ is any
prime element ofL. For a noncommutative generalization of this, see the first assertion ofthe
Theorem below.

First, we give a description of the geometric reciprocity map. LetL/F be a finite Galois
extension. Viewing all objects with respect to the pro-algebraic Zariski topology [10] one has a
commutative diagram

1 −−−−→ π1(UL) −−−−→ UL

α−−−−→ UL −−−−→ 1




y

NL/F





y

NL/F





y

NL/F

1 −−−−→ π1(UF) −−−−→ UF −−−−→ UF −−−−→ 1




y





y

1 1

whereUL andUF are the universal covering spaces ofUL andUF. Applying the snake lemma, one
has a map

σ 7−→ πσ−1 ∈ UL 7−→ NL/F

(

α−1(πσ−1)
)

∈ π1(UF)/NL/Fπ1(UL)

which is the geometric reciprocity homomorphism (this is more or less straightforward from [10]).

For a separable extensionL of F putLur = LF ur, L = LF. To define the arithmetic reciprocity
map, letL be a finite totally ramified Galois extension ofF . Let ϕ be an element of the absolute
Galois group ofF such that its restriction toF ur is the Frobenius automorphism ofF . Denote by the
same notation the continuous extension ofϕ to the completion of the maximal separable extension
of F . Let π be a prime element ofL.

There is a commutative diagram

1 −−−−→ UL −−−−→ UL

1−ϕ−−−−→ UL −−−−→ 1




y

NL/F





y

NL/F





y

NL/F

1 −−−−→ UF −−−−→ UF

1−ϕ−−−−→ UF −−−−→ 1




y





y

1 1
and, applying the snake lemma, one has a map

σ 7−→ πσ−1 ∈ UL 7−→ NL/F

(

(1− ϕ)−1(πσ−1)
)

∈ UF /NL/F UL
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which is the arithmetic local reciprocity homomorphism [5], [6], [9], [4]. The equation

u1−ϕ = πσ−1

plays a fundamental role for the arithmetic reciprocity homomorphism.
Of course, the geometric reciprocity homomorphism can be viewed as the projective limit of the

arithmetic reciprocity homomorphisms.

2. The reciprocity mapNL/F

We present one of noncommutative reciprocity maps originally defined in [2].

Denote byFϕ the fixed subfield ofϕ in the separable closure ofF . Let L/F be a Galois
arithmetically profinite extension which is infinite. We will suppose throughout the paper that
L ⊂ Fϕ. For the theory of fields of norms of arithmetically profinite extensions see [11] and [4,
Ch. III sect. 5]. The field of normsN (L/F ) of the extensionL/F is a local field of characteristicp
with residue field isomorphic to the residue field ofF .

Denote byX the norm compatible sequence of prime elements of finite subextensionsof F in L
which is the part of the unique norm compatible sequence of prime elements in finite extensions of
F in Fϕ (for its existence and uniqueness see the first section of [8]).

Denote byN(L/F ) the completion of the maximal unramified extension of the fieldN (L/F ).
Denote byU⋄

N(L/F ) the subgroup of those elements ofUN(L/F ) whoseF-component belongs toUF .

The reciprocity mapNL/F is defined as

NL/F : Gal(L/F ) −→ U⋄

N(L/F )/UN (L/F ), NL/F (σ) = U modUN (L/F ),

whereU ∈ UN(L/F ) satisfies the (quite similar to the above) equation

U1−ϕ = Xσ−1.

It was shown in [2] that the groundF-component ofNL/F equals the arithmetic reciprocity map
described above, soNL/F is indeed a genuine extension of the abelian reciprocity map.

Fix a tower of subfieldsF = E0−E1−E2− . . . , such thatL = ∪Ei, Ei/F is a Galois extension,
andEi/Ei−1 is cyclic of degreep for i > 1 andE1/E0 is cyclic of degree relatively prime top. Let
σi be an element ofGal(L/F) whose restriction toEi is a generator ofGal(Ei/Ei−1). Denote by
vEi the discrete valuation ofEi = EiL. Putsi = vEi (π

σi−1
Ei

−1) whereπEi is a prime element ofEi.

The groupU⋄

N(L/F ) contains a subgroupYL/F (which containsUN (L/F )) such that the reciprocity
mapNL/F induces a bijection betweenGal(L/F ) andU⋄

N(L/F )/YL/F , see [2, Th.2]. To get more
information onYL/F and its more explicit description, [2] uses certain liftings

fi: U
σi−1
Ei

−→ UN(L/Ei) −→ UN(L/F ).

This is a central part of the noncommutative class field theory, and the better the description offi,
the more information one obtains about the Galois extensions. Liftingsfi were defined in [2, Def.
3–4] by using arbitrary topologicalZp-generators ofUσi−1

Ei
.

Definition. Call an extensionL/F regular if L \ F contains no primitivepth root. In positive
characteristic every extension is regular. In characteristic zeroL/F is regular if and only if the
extensionF (ζp)/F is unramified or the extensionL(ζp)/L is not unramified. In particular, if
E1 = E0 thenL/F is regular.
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Now we make a correction for the paragraph standing between Definition3 and Definition3′

in the published version of [2]. The statement there holds for regular extensions. Indeed, letF
be of characteristic zero. If a primitivepth root of unity ζp equalsuσ1−1 with u ∈ UE1, then
NE1/E0

(ζp) = 1. Hence, ifE1 \ E0 contains no primitivepth root of unity (i.e.L/F is regular), then

so doesUσ1−1
E1

. All the assertions of [2] following Def. 3 hold for regular Galoisarithmetically
profinite extensions.

In the general case of (non-regular) extensions the groupU
σ1−1
E1

may have a nontrivialp-torsion
(for example, ifE0 = Qp and E1 = Qp(ζp)). It is not clear at the moment how to define the
corresponding mapf1 for non-regular extensions.

Below we give a new definition offi for regular Galois arithmetically profinite extensionsL/F ,
L ⊂ Fϕ.

3. Splitting exact sequences

The following theorem leads to a new definition of liftingsfi.
For submodulesMi of UEj denote by

∏

Mi their product.
DenoteE = Ek, E′ = Ek+1, E = Ek, E′ = Ek+1. Denoteσ = σk+1.

Recall that in the abelian class field theory an important role is played by the following exact
sequence

1 −−−−→ T −−−−→ UE′/Uσ−1
E′

N
E′/E−−−−→ UE −−−−→ 1.

HereT is the isomorphic image ofGal(E′/E) in UE′/Uσ−1
E′ with respect to the homomorphism

Gal(E′/E) −→ UE′/Uσ−1
E′ , ρ 7−→ πρ−1

Ek+1
Uσ−1

E′ ,

see [4, Ch.IV (1.7)].

Theorem. Fix k > 1. Assume thatL/F is a regular extension.

Denote byT ′ the intersection ofT with
(
∏

i6k Uσi−1
E′

)

Uσ−1
E′ /Uσ−1

E′ . We have an exact sequence

1 −−−−→ T ′ −−−−→
(
∏

i6k Uσi−1
E′

)

Uσ−1
E′ /Uσ−1

E′

N
E′/E−−−−→ ∏

i6k Uσi−1
E

−−−−→ 1.

The sequence splits by a (not uniquely determined in general) homomorphism

f :
∏

i6kUσi−1
E

−→
(
∏

i6kUσi−1
E′

)

Uσ−1
E′ /Uσ−1

E′ .

Proof. It is convenient to divide it into several parts.

1. The product of modules
∏

i6k Uσi−1
E

is a closedZp-submodule ofU1,E. Let λj be a system

of topological multiplicative generators of the topologicalZp-module
∏

i6k Uσi−1
E

which satisfy the
following property: if the torsion of this group is nontrivial, it includesλ∗ of orderpm, and the rest
of λj are topologically independent overZp.

Define a mapf on the topological generatorsλj as

f (λj) = uj Uσ−1
E′

whereuj is any element of
(
∏

i6k+1U
σi−1
E′

)

whose norm equalsλj . We will prove by the end of the

fifth part thatf (λ∗)p
m ∈ Uσ−1

E′ . Hence we can extendf to a homomorphismf :
∏

i6kUσi−1
E

−→
∏

i6k+1U
σi−1
E′ /Uσ−1

E′ which is a section of the exact sequence in the theorem.
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Suppose thatm > 0, i.e. λ∗, different from 1, is in the system of the generators. As discussed at
the end of the previous section, ifk = 1 andL/F is a regular extension thenm = 0. Hencek > 1.

We claim that thensk+1 (defined in section 2) is prime top. This will be proved by the end of
the fourth part.

2. By [4, Ch.III (2.3)] we know that ifsk+1 is divisible byp thensk+1 = pe(Ek)/(p − 1), a
primitive pth root lies inEk and there is a prime elementπk of Ek such thatEk+1 = Ek( p

√
πk) .

Using [4, Ch.II Prop. 4.5] we deduce thatsi are divisible byp for 2 6 i 6 k + 1. So all the
ramification breakssi, 2 6 i 6 k + 1 take their maximal possible values. Using local class field
theory and looking at the norm group ofEk/E1 it is easy to see thatEk/E1 is a cyclic extension
(see, e.g. [1, Prop. 1.5]). Thenσ2|E is a generator of its Galois group. Recall that we assume that
the torsion element belongs to the system of generators of

∏

Uσi−1
E

. Hence a primitivepth rootζp

can be written asuσ1−1
1 u

σ2−1
2 with ui ∈ UE. We will show by the end of the fourth part that this

leads to a contradiction; thensk+1 is prime top.

3. Denote byv the discrete valuation ofE and letπ be a prime element ofE. To get a
contradiction, chooseu1 with maximal possible value ofv(u1 − 1) such thatζp = u

σ1−1
1 u

σ2−1
2 . We

will show that we can increase the valuev(u1 − 1), and this gives a contradiction.
Using the description of the norm map in [4, Ch.III sect.1] we deduce that

πσ1 = θ1π + terms of higher order,

πσ2−1 = 1 +θ2π
e(E2)/(p−1) + terms of higher order,

with non-zero multiplicative representativesθi, θ1 is a primitivelth root.
The Galois group ofE/F is the semi-product of cyclic groups of orderl = |E1 : E0| and

|Ek : E1|. Let R be the fixed field of the first group. Thenσ1|E as a generator of the Galois group
of E/R. DenoteR = RE.

Let θ run through non-zero multiplicative representatives. In the first choice of representatives
in UE of the quotientsUi/Ui+1 of the group of principal units ofE we can include in it units1 +θπj

R

whereπR is a prime element ofR. Note thatσ1 acts trivially on such elements. In addition,

(1 + θπi)σ1−1 = 1 +θ(θi
1 − 1)πi + terms of higher order, if (i, l) = 1.

In the second choice of topological generators of the group of principal units ofE take elements
1 + θπi, (i, p) = 1, i < pe(E)/(p − 1) and an appropriate element1 + θ∗π

pe(E)/(p−1) (see, e.g. [4,
Ch.I sect.6]). We get

(1 + θπi)σ2−1 = 1 + iθθ2π
i+e(E2)/(p−1)+ terms of higher order, if (i, p) = 1.

4. From the description of the behaviour of the mapx 7→ xp on the group of principal units (see,

e.g., [4, Ch.I sect.5]) we deduce the following. If for somer > 0 the element
(

(1 +θπi)p
r)σ2−1

with
(i, p) = 1 is not closer to 1 thanζp, then

(

(1 + θπi)p
r)σ2−1

= 1 + (iθθ2)p
r

πpr(i+e(E2)/(p−1))+ terms of higher order, (i, p) = 1.

Sinceζp ∈ E1, l dividese(E2)/(p − 1). From the previous description of the action ofσ1 we

deduce thatv(uσ1−1
1 − 1) = v(ζp − 1) does not hold. Using the description of the action ofσ2 and

observing thatpr(i + e(E2)/(p − 1)) = pk−2e(E2)/(p − 1) = v(ζp − 1) for r > 0 impliesp divides

i, we also deduce thatv(uσ2−1
2 − 1) = v(ζp − 1) does not hold.

Hencev(uσ1−1
1 − 1) = v(uσ2−1

2 − 1) < v(ζp − 1) andu
σ2−1
2 = 1 + (iθθ2)p

r

πpr(i+e(E2)/(p−1))+
terms of higher order, for somer > 0. Denotej = pr(i + e(E2)/(p− 1)). Thenuσ−1

1 must start with
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1− (iθθ2)p
r

πj , and hencej is not divisible byl. Due to the choice ofu1 we can assume that when
it is presented as the product of the first choice of representatives in the group of principal units of
E, that product does not contain elements fromR. Thereforeu1 = wσ2−1u′

1, v(u′

1 − 1) > v(u1− 1),
wherew = (1 + ηπi)p

r

, ηpr ≡ −θpr

(θj
1 − 1)−1 modπ andwσ2−1 = 1− (iθθ2)p

r

(θj
1 − 1)−1πj+

terms of higher order.

Now ζp = u
σ1−1
1 u

σ2−1
2 = u′

1
σ1−1

u′

2
σ2−1 whereu′

2 = u2w
σ1−1z. Here z = 1 is Ek/E0 is

abelian andz = (wσ1σ2)1+···+σr−2
2 ∈ UE where (σ−1

1 σ2σ1)|E = σr
2|E , r > 1, otherwise. Since

v(u′

1 − 1) > v(u1 − 1), we get a contradiction.
Thus,sk+1 is prime top.

5. Now, we argue similarly to the proof of a part of [2, Lemma 3]. Denote β∗ = upm

∗ . We
aim to show thatβ∗ ∈ Uσ−1

E′ . We getNE′/Eβ∗ = 1, henceβ∗ can be written asπρ−1
E′ uσ−1 with

ρ ∈ Gal(E′/E), u ∈ UE′ , πE′ a prime element ofE′. We shall show thatρ = 1. Thenupm

∗ belongs
to Uσ−1

E′ , as desired.

Find a unit δ in E′ such thatδ1−ϕ = upm−1

∗ . Then, as briefly discussed in section 1, the
reciprocity homomorphism forE′/E mapsρ to (NE′/Eδ)p modNE′/EUE′ ; for more detail see
[4, Ch.IV sect.3]. Ifε = NE′/Eδ belongs toE, then the image ofρ belongs toNE′/EUE′ , and
hence, since the reciprocity homomorphism is injective for abelian extensions,ρ = 1. If ε does not
belong toE, then, sinceε ∈ E, we can writeεp = apω wherea ∈ UE andω ∈ UE is ap-primary
element (i.e. the extensionE( p

√
ω)/E is unramified of degreep). Sincesk+1 is prime top, we have

sk+1 < v(ω − 1) = pe(E)/(p− 1). Properties of the norm map (see e.g. [4, Ch. III sect. 1]) imply
that ω ∈ NE′/EUE′ . Therefore the image ofρ, which is the class ofεp, belongs toNE′/EUE′ .
Thus,ρ = 1, as desired.

Remark 1. The sequence1 −→ T −→ UE′/Uσ−1
E′

N
E′/E−−−−→ UE −→ 1 does not split if and only ifsk+1

is divisible byp (i.e. the extensionEk+1/Ek is not of Artin–Schreier type). This follows from the
fifth part of the proof of the previous theorem.

Remark 2. T ′ = {1} if and only if the extensionE′/F is abelian; in this case the splittingf is
uniquely determined.

Remark 3. The sequence1 −→ T ′ −→
(
∏

i6k+1 Uσi−1
E′

)

/Uσ−1
E′

N
E′/E−−−−→ ∏

i6k Uσi−1
E

−→ 1 splits in
the category ofZp-modules, but not necessarily in the category of pro-algebraic modules (see also
Remark 5).

4. A new definition offi andYL/F

We assume in this section that the reader has a good knowledge of [2].

Definition. Using the previous theorem, we introduce homomorphisms (k > 1)

hk:
∏

16i6k

Uσi−1
Ek

−→
(

∏

16i6k+1

Uσi−1
Ek+1

)

/U
σk+1−1
Ek+1

.

SetXi = Uσi−1
Ei

. Let gk:
∏

16i6k Uσi−1
Ek

−→ ∏

16i6k+1 Uσi−1
Ek+1

be any map such thathk = gk

modU
σk+1−1
Ek+1

.
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Define

fi: Xi −→ UN(L/Ei) −→ UN(L/F )

as any map such that itsEj -component forj > i coincides with(gj−1 ◦ · · · ◦ gi)|Xi .

This definition offi, since it comes from the splittinghomomorphismsin the previous theorem,
is more functorial than that in [2].

With this choice offi [2, Lemma 4] holds for all regular extensions. Denote byZi the image of
fi. Set

ZL/F = ZL/F ({Ei, fi}) =

{

∏

i

z(i) : z(i) ∈ Zi

}

.

Define

YL/F = {y ∈ UN(L/F ) : y1−ϕ ∈ ZL/F}.
As in [2], the map1 − ϕ induces an isomorphism between the groupU⋄

N(L/F )/YL/F and group
ker NL/F/ZL/F .

The following theorem is proved exactly in the same way as [2, Th. 1 and Th. 2].

Theorem. LetL/F be a good Galois arithmetically profinite extension.

The mapGal(L/F ) −→ ker NL/F/ZL/F , τ 7−→ Xτ−1 is a bijection.

For everyU ∈ U⋄

N(L/F ) there is a unique automorphismτ ∈ Gal(L/F ) satisfying

U1−ϕ ≡ Xτ−1 modZL/F .

Thus the map

NL/F : Gal(L/F ) −→ U⋄

N(L/F )/YL/F , τ 7−→ U

whereU ∈ U⋄

N(L/F )/YL/F satisfies the equation of the previous paragraph, is a bijection.

Remark 4. Thus we get the second reciprocity mapHL/F : U⋄

N(L/F ) −→ Gal(L/F ) defined by
HL/F (U ) = τ . The above construction ofZL/F andYL/F provides a new calculation of its kernel.

Remark 5. The groupZL/F for a finite extensionL/F is a subgroup of finite index ofV (L/F).
Recall [10] thatV (L/F) is the connected component ofker NL/F in the pro-algebraic Zariski
topology. The groupZL/F is a connected subgroup of finite index ofV (L/F); and one can show
that the quotientV (L/F)/ZL/F has exponent6 p.
It is a challenging problem to investigate if one can modify the Zariskitopology to a new topology
t so thatZL/F becomes the connected component ofker NL/F; then one would have a bijection
betweenπt

1(UF)/NL/F πt
1(UL) andGal(L/F ) similarly to the (geometric) abelian case.

Remark 6. It is an open problem if the subgroupZL/F depends on the choice of the towerEi for
nonabelian extensionsL/F .



8 I. Fesenko

References

[1] M.V. Bondarko, S.V. Vostokov, I.B. Zhukov, Additive Galois modules in complete discrete valuation
fields, Algebra i Analiz 9(1997), no. 4, 28–46; Engl. translation in St. Petersburg Math. J. 9(1998),
675–693.

[2] I. Fesenko, Noncommutative local reciprocity maps, Class Field Theory – Its Centenary and Prospect,
Advanced Studies in Pure Mathematics, vol. 30, ed. K. Miyake, Math. Soc. Japan, Tokyo 2001, pp.
63–78.

[3] I. Fesenko, Local reciprocity cycles, inInvitation to higher local fields,I. Fesenko and M. Kurihara
(eds.) Geometry and Topology Monographs, vol. 3, Geometry and Topology Publications, Warwick
2000, pp. 293–298.

[4] I. B. Fesenko and S. V. Vostokov,Local Fields and Their Extensions, AMS, Providence, R.I., second
ed. 2002.

[5] M. Hazewinkel, Local class field theory is easy, Adv. Math. 18(1975), 148–181.

[6] K. Iwasawa, Local Class Field Theory, Iwanami-Shoten, Tokyo, 1980.

[7] H. Koch, Local class field theory for metabelian extensions,Proceed. 2nd Gauss Symposium. Conf. A:
Mathematics and Theor. Physics(Munich, 1993), de Gruyter, Berlin, 1995, 287–300.

[8] H. Koch and E. de Shalit, Metabelian local class field theory, J. reine angew. Math. 478(1996), 85–106.

[9] J. Neukirch,Class Field Theory, Springer, Berlin etc., 1986.
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Ann. Sci. E.N.S., 4 śerie 16(1983), 59–89.

Department of Mathematics
University of Nottingham

NG7 2RD Nottingham England
ibf@maths.nott.ac.uk


