On the image of noncommutative local reciprocity map

Ivan Fesenko

0. Introduction

First steps in the direction of an arithmetic noncommutative local class field theory were described in [2] as an attempt to find an arithmetic generalization of the classical abelian class field theory; see [3] for an exposition of its main features. In particular, [2] clarified and simplified the metabelian local class field theory of H. Koch and E. de Shalit [7], [8]. In the noncommutative local class field theory [2] a direct arithmetic description of Galois extensions of a fixed local field F is given by means of noncommutative reciprocity maps between the Galois group Gal(L/F) of a totally ramified arithmetically profinite Galois extension L/F and a certain subquotient of formal power series in one variable over the algebraic closure of the residue field of F (which, more precisely, is the completion of the maximal unramified extension of the field of norms of L/F). One of the reciprocity maps (see below for definitions) is

$$\mathbf{N}_{L/F}$$
: $\mathrm{Gal}(L/F) \longrightarrow U^{\diamond}_{\mathcal{N}(L/F)}/U_{\mathcal{N}(L/F)}.$

This map is an injective 1-cocycle (the right hand side has a natural action of the Galois group). It is not surjective, and not a homomorphism in general. In the general case of nonabelian extensions, the description of the Galois group in this approach is given by objects related not only to the ground field F but to L as well.

To describe the image of the reciprocity map one can use a map from $\operatorname{Gal}(L/F)$ to $U^{\diamond}_{\mathcal{N}(L/F)}/Y_{L/F}$ induced by $\mathbf{N}_{L/F}$, where $Y_{L/F}$ is a certain subgroup of $U^{\diamond}_{\mathcal{N}(L/F)}$ containing $U_{\mathcal{N}(L/F)}$, such that the induced map is bijective. A key problem is to obtain as much information as possible about the subgroup $Y_{L/F}$. Then via the reciprocity map $\mathbf{N}_{L/F}$ this information translates into a description of the Galois group of L/F.

In this short note we suggest a new definition of certain maps f_i (see section 2) for regular extensions L/F. This provides more information on the submodule $Y_{L/F}$.

Needless to say, this arithmetic approach to noncommutative local class field theory is very different from the Langlands approach, which is somehow less arithmetic. From a general point of view it should be quite difficult to get a sufficiently explicit description of $Y_{L/F}$ for an arbitrary class of extensions L/F. There is a nice explicit description in the case of metabelian extensions, see [2],[7],[8]. It is expected there is a good explicit description in the case of *p*-adic Lie extensions, on the basis of [2] and this work. This may be of use for the local noncommutative Iwasawa theory.

We will assume that the reader has a good knowledge of basic results on local fields, as given for example in [4, Ch.III–IV].

Vic Snaith's volume, Homology, Homotopy and Applications, vol. 7(3), 2005, 53-62. [©]IF

1. The abelian case: interpretation

We start with a brief description of an interpretation of the abelian reciprocity maps, since it is this interpretation which leads to the construction of noncommutative reciprocity maps.

Let F be a local field with finite residue field whose characteristic is p. Denote by F^{ur} the maximal unramified extension of F in a fixed completion of a separable closure of F and denote by \mathcal{F} be the completion of F^{ur} .

Now we briefly present two (abelian) local reciprocity maps: geometric and arithmetic. Each of them uses the fact that for a finite Galois extension \mathcal{L}/\mathfrak{F} the homomorphism

$$\operatorname{Gal}(\mathcal{L}/\mathfrak{F}) \longrightarrow \ker N_{\mathcal{L}/\mathfrak{F}}/V(\mathcal{L}/\mathfrak{F}), \quad \sigma \longmapsto \pi^{\sigma-1}$$

is surjective with the kernel being the derived group of the Galois group. Here $V(\mathcal{L}/\mathcal{F})$ is the augmentation subgroup generated by elements $u^{\sigma-1}$ with $u \in U_{\mathcal{L}}, \sigma \in \text{Gal}(\mathcal{L}/\mathcal{F})$, and π is any prime element of \mathcal{L} . For a noncommutative generalization of this, see the first assertion of the Theorem below.

First, we give a description of the geometric reciprocity map. Let \mathcal{L}/\mathcal{F} be a finite Galois extension. Viewing all objects with respect to the pro-algebraic Zariski topology [10] one has a commutative diagram

$$1 \longrightarrow \pi_{1}(U_{\mathcal{L}}) \longrightarrow \overline{U_{\mathcal{L}}} \xrightarrow{\alpha} U_{\mathcal{L}} \longrightarrow 1$$
$$\downarrow^{N_{\mathcal{L}/\mathcal{F}}} \qquad \downarrow^{N_{\mathcal{L}/\mathcal{F}}} \qquad \downarrow^{N_{\mathcal{L}/\mathcal{F}}}$$
$$1 \longrightarrow \pi_{1}(U_{\mathcal{F}}) \longrightarrow \overline{U_{\mathcal{F}}} \longrightarrow U_{\mathcal{F}} \longrightarrow 1$$
$$\downarrow \qquad \qquad \downarrow$$
$$1 \qquad \qquad 1$$

where $\overline{U_{\mathcal{L}}}$ and $\overline{U_{\mathcal{F}}}$ are the universal covering spaces of $U_{\mathcal{L}}$ and $U_{\mathcal{F}}$. Applying the snake lemma, one has a map

$$\sigma \longmapsto \pi^{\sigma-1} \in U_{\mathcal{L}} \longmapsto N_{\mathcal{L}/\mathcal{F}} \left(\alpha^{-1} (\pi^{\sigma-1}) \right) \in \pi_1(U_{\mathcal{F}}) / N_{\mathcal{L}/\mathcal{F}} \pi_1(U_{\mathcal{L}})$$

which is the geometric reciprocity homomorphism (this is more or less straightforward from [10]).

For a separable extension L of F put $L^{ur} = LF^{ur}$, $\mathcal{L} = L\mathcal{F}$. To define the arithmetic reciprocity map, let L be a finite totally ramified Galois extension of F. Let φ be an element of the absolute Galois group of F such that its restriction to F^{ur} is the Frobenius automorphism of F. Denote by the same notation the continuous extension of φ to the completion of the maximal separable extension of F. Let π be a prime element of L.

There is a commutative diagram

$$1 \longrightarrow U_{L} \longrightarrow U_{\mathcal{L}} \xrightarrow{1-\varphi} U_{\mathcal{L}} \longrightarrow 1$$

$$\downarrow^{N_{L/F}} \qquad \downarrow^{N_{\mathcal{L}/\mathcal{F}}} \qquad \downarrow^{N_{\mathcal{L}/\mathcal{F}}}$$

$$1 \longrightarrow U_{F} \longrightarrow U_{\mathcal{F}} \xrightarrow{1-\varphi} U_{\mathcal{F}} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \qquad 1$$

and, applying the snake lemma, one has a map

$$\sigma \longmapsto \pi^{\sigma-1} \in U_L \longmapsto N_{\mathcal{L}/\mathcal{F}} ((1-\varphi)^{-1} (\pi^{\sigma-1})) \in U_F / N_{L/F} U_L$$

which is the arithmetic local reciprocity homomorphism [5], [6], [9], [4]. The equation

$$u^{1-\varphi} = \pi^{\sigma-1}$$

plays a fundamental role for the arithmetic reciprocity homomorphism.

Of course, the geometric reciprocity homomorphism can be viewed as the projective limit of the arithmetic reciprocity homomorphisms.

2. The reciprocity map $N_{L/F}$

We present one of noncommutative reciprocity maps originally defined in [2].

Denote by F^{φ} the fixed subfield of φ in the separable closure of F. Let L/F be a Galois arithmetically profinite extension which is infinite. We will suppose throughout the paper that $L \subset F^{\varphi}$. For the theory of fields of norms of arithmetically profinite extensions see [11] and [4, Ch. III sect. 5]. The field of norms N(L/F) of the extension L/F is a local field of characteristic p with residue field isomorphic to the residue field of F.

Denote by X the norm compatible sequence of prime elements of finite subextensions of F in L which is the part of the unique norm compatible sequence of prime elements in finite extensions of F in F^{φ} (for its existence and uniqueness see the first section of [8]).

Denote by $\mathcal{N}(L/F)$ the completion of the maximal unramified extension of the field N(L/F). Denote by $U^{\diamond}_{\mathcal{N}(L/F)}$ the subgroup of those elements of $U_{\mathcal{N}(L/F)}$ whose \mathcal{F} -component belongs to U_F .

The reciprocity map $N_{L/F}$ is defined as

$$\mathbf{N}_{L/F}$$
: $\operatorname{Gal}(L/F) \longrightarrow U^{\diamond}_{\mathcal{N}(L/F)}/U_{\mathcal{N}(L/F)}, \quad \mathbf{N}_{L/F}(\sigma) = U \mod U_{\mathcal{N}(L/F)},$

where $U \in U_{\mathcal{N}(L/F)}$ satisfies the (quite similar to the above) equation

$$U^{1-\varphi} = X^{\sigma-1}.$$

It was shown in [2] that the ground \mathcal{F} -component of $N_{L/F}$ equals the arithmetic reciprocity map described above, so $N_{L/F}$ is indeed a genuine extension of the abelian reciprocity map.

Fix a tower of subfields $F = E_0 - E_1 - E_2 - \ldots$, such that $L = \bigcup E_i$, E_i/F is a Galois extension, and E_i/E_{i-1} is cyclic of degree p for i > 1 and E_1/E_0 is cyclic of degree relatively prime to p. Let σ_i be an element of Gal(\mathcal{L}/\mathcal{F}) whose restriction to E_i is a generator of Gal(E_i/E_{i-1}). Denote by $v_{\mathcal{E}_i}$ the discrete valuation of $\mathcal{E}_i = E_i \mathcal{L}$. Put $s_i = v_{\mathcal{E}_i}(\pi_{E_i}^{\sigma_i-1} - 1)$ where π_{E_i} is a prime element of E_i .

The group $U_{\mathcal{N}(L/F)}^{\diamond}$ contains a subgroup $Y_{L/F}$ (which contains $U_{\mathcal{N}(L/F)}$) such that the reciprocity map $\mathbf{N}_{L/F}$ induces a bijection between $\operatorname{Gal}(L/F)$ and $U_{\mathcal{N}(L/F)}^{\diamond}/Y_{L/F}$, see [2, Th.2]. To get more information on $Y_{L/F}$ and its more explicit description, [2] uses certain liftings

$$f_i: U_{\mathcal{E}_i}^{\sigma_i-1} \longrightarrow U_{\mathcal{N}(L/E_i)} \longrightarrow U_{\mathcal{N}(L/F)}.$$

This is a central part of the noncommutative class field theory, and the better the description of f_i , the more information one obtains about the Galois extensions. Liftings f_i were defined in [2, Def. 3–4] by using arbitrary topological \mathbb{Z}_p -generators of $U_{\mathcal{E}_i}^{\sigma_i-1}$.

DEFINITION. Call an extension L/F regular if $\mathcal{L} \setminus \mathcal{F}$ contains no primitive *p*th root. In positive characteristic every extension is regular. In characteristic zero L/F is regular if and only if the extension $F(\zeta_p)/F$ is unramified or the extension $L(\zeta_p)/L$ is not unramified. In particular, if $E_1 = E_0$ then L/F is regular.

Now we make a correction for the paragraph standing between Definition 3 and Definition 3' in the published version of [2]. The statement there holds for regular extensions. Indeed, let \mathcal{F} be of characteristic zero. If a primitive *p*th root of unity ζ_p equals u^{σ_1-1} with $u \in U_{\mathcal{E}_1}$, then $N_{\mathcal{E}_1/\mathcal{E}_0}(\zeta_p) = 1$. Hence, if $\mathcal{E}_1 \setminus \mathcal{E}_0$ contains no primitive *p*th root of unity (i.e. L/F is regular), then so does $U_{\mathcal{E}_1}^{\sigma_1-1}$. All the assertions of [2] following Def. 3 hold for regular Galois arithmetically profinite extensions.

In the general case of (non-regular) extensions the group $U_{\mathcal{E}_1}^{\sigma_1-1}$ may have a nontrivial *p*-torsion (for example, if $E_0 = \mathbb{Q}_p$ and $E_1 = \mathbb{Q}_p(\zeta_p)$). It is not clear at the moment how to define the corresponding map f_1 for non-regular extensions.

Below we give a new definition of f_i for regular Galois arithmetically profinite extensions L/F, $L \subset F^{\varphi}$.

3. Splitting exact sequences

The following theorem leads to a new definition of liftings f_i .

For submodules M_i of $U_{\mathcal{E}_i}$ denote by $\prod M_i$ their product.

Denote $E = E_k$, $E' = E_{k+1}$, $\mathcal{E} = \mathcal{E}_k$, $\mathcal{E}' = \mathcal{E}_{k+1}$. Denote $\sigma = \sigma_{k+1}$.

Recall that in the abelian class field theory an important role is played by the following exact sequence

$$1 \longrightarrow T \longrightarrow U_{\mathcal{E}'}/U_{\mathcal{E}'}^{\sigma-1} \xrightarrow{N_{\mathcal{E}'/\mathcal{E}}} U_{\mathcal{E}} \longrightarrow 1$$

Here T is the isomorphic image of $\operatorname{Gal}(E'/E)$ in $U_{\mathcal{E}'}/U_{\mathcal{E}'}^{\sigma-1}$ with respect to the homomorphism

$$\operatorname{Gal}(E'/E) \longrightarrow U_{\mathcal{E}'}/U_{\mathcal{E}'}^{\sigma-1}, \quad \rho \longmapsto \pi_{E_{k+1}}^{\rho-1}U_{\mathcal{E}'}^{\sigma-1},$$

see [4, Ch.IV (1.7)].

THEOREM. Fix $k \ge 1$. Assume that L/F is a regular extension.

Denote by T' the intersection of T with $\left(\prod_{i \leq k} U_{\mathcal{E}'}^{\sigma_i-1}\right) U_{\mathcal{E}'}^{\sigma-1} / U_{\mathcal{E}'}^{\sigma-1}$. We have an exact sequence

$$1 \longrightarrow T' \longrightarrow \left(\prod_{i \leqslant k} U_{\mathcal{E}'}^{\sigma_i - 1}\right) U_{\mathcal{E}'}^{\sigma - 1} / U_{\mathcal{E}'}^{\sigma - 1} \xrightarrow{N_{\mathcal{E}'/\mathcal{E}}} \prod_{i \leqslant k} U_{\mathcal{E}}^{\sigma_i - 1} \longrightarrow 1.$$

The sequence splits by a (not uniquely determined in general) homomorphism

$$f:\prod_{i\leqslant k}U_{\mathcal{E}}^{\sigma_i-1}\longrightarrow \left(\prod_{i\leqslant k}U_{\mathcal{E}'}^{\sigma_i-1}\right)U_{\mathcal{E}'}^{\sigma-1}/U_{\mathcal{E}'}^{\sigma-1}.$$

Proof. It is convenient to divide it into several parts.

1. The product of modules $\prod_{i \leq k} U_{\mathcal{E}}^{\sigma_i - 1}$ is a closed \mathbb{Z}_p -submodule of $U_{1,\mathcal{E}}$. Let λ_j be a system of topological multiplicative generators of the topological \mathbb{Z}_p -module $\prod_{i \leq k} U_{\mathcal{E}}^{\sigma_i - 1}$ which satisfy the following property: if the torsion of this group is nontrivial, it includes λ_* of order p^m , and the rest of λ_j are topologically independent over \mathbb{Z}_p .

Define a map f on the topological generators λ_j as

$$f(\lambda_j) = u_j U_{\mathcal{E}'}^{\sigma-1}$$

where u_j is any element of $(\prod_{i \leq k+1} U_{\mathcal{E}'}^{\sigma_i - 1})$ whose norm equals λ_j . We will prove by the end of the fifth part that $f(\lambda_*)^{p^m} \in U_{\mathcal{E}'}^{\sigma_i - 1}$. Hence we can extend f to a homomorphism $f: \prod_{i \leq k} U_{\mathcal{E}}^{\sigma_i - 1} \longrightarrow \prod_{i \leq k+1} U_{\mathcal{E}'}^{\sigma_i - 1}/U_{\mathcal{E}'}^{\sigma_i - 1}$ which is a section of the exact sequence in the theorem.

Suppose that m > 0, i.e. λ_* , different from 1, is in the system of the generators. As discussed at the end of the previous section, if k = 1 and L/F is a regular extension then m = 0. Hence k > 1.

We claim that then s_{k+1} (defined in section 2) is prime to p. This will be proved by the end of the fourth part.

2. By [4, Ch.III (2.3)] we know that if s_{k+1} is divisible by p then $s_{k+1} = pe(E_k)/(p-1)$, a primitive pth root lies in E_k and there is a prime element π_k of E_k such that $E_{k+1} = E_k(\sqrt[p]{\pi_k})$. Using [4, Ch.II Prop. 4.5] we deduce that s_i are divisible by p for $2 \le i \le k+1$. So all the ramification breaks s_i , $2 \le i \le k+1$ take their maximal possible values. Using local class field theory and looking at the norm group of E_k/E_1 it is easy to see that E_k/E_1 is a cyclic extension (see, e.g. [1, Prop. 1.5]). Then $\sigma_2|_E$ is a generator of its Galois group. Recall that we assume that the torsion element belongs to the system of generators of $\prod U_{\mathcal{E}}^{\sigma_i-1}$. Hence a primitive pth root ζ_p can be written as $u_1^{\sigma_1-1}u_2^{\sigma_2-1}$ with $u_i \in U_{\mathcal{E}}$. We will show by the end of the fourth part that this leads to a contradiction; then s_{k+1} is prime to p.

3. Denote by v the discrete valuation of \mathcal{E} and let π be a prime element of E. To get a contradiction, choose u_1 with maximal possible value of $v(u_1 - 1)$ such that $\zeta_p = u_1^{\sigma_1 - 1} u_2^{\sigma_2 - 1}$. We will show that we can increase the value $v(u_1 - 1)$, and this gives a contradiction.

Using the description of the norm map in [4, Ch.III sect.1] we deduce that

$$\pi^{\sigma_1} = \theta_1 \pi + \text{ terms of higher order},$$

$$\pi^{\sigma_2 - 1} = 1 + \theta_2 \pi^{e(E_2)/(p-1)} + \text{ terms of higher order},$$

with non-zero multiplicative representatives θ_i , θ_1 is a primitive *l*th root.

The Galois group of E/F is the semi-product of cyclic groups of order $l = |E_1 : E_0|$ and $|E_k : E_1|$. Let R be the fixed field of the first group. Then $\sigma_1|_E$ as a generator of the Galois group of E/R. Denote $\Re = R\mathcal{E}$.

Let θ run through non-zero multiplicative representatives. In the first choice of representatives in $U_{\mathcal{E}}$ of the quotients U_i/U_{i+1} of the group of principal units of \mathcal{E} we can include in it units $1 + \theta \pi_R^j$ where π_R is a prime element of R. Note that σ_1 acts trivially on such elements. In addition,

$$(1 + \theta \pi^i)^{\sigma_1 - 1} = 1 + \theta(\theta_1^i - 1)\pi^i$$
 + terms of higher order, if $(i, l) = 1$.

In the second choice of topological generators of the group of principal units of \mathcal{E} take elements $1 + \theta \pi^i$, (i, p) = 1, i < pe(E)/(p-1) and an appropriate element $1 + \theta_* \pi^{pe(E)/(p-1)}$ (see, e.g. [4, Ch.I sect.6]). We get

$$(1 + \theta \pi^i)^{\sigma_2 - 1} = 1 + i\theta \theta_2 \pi^{i + e(E_2)/(p-1)} + \text{ terms of higher order}, \quad \text{if } (i, p) = 1.$$

4. From the description of the behaviour of the map $x \mapsto x^p$ on the group of principal units (see, e.g., [4, Ch.I sect.5]) we deduce the following. If for some $r \ge 0$ the element $((1 + \theta \pi^i)^{p^r})^{\sigma_2 - 1}$ with (i, p) = 1 is not closer to 1 than ζ_p , then

$$\left((1 + \theta \pi^{i})^{p^{r}} \right)^{\sigma_{2}-1} = 1 + (i\theta\theta_{2})^{p^{r}} \pi^{p^{r}(i+e(E_{2})/(p-1))} + \text{ terms of higher order}, \qquad (i,p) = 1.$$

Since $\zeta_p \in \mathcal{E}_1$, l divides $e(E_2)/(p-1)$. From the previous description of the action of σ_1 we deduce that $v(u_1^{\sigma_1-1}-1) = v(\zeta_p-1)$ does not hold. Using the description of the action of σ_2 and observing that $p^r(i + e(E_2)/(p-1)) = p^{k-2}e(E_2)/(p-1) = v(\zeta_p-1)$ for $r \ge 0$ implies p divides i, we also deduce that $v(u_2^{\sigma_2-1}-1) = v(\zeta_p-1)$ does not hold.

Hence $v(u_1^{\sigma_1-1}-1) = v(u_2^{\sigma_2-1}-1) < v(\zeta_p-1)$ and $u_2^{\sigma_2-1} = 1 + (i\theta\theta_2)^{p^r} \pi^{p^r(i+e(E_2)/(p-1))} +$ terms of higher order, for some $r \ge 0$. Denote $j = p^r(i+e(E_2)/(p-1))$. Then $u_1^{\sigma-1}$ must start with $1 - (i\theta\theta_2)^{p^r}\pi^j$, and hence *j* is not divisible by *l*. Due to the choice of u_1 we can assume that when it is presented as the product of the first choice of representatives in the group of principal units of \mathcal{E} , that product does not contain elements from \mathcal{R} . Therefore $u_1 = w^{\sigma_2 - 1}u'_1$, $v(u'_1 - 1) > v(u_1 - 1)$, where $w = (1 + \eta\pi^i)^{p^r}$, $\eta^{p^r} \equiv -\theta^{p^r}(\theta_1^j - 1)^{-1} \mod \pi$ and $w^{\sigma_2 - 1} = 1 - (i\theta\theta_2)^{p^r}(\theta_1^j - 1)^{-1}\pi^j + \text{terms of higher order.}$

Now $\zeta_p = u_1^{\sigma_1 - 1} u_2^{\sigma_2 - 1} = u_1'^{\sigma_1 - 1} u_2'^{\sigma_2 - 1}$ where $u_2' = u_2 w^{\sigma_1 - 1} z$. Here z = 1 is E_k/E_0 is abelian and $z = (w^{\sigma_1 \sigma_2})^{1 + \dots + \sigma_2^{r-2}} \in U_{\mathcal{E}}$ where $(\sigma_1^{-1} \sigma_2 \sigma_1)|_E = \sigma_2^r|_E$, r > 1, otherwise. Since $v(u_1' - 1) > v(u_1 - 1)$, we get a contradiction.

Thus, s_{k+1} is prime to p.

5. Now, we argue similarly to the proof of a part of [2, Lemma 3]. Denote $\beta_* = u_*^{p^m}$. We aim to show that $\beta_* \in U_{\mathcal{E}'}^{\sigma-1}$. We get $N_{\mathcal{E}'/\mathcal{E}}\beta_* = 1$, hence β_* can be written as $\pi_{E'}^{\rho-1}u^{\sigma-1}$ with $\rho \in \operatorname{Gal}(E'/E)$, $u \in U_{\mathcal{E}'}$, $\pi_{E'}$ a prime element of E'. We shall show that $\rho = 1$. Then $u_*^{p^m}$ belongs to $U_{\mathcal{E}'}^{\sigma-1}$, as desired.

Find a unit δ in \mathcal{E}' such that $\delta^{1-\varphi} = u_*^{p^{m-1}}$. Then, as briefly discussed in section 1, the reciprocity homomorphism for E'/E maps ρ to $(N_{\mathcal{E}'/\mathcal{E}}\delta)^p \mod N_{E'/E}U_{E'}$; for more detail see [4, Ch.IV sect.3]. If $\varepsilon = N_{\mathcal{E}'/\mathcal{E}}\delta$ belongs to E, then the image of ρ belongs to $N_{E'/E}U_{E'}$, and hence, since the reciprocity homomorphism is injective for abelian extensions, $\rho = 1$. If ε does not belong to E, then, since $\varepsilon \in \mathcal{E}$, we can write $\varepsilon^p = a^p \omega$ where $a \in U_E$ and $\omega \in U_E$ is a p-primary element (i.e. the extension $E(\sqrt[p]{\omega})/E$ is unramified of degree p). Since s_{k+1} is prime to p, we have $s_{k+1} < v(\omega - 1) = pe(E)/(p - 1)$. Properties of the norm map (see e.g. [4, Ch. III sect. 1]) imply that $\omega \in N_{E'/E}U_{E'}$. Therefore the image of ρ , which is the class of ε^p , belongs to $N_{E'/E}U_{E'}$. Thus, $\rho = 1$, as desired.

REMARK 1. The sequence $1 \to T \to U_{\mathcal{E}'}/U_{\mathcal{E}'}^{\sigma-1} \xrightarrow{N_{\mathcal{E}'/\mathcal{E}}} U_{\mathcal{E}} \to 1$ does not split if and only if s_{k+1} is divisible by p (i.e. the extension E_{k+1}/E_k is not of Artin–Schreier type). This follows from the fifth part of the proof of the previous theorem.

REMARK 2. $T' = \{1\}$ if and only if the extension E'/F is abelian; in this case the splitting f is uniquely determined.

REMARK 3. The sequence $1 \to T' \to \left(\prod_{i \leq k+1} U_{\mathcal{E}'}^{\sigma_i - 1}\right)/U_{\mathcal{E}'}^{\sigma_i - 1} \xrightarrow{N_{\mathcal{E}'/\mathcal{E}}} \prod_{i \leq k} U_{\mathcal{E}}^{\sigma_i - 1} \to 1$ splits in the category of \mathbb{Z}_p -modules, but not necessarily in the category of pro-algebraic modules (see also Remark 5).

4. A new definition of f_i and $Y_{L/F}$

We assume in this section that the reader has a good knowledge of [2].

DEFINITION. Using the previous theorem, we introduce homomorphisms $(k \ge 1)$

$$h_k: \prod_{1 \leqslant i \leqslant k} U_{\mathcal{E}_k}^{\sigma_i - 1} \longrightarrow \left(\prod_{1 \leqslant i \leqslant k+1} U_{\mathcal{E}_{k+1}}^{\sigma_i - 1}\right) / U_{\mathcal{E}_{k+1}}^{\sigma_{k+1} - 1}.$$

Set $X_i = U_{\mathcal{E}_i}^{\sigma_i - 1}$. Let $g_k : \prod_{1 \leq i \leq k} U_{\mathcal{E}_k}^{\sigma_i - 1} \longrightarrow \prod_{1 \leq i \leq k+1} U_{\mathcal{E}_{k+1}}^{\sigma_i - 1}$ be any map such that $h_k = g_k \mod U_{\mathcal{E}_{k+1}}^{\sigma_{k+1} - 1}$.

Define

$$f_i: X_i \longrightarrow U_{\mathcal{N}(L/E_i)} \longrightarrow U_{\mathcal{N}(L/F)}$$

as any map such that its \mathcal{E}_j -component for j > i coincides with $(g_{j-1} \circ \cdots \circ g_i)|_{X_i}$.

This definition of f_i , since it comes from the splitting *homomorphisms* in the previous theorem, is more functorial than that in [2].

With this choice of f_i [2, Lemma 4] holds for all regular extensions. Denote by Z_i the image of f_i . Set

$$Z_{L/F} = Z_{L/F}(\{E_i, f_i\}) = \left\{\prod_i z^{(i)} : z^{(i)} \in Z_i\right\}.$$

Define

$$Y_{L/F} = \{ y \in U_{\mathcal{N}(L/F)} : y^{1-\varphi} \in Z_{L/F} \}.$$

As in [2], the map $1 - \varphi$ induces an isomorphism between the group $U^{\diamond}_{\mathcal{N}(L/F)}/Y_{L/F}$ and group ker $N_{\mathcal{L}/\mathcal{F}}/Z_{L/F}$.

The following theorem is proved exactly in the same way as [2, Th. 1 and Th. 2].

THEOREM. Let L/F be a good Galois arithmetically profinite extension.

The map $\operatorname{Gal}(L/F) \longrightarrow \ker N_{\mathcal{L}/\mathcal{F}}/Z_{L/F}, \quad \tau \longmapsto X^{\tau-1} \text{ is a bijection.}$ For every $U \in U^{\diamond}_{\mathcal{N}(L/F)}$ there is a unique automorphism $\tau \in \operatorname{Gal}(L/F)$ satisfying

$$U^{1-\varphi} \equiv X^{\tau-1} \mod Z_{L/F}$$

Thus the map

$$\mathcal{N}_{L/F}$$
: Gal $(L/F) \longrightarrow U^{\diamond}_{\mathcal{N}(L/F)}/Y_{L/F}, \quad \tau \longmapsto U$

where $U \in U^{\diamond}_{\mathcal{N}(L/F)}/Y_{L/F}$ satisfies the equation of the previous paragraph, is a bijection.

REMARK 4. Thus we get the second reciprocity map $\mathcal{H}_{L/F}: U^{\diamond}_{\mathcal{N}(L/F)} \longrightarrow \mathrm{Gal}(L/F)$ defined by $\mathcal{H}_{L/F}(U) = \tau$. The above construction of $Z_{L/F}$ and $Y_{L/F}$ provides a new calculation of its kernel.

REMARK 5. The group $Z_{L/F}$ for a finite extension L/F is a subgroup of finite index of $V(\mathcal{L}/\mathcal{F})$. Recall [10] that $V(\mathcal{L}/\mathcal{F})$ is the connected component of ker $N_{\mathcal{L}/\mathcal{F}}$ in the pro-algebraic Zariski topology. The group $Z_{L/F}$ is a connected subgroup of finite index of $V(\mathcal{L}/\mathcal{F})$; and one can show that the quotient $V(\mathcal{L}/\mathcal{F})/Z_{L/F}$ has exponent $\leq p$.

It is a challenging problem to investigate if one can modify the Zariski topology to a new topology t so that $Z_{L/F}$ becomes the connected component of ker $N_{\mathcal{L}/\mathcal{F}}$; then one would have a bijection between $\pi_1^t(U_{\mathcal{F}})/N_{L/F}\pi_1^t(U_{\mathcal{L}})$ and Gal(L/F) similarly to the (geometric) abelian case.

REMARK 6. It is an open problem if the subgroup $Z_{L/F}$ depends on the choice of the tower E_i for nonabelian extensions L/F.

References

- M.V. Bondarko, S.V. Vostokov, I.B. Zhukov, Additive Galois modules in complete discrete valuation fields, Algebra i Analiz 9(1997), no. 4, 28–46; Engl. translation in St. Petersburg Math. J. 9(1998), 675–693.
- [2] I. Fesenko, Noncommutative local reciprocity maps, Class Field Theory Its Centenary and Prospect, Advanced Studies in Pure Mathematics, vol. 30, ed. K. Miyake, Math. Soc. Japan, Tokyo 2001, pp. 63–78.
- [3] I. Fesenko, Local reciprocity cycles, in *Invitation to higher local fields*, I. Fesenko and M. Kurihara (eds.) Geometry and Topology Monographs, vol. 3, Geometry and Topology Publications, Warwick 2000, pp. 293–298.
- [4] I. B. Fesenko and S. V. Vostokov, *Local Fields and Their Extensions*, AMS, Providence, R.I., second ed. 2002.
- [5] M. Hazewinkel, Local class field theory is easy, Adv. Math. 18(1975), 148–181.
- [6] K. Iwasawa, Local Class Field Theory, Iwanami-Shoten, Tokyo, 1980.
- H. Koch, Local class field theory for metabelian extensions, *Proceed. 2nd Gauss Symposium. Conf. A: Mathematics and Theor. Physics* (Munich, 1993), de Gruyter, Berlin, 1995, 287–300.
- [8] H. Koch and E. de Shalit, Metabelian local class field theory, J. reine angew. Math. 478(1996), 85–106.
- [9] J. Neukirch, *Class Field Theory*, Springer, Berlin etc., 1986.
- [10] J.-P. Serre, Sur les corps locaux á corps residuel algébriquement clos, Bull. Soc. Math. France 89(1961), 105–154.
- J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; applications, Ann. Sci. E.N.S., 4 série 16(1983), 59–89.

Department of Mathematics University of Nottingham NG7 2RD Nottingham England ibf@maths.nott.ac.uk