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IUT

IUT is Inter-universal Teichmüller theory,
also known as arithmetic deformation theory.

Its author is Shinichi Mochizuki
who worked on his theory for 20 years
at Research Institute for Mathematical Sciences, University of Kyoto.

http://www.kurims.kyoto-u.ac.jp/~motizuki/


IUT

IUT is Inter-universal Teichmüller theory,
also known as arithmetic deformation theory.

Its author is Shinichi Mochizuki
who worked on his theory for 20 years
at Research Institute for Mathematical Sciences, University of Kyoto.

http://www.kurims.kyoto-u.ac.jp/~motizuki/


IUT

IUT is not only a new area in mathematics. It already includes the proof of one
its main applications:

For an integer n =±∏pmi
i denote red(n) = ∏pi (the reduced part).

A version of abc conjecture

there is a positive integer m such that for every ε > 0 there is a positive κ ∈ R
such that for every three non-zero coprime integers a,b,c satisfying a+b = c,
the inequality

max(|a|, |b|, |c|) < κ red(abc)m+ε

holds.

In some of the strongest versions of the abc conjectures m is 1.
In some naive approaches κ was expected to be close to 1.

Abc conjectures describe a kind of fundamental balance between addition and
multiplication, formalising the observation that
when two positive integers a and b are divisible by large powers of small primes,
a+b tends to be divisible by small powers of large primes.
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The place of IUT

CFT = class field theory
AAG = adelic analysis and geometry
2d = two-dimensional (i.e. for arithmetic surfaces)

Galois theory Kummer theory

CFT

Langlands program 2d CFT anabelian geometry

2d Langlands program? 2d AAG IUT



Original texts on IUT

Shinichi Mochizuki

Inter-universal Teichmüller theory (IUT)

Also known as Arithmetic Deformation Theory (ADT)

Preprints 2012–2017

I: Constructions of Hodge theaters

II: Hodge–Arakelov-theoretic evaluation

III: Canonical splittings of the log-theta-lattice

IV: Log-volume computations and set-theoretic foundations

http://www.kurims.kyoto-u.ac.jp/~motizuki/
http://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20I.pdf
http://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20II.pdf
http://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20III.pdf
http://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20IV.pdf


Introductory texts and surveys of IUT

The order is chronological,
The numbers may or may not correspond to easiness of reading (5 is very easy)

2. A Panoramic Overview of Inter-universal Teichmüller Theory, by Shinichi
Mochizuki

4. Arithmetic Deformation Theory via Algebraic Fundamental Groups and
Nonarchimedean Theta-Functions, Notes on the Work of Shinichi Mochizuki,
by Ivan Fesenko

1. Introduction to Inter-universal Teichmüller Theory (in Japanese), by
Yuichiro Hoshi

3. The Mathematics of Mutually Alien Copies: From Gaussian Integrals to
Inter-universal Teichmüller Theory, by Shinichi Mochizuki

5. Fukugen, by Ivan Fesenko

http://www.kurims.kyoto-u.ac.jp/~motizuki/Panoramic%20Overview%20of%20Inter-universal%20Teichmuller%20Theory.pdf
https://www.maths.nottingham.ac.uk/personal/ibf/notesoniut.pdf
https://www.maths.nottingham.ac.uk/personal/ibf/notesoniut.pdf
http://www.kurims.kyoto-u.ac.jp/~yuichiro/intro_iut.pdf
http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
http://inference-review.com/article/fukugen


Materials of two workshops on IUT

Materials of two workshops on IUT

Oxford Workshop on IUT Theory of Shinichi Mochizuki, December 7-11 2015
RIMS workshop on IUT Summit, July 18-27 2016

can be useful in its study.

Total number of participants of the two workshops: more than 100.
They included geometers and logicians.

The workshops helped to increase the number of people actively studying IUT
from 4 in 2014 to 15 in 2017.

https://www.maths.nottingham.ac.uk/personal/ibf/files/symcor.iut.html
https://www.maths.nottingham.ac.uk/personal/ibf/files/kyoto.iut.html
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On IUT very briefly (hence, vaguely)

Algebraic geometry involves locally the correspondence between affine varieties
and commutative rings. The most common picture in Grothendieck’s volumes
is a commutative diagram of commutative rings and homomorphisms and a
similar one for local and global geometric objects.

Anabelian geometry for hyperbolic curves over number fields and other fields,
as proved by Mochizuki 25-15 years ago, is a correspondence between these
geometric objects and their arithmetic fundamental groups (or slightly more
complicated objects).

Fundamental groups are highly non-commutative, but they have one algebraic
operation, not two. This opens the perspective to try to perform deformations
of these geometric objects not seen by algebraic geometry, using the fact that
there are more maps, group homomorphisms and variations of those between
topological groups in comparison to morphisms between commutative rings.
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However, when one starts to play with basic diagrams of topological groups
and maps between them, one immediately sees that the diagrammes are rarely
commutative.

This obstruction was already seen 20 years ago by several researchers in
anabelian geometry. The main new contribution of Mochizuki in the IUT
theory for certain hyperbolic curves (e.g. an elliptic curve minus 1 point) is a
new fundamental understanding of how to bound from above the lack of
commutativity of certain crucial diagrammes of arithmetic fundamental groups
and certain maps between them using anabelian geometry and various
symmetries associated to such curves. This bound is then translated into the
bound in abc type inequalities.

IUT is a certain categorical monoidal geometry with few commutative diagrams
but tools to measure their deviations from commutativity in certain situations
which results in the new arithmetic deformation theory that is entirely
unavailable via the standard arithmetic geometry.
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On IUT very briefly

IUT works with deformations of multiplication.

These deformations are not compatible with ring structure.

Deformations are coded in theta-links between theatres which are certain
systems of categories associated to an elliptic curve over a number field.

Ring structures do not pass through theta-links.

Galois and fundamental groups (groups of symmetries of rings) do pass.

To restore rings from such groups (which pass through a theta-link) one uses
anabelian geometry results about number fields and hyperbolic curves over
them.

Measuring the result of the deformation produces bounds which eventually lead
to solutions of several famous problems in number theory.

IUT is a non-linear theory which addresses such fundamental aspects as to
which extent the multiplication and addition cannot be separated from one
another.
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On IUT very briefly

It is crucial that such highly non-linear objects as full absolute Galois and
algebraic fundamental groups are used in IUT.

Unlike in two other generalisations of class field theory, the use of more linear
objects such as the maximal abelian quotient or quotients related to the study
of representations of these groups is not sufficient for arithmetic deformation
theory.



List of main concepts of IUT

◦ mono-anabelian geometry, mono-anabelian reconstruction

◦ categorical geometry including frobenioids

◦ noncritical Belyi maps and their applications

◦ Belyi cuspidalisation and elliptic cuspidalisation and their applications

◦ mono-theta-environment

◦ generalised Kummer theory and multi-radial Kummer detachment

◦ principle of Galois evaluation

◦ rigidities (discrete rigidity, constant multiple rigidity, cyclotomic rigidity)

◦ mono-anabelian transport

◦ coric functions to transport elements of number fields

◦ multiradiality and indeterminacies

◦ (Hodge) theatres
◦ theta-link and two types of symmetry

◦ log-link, log-shell
◦ log-theta-lattice



Other applications of IUT

IUT proves versions of two other conjectures, by Szpiro and Vojta.
This implies a certain version of the abc inequality which is effective for odd
primes.

The strong Szpiro conjecture over number fields

For every ε > 0
there is a positive real number κ, depending on ε,
such that
for all number fields K and all elliptic curves E over K the inequality

DE < κ (CEDK )6+ε

holds, where
DE is the norm of the minimal discriminant of E ,
CE is the norm of the conductor of E ,
DK is the absolute value of the absolute discriminant of K .
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The Szpiro inequality in the geometric case

Over C, the property analogous to the Szpiro conjecture deals with

a smooth projective surface

equipped with a structure of non-split minimal elliptic surface

fibred over a smooth projective connected complex curve of genus g ,

such that the fibration admits a global section,

and each singular fibre of the fibration is ni projective lines

which intersect transversally with two neighbouring lines (an ni -gon).

The geometric Szpiro inequality:

S ≤ 6(2g −2 +N)

where S = the sum of the number of components of singular fibres,
N = the number of singular fibres.



The Szpiro inequality in the geometric case

Over C, the property analogous to the Szpiro conjecture deals with

a smooth projective surface

equipped with a structure of non-split minimal elliptic surface

fibred over a smooth projective connected complex curve of genus g ,

such that the fibration admits a global section,

and each singular fibre of the fibration is ni projective lines

which intersect transversally with two neighbouring lines (an ni -gon).

The geometric Szpiro inequality:

S ≤ 6(2g −2 +N)

where S = the sum of the number of components of singular fibres,
N = the number of singular fibres.



The Szpiro inequality in the geometric case

Over C, the property analogous to the Szpiro conjecture deals with

a smooth projective surface

equipped with a structure of non-split minimal elliptic surface

fibred over a smooth projective connected complex curve of genus g ,

such that the fibration admits a global section,

and each singular fibre of the fibration is ni projective lines

which intersect transversally with two neighbouring lines (an ni -gon).

The geometric Szpiro inequality:

S ≤ 6(2g −2 +N)

where S = the sum of the number of components of singular fibres,
N = the number of singular fibres.





The Szpiro inequality in the geometric case

There are many proofs of the geometric Szpiro inequality. It was already known
to Kodaira.

The nearest to IUT is a proof by Bogomolov (extended by Zhang) which uses
the hyperbolic geometry of the upper half-plane, SL2(Z) and SL2(R).

As noticed by Kremnitzer, essential part of Bogomolov’s proof was already
known to Milnor, and, after the work of Gromov, can be interpreted as a result
on bounded cohomology and the bounded Euler class.

The Bogomolov proof introduces a certain rotation of the ni -gons and proves
that these rotations are synchronised, like windmills revolving in synchrony in
the presence of wind.

See S. Mochizuki, Bogomolov’s proof of the geometric version of the Szpiro
conjecture from the point of view of inter-universal Teichmüller theory, Res.
Math. Sci. 3(2016), 3:6

See also Comparison table between Bogomolov’s proof and IUT.

http://www.kurims.kyoto-u.ac.jp/~motizuki//papers-english.html
http://www.kurims.kyoto-u.ac.jp/~motizuki//papers-english.html
https://www.maths.nottingham.ac.uk/personal/ibf/files/tab2.pdf
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On anabelian geometry: fields

Let K alg be an algebraic closure of a number field K .

The group of symmetries, the absolute Galois group of K is

GK = AutKK
alg,

the group of ring automorphisms of K alg over K .

Neukirch–Ikeda–Uchida theorem:

For two number fields K1,K2

every isomorphism of topological groups λ : GK1
∼−→ GK2

comes from a unique field isomorphism σ : K
alg
2
∼−→ K

alg
1 , σ(K2) = K1:

λ (g) = σ−1gσ for all g ∈ GK1 .
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Anabelian geometry: fields

This theorem does not work if global fields are replaced by local fields: finite
extensions of Qp .

However,

Theorem: Let F1,F2 be two finite extensions of Qp and let there be a
homeomorphism between their absolute Galois groups which is compatible with
their upper ramification filtrations. Then the fields are isomorphic.

This theorem has two different proofs, by Mochizuki and by Abrashkin.
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Algebraic fundamental groups

For any geometrically integral scheme X over a perfect field K one has its
algebraic fundamental group π1(X ) defined using étale covers of X .

If C is a complex irreducible smooth projective curve minus a finite collection
of its points, then π1(C) is isomorphic to the profinite completion of the
topological fundamental group of the Riemann surface associated to C .

The map X → Spec(K) induces the surjective homomorphism

π1(X )→ π1(Spec(K)) = GK ,

its kernel is the geometric fundamental group π
geom
1 (X ).

Suppressed dependence of the fundamental groups on basepoints actually
means that various objects are well-defined only up to conjugation by elements
of π1(X ).
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Anabelian geometry for curves

Let C be a hyperbolic curve over a number field K . Denote L = K(C), a 2d
global field.

π1(C) = the Galois group of LC over L,

where LC is the compositum of finite Galois extensions of L

such that the corresponding morphism of proper curves is étale over C

and each finite Galois subextension of LC/L comes from a curve étale over C .

Conjecture of Grothendieck: The curve C may be "reconstituted" from the
structure of the fundamental group π1(C) as a topological group equipped with
its associated surjection to GK .

Theorem (Mochizuki, 1995): proof of Grothendieck’s conjecture.

Compare with Rigidity theorem (Mostow–Prasad–Gromov): the isometry class
of a finite-volume hyperbolic manifold of dimension ≥ 3 is determined by its
topological fundamental group.
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Mono-anabelian geometry

One of important results in mono-anabelian geometry is

Theorem (Mochizuki, 2008): one can algorithmically reconstruct a number
field K from π1(C) for certain hyperbolic curves or orbi-curves C over K , e.g.
E \{0} or its quotient by 〈±1〉.

The proof uses Mochizuki–Belyi cuspidalization theory and other deep results.

This is the first explicit reconstruction of the number fields,

It is compatible with localizations.

It is independent from NIU theorem.
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The setting of IUT

The general case is reduced to the case when

E is an elliptic curve over a number field K so that each of its reductions is
good or split multiplicative,

the 6-torsion points of E are rational over K ,

K contains a 4th primitive root of unity,

the extension of K generated by the `-torsion points of E has Galois group over
K isomorphic to a subgroup of GL2(Z/`Z) which contains SL2(Z/`Z).

IUT works with hyperbolic curves: the hyperbolic curve

X = E \{0}

over K and the hyperbolic orbicurve

C = X/〈±1〉

over K .

Fix a prime integer ` > 3 which is sufficiently large wrt E .
IUT works with the `-torsion of E .
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The setting of IUT

Working with hyperbolic curves over number fields adds a geometric dimension
to the arithmetic dimension of the field.

Working with the two dimensions, geometric and arithmetic, is needed in IUT
in order to work with the two combinatorial dimensions of the field K : its
additive structure and multiplicative structure.
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The bounds from IUT

Assume that v is a prime of bad reduction of E . Tate’s theory shows that

E(Kv ) = K×v /〈qv 〉.

This element qv (the q-parameter of E at v) is the analogue of pnii in the abc
inequality.

The goal of IUT is to bound

deg(qE ) = |K : Q|−1
∑ log |Ov : qvOv |,

where the sum is taken over bad reduction v , Ov is the ring of integers of Kv .
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The bounds from IUT

In fact, studying the arithmetic deformation one obtains first an inequality

−deg(qE )≤−deg(ΘE )

where ΘE is a certain theta-data after applying the theta-link, subject to
certain indeterminacies, assuming the RHS is not equal to +∞.

Then one obtains an inequality

−deg(ΘE )≤ a(`)−b(`)deg(qE )

with real numbers a(`),b(`) > 1 depending on `.

Thus,
deg(qE )≤ a(`)(b(`)−1)−1.
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The bounds from IUT

In more precise terms,

1
6

deg(qE )≤
(
1+

245d
`

)(
deg(condE ) + deg(δK/Q)

)
+2143352d`+ c◦,

where c◦ > 0 comes from the prime number theorem (over Q), prime number
theorem is the only result from analytic number theory used in IUT,
δK/Q is the (absolute) different of K ,
d is the degree of the field of definition of E .

Note the dependence on `.

To derive the required bound on deg(qE ), one chooses the prime `

in the interval
(√

deg(qE ),5c∗
√

deg(qE ) log(c∗ deg(qE ))
)
,

where c∗ = 213335d .
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Nonarchimedean theta-function

Étale theta function theory uses a non-archimedean theta-function

θ(u) = ∑
n∈Z

(−1)nq
n(n−1)/2
v un = (1−u) ∏

n≥1

(
(1−qnv )(1−qnvu)(1−qnvu

−1)
)
.

The obvious functional equation θ(u) =−uθ(qvu) implies

q
(m2−m)/2
v = θ(−1)/θ(−qmv ), m ∈ Z.

This relation is used to represent powers of qv as special values of a modified
theta-function.

IUT demonstrates that these special values are very special objects.
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Example of arithmetic deformation

Monoid M
= the product
of invertible elements Ov

× of the ring of integers of an algebraic closure of Kv

and the group generated by non-negative powers of qv , with GKv
-action.

Local deformation: fix a positive integer m

M →M, units go identically to units, qv 7→ qmv .



Étale theta function theory

In étale theta function theory one uses truncated Kummer theory of line
bundles associated to non-archimedean theta-functions as a bridge between
monoid-theoretic structures and tempered fundamental group structures
associated to the theta-function.

The theory gives an anabelian construction of theta Kummer classes satisfying
three rigidities:

discrete rigidity: one can deal with Z-translates (as a group of covering
transformations on the tempered coverings), as opposed to Ẑ-translates, of the
theta function and q-parameters;

constant multiple rigidity: the monoid θ
m/`
2 Ov

×
: m ∈ N, where

θ2 = θ1(i)/θ1(u), θ1(u) =−u−1θ(u2), has, up to 2`-th roots of unity, a
canonical splitting via a Galois evaluation;

cyclotomic rigidity: a rigidity isomorphism between the exterior cyclotome
arising from the roots of unity of the base field and the interior cyclotome
arising as a subquotient of the geometric tempered fundamental group.
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theta function and q-parameters;

constant multiple rigidity: the monoid θ
m/`
2 Ov

×
: m ∈ N, where

θ2 = θ1(i)/θ1(u), θ1(u) =−u−1θ(u2), has, up to 2`-th roots of unity, a
canonical splitting via a Galois evaluation;

cyclotomic rigidity: a rigidity isomorphism between the exterior cyclotome
arising from the roots of unity of the base field and the interior cyclotome
arising as a subquotient of the geometric tempered fundamental group.



Étale theta function theory

In étale theta function theory one uses truncated Kummer theory of line
bundles associated to non-archimedean theta-functions as a bridge between
monoid-theoretic structures and tempered fundamental group structures
associated to the theta-function.

The theory gives an anabelian construction of theta Kummer classes satisfying
three rigidities:

discrete rigidity: one can deal with Z-translates (as a group of covering
transformations on the tempered coverings), as opposed to Ẑ-translates, of the
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Two types of symmetry associated to a prime l

There are two types of symmetry for the hyperbolic curves associated to the
elliptic curve E over a number field K , the choice of prime ` and the theta
structure at a bad reduction prime v .

They correspond to the LHS and RHS of the illustration and animation to
follow.

Recall

X = E \{0}, C = X/〈±1〉.

Let Y be a Z-(tempered) cover of X at v , which corresponds to the universal
graph-cover of the dual graph of the special fibre.

Let X −→ X be its subcover of degree l .

Let C −→ C be a (non Galois) subcover of X −→ C such that X = C ×C X .
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Two types of symmetry associated to a prime l

The symmetries are denoted

Fo±
` = F`o{±1}, F>

` = F×` /{±1},

with F` arising from the `-torsion points of E .

The first type of symmetry arises from the action of the geometric fundamental
group (AutK (X ) ∼−→ Fo±` ) and is closely related to the Kummer theory
surrounding the theta-values. This symmetry is of an essentially geometric
nature and it is additive.

The second type of symmetry F>
` is isomorphic to a subquotient of Aut(C) and

arises from the action of the absolute Galois group of certain number fields
such as K and the field generated over K by l-torsion elements of E and is
closely related to the Kummer theory for these number fields. This symmetry is
of an essentially arithmetic nature and it is multiplicative.

These symmetries are coded in appropriate theatres.
Each type of symmetry includes a global portion, i.e. a portion related to the
number field and the hyperbolic curves over it.
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Theatres

IUT operates with (Hodge) theatres – objects of categorical geometry which
generalise some aspects of 1d and 2d adelic objects, taking into account the
full fundamental groups and the two symmetries.

Theatres are a system of categories obtained by gluing categories over a base.

Many of the base categories are isomorphic to the full subcategory of finite
étale covers of hyperbolic curves.

Very approximately, theatres generalise A×K = ∏K×v > K× with the ideles and
global elements inside them
to T = ∏

′Tv > T0 with local theatres Tv depending on Kv , E and prime ` and
global T0 depending on K , E and `.

Each theatre consists of two portions corresponding to the two symmetries.
They are glued together. This gluing is only possible at the level of categorical
geometry.

Each type of symmetry includes a global portion related to the number field
and the hyperbolic curves over it.
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Log-theta lattice

log-links and theta-links form a noncommutative diagram

. . . . . .

T0,1
Θ //

log

OO

T1,1

log

OO

T0,0
Θ //

log

OO

T1,0

log

OO

T0,−1
Θ //

log

OO

T1,−1

log

OO

. . .

log

OO

. . .

log

OO



Log-theta lattice

There is no natural action of the theta-values on the multiplicative monoid of
units modulo torsion, but there is a natural action of the theta-values on the
logarithmic image of this multiplicative monoid.

The multiplicative structures on either side of the theta-link are related by
means of the value group portions.

The additive structures on either side of the theta-link are related by means of
the units group portions, shifted once via the log-link, in order to transform the
multiplicative structure of these units group portions into the additive structure.
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Log-theta lattice

To define the power series logarithm for the log-link one needs to use ring
structures, however, the theta-link is not compatible with ring structures.

From the point of view of the codomain of

Θ: Tn,m→ Tn+1,m,

one can only see the units group and value group portions of the data that
appears in the domain of this theta-link.

So one applies the log-link

log : Tn,m−1→ Tn,m

in order to give a presentation of the value group portion at Tn,m by means of
an action of it that arises from applying the log-link to the units group portion
at Tn,m−1.
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Log-theta lattice

One of fundamental ideas of IUT is to consider structures that are invariant
with respect to arbitrary vertical shifts log : Tn,m−1→ Tn,m, so called log-shells.

A log-shell is a common structure for the log-links in one vertical line.

A key role is played by Galois evaluation for special types of functions on
hyperbolic curves associated to E ,
by restricting them to the decomposition subgroups of closed points of the
curves via sections of arithmetic fundamental groups,
to get special values, such as theta-values and elements of number fields,
acting on log-shells.

Log-shells are shown as central balls, and Galois evaluation is shown in two
panels of the illustration and animation to follow.
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acting on log-shells.

Log-shells are shown as central balls, and Galois evaluation is shown in two
panels of the illustration and animation to follow.



Multiradiality

IUT applies mono-anabelian reconstruction algorithms to algebraic fundamental
groups that appear in one universe in order to obtain descriptions of objects
constructed from such algebraic fundamental groups that make sense in
another universe.

The IUT papers use the terminology of a wheel, its core and spokes.

A functorial algorithm from a radial category to the core category is called
multiradial if it is full.

Thus, multiradial algorithm expresses objects constructed from a given spoke in
terms of objects that make sense from the point of view of other spokes: there
is a parallel transport isomorphism between two collections of radial data that
lifts a given isomorphism between collections of underlying coric data.

It is important that the generalised Kummer theory used in IUT is multiradial.
To achieve that, one introduces mild indeterminacies.
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Indeterminacies

To obtain multiradial algorithms, it may be necessary to allow some
indeterminacies in the descriptions that appear in the algorithms of the objects
constructed from the given spoke.

There are three indeterminacies,
shown as Ind 1 – Ind 3 at the illustration and video.

The first indeterminacy is closely related to the action of automorphisms of the
absolute Galois group of a local field, it corresponds to compatibility with the
permutation symmetries of the Galois and arithmetic fundamental groups
associated with vertical lines of the log-theta-lattice.
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Indeterminacies

The second indeterminacy is related to the action of a certain compact group
of isometries on the logarithmic image of units. It comes from the requirement
of compatibility with the horizontal theta-link.

The third indeterminacy comes from a certain compatibility of the Kummer
isomorphism with the log-links associated to a single vertical line of the
log-theta-lattice.

The three indeterminacies can be viewed as effects of arithmetic deformation.
They play a key role in the computation of volume deformation.
They result in the ε term in the Szpiro conjectures.
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Animations related to IUT

Animations related to IUT

https://ivanfesenko.org/wp-content/uploads/iut.animat.html


Various guides on IUT

See this page and this page of Shinichi Mochizuki

https://ivanfesenko.org/wp-content/uploads/2021/11/guidesiut.pdf
https://www.kurims.kyoto-u.ac.jp/~motizuki/research-english.html
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