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1. Higher dimensional local fields and L-functions

A. N. Parshin

1.0. Introduction

1.0.1. Recall [P1], [FP] that if X is a scheme of dimension n and

X0 ⊂ X1 ⊂ . . . Xn−1 ⊂ Xn = X

is a flag of irreducible subschemes ( dim(Xi) = i ), then one can define a ring

KX0,...,Xn−1

associated to the flag. In the case where everything is regularly embedded, the ring is
an n-dimensional local field. Then one can form an adelic object

AX =
∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions on
components of adeles [P1], [Be], [Hu], [FP].

Example. Let X be an algebraic projective irreducible surface over a field k and let
P be a closed point of X , C ⊂ X be an irreducible curve such that P ∈ C .

If X and C are smooth at P , then we let t ∈ OX,P be a local equation of C at
P and u ∈ OX,P be such that u|C ∈ OC,P is a local parameter at P . Denote by C

the ideal defining the curve C near P . Now we can introduce a two-dimensional local
field KP,C attached to the pair P,C by the following procedure including completions
and localizations:

ÔX,P = k(P )[[u, t]] ⊃ C = (t)
|

(ÔX,P )C = discrete valuation ring with residue field k(P )((u))
|

ÔP,C := ̂(ÔX,P )
C

= k(P )((u))[[t]]
|

KP,C := Frac (ÔP,C) = k(P )((u))((t))
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200 A. N. Parshin

Note that the left hand side construction is meaningful without any smoothness condition.

Let KP be the minimal subring of KP,C which contains k(X) and ÔX,P . The ring
KP is not a field in general. Then K ⊂ KP ⊂ KP,C and there is another intermediate
subring KC = Frac (OC) ⊂ KP,C . Note that in dimension 2 there is a duality between
points P and curves C (generalizing the classical duality between points and lines in
projective geometry). We can compare the structure of adelic components in dimension
one and two:

1.0.2. In the one-dimensional case for every character χ: Gal(Kab/K) → C ∗ we
have the composite

χ′:A∗ =
∏′

K∗x
reciprocity map−−−−−−−−→ Gal(Kab/K)

χ−→ C ∗.

J. Tate [T] and independently K. Iwasawa introduced an analytically defined L-function

L(s, χ, f ) =
∫
A∗
f (a)χ′(a)|a|sd∗a,

where d∗ is a Haar measure on A∗ and the function f belongs to the Bruhat–Schwartz
space of functions on A (for the definition of this space see for instance [W1, Ch. VII]).
For a special choice of f and χ = 1 we get the ζ -function of the scheme X

ζX (s) =
∏
x∈X

(1−N (x)−s)−1,

if dim (X) = 1 (adding the archimedean multipliers if necessary). Here x runs through
the closed points of the scheme X and N (x) = |k(x)|. The product converges for
Re(s) > dim X . For L(s, χ, f ) they proved the analytical continuation to the whole
s-plane and the functional equation

L(s, χ, f ) = L(1− s, χ−1, f̂ ),

using Fourier transformation ( f 7→ f̂ ) on the space AX (cf. [T], [W1], [W2]).
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1.0.3. Schemes can be classified according to their dimension

dim (X) geometric case arithmetic case
. . . . . . . . .

2 algebraic surface /Fq arithmetic surface
1 algebraic curve /Fq arithmetic curve
0 Spec(Fq) Spec(F1)

where F1 is the “field of one element”.
The analytical method works for the row of the diagram corresponding to dimension

one. The problem to prove analytical continuation and functional equation for the
ζ -function of arbitrary scheme X (Hasse–Weil conjecture) was formulated by A. Weil
[W2] as a generalization of the previous Hasse conjecture for algebraic curves over
fields of algebraic numbers, see [S1],[S2]. It was solved in the geometric situation by
A. Grothendieck who employed cohomological methods [G]. Up to now there is no
extension of this method to arithmetic schemes (see, however, [D]). On the other hand,
a remarkable property of the Tate–Iwasawa method is that it can be simultaneously
applied to the fields of algebraic numbers (arithmetic situation) and to the algebraic
curves over a finite field (algebraic situation).

For a long time the author has been advocating (see, in particular, [P4], [FP]) the
following:

Problem1. Extend Tate–Iwasawa’s analytic method to higher dimensions.

The higher adeles were introduced exactly for this purpose.2

In dimension one the adelic groupsAX andA∗X are locally compact groups and thus
we can apply the classical harmonic analysis. The starting point for that is the measure
theory on locally compact local fields such as KP for the schemes X of dimension 1.
So we have the following:

Problem3. Develop a measure theory and harmonic analysis on n-dimensional local
fields.

Note that n-dimensional local fields are not locally compact topological spaces for
n > 1 and by Weil’s theorem the existence of the Haar measure on a topological group
implies its locally compactness [W3, Appendix 1].

1 This problem in the case of regular proper models of elliptic curves over global fields is solved
in I. Fesenko, Analysis on arithmetic schemes II (added in 2005 by IF)

2 Higher adeles here are the (geometric) adeles which were first correctly defined by A. Beilinson.
We now know that there is another adelic structure on arithmetic surfaces: an analytic adelic
structure and it is this structure on which one can integrate and study the zeta functions of the
surfaces, see I. Fesenko, Analysis on arithmetic schemes I,II (added in 2005 by IF)

3 This problem is solved in I. Fesenko, Analysis on arithmetic schemes I (added in 2005 by IF)
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In this work some options in answering these problems are described.

1.1. Riemann–Hecke method

When one tries to write the ζ-function of a scheme X as a product over local fields
attached to the flags of subvarieties one meets the following obstacle. For dimension
greater than one the local fields are parametrized by flags and not by the closed points
itself as in the Euler product. This problem is primary to any problems with the measure
and integration. I think we have to return to the case of dimension one and reformulate
the Tate–Iwasawa method. Actually, it means that we have to return to the Riemann–
Hecke approach [He] known long before the work of Tate and Iwasawa. Of course, it
was the starting point for their approach.

The main point is a reduction of the integration over ideles to integration over a
single (or finitely many) local field.

Let C be a smooth irreducible complete curve defined over a field k = Fq.
Put K = k(C). For a closed point x ∈ C denote by Kx the fraction field of the

completion Ôx of the local ring Ox.
Let P be a fixed smooth k-rational point of C. Put U = C \P , A = Γ(U,OC). Note

that A is a discrete subgroup of KP .
A classical method to calculate ζ-function is to write it as a Dirichlet series instead

of the Euler product:

ζC(s) =
∑

I∈Div (OC )

|I|sC

where Div (OC) is the semigroup of effective divisors, I =
∑
x∈X nxx, nx ∈ Z and

nx = 0 for almost all x ∈ C,

|I|C =
∏
x∈X

q−
∑

nx|k(x):k|.

Rewrite ζC(s) as

ζU (s)ζP (s) =
(∑
I⊂U
|I|sU

)( ∑
supp(I)=P

|I|sP
)
.

Denote A′ = A \ {0}. For the sake of simplicity assume that Pic(U ) = (0) and
introduce A′′ such that A′′ ∩ k∗ = (1) and A′ = A′′k∗. Then for every I ⊂ U there is
a unique b ∈ A′′ such that I = (b). We also write |b|∗ = |(b)|∗ for ∗ = P,U . Then from
the product formula |b|C = 1 we get |b|U = |b|−1

P . Hence

ζC(s) =
(∑
b∈A′′

|b|sU
)(∑

m>0

q−ms
)

=
(∑
b∈A′′

|b|−sP
)∫

a∈K∗
P

|a|sP f+(a)d∗a
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Part II. Section 1. Higher local fields and L-functions 203

where in the last equality we have used local Tate’s calculation, f+ = i∗δ
ÔP

, i:K∗P →
KP , δ

ÔP
is the characteristic function of the subgroup ÔP , d∗(Ô∗P ) = 1. Therefore

ζC(s) =
∑
b∈A′′

∫
a∈K∗

P

|ab−1|sP f+(a)d∗a

=
∑
b∈A′′

∫
c=ab−1

|c|sP f+(bc)d∗c =
∫
K∗
P

|c|sPF (c)d∗c,

where F (c) =
∑
b∈A′ f+(bc).

Thus, the calculation of ζC(s) is reduced to integration over the single local field
KP . Then we can proceed further using the Poisson summation formula applied to the
function F .

This computation can be rewritten in a more functorial way as follows

ζC(s) = 〈| |s, f0〉G · 〈| |s, f1〉G = 〈| |s, i∗(F )〉G×G = 〈| |s, j∗ ◦ i∗(F )〉G,

where G = K∗P , 〈f, f ′〉G =
∫
G
ff ′dg and we introduced the functions f0 = δA′′ = sum

of Dirac’s δa over all a ∈ A′′ and f1 = δOP on KP and the function F = f0 ⊗ f1 on
KP×KP . We also have the norm map | |:G→ C ∗, the convolution map j:G×G→ G,
j(x, y) = x−1y and the inclusion i:G×G→ KP ×KP .

For the appropriate classes of functions f0 and f1 there are ζ-functions with a
functional equation of the following kind

ζ(s, f0, f1) = ζ(1− s, f̂0, f̂1),

where f̂ is a Fourier transformation of f . We will study the corresponding spaces of
functions and operations like j∗ or i∗ in subsection 1.3.

Remark 1. We assumed that Pic(U ) is trivial. To handle the general case one has to
consider the curve C with several points removed. Finiteness of the Pic0(C) implies
that we can get an open subset U with this property.

1.2. Restricted adeles for dimension 2

1.2.1. Let us discuss the situation for dimension one once more. We consider the case
of the algebraic curve C as above.

One-dimensional adelic complex

K ⊕
∏
x∈C

Ôx →
∏′

x∈C
Kx
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can be included into the following commutative diagram

K ⊕
∏
x∈C Ôx −−−−→

∏′
x∈CKxy y

K ⊕ ÔP −−−−→
∏′
x 6=PKx/Ôx ⊕KP

where the vertical map induces an isomorphism of cohomologies of the horizontal
complexes. Next, we have a commutative diagram

K ⊕ ÔP −−−−→
∏′
x 6=PKx/Ôx ⊕KPy y

K/A −−−−→
∏′
x 6=PKx/Ôx

where the bottom horizontal arrow is an isomorphism (the surjectivity follows from
the strong approximation theorem). This shows that the complex A ⊕ ÔP → KP is
quasi-isomorphic to the full adelic complex. The construction can be extended to an
arbitrary locally free sheaf F on C and we obtain that the complex

W ⊕ F̂P → F̂P ⊗ÔP
KP ,

where W = Γ(F, C \ P ) ⊂ K, computes the cohomology of the sheaf F.
This fact is essential for the analytical approach to the ζ-function of the curve C.

To understand how to generalize it to higher dimensions we have to recall another
applications of this diagram, in particular, the so called Krichever correspondence from
the theory of integrable systems.

Let z be a local parameter at P , so ÔP = k[[z]]. The Krichever correspondence
assigns points of infinite dimensional Grassmanians to (C,P, z) and a torsion free
coherent sheaf of OC-modules on C. In particular, there is an injective map from
classes of triples (C,P, z) to A ⊂ k((z)). In [P5] it was generalized to the case of
algebraic surfaces using the higher adelic language.

1.2.2. Let X be a projective irreducible algebraic surface over a field k, C ⊂ X be an
irreducible projective curve, and P ∈ C be a smooth point on both C and X .

In dimension two we start with the adelic complex

A0 ⊕ A1 ⊕ A2 → A01 ⊕ A02 ⊕ A12 → A012,

where

A0 = K = k(X), A1 =
∏
C⊂X

ÔC , A2 =
∏
x∈X

Ôx,

A01 =
∏′

C⊂X
KC , A02 =

∏′

x∈X
Kx, A12 =

∏′

x∈C
Ôx,C , A012 = AX =

∏′
Kx,C .
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In fact one can pass to another complex whose cohomologies are the same as of the
adelic complex and which is a generalization of the construction for dimension one. We
have to make the following assumptions: P ∈ C is a smooth point on both C and X ,
and the surface X \ C is affine. The desired complex is

A⊕AC ⊕ ÔP → BC ⊕BP ⊕ ÔP,C → KP,C

where the rings Bx, BC , AC and A have the following meaning. Let x ∈ C. Let

Bx =
⋂
D 6=C

(Kx ∩ Ôx,D) where the intersection is taken inside Kx;

BC = KC ∩ (
⋂
x 6=P

Bx) where the intersection is taken inside Kx,C ;

AC = BC ∩ ÔC , A = K ∩ (
⋂
x∈X\C Ôx).

This can be easily extended to the case of an arbitrary torsion free coherent sheaf F
on X .

1.2.3. Returning back to the question about the ζ-function of the surfaceX over k = Fq
we suggest to write it as the product of three Dirichlet series

ζX (s) = ζX\C(s)ζC\P (s)ζP (s) =
( ∑
I⊂X\C

|I|sX
)( ∑

I⊂C\P

|I|sX
)( ∑

I⊂Spec(ÔP,C )

|I|sX
)
.

Again we can assume that the surface U = X \C has the most trivial possible structure.
Namely, Pic(U ) = (0) and Ch(U ) = (0). Then every rank 2 vector bundle on U is trivial.
In the general case one can remove finitely many curvesC fromX to pass to the surface
U satisfying these properties (the same idea was used in the construction of the higher
Bruhat–Tits buildings attached to an algebraic surface [P3, sect. 3]).4

Therefore any zero-ideal I with support in X \ C, C \ P or P can be defined by
functions from the rings A, AC and OP , respectively. The fundamental difference
between the case of dimension one and the case of surfaces is that zero-cycles I and
ideals of finite colength on X are not in one-to-one correspondence.

Remark 2. In [P2], [FP] we show that the functional equation for the L-function on
an algebraic surface over a finite field can be rewritten using the K2-adeles. Then it
has the same shape as the functional equation for algebraic curves written in terms of
A∗-adeles (as in [W1]).

4 It is still unknown whether this method can lead to anything useful (added in 2005 by IF)
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1.3. Types for dimension 1

We again discuss the case of dimension one. If D is a divisor on the curve C then the
Riemann–Roch theorem says

l(D)− l(KC −D) = deg (D) + χ(OC),

where as usual l(D) = dim Γ(C,OX (D)) and KC is the canonical divisor. If A = AC

and A1 = A(D) then

H1(C,OX (D)) = A/(A(D) +K), H0(C,OX (D)) = A(D) ∩K

where K = Fq(C). We have the following topological properties of the groups:

A
A(D)
K

A(D) ∩K
A(D) +K

locally compact group,
compact group,
discrete group,
finite group,
group of finite index of A.

The group A is dual to itself. Fix a rational differential form ω ∈ Ω1
K , ω 6= 0 and an

additive character ψ of Fq. The following bilinear form

〈(fx), (gx)〉 =
∑
x

resx(fxgxω), (fx), (gx) ∈ A

is non-degenerate and defines an auto-duality of A.
If we fix a Haar measure dx on A then we also have the Fourier transform

f (x) 7→ f̂ (x) =
∫
A
ψ(〈x, y〉)f (y)dy

for functions on A and for distributions F defined by the Parseval equality

(F̂ , φ̂) = (F, φ).

One can attach some functions and/or distributions to the subgroups introduced above

δD = the characteristic function of A(D)
δH1 = the characteristic function of A(D) +K

δK =
∑
γ∈K

δγ where δγ is the delta-function at the point γ

δH0 =
∑

γ∈A(D)∩K

δγ .

There are two fundamental rules for the Fourier transform of these functions

δ̂D = vol(A(D))δA(D)⊥ ,
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where

A(D)⊥ = A((ω)−D),

and

δ̂Γ = vol(A/Γ)−1δΓ⊥

for any discrete co-compact group Γ. In particular, we can apply that to Γ = K = Γ⊥.
We have

(δK , δD) = #(K ∩ A(D)) = ql(D),

(δ̂K , δ̂D) = vol(A(D))vol(A/K)−1(δK , δKC−D) = qdegDqχ(OC )ql(KC−D)

and the Parseval equality gives us the Riemann–Roch theorem.
The functions in these computations can be classified according to their types. There

are four types of functions which were introduced by F. Bruhat in 1961 [Br].
Let V be a finite dimensional vector space over the adelic ring A (or over an one-

dimensional local field K with finite residue field Fq). We put

D = {locally constant functions with compact support},
E = {locally constant functions},

D′ = {dual to D = all distributions},
E′ = {dual to E = distributions with compact support}.

Every V has a filtration P ⊃ Q ⊃ R by compact open subgroups such that all quotients
P/Q are finite dimensional vector spaces over Fq.

If V, V ′ are the vector spaces over Fq of finite dimension then for every homomor-
phism i:V → V ′ there are two maps

F(V ) i∗−→ F(V ′), F(V ′) i∗−→ F(V ),

of the spaces F(V ) of all functions on V (or V ′) with values inC. Here i∗ is the standard
inverse image and i∗ is defined by

i∗f (v′) =
{

0, if v′ /∈ im(i)∑
v 7→v′ f (v), otherwise.

The maps i∗ and i∗ are dual to each other.
We apply these constructions to give a more functorial definition of the Bruhat

spaces. For any triple P , Q, R as above we have an epimorphism i:P/R → P/Q

with the corresponding map for functions F(P/Q) i∗−→ F(P/R) and a monomorphism

j:Q/R→ P/R with the map for functions F(Q/R)
j∗−→ F(P/R).
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Now the Bruhat spaces can be defined as follows

D = lim−→ j∗ lim−→ i∗ F(P/Q),

E = lim←− j∗ lim−→ i∗ F(P/Q),

D′ = lim←− j∗ lim←− i∗ F(P/Q),

E′ = lim−→ j∗ lim←− i∗ F(P/Q).

The spaces don’t depend on the choice of the chain of subspaces P,Q,R. Clearly we
have

δD ∈ D(A),
δK ∈ D′(A),
δH0 ∈ E′(A),
δH1 ∈ E(A).

We have the same relations for the functions δOP and δA′′ on the group KP considered
in section 1.

The Fourier transform preserves the spaces D and D′ but interchanges the spaces E
and E′. Recalling the origin of the subgroups from the adelic complex we can say that,
in dimension one the types of the functions have the following structure

E

� �
D D′

� �
E′

01
� �

1 0
� �

∅
corresponding to the full simplicial division of an edge. The Fourier transform is a
reflection of the diagram with respect to the middle horizontal axis.

The main properties of the Fourier transform we need in the proof of the Riemann-
Roch theorem (and of the functional equation of the ζ-function) can be summarized as
the commutativity of the following cube diagram
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coming from the exact sequence

A i−→ A⊕ A j−→ A,

with i(a) = (a, a), j(a, b) = a− b, and the maps

F1
α−→ A β−→ F1

with α(0) = 0, β(a) = 0. Here F1 is the field of one element, F(F1) = C and the arrows
with heads on both ends are the Fourier transforms.

In particular, the commutativity of the diagram implies the Parseval equality used
above:

〈F̂ , Ĝ〉 = β∗ ◦ i∗(F̂ ⊗ Ĝ)

= β∗ ◦ i∗(F̂ ⊗G) = β∗ ̂j∗(F ⊗G)
= α∗ ◦ j∗(F ⊗G) = β∗ ◦ i∗(F ⊗G)
= 〈F,G〉.

Remark 3. These constructions can be extended to the function spaces on the groups
G(A) or G(K) for a local field K and a group scheme G.

1.4. Types for dimension 2

In order to understand the types of functions in the case of dimension 2 we have to look
at the adelic complex of an algebraic surface. We will use physical notations and denote
a space by the discrete index which corresponds to it. Thus the adelic complex can be
written as

∅ → 0⊕ 1⊕ 2→ 01⊕ 02⊕ 12→ 012,

where ∅ stands for the augmentation map corresponding to the inclusion of H0. Just as
in the case of dimension one we have a duality of A = A012 = 012 with itself defined
by a bilinear form

〈(fx,C), (gx,C)〉 =
∑
x,C

resx,C(fx,Cgx,C ω), (fx,C), (gx,C) ∈ A

which is also non-degenerate and defines the autoduality of A.
It can be shown that

A0 = A01 ∩ A02, A⊥01 = A01, A⊥02 = A02, A⊥0 = A01 ⊕ A02,
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and so on. The proofs depend on the following residue relations for a rational differential
form ω ∈ Ω2

k(X)

for all x ∈ X
∑
C3x

resx,C(ω) = 0,

for all C ⊂ X
∑
x∈C

resx,C(ω) = 0.

We see that the subgroups appearing in the adelic complex are not closed under the
duality. It means that the set of types in dimension two will be greater then the set of
types coming from the components of the adelic complex. Namely, we have:

Theorem 1 ([P4]). Fix a divisor D on an algebraic surface X and let A12 = A(D).
Consider the lattice L of the commensurability classes of subspaces in AX generated
by subspaces A01,A02,A12.

The lattice L is isomorphic to a free distributive lattice in three generators and has
the structure shown in the diagram.

Remark 4. Two subspaces V, V ′ are called commensurable if (V + V ′)/V ∩ V ′ is of
finite dimension. In the one-dimensional case all the subspaces of the adelic complex
are commensurable (even the subspaces corresponding to different divisors). In this
case we get a free distributive lattice in two generators (for the theory of lattices see
[Bi]).
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Just as in the case of curves we can attach to every node some space of functions
(or distributions) on A. We describe here a particular case of the construction, namely,
the space F02 corresponding to the node 02. Also we will consider not the full adelic
group but a single two-dimensional local field K = Fq((u))((t)).

In order to define the space we use the filtration in K by the powers Mn of the
maximal ideal M = Fq((u))[[t]]t ofK as a discrete valuation (of rank 1) field. Then we
try to use the same procedure as for the local field of dimension 1 (see above).

If P ⊃ Q ⊃ R are the elements of the filtration then we need to define the maps

D(P/R) i∗−→ D(P/Q), D(P/R)
j∗−→ D(Q/R)

corresponding to an epimorphism i:P/R → P/Q and a monomorphism j:Q/R →
P/R. The map j∗ is a restriction of the locally constant functions with compact support
and it is well defined. To define the direct image i∗ one needs to integrate along the
fibers of the projection i. To do that we have to choose a Haar measure on the fibers for
all P , Q, R in a consistent way. In other words, we need a system of Haar measures
on all quotients P/Q and by transitivity of the Haar measures in exact sequences it is
enough to do that on all quotients Mn/Mn+1.

Since OK/M = Fq((u)) = K1 we can first choose a Haar measure on the residue
field K1. It will depend on the choice of a fractional ideal Mi

K1
normalizing the Haar

measure. Next, we have to extend the measure on all Mn/Mn+1. Again, it is enough to
choose a second local parameter t which gives an isomorphism

tn:OK/M→Mn/Mn+1.

Having made these choices we can put as above

F02 = lim←− j∗ lim←− i∗ D(P/Q)

where the space D was introduced in the previous section.
We see that contrary to the one-dimensional case the space F02 is not intrinsically

defined. But the choice of all additional data can be easily controlled.

Theorem 2 ([P4]). The set of the spaces F02 is canonically a principal homogeneous
space over the valuation group ΓK of the field K.

Recall that ΓK is non-canonically isomorphic to the lexicographically ordered group
Z⊕ Z.

One can extend this procedure to other nodes of the diagram of types. In particular,
for 012 we get the space which does not depend on the choice of the Haar measures.

The standard subgroup of the type 02 is BP = Fp[[u]]((t)) and it is clear that

δBP ∈ F02.

The functions δBC and δ
ÔP,C

have the types 01, 12 respectively.
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Remark 5. Note that the whole structure of all subspaces in A or K corresponding to
different divisors or coherent sheaves is more complicated. The spacesA(D) of type 12
are no more commensurable. To describe the whole lattice one has to introduce several
equivalence relations (commensurability up to compact subspace, a locally compact
subspace and so on).
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2. Adelic constructions for direct images
of differentials and symbols

Denis Osipov

2.0. Introduction

Let X be a smooth algebraic surface over a perfect field k.
Consider pairs x ∈ C, x is a closed point of X , C is either an irreducible curve on

X which is smooth at x, or an irreducible analytic branch near x of an irreducible curve
on X . As in the previous section 1 for every such pair x ∈ C we get a two-dimensional
local field Kx,C .

If X is a projective surface, then from the adelic description of Serre duality on
X there is a local decomposition for the trace map H2(X,Ω2

X ) → k by using a two-
dimensional residue map resKx,C/k(x): Ω2

Kx,C/k(x) → k(x) (see [P1]).
From the adelic interpretation of the divisors intersection index on X there is a

similar local decomposition for the global degree map from the group CH2(X) of
algebraic cycles of codimension 2 onX modulo the rational equivalence to Z by means
of explicit maps from K2(Kx,C) to Z (see [P3]).

Now we pass to the relative situation. Further assume that X is any smooth surface,
but there are a smooth curve S over k and a smooth projective morphism f :X → S with
connected fibres. Using two-dimensional local fields and explicit maps we describe in
this section a local decomposition for the maps

f∗:Hn(X,Ω2
X )→ Hn−1(S,Ω1

S), f∗:Hn(X,K2(X))→ Hn−1(S,K1(S))

where K is the Zariski sheaf associated to the presheafU → K(U ). The last two groups
have the following geometric interpretation:

Hn(X,K2(X)) = CH2(X, 2− n), Hn−1(S,K1(S)) = CH1(S, 2− n)

where CH2(X, 2 − n) and CH1(S, 1 − n) are higher Chow groups on X and S
(see [B]). Note also that CH2(X, 0) = CH2(X), CH1(S, 0) = CH1(S) = Pic(S),
CH1(S, 1) = H0(S,O∗S).
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Let s = f (x) ∈ S. There is a canonical embedding f∗:Ks → Kx,C where Ks is
the quotient of the completion of the local ring of S at s.

Consider two cases:
(1) C 6= f−1(s). Then Kx,C is non-canonically isomorphic to k(C)x((tC)) where

k(C)x is the completion of k(C) at x and tC is a local equation of C near x.
(2) C = f−1(s). Then Kx,C is non-canonically isomorphic to k(x)((u))((ts)) where
{u = 0} is a transversal curve at x to f−1(s) and ts ∈ Ks is a local parameter at s,
i.e. k(s)((ts)) = Ks.

2.1. Local constructions for differentials

Definition. For K = k((u))((t)) let U = uik[[u, t]]dk[[u, t]] + tjk((u))[[t]]dk((u))[[t]]
be a basis of neighbourhoods of zero in Ω1

k((u))[[t]]/k (compare with 1.4.1 of Part I). Let

Ω̃1
K = Ω1

K/k/(K · ∩U ) and Ω̃n
K = ∧nΩ̃1

K . Similarly define Ω̃n
Ks

.

Note that Ω̃2
Kx,C

is a one-dimensional space overKx,C ; and Ω̃n
Kx,C

does not depend

on the choice of a system of local parameters of Ôx, where Ôx is the completion of the
local ring of X at x.

Definition. ForK = k((u))((t)) and ω =
∑
i ωi(u)∧ tidt =

∑
i u

idu∧ω′i(t) ∈ Ω̃2
K put

rest(ω) = ω−1(u) ∈ Ω̃
1
k((u)),

resu(ω) = ω′−1(t) ∈ Ω̃
1
k((t)).

Define a relative residue map

fx,C∗ : Ω̃
2
Kx,C → Ω̃

1
Ks

as

fx,C∗ (ω) =
{ Tr k(C)x/Ks restC (ω) if C 6= f−1(s)

Tr k(x)((ts))/Ks resu(ω) if C = f−1(s).

The relative residue map doesn’t depend on the choice of local parameters.

Theorem (reciprocity laws for relative residues). Fix x ∈ X . Let ω ∈ Ω̃2
Kx

where Kx

is the minimal subring of Kx,C which contains k(X) and Ôx. Then∑
C3x

fx,C∗ (ω) = 0.
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Fix s ∈ S. Let ω ∈ Ω̃2
KF

where KF is the completion of k(X) with respect to the
discrete valuation associated with the curve F = f−1(s). Then∑

x∈F
fx,F∗ (ω) = 0.

See [O].

2.2. The Gysin map for differentials

Definition. In the notations of subsection 1.2.1 in the previous section put

Ω
1
AS = {(fsdts) ∈

∏
s∈S

Ω̃
1
Ks , vs(fs) > 0 for almost all s ∈ S}

where ts is a local parameter at s, vs is the discrete valuation associated to ts and Ks is
the quotient of the completion of the local ring of S at s. For a divisor I on S define

ΩAS (I) = {(fs) ∈ Ω
1
AS : vs(fs) > −vs(I) for all s ∈ S}.

Recall that the n-th cohomology group of the following complex

Ω1
k(S)/k ⊕Ω1

AS (0) −→ Ω1
AS

(f0, f1) 7−→ f0 + f1.

is canonically isomorphic to Hn(S,Ω1
S) (see [S, Ch.II]).

The sheaf Ω2
X is invertible on X . Therefore, Parshin’s theorem (see [P1]) shows

that similarly to the previous definition and definition in 1.2.2 of the previous section
for the complex Ω2(AX )

Ω2
A0
⊕Ω2

A1
⊕Ω2

A2
−→ Ω2

A01
⊕Ω2

A02
⊕Ω2

A12
−→ Ω2

A012

(f0, f1, f2) 7−→ (f0 + f1, f2 − f0,−f1 − f2)
(g1, g2, g3) 7−→ g1 + g2 + g3

where

Ω
2
Ai ⊂ Ω

2
Aij ⊂ Ω

2
A012

= Ω
2
AX =

∏
x∈C

′
Ω̃

2
Kx,C ⊂

∏
x∈C

Ω̃
2
Kx,C

there is a canonical isomorphism

Hn(Ω2(AX )) ' Hn(X,Ω2
X ).

Using the reciprocity laws above one can deduce:

Theorem. The map f∗ =
∑
C3x,f (x)=s f

x,C
∗ from Ω2

AX to Ω1
AS is well defined. It maps

the complex Ω2(AX ) to the complex

0 −→ Ω
1
k(S)/k ⊕Ω

1
AS (0) −→ Ω

1
AS .
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It induces the map f∗:Hn(X,Ω2
X )→ Hn−1(S,Ω1

S) of 2.0.

See [O].

2.3. Local constructions for symbols

Assume that k is of characteristic 0.

Theorem. There is an explicitly defined symbolic map

f∗( , )x,C :K∗x,C ×K∗x,C → K∗s

(see remark below ) which is uniquely determined by the following properties

Nk(x)/k(s) tKx,C (α, β, f∗γ) = tKs (f∗(α, β)x,C , γ) for all α, β ∈ K∗x,C , γ ∈ K∗s
where tKx,C is the tame symbol of the two-dimensional local field Kx,C and tKs is the
tame symbol of the one-dimensional local field Ks (see 6.4.2 of Part I);

Tr k(x)/k(s)(α, β, f∗(γ)]Kx,C = (f∗(α, β)x,C , γ]Ks for all α, β ∈ K∗x,C , γ ∈ Ks

where (α, β, γ]Kx,C = resKx,C/k(x)(γdα/α ∧ dβ/β) and
(α, β]Ks = resKs/k(s)(αdβ/β).

The map f∗( , )x,C induces the map

f∗( , )x,C :K2(Kx,C)→ K1(Ks).

Corollary (reciprocity laws). Fix a point s ∈ S. Let F = f−1(s).
Let α, β ∈ K∗F . Then ∏

x∈F
f∗(α, β)x,F = 1.

Fix a point x ∈ F . Let α, β ∈ K∗x . Then∏
C3x

f∗(α, β)x,C = 1.

Remark. If C 6= f−1(s) then f∗( , )x,C = Nk(C)x/Ks tKx,C where tKx,C is the tame
symbol with respect to the discrete valuation of rank 1 on Kx,C .

If C = f−1(s) then f∗( , )x,C = Nk(x)((ts))/Ks ( , )f where ( , )−1
f coincides with

Kato’s residue homomorphism [K, §1]. An explicit formula for ( , )f is constructed in
[O, Th.2].
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2.4. The Gysin map for Chow groups

Assume that k is of arbitrary characteristic.

Definition. Let K ′2(AX ) be the subset of all (fx,C) ∈ K2(Kx,C), x ∈ C such that
(a) fx,C ∈ K2(Ox,C) for almost all irreducible curves C where Ox,C is the ring of

integers of Kx,C with respect to the discrete valuation of rank 1 on it;
(b) for all irreducible curves C ⊂ X , all integers r > 1 and almost all points x ∈ C

fx,C ∈ K2(Ox,C ,Mr
C) +K2(Ôx[t−1

C ]) ⊂ K2(Kx,C)

where MC is the maximal ideal of Ox,C and
K2(A, J) = ker(K2(A)→ K2(A/J)).

This definition is similar to the definition of [P2].

Definition. Using the diagonal map of K2(KC) to
∏
x∈C

K2(Kx∈C) and of K2(Kx) to∏
C3x

K2(Kx∈C) put

K ′2(A01) = K ′2(AX ) ∩ image of
∏
C⊂X

K2(KC),

K ′2(A02) = K ′2(AX ) ∩ image of
∏
x∈X

K2(Kx),

K ′2(A12) = K ′2(AX ) ∩ image of
∏
x∈C

K2(Ox,C),

K ′2(A0) = K2(k(X)),

K ′2(A1) = K ′2(AX ) ∩ image of
∏
C⊂X

K2(OC),

K ′2(A2) = K ′2(AX ) ∩ image of
∏
x∈X

K2(Ôx)

where OC is the ring of integers of KC .

Define the complex K2(AX ):

K ′2(A0)⊕K ′2(A1)⊕K ′2(A2)→K ′2(A01)⊕K ′2(A02)⊕K ′2(A12)→ K ′2(A012)
(f0, f1, f2) 7→(f0 + f1, f2 − f0,−f1 − f2)

(g1, g2, g3) 7→ g1 + g2 + g3

where K ′2(A012) = K ′2(AX ).
Using the Gersten resolution from K-theory (see [Q, §7]) one can deduce:
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Theorem. There is a canonical isomorphism

Hn(K2(AX )) ' Hn(X,K2(X)).

Similarly one definesK ′1(AS). FromH1(S,K1(S)) = H1(S,O∗S) = Pic(S) (or from
the approximation theorem) it is easy to see that the n-th cohomology group of the
following complex

K1(k(S))⊕
∑
s∈S K1(Ôs) −→ K ′1(AS)

(f0, f1) 7−→ f0 + f1.

is canonically isomorphic to Hn(S,K1(S)) (here Ôs is the completion of the local ring
of C at s).

Assume that k is of characteristic 0.
Using the reciprocity law above and the previous theorem one can deduce:

Theorem. The map f∗ =
∑
C3x,f (x)=s f∗( , )x,C from K ′2(AX ) to K ′1(AS) is well

defined. It maps the complex K2(AX ) to the complex

0 −→ K1(k(S))⊕
∑
s∈S

K1(Ôs) −→ K ′1(AS).

It induces the map f∗:Hn(X,K2(X))→ Hn−1(S,K1(S)) of 2.0.
If n = 2, then the last map is the direct image morphism (Gysin map) from CH2(X)

to CH1(S).
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3. The Bruhat–Tits buildings over
higher dimensional local fields

A. N. Parshin

3.0. Introduction

A generalization of the Bruhat–Tits buildings for the groups PGL(V ) over n-dimen-
sional local fields was introduced in [P1]. The main object of the classical Bruhat–Tits
theory is a simplicial complex attached to any reductive algebraic group G defined over
a fieldK. There are two parallel theories in the case whereK has no additional structure
or K is a local (or more generally, complete discrete valuation) field. They are known
as the spherical and euclidean buildings correspondingly (see subsection 3.2 for a brief
introduction, [BT1], [BT2] for original papers and [R], [T1] for the surveys).

In the generalized theory of buildings they correspond to local fields of dimension
zero and of dimension one. The construction of the Bruhat–Tits building for the
group PGL(2) over two-dimensional local field was described in detail in [P2]. Later
V. Ginzburg and M. Kapranov extended the theory to arbitrary reductive groups over
a two-dimensional local fields [GK]. Their definition coincides with ours for PGL(2)
and is different for higher ranks. But it seems that they are closely related (in the case of
the groups of type Al). It remains to develop the theory for arbitrary reductive groups
over local fields of dimension greater than two.

In this work we describe the structure of the higher building for the group PGL(3)
over a two-dimensional local field. We refer to [P1], [P2] for the motivation of these
constructions.

This work contains four subsections. In 3.1 we collect facts about the Weyl group.
Then in 3.2 we briefly describe the building for PGL(2) over a local field of dimension
not greater than two; for details see [P1], [P2]. In 3.3 we study the building for
PGL(3) over a local field F of dimension one and in 3.4 we describe the building over
a two-dimensional local field.

We use the notations of section 1 of Part I.
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If K is an n-dimensional local field, let ΓK be the valuation group of the discrete
valuation of rank n on K∗; the choice of a system of local parameters t1, . . . , tn of K
induces an isomorphism of ΓK and the lexicographically ordered group Z⊕n.

Let K (K = K2, K1, K0 = k) be a two-dimensional local field. Let O = OK ,
M = MK , O = OK , M = MK (see subsection 1.1 of Part I). Then O = pr−1(OK1 ),
M = pr−1(MK1 ) where pr:OK → K1 is the residue map. Let t1, t2 be a system of
local parameters of K.

If K ⊃ O is the fraction field of a ring O we call O-submodules J ⊂ K fractional
O-ideals (or simply fractional ideals).

The ring O has the following properties:
(i) O/M ' k, K∗ ' 〈t1〉 × 〈t2〉 ×O∗, O∗ ' k∗ × (1 +M );
(ii) every finitely generated fractional O-ideal is principal and equal to

P (i, j) = (ti1t
j
2) for some i, j ∈ Z

(for the notation P (i, j) see loc.cit.);
(iii) every infinitely generated fractional O-ideal is equal to

P (j) = M
j
K = 〈ti1t

j
2 : i ∈ Z〉 for some j ∈ Z

(see [FP], [P2] or section 1 of Part I). The set of these ideals is totally ordered with
respect to the inclusion.

3.1. The Weyl group

Let B be the image of 
O O . . . O
M O . . . O

. . .
M M . . . O


in PGL(m,K). Let N be the subgroup of monomial matrices.

Definition 1. Let T = B
⋂
N be the image ofO∗ . . . 0

. . .
0 . . . O∗


in G.

The group
W = WK/K1/k = N/T

is called the Weyl group.
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There is a rich structure of subgroups in G which have many common properties
with the theory of BN-pairs. In particular, there are Bruhat, Cartan and Iwasawa
decompositions (see [P2]).

The Weyl group W contains the following elements of order two

si =



1 . . . 0 0 . . . 0
. . .

0 . . . 1 0
0 . . . 0 1 . . . 0
0 1 0 . . . 0
0 . . . 1 . . . 0

. . .
0 . . . 0 0 . . . 1


, i = 1, ...,m− 1;

w1 =


0 0 . . . 0 t1
0 1 . . . 0 0

. . .

. . .

. . . 1 0
t−1
1 0 . . . 0 0

 , w2 =


0 0 . . . 0 t2
0 1 . . . 0 0

. . .

. . .

. . . 1 0
t−1
2 0 . . . 0 0

 .

The group W has the following properties:

(i) W is generated by the set S of its elements of order two,
(ii) there is an exact sequence

0→ E →WK/K1/k →WK → 1,

where E is the kernel of the addition map

ΓK ⊕ · · · ⊕ ΓK︸ ︷︷ ︸
m times

→ ΓK

and WK is isomorphic to the symmetric group Sm;
(iii) the elements si, i = 1, . . . ,m − 1 define a splitting of the exact sequence and the

subgroup 〈s1, . . . , sm−1〉 acts on E by permutations.

In contrast with the situation in the theory of BN-pairs the pair (W,S) is not a Coxeter
group and furthermore there is no subset S of involutions in W such that (W,S) is a
Coxeter group (see [P2]).
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3.2. Bruhat–Tits building for PGL(2) over a local field
of dimension 6 2

In this subsection we briefly recall the main constructions. For more details see [BT1],
[BT2], [P1], [P2].

3.2.1. Let k be a field (which can be viewed as a 0-dimensional local field). Let V be
a vector space over k of dimension two.

Definition 2. The spherical building of PGL(2) over k is a zero-dimensional complex

∆(k) = ∆(PGL(V ), k)

whose vertices are lines in V .
The group PGL(2, k) acts on ∆(k) transitively. The Weyl group (in this case it is of

order two) acts on ∆(k) and its orbits are apartments of the building.

3.2.2. Let F be a complete discrete valuation field with residue field k. Let V be
a vector space over F of dimension two. We say that L ⊂ V is a lattice if L is an
OF -module. Two submodules L and L′ belong to the same class 〈L〉 ∼ 〈L′〉 if and
only if L = aL′, with a ∈ F ∗.

Definition 3. The euclidean building of PGL(2) over F is a one-dimensional complex
∆(F/k) whose vertices are equivalence classes 〈L〉 of lattices. Two classes 〈L〉 and
〈L′〉 are connected by an edge if and only if for some choice of L,L′ there is an exact
sequence

0→ L′ → L→ k → 0.

Denote by ∆i(F/k) the set of i-dimensional simplices of the building ∆(F/k).

The following link property is important:
Let P ∈ ∆0(F/k) be represented by a lattice L. Then the link of P (= the set of
edges of ∆(F/k) going from P ) is in one-to-one correspondence with the set of
lines in the vector space VP = L/MFL (which is ∆(PGL(VP ), k)).

The orbits of the Weyl group W (which is in this case an infinite group with two
generators of order two) are infinite sets consisting of xi = 〈Li〉, Li = OF ⊕Mi

F .

An element w of the Weyl group acts in the following way: if w ∈ E = Z then w
acts by translation of even length; if w 6∈ E then w acts as an involution with a unique
fixed point xi0 : w(xi+i0 ) = xi0−i.
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To formalize the connection of ∆(F/k) with ∆(F ) we define a boundary point of
∆(F/k) as a class of half-lines such that the intersection of every two half-lines from
the class is a half-line in both of them. The set of the boundary points is called the
boundary of ∆(F/k).

There is an isomorphism betweenPGL(2, F )-sets ∆(F ) and the boundary of ∆(F/k):
if a half-line is represented by Li = OF ⊕Mi

F , i > 0, then the corresponding vertex of
∆(F ) is the line F ⊕ (0) in V .

It seems reasonable to slightly change the notations to make the latter isomorphisms
more transparent.

Definition 4 ([P1]). Put ∆.[0](F/k) = the complex of classes of OF -submodules in V
isomorphic to F ⊕ OF (so ∆.[0](F/k) is isomorphic to ∆(F )) and put

∆.[1](F/k) = ∆(F/k).

Define the building of PGL(2) over F as the union

∆.(F/k) = ∆.[1](F/k)
⋃

∆.[0](F/k)

and call the subcomplex ∆.[0](F/k) the boundary of the building. The discrete topology
on the boundary can be extended to the whole building.

3.2.3. Let K be a two-dimensional local field.
Let V be a vector space over K of dimension two. We say that L ⊂ V is a lattice

if L is an O-module. Two submodules L and L′ belong to the same class 〈L〉 ∼ 〈L′〉 if
and only if L = aL′, with a ∈ K∗.

Definition 5 ([P1]). Define the vertices of the building of PGL(2) over K as

∆0[2](K/K1/k) = classes of O-submodules L ⊂ V : L ' O ⊕O
∆0[1](K/K1/k) = classes of O-submodules L ⊂ V : L ' O ⊕ O

∆0[0](K/K1/k) = classes of O-submodules L ⊂ V : L ' O ⊕K.

Put

∆0(K/K1/k) = ∆0[2](K/K1/k)
⋃

∆0[1](K/K1/k)
⋃

∆0[0](K/K1/k).

A set of {Lα}, α ∈ I , of O-submodules in V is called a chain if
(i) for every α ∈ I and for every a ∈ K∗ there exists an α′ ∈ I such that aLα = Lα′ ,
(ii) the set {Lα, α ∈ I} is totally ordered by the inclusion.

A chain {Lα, α ∈ I} is called a maximal chain if it cannot be included in a strictly
larger set satisfying the same conditions (i) and (ii).

We say that 〈L0〉, 〈L1〉, . . . , 〈Lm〉 belong to a simplex of dimension m if and only
if the Li, i = 0, 1, ...,m belong to a maximal chain of OF -submodules in V . The faces
and the degeneracies can be defined in a standard way (as a deletion or repetition of a
vertex). See [BT2].
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Let {Lα} be a maximal chain of O-submodules in the space V . There are exactly
three types of maximal chains ([P2]):
(i) if the chain contains a module L isomorphic to O ⊕O then all the modules of the

chain are of that type and the chain is uniquely determined by its segment

· · · ⊃ O ⊕O ⊃M ⊕O ⊃M ⊕M ⊃ . . . .

(ii) if the chain contains a moduleL isomorphic toO⊕O then the chain can be restored
from the segment:

· · · ⊃ O ⊕ O ⊃ O ⊕ P (1, 0) ⊃ O ⊕ P (2, 0) ⊃ · · · ⊃ O ⊕M ⊃ . . .

(recall that P (1, 0) = M ).
(iii) if the chain contains a moduleL isomorphic to O⊕O then the chain can be restored

from the segment:

· · · ⊃ O⊕ O ⊃ P (1, 0)⊕ O ⊃ P (2, 0)⊕ O ⊃ · · · ⊃M⊕ O ⊃ . . . .

3.3. Bruhat–Tits building for PGL(3) over a local field F
of dimension 1

Let G = PGL(3).
Let F be a one-dimensional local field, F ⊃ OF ⊃MF , OF /MF ' k.
Let V be a vector space over F of dimension three. Define lattices in V and their

equivalence similarly to the definition of 3.2.2.
First we define the vertices of the building and then the simplices. The result will

be a simplicial set ∆.(G,F/k).

Definition 6. The vertices of the Bruhat–Tits building:

∆0[1](G,F/k) = {classes of OF -submodules L ⊂ V : L ' OF ⊕ OF ⊕ OF },
∆0[0](G,F/k) = {classes of OF -submodules L ⊂ V : L ' OF ⊕ OF ⊕ F

or L ' OF ⊕ F ⊕ F},
∆0(G,F/k) = ∆0[1](G,F/k) ∪ ∆0[0](G,F/k).

We say that the points of ∆0[1] are inner points, the points of ∆0[0] are boundary points.
Sometimes we delete G and F/k from the notation if this does not lead to confusion.

We have defined the vertices only. For the simplices of higher dimension we have
the following

Definition 7. Let {Lα, α ∈ I} be a set of OF -submodules in V . We say that {Lα, α ∈
I} is a chain if
(i) for every α ∈ I and for every a ∈ K∗ there exists an α′ ∈ I such that aLα = Lα′ ,
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(ii) the set {Lα, α ∈ I} is totally ordered by the inclusion.
A chain {Lα, α ∈ I} is called a maximal chain if it cannot be included in a strictly

larger set satisfying the same conditions (i) and (ii).
We say that 〈L0〉, 〈L1〉, . . . , 〈Lm〉 belong to a simplex of dimension m if and only

if the Li, i = 0, 1, ...,m belong to a maximal chain of OF -submodules in V . The faces
and the degeneracies can be defined in a standard way (as a deletion or repetition of a
vertex). See [BT2].

To describe the structure of the building we first need to determine all types of the
maximal chains. Proceeding as in [P2] (for PGL(2)) we get the following result.

Proposition 1. There are exactly three types of maximal chains of OF -submodules in
the space V :
(i) the chain contains a module isomorphic to OF ⊕ OF ⊕ OF . Then all the modules

from the chain are of that type and the chain has the following structure:

· · · ⊃Mi
FL ⊃Mi

FL
′ ⊃Mi

FL
′′ ⊃Mi+1

F L ⊃Mi+1
F L′ ⊃Mi+1

F L′′ ⊃ . . .

where 〈L〉, 〈L′〉, 〈L′′〉 ∈ ∆0(G,F/k)[1] and L ' OF ⊕ OF ⊕ OF ,
L′ ' OF ⊕ OF ⊕MF , L′′ ' OF ⊕MF ⊕MF .

(ii) the chain contains a module isomorphic to OF ⊕ OF ⊕ F . Then the chain has the
following structure:

· · · ⊃Mi
FL ⊃Mi

FL
′ ⊃Mi+1

F L ⊃ . . .

where 〈L〉, 〈L′〉 ∈ ∆0(G,F/k)[0] and L ' OF ⊕ OF ⊕ F , L′ 'MF ⊕ OF ⊕ F .
(iii) the chain contains a module isomorphic to OF ⊕ F ⊕ F . Then the chain has the

following structure:

· · · ⊃Mi
FL ⊃Mi+1

F L ⊃ . . .

where 〈L〉 ∈ ∆0(G,F/k)[0].

We see that the chains of the first type correspond to two-simplices, of the second
type — to edges and the last type represent some vertices. It means that the simplicial
set ∆. is a disconnected union of its subsets ∆.[m], m = 0, 1. The dimension of the
subset ∆.[m] is equal to one for m = 0 and to two for m = 1.

Usually the buildings are defined as combinatorial complexes having a system of
subcomplexes called apartments (see, for example, [R], [T1], [T2]). We show how to
introduce them for the higher building.

Definition 8. Fix a basis e1, e2, e3 ∈ V . The apartment defined by this basis is the
following set

Σ. = Σ.[1] ∪ Σ.[0],
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where
Σ0[1] = {〈L〉 : L =a1e1 ⊕ a2e2 ⊕ a3e3,

where a1, a2, a3 are OF -submodules in F isomorphic to OF }
Σ0[0] = {〈L〉 : L =a1e1 ⊕ a2e2 ⊕ a3e3,

where a1, a2, a3 are OF -submodules in F isomorphic either
to OF or to F
and at least one ai is isomorphic to F}.

Σ.[m] is the minimal subcomplex having Σ0[m] as vertices.

It can be shown that the building ∆.(G,F/k) is glued from the apartments, namely

∆.(G,F/k) =
⊔

all bases of V

Σ. / an equivalence relation
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(see [T2]).
We can make this description more transparent by drawing all that in the picture

above where the dots of different kinds belong to the different parts of the building. In
contrast with the case of the group PGL(2) it is not easy to draw the whole building
and we restrict ourselves to an apartment.

Here the inner vertices are represented by the lattices

ij = 〈OF ⊕Mi
F ⊕M

j
F 〉, i, j ∈ Z.

The definition of the boundary gives a topology on ∆0(G,F/k) which is discrete
on both subsets ∆0[1] and ∆0[0]. The convergence of the inner points to the boundary
points is given by the following rules:

〈OF ⊕Mi
F ⊕M

j
F 〉

j→−∞−−−−→ 〈OF ⊕Mi
F ⊕ F 〉,

〈OF ⊕Mi
F ⊕M

j
F 〉

j→∞−−−→ 〈F ⊕ F ⊕ OF 〉,

because 〈OF ⊕Mi
F ⊕M

j
F 〉 = 〈M−jF ⊕M

−j+i
F ⊕ OF 〉. The convergence in the other

two directions can be defined along the same line (and it is shown on the picture). It is
easy to extend it to the higher simplices.

Thus, there is the structure of a simplicial topological space on the apartment and
then we define it on the whole building using the gluing procedure. This topology is
stronger than the topology usually introduced to connect the inner part and the boundary
together. The connection with standard “compactification” of the building is given by
the following map:

This map is bijective on the inner simplices and on a part of the boundary can be
described as

We note that the complex is not a CW-complex but only a closure finite complex. This
“compactification” was used by G. Mustafin [M].
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We have two kinds of connections with the buildings for other fields and groups.
First, for the local field F there are two local fields of dimension 0, namely F and k.
Then for every P ∈ ∆0[1](PGL(V ), F/k) the Link(P ) is equal to ∆.(PGL(VP ), k)
where VP = L/MFL if P = 〈L〉 and the Link(P ) is the boundary of the Star(P ). Since
the apartments for the PGL(3, k) are hexagons, we can also observe this property on the
picture. The analogous relation with the building of PGL(3,K) is more complicated.
It is shown on the picture above.

The other relations work if we change the group G but not the field. We see that
three different lines go out from every inner point in the apartment. They represent the
apartments of the group PGL(2, F/k). They correspond to different embeddings of the
PGL(2) into PGL(3).

Also we can describe the action of the Weyl group W on an apartment. If we fix a
basis, the extension

0→ ΓF ⊕ ΓF →W → S3 → 1

splits. The elements from S3 ⊂ W act either as rotations around the point 00 or as
reflections. The elements of Z ⊕ Z ⊂ W can be represented as triples of integers (ac-
cording to property (ii) in the previous subsection). Then they correspond to translations
of the lattice of inner points along the three directions going from the point 00.

If we fix an embedding PGL(2) ⊂ PGL(3) then the apartments and the Weyl
groups are connected as follows:

Σ.(PGL(2)) ⊂ Σ.(PGL(3)),
0 −−−−→ Z −−−−→ W ′ −−−−→ S2 −−−−→ 1y y y
0 −−−−→ Z⊕ Z −−−−→ W −−−−→ S3 −−−−→ 1

where W ′ is a Weyl group of the group PGL(2) over the field F/k.

3.4. Bruhat–Tits building for PGL(3) over a local field
of dimension 2

LetK be a two-dimensional local field. Denote byV a vector space overK of dimension
three. Define lattices in V and their equivalence similar to 3.2.3. We shall consider the
following types of lattices:

∆0[2] 222 〈O ⊕O ⊕O〉
∆0[1] 221 〈O ⊕O ⊕ O〉

211 〈O ⊕ O⊕ O〉
∆0[0] 220 〈O ⊕O ⊕K〉

200 〈O ⊕K ⊕K〉
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To define the buildings we repeat the procedure from the previous subsection.

Definition 10. The vertices of the Bruhat–Tits building are the elements of the following
set:

∆0(G,K/K1/k) = ∆0[2] ∪ ∆0[1] ∪ ∆0[0].

To define the simplices of higher dimension we can repeat word by word Definitions 7
and 8 of the previous subsection replacing the ring OF by the ringO (note that we work
only with the types of lattices listed above). We call the subset ∆[1] the inner boundary
of the building and the subset ∆[0] the external boundary. The points in ∆[2] are the
inner points.

To describe the structure of the building we first need to determine all types of the
maximal chains. Proceeding as in [P2] for PGL(2) we get the following result.

Proposition 2. Let {Lα} be a maximal chain of O-submodules in the space V . There
are exactly five types of maximal chains:
(i) If the chain contains a module L isomorphic to O⊕O⊕O then all the modules of

the chain are of that type and the chain is uniquely determined by its segment

· · · ⊃ O ⊕O ⊕O ⊃M ⊕O ⊕O ⊃M ⊕M ⊕O ⊃M ⊕M ⊕M ⊃ . . .

(ii) If the chain contains a module L isomorphic to O ⊕O ⊕ O then the chain can be
restored from the segment:

Here the modules isomorphic to O ⊕ O ⊕ O do not belong to this chain and are
inserted as in the proof of Proposition 1 of [P2].

(iii) All the modules Lα ' O ⊕ O⊕ O. Then the chain contains a piece

and can also be restored from it. Here the modules isomorphic to O ⊕ O ⊕ O do
not belong to this chain and are inserted as in the proof of Proposition 1 of [P2].
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(iv) If there is an Lα ' O ⊕O ⊕K then one can restore the chain from

· · · ⊃ O ⊕O ⊕K ⊃M ⊕O ⊕K ⊃M ⊕M ⊕K ⊃ . . .

(v) If there is an Lα ' O ⊕K ⊕K then the chain can be written down as

· · · ⊃M i ⊕K ⊕K ⊃M i+1 ⊕K ⊕K ⊃ . . .

We see that the chains of the first three types correspond to two-simplices, of the
fourth type — to edges of the external boundary and the last type represents a vertex
of the external boundary. As above we can glue the building from apartments. To
introduce them we can again repeat the corresponding definition for the building over
a local field of dimension one (see Definition 4 of the previous subsection). Then the
apartment Σ. is a union

Σ. = Σ.[2] ∪ Σ.[1] ∪ Σ.[0]

where the pieces Σ.[i] contain the lattices of the types from ∆.[i].
The combinatorial structure of the apartment can be seen from two pictures at

the end of the subsection. There we removed the external boundary Σ.[0] which
is simplicially isomorphic to the external boundary of an apartment of the building
∆.(PGL(3),K/K1/k). The dots in the first picture show a convergence of the vertices
inside the apartment. As a result the building is a simplicial topological space.

We can also describe the relations of the building with buildings of the same group
G over the complete discrete valuation fields K and K1. In the first case there is a
projection map

π: ∆.(G,K/K1/k)→ ∆.(G,K/K1).

Under this map the big triangles containing the simplices of type (i) are contracted into
points, the triangles containing the simplices of type (ii) go to edges and the simplices
of type (iii) are mapped isomorphically to simplices in the target space. The external
boundary don’t change.

The lines

can easily be visualized inside the apartment. Only the big white dots corresponding to
the external boundary are missing. We have three types of lines going from the inner
points under the angle 2π/3. They correspond to different embeddings of PGL(2) into
PGL(3).

Using the lines we can understand the action of the Weyl group W on an apartment.
The subgroup S3 acts in the same way as in 3.2. The free subgroup E (see 3.1) has
six types of translations along these three directions. Along each line we have two
opportunities which were introduced for PGL(2).

Namely, ifw ∈ ΓK ' Z⊕Z ⊂W thenw = (0, 1) acts as a shift of the whole structure
to the right: w(xi,n) = xi,n+2, w(yn) = yn+2, w(zn) = zn+2, w(x0) = x0, w(x∞) = x∞.
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The element w = (1, 0) acts as a shift on the points xi,n but leaves fixed the points in
the inner boundary w(xi,n) = xi+2,n, w(yn) = yn, w(zn) = zn, w(x0) = x0, w(x∞) =
x∞, (see [P2, Theorem 5, v]).
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4. Drinfeld modules and
local fields of positive characteristic

Ernst–Ulrich Gekeler

The relationship between local fields and Drinfeld modules is twofold. Drinfeld mod-
ules allow explicit construction of abelian and nonabelian extensions with prescribed
properties of local and global fields of positive characteristic. On the other hand, n-
dimensional local fields arise in the construction of (the compactification of) moduli
schemesX for Drinfeld modules, such schemes being provided with a natural stratifica-
tion X0 ⊂ X1 ⊂ · · ·Xi · · · ⊂ Xn = X through smooth subvarieties Xi of dimension i.

We will survey that correspondence, but refer to the literature for detailed proofs
(provided these exist so far). An important remark is in order: The contents of this
article take place in characteristic p > 0, and are in fact locked up in the characteristic p
world. No lift to characteristic zero nor even to schemes over Z/p2 is known!

4.1. Drinfeld modules

Let L be a field of characteristic p containing the field Fq, and denote by τ = τq
raising to the qth power map x 7→ xq. If “a” denotes multiplication by a ∈ L, then
τa = aqτ . The ring End(Ga/L) of endomorphisms of the additive group Ga/L equals
L{τp} = {

∑
aiτ

i
p : ai ∈ L}, the non-commutative polynomial ring in τp = (x 7→ xp)

with the above commutation rule τpa = apτ . Similarly, the subring EndFq (Ga/L) of
Fq-endomorphisms is L{τ} with τ = τnp if q = pn. Note that L{τ} is an Fq-algebra
since Fq ↪→ L{τ} is central.

Definition 1. Let C be a smooth geometrically connected projective curve over Fq. Fix
a closed (but not necessarily Fq-rational) point∞ of C. The ring A = Γ(C− {∞},OC)
is called a Drinfeld ring. Note that A∗ = F ∗q .

Example 1. If C is the projective line P1
/Fq and∞ is the usual point at infinity then

A = Fq[T ].
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Example 2. Suppose that p 6= 2, that C is given by an affine equation Y 2 = f (X)
with a separable polynomial f (X) of even positive degree with leading coefficient a
non-square in Fq, and that ∞ is the point above X = ∞. Then A = Fq[X,Y ] is a
Drinfeld ring with degFq (∞) = 2.

Definition 2. An A-structure on a field L is a homomorphism of Fq-algebras (in brief:
an Fq-ring homomorphism) γ:A → L. Its A-characteristic charA(L) is the maximal
ideal ker(γ), if γ fails to be injective, and∞ otherwise. A Drinfeld module structure on
such a field L is given by an Fq-ring homomorphism φ:A→ L{τ} such that ∂ ◦φ = γ,
where ∂:L{τ} → L is the L-homomorphism sending τ to 0.

Denote φ(a) by φa ∈ EndFq (Ga/L); φa induces on the additive group over L (and
on each L-algebra M ) a new structure as an A-module:

(4.1.1) a ∗ x := φa(x) (a ∈ A, x ∈M ).

We briefly call φ a Drinfeld module over L, usually omitting reference to A.

Definition 3. Let φ and ψ be Drinfeld modules over the A-field L. A homomorphism
u:φ → ψ is an element of L{τ} such that u ◦ φa = ψa ◦ u for all a ∈ A. Hence
an endomorphism of φ is an element of the centralizer of φ(A) in L{τ}, and u is an
isomorphism if u ∈ L∗ ↪→ L{τ} is subject to u ◦ φa = ψa ◦ u.

Define deg: a→ Z∪ {−∞} and degτ :L{τ} → Z∪ {−∞} by deg(a) = logq |A/a|
(a 6= 0; we write A/a for A/aA), deg(0) = −∞, and degτ (f ) = the well defined degree
of f as a “polynomial” in τ . It is an easy exercise in Dedekind rings to prove the
following

Proposition 1. If φ is a Drinfeld module over L, there exists a non-negative integer r
such that degτ (φa) = r deg(a) for all a ∈ A; r is called the rank rk(φ) of φ.

Obviously, rk(φ) = 0 means that φ = γ, i.e., the A-module structure on Ga/L is the
tautological one.

Definition 4. Denote by Mr(1)(L) the set of isomorphism classes of Drinfeld modules
of rank r over L.

Example 3. Let A = Fq[T ] be as in Example 1 and let K = Fq(T ) be its fraction
field. Defining a Drinfeld module φ over K or an extension field L of K is equivalent
to specifying φT = T + g1τ + · · · + grτ r ∈ L{T}, where gr 6= 0 and r = rk(φ). In
the special case where φT = T + τ , φ is called the Carlitz module. Two such Drinfeld
modules φ and φ′ are isomorphic over the algebraic closure Lalg of L if and only if
there is some u ∈ Lalg ∗ such that g′i = uq

i−1gi for all i > 1. Hence Mr(1)(Lalg) can
be described (for r > 1) as an open dense subvariety of a weighted projective space of
dimension r − 1 over Lalg.
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4.2. Division points

Definition 5. For a ∈ A and a Drinfeld module φ over L, write aφ for the subscheme
of a-division points of Ga/L endowed with its structure of an A-module. Thus for any
L-algebra M ,

aφ(M ) = {x ∈M :φa(x) = 0}.
More generally, we put aφ =

⋂
a∈a

φa for an arbitrary (not necessarily principal) ideal a of

A. It is a finite flat group scheme of degree rk(φ) · deg(a), whose structure is described
in the next result.

Proposition 2 ([Dr], [DH, I, Thm. 3.3 and Remark 3.4]). Let the Drinfeld module φ
over L have rank r > 1.
(i) If charA(L) = ∞, aφ is reduced for each ideal a of A, and aφ(Lsep) = aφ(Lalg) is

isomorphic with (A/a)r as an A-module.
(ii) If p = charA(L) is a maximal ideal, then there exists an integer h, the height ht(φ)

of φ, satisfying 1 6 h 6 r, and such that aφ(Lalg) ' (A/a)r−h whenever a is a
power of p, and aφ(Lalg) ' (A/a)r if (a, p) = 1.

The absolute Galois group GL of L acts on aφ(Lsep) through A-linear automor-
phisms. Therefore, any Drinfeld module gives rise to Galois representations on its
division points. These representations tend to be “as large as possible”.

The prototype of result is the following theorem, due to Carlitz and Hayes [H1].

Theorem 1. Let A be the polynomial ring Fq[T ] with field of fractions K. Let ρ:A→
K{τ} be the Carlitz module, ρT = T + τ . For any non-constant monic polynomial
a ∈ A, let K(a) := K(aρ(Kalg)) be the field extension generated by the a-division
points.
(i) K(a)/K is abelian with group (A/a)∗. If σb is the automorphism corresponding

to the residue class of b mod a and x ∈ aρ(Kalg) then σb(x) = ρb(x).
(ii) If (a) = pt is primary with some prime ideal p then K(a)/K is completely ramified

at p and unramified at the other finite primes.
(iii) If (a) =

∏
ai (1 6 i 6 s) with primary and mutually coprime ai, the fields K(ai)

are mutually linearly disjoint and K = ⊗i6i6sK(ai).
(iv) Let K+(a) be the fixed field of F ∗q ↪→ (A/a)∗. Then ∞ is completely split in

K+(a)/K and completely ramified in K(a)/K+(a).
(v) Let p be a prime ideal generated by the monic polynomial π ∈ A and coprime with

a. Under the identification Gal(K(a)/K) = (A/a)∗, the Frobenius element Frobp

equals the residue class of π mod a.

Letting a → ∞ with respect to divisibility, we obtain the field K(∞) generated
over K by all the division points of ρ, with group Gal(K(∞)/K) = lim−→ a (A/a)∗ ,
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which almost agrees with the group of finite idele classes of K. It turns out that K(∞)
is the maximal abelian extension of K that is tamely ramified at ∞, i.e., we get a
constructive version of the class field theory ofK. Hence the theorem may be seen both
as a global variant of Lubin–Tate’s theory and as an analogue in characteristic p of the
Kronecker–Weber theorem on cyclotomic extensions of Q.

There are vast generalizations into two directions:
(a) abelian class field theory of arbitrary global function fields K = Frac(A), where A

is a Drinfeld ring.
(b) systems of nonabelian Galois representations derived from Drinfeld modules.

As to (a), the first problem is to find the proper analogue of the Carlitz module for
an arbitrary Drinfeld ring A. As will result e.g. from Theorem 2 (see also (4.3.4)),
the isomorphism classes of rank-one Drinfeld modules over the algebraic closure Kalg

of K correspond bijectively to the (finite!) class group Pic(A) of A. Moreover, these
Drinfeld modules ρ(a) (a ∈ Pic(A)) may be defined with coefficients in the ring OH+ of
A-integers of a certain abelian extensionH+ ofK, and such that the leading coefficients
of all ρ(a)

a are units of OH+ . Using these data along with the identification of H+ in
the dictionary of class field theory yields a generalization of Theorem 1 to the case of
arbitrary A. In particular, we again find an explicit construction of the class fields of K
(subject to a tameness condition at ∞). However, in view of class number problems,
the theory (due to D. Hayes [H2], and superbly presented in [Go2, Ch.VII]) has more
of the flavour of complex multiplication theory than of classical cyclotomic theory.

Generalization (b) is as follows. Suppose thatL is a finite extension ofK = Frac(A),
where A is a general Drinfeld ring, and let the Drinfeld module φ over L have rank r.
For each power pt of a prime p of A, GL = Gal(Lsep/L) acts on ptφ ' (A/pt)r. We
thus get an action of GL on the p-adic Tate module Tp(φ) ' (Ap)r of φ (see [DH, I
sect. 4]. Here of course Ap = lim←− A/pt is the p-adic completion of A with field of
fractions Kp. Let on the other hand End(φ) be the endomorphism ring of φ, which also
acts on Tp(φ). It is straightforward to show that (i) End(φ) acts faithfully and (ii) the
two actions commute. In other words, we get an inclusion

(4.2.1) i: End(φ)⊗A Ap ↪→ EndGL (Tp(φ))

of finitely generated free Ap-modules. The plain analogue of the classical Tate conjec-
ture for abelian varieties, proved 1983 by Faltings, suggests that i is in fact bijective. This
has been shown by Taguchi [Tag] and Tamagawa. Taking End(Tp(φ)) ' Mat(r,Ap)
and the known structure of subalgebras of matrix algebras over a field into account, this
means that the subalgebra

Kp[GL] ↪→ End(Tp(φ)⊗Ap
Kp) ' Mat(r,Kp)

generated by the Galois operators is as large as possible. A much stronger statement
is obtained by R. Pink [P1, Thm. 0.2], who shows that the image of GL in Aut(Tp(φ))
has finite index in the centralizer group of End(φ) ⊗ Ap. Hence if e.g. φ has no
“complex multiplications” over Lalg (i.e., EndLalg (φ) = A; this is the generic case
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for a Drinfeld module in characteristic ∞), then the image of GL has finite index in
Aut(Tp(φ)) ' GL(r,Ap). This is quite satisfactory, on the one hand, since we may
use the Drinfeld module φ to construct large nonabelian Galois extensions of L with
prescribed ramification properties. On the other hand, the important (and difficult)
problem of estimating the index in question remains.

4.3. Weierstrass theory

Let A be a Drinfeld ring with field of fractions K, whose completion at∞ is denoted
by K∞. We normalize the corresponding absolute value | | = | |∞ as |a| = |A/a| for
0 6= a ∈ A and let C∞ be the completed algebraic closure of K∞, i.e., the completion
of the algebraic closure K

alg
∞ with respect to the unique extension of | | to K

alg
∞ .

By Krasner’s theorem, C∞ is again algebraically closed ([BGS, p. 146], where also
other facts on function theory in C∞ may be found). It is customary to indicate the
strong analogies between A,K,K∞, C∞, . . . and Z,Q,R,C, . . . , e.g. A is a discrete
and cocompact subring of K∞. But note that C∞ fails to be locally compact since
|C∞ : K∞| =∞.

Definition 6. A lattice of rank r (an r-lattice in brief) in C∞ is a finitely generated
(hence projective) discrete A-submodule Λ of C∞ of projective rank r, where the
discreteness means that Λ has finite intersection with each ball in C∞. The lattice
function eΛ:C∞ → C∞ of Λ is defined as the product

(4.3.1) eΛ(z) = z
∏

0 6=λ∈Λ

(1− z/λ).

It is entire (defined through an everywhere convergent power series), Λ-periodic and
Fq-linear. For a non-zero a ∈ A consider the diagram

(4.3.2)

0 −−−−→ Λ −−−−→ C∞
eΛ−−−−→ C∞ −−−−→ 0

a

y a

y φΛ
a

y
0 −−−−→ Λ −−−−→ C∞

eΛ−−−−→ C∞ −−−−→ 0

with exact lines, where the left and middle arrows are multiplications by a and φΛ
a is

defined through commutativity. It is easy to verify that
(i) φΛ

a ∈ C∞{τ},
(ii) degτ (φΛ

a ) = r · deg(a),
(iii) a 7→ φΛ

a is a ring homomorphism φΛ:A → C∞{τ}, in fact, a Drinfeld module of
rank r. Moreover, all the Drinfeld modules over C∞ are so obtained.

Theorem 2 (Drinfeld [Dr, Prop. 3.1]).
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(i) Each rank-r Drinfeld module φ over C∞ comes via Λ 7→ φΛ from some r-lattice
Λ in C∞.

(ii) Two Drinfeld modulesφΛ, φΛ
′
are isomorphic if and only if there exists 0 6= c ∈ C∞

such that Λ′ = c · Λ.

We may thus describe Mr(1)(C∞) (see Definition 4) as the space of r-lattices
modulo similarities, i.e., as some generalized upper half-plane modulo the action of an
arithmetic group. Let us make this more precise.

Definition 7. For r > 1 let Pr−1(C∞) be the C∞-points of projective r − 1-space and
Ωr := Pr−1(C∞)−

⋃
H(C∞), where H runs through the K∞-rational hyperplanes of

Pr−1. That is, ω = (ω1 : . . . : ωr) belongs to Drinfeld’s half-plane Ωr if and only if
there is no non-trivial relation

∑
aiωi = 0 with coefficients ai ∈ K∞.

Both point sets Pr−1(C∞) and Ωr carry structures of analytic spaces over C∞ (even
over K∞), and so we can speak of holomorphic functions on Ωr. We will not give
the details (see for example [GPRV, in particular lecture 6]); suffice it to say that
locally uniform limits of rational functions (e.g. Eisenstein series, see below) will be
holomorphic.

Suppose for the moment that the class number h(A) = |Pic(A)| ofA equals one, i.e.,
A is a principal ideal domain. Then each r-lattice Λ in C∞ is free, Λ =

∑
16i6r Aωi,

and the discreteness of Λ is equivalent with ω := (ω1 : . . . : ωr) belonging to Ωr ↪→
Pr−1(C∞). Further, two points ω and ω′ describe similar lattices (and therefore isomor-
phic Drinfeld modules) if and only if they are conjugate under Γ := GL(r,A), which
acts on Pr−1(C∞) and its subspace Ωr. Therefore, we get a canonical bijection

(4.3.3) Γ \Ω
r →̃Mr(1)(C∞)

from the quotient space Γ \Ωr to the set of isomorphism classes Mr(1)(C∞).
In the general case of arbitrary h(A) ∈ N, we let Γi := GL(Yi) ↪→ GL(r, k), where

Yi ↪→ Kr (1 6 i 6 h(A)) runs through representatives of the h(A) isomorphism classes
of projective A-modules of rank r. In a similar fashion (see e.g. [G1, II sect.1], [G3]),
we get a bijection

(4.3.4)
·⋃

16i6h(A)
Γi \Ω

r →̃Mr(1)(C∞),

which can be made independent of choices if we use the canonical adelic description of
the Yi.

Example 4. If r = 2 then Ω = Ω2 = P1(C∞)−−P1(K∞) = C∞ −K∞, which rather
corresponds to C− R = H+⋃H− (upper and lower complex half-planes) than to H+

alone. The group Γ := GL(2, A) acts via
(
a b
c d

)
(z) = az+b

cz+d , and thus gives rise to Drinfeld
modular forms on Ω (see [G1]). Suppose moreover that A = Fq[T ] as in Examples 1
and 3. We define ad hoc a modular form of weight k for Γ as a holomorphic function
f : Ω→ C∞ that satisfies
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(i) f
(
az+b
cz+d

)
= (cz + d)kf (z) for

(
a b
c d

)
∈ Γ and

(ii) f (z) is bounded on the subspace {z ∈ Ω : infx∈K∞ |z − x| > 1} of Ω.
Further, we put Mk for the C∞-vector space of modular forms of weight k. (In the

special case under consideration, (ii) is equivalent to the usual “holomorphy at cusps”
condition. For more general groups Γ, e.g. congruence subgroups ofGL(2, A), general
Drinfeld rings A, and higher ranks r > 2, condition (ii) is considerably more costly to
state, see [G1].) Let

(4.3.5) Ek(z) :=
∑

(0,0)6=(a,b)∈A×A

1
(az + b)k

be the Eisenstein series of weight k. Due to the non-archimedean situation, the sum
converges for k > 1 and yields a modular form 0 6= Ek ∈ Mk if k ≡ 0 (q − 1).
Moreover, the various Mk are linearly independent and

(4.3.6) M (Γ) :=
⊕
k>0

Mk = C∞[Eq−1, Eq2−1]

is a polynomial ring in the two algebraically independent Eisenstein series of weights
q−1 and q2−1. There is an a priori different method of constructing modular forms via
Drinfeld modules. With each z ∈ Ω, associate the 2-lattice Λz := Az + A ↪→ C∞ and
the Drinfeld module φ(z) = φ(Λz). Writing φ(z)

T = T + g(z)τ + ∆(z)τ2, the coefficients
g and ∆ become functions in z, in fact, modular forms of respective weights q − 1 and
q2 − 1. We have ([Go1], [G1, II 2.10])

(4.3.7) g = (T g − T )Eq−1, : ∆ = (T q
2
− T )Eq2−1 + (T q

2
− T q)Eq+1

q−1.

The crucial fact is that ∆(z) 6= 0 for z ∈ Ω, but ∆ vanishes “at infinity”. Letting
j(z) := g(z)q+1/∆(z) (which is a function on Ω invariant under Γ), the considerations
of Example 3 show that j is a complete invariant for Drinfeld modules of rank two.
Therefore, the composite map

(4.3.8) j: Γ \Ω →̃M2(1)(C∞) →̃C∞

is bijective, in fact, biholomorphic.

4.4. Moduli schemes

We want to give a similar description of Mr(1)(C∞) for r > 2 and arbitrary A, that is,
to convert (4.3.4) into an isomorphism of analytic spaces. One proceeds as follows (see
[Dr], [DH], [G3]):
(a) Generalize the notion of “Drinfeld A-module over an A-field L” to “Drinfeld A-
module over an A-scheme S → Spec A”. This is quite straightforward. Intuitively, a
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Drinfeld module over S is a continuously varying family of Drinfeld modules over the
residue fields of S.
(b) Consider the functor on A-schemes:

Mr:S 7−→
{

isomorphism classes of rank-r
Drinfeld modules over S

}
.

The naive initial question is to represent this functor by an S-scheme Mr(1). This is
impossible in view of the existence of automorphisms of Drinfeld modules even over
algebraically closed A-fields.
(c) As a remedy, introduce rigidifying level structures on Drinfeld modules. Fix some
ideal 0 6= n of A. An n-level structure on the Drinfeld module φ over the A-field L
whose A-characteristic doesn’t divide n is the choice of an isomorphism of A-modules

α: (A/n)r →̃ nφ(L)

(compare Proposition 2). Appropriate modifications apply to the cases where charA(L)
divides n and where the definition field L is replaced by an A-scheme S. Let Mr(n) be
the functor

Mr(n):S 7−→


isomorphism classes of rank-r
Drinfeld modules over S endowed
with an n-level structure

 .

Theorem 3 (Drinfeld [Dr, Cor. to Prop. 5.4]). Suppose that n is divisible by at least
two different prime ideals. Then Mr(n) is representable by a smooth affine A-scheme
Mr(n) of relative dimension r − 1.

In other words, the scheme Mr(n) carries a “tautological” Drinfeld module φ of
rank r endowed with a level-n structure such that pull-back induces for each A-scheme
S a bijection

(4.4.1) Mr(n)(S) = {morphisms (S,Mr(n))} →̃Mr(n)(S), f 7−→ f∗(φ).

Mr(n) is called the (fine) moduli scheme for the moduli problem Mr(n). Now the finite
group G(n) := GL(r,A/n) acts on Mr(n) by permutations of the level structures. By
functoriality, it also acts on Mr(n). We let Mr(1) be the quotient of Mr(n) by G(n)
(which does not depend on the choice of n). It has the property that at least its L-valued
points for algebraically closed A-fields L correspond bijectively and functorially to
Mr(1)(L). It is therefore called a coarse moduli scheme for Mr(1). Combining the
above with (4.3.4) yields a bijection

(4.4.2)
·⋃

16i6h(A)
Γi \Ω

r →̃Mr(1)(C∞),
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which even is an isomorphism of the underlying analytic spaces [Dr, Prop. 6.6]. The
most simple special case is the one dealt with in Example 4, where M2(1) = A1

/A, the
affine line over A.

4.5. Compactification

It is a fundamental question to construct and study a “compactification” of the affine
A-scheme Mr(n), relevant for example for the Langlands conjectures over K, the
cohomology of arithmetic subgroups of GL(r,A), or the K-theory of A and K. This
means that we are seeking a proper A-scheme Mr(n) with an A-embedding Mr(n) ↪→
Mr(n) as an open dense subscheme, and which behaves functorially with respect to the
forgetful morphisms Mr(n) → Mr(m) if m is a divisor of n. For many purposes it
suffices to solve the apparently easier problem of constructing similar compactifications
of the generic fiber Mr(n) ×A K or even of Mr(n) ×A C∞. Note that varieties over
C∞ may be studied by analytic means, using the GAGA principle.

There are presently three approaches towards the problem of compactification:
(a) a (sketchy) construction of the present author [G2] of a compactificationMΓ ofMΓ,
the C∞-variety corresponding to an arithmetic subgroup Γ ofGL(r,A) (see (4.3.4) and
(4.4.2)). We will return to this below;
(b) an analytic compactification similar to (a), restricted to the case of a polynomial ring
A = Fq[T ], but with the advantage of presenting complete proofs, by M. M. Kapranov
[K];
(c) R. Pink’s idea of a modular compactification of Mr(n) over A through a generaliza-
tion of the underlying moduli problem [P2].

Approaches (a) and (b) agree essentially in their common domain, up to notation
and some other choices. Let us briefly describe how one proceeds in (a). Since there is
nothing to show for r = 1, we suppose that r > 2.

We let A be any Drinfeld ring. If Γ is a subgroup of GL(r,K) commensurable
with GL(r,A) (we call such Γ arithmetic subgroups), the point set Γ \ Ω is the set of
C∞-points of an affine varietyMΓ overC∞, as results from the discussion of subsection
4.4. If Γ is the congruence subgroup Γ(n) = {γ ∈ GL(r,A): γ ≡ 1 mod n}, then MΓ is
one of the irreducible components of Mr(n)×A C∞.

Definition 8. For ω = (ω1, : . . . : ωr) ∈ Pr−1(C∞) put

r(ω) := dimK(Kω1 + · · · +Kωr) and r∞(ω) := dimK∞ (K∞ω1 + · · · +K∞ωr).

Then 1 6 r∞(ω) 6 r(ω) 6 r and Ωr = {ω | r∞(ω) = r}. More generally, for 1 6 i 6 r
let

Ω
r,i := {ω: r∞(ω) = r(ω) = i}.
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Then Ωr,i =
·⋃

ΩV , where V runs through the K-subspaces of dimension i of Kr and
ΩV is constructed from V in a similar way as is Ωr = ΩKr from Cr∞ = (Kr) ⊗ C∞.
That is, ΩV = {ω ∈ P(V ⊗C∞) ↪→ Pr−1(C∞): r∞(ω) = r(ω) = i}, which has a natural
structure as analytic space of dimension dim(V )− 1 isomorphic with Ωdim(V ). Finally,

we let Ωr := {ω: r∞(ω) = r(ω)} =
·⋃

16i6rΩ
r,i.

Ωr along with its stratification through the Ωr,i is stable under GL(r,K), so this
also holds for the arithmetic group Γ in question. The quotient Γ \ Ωr turns out to be
the C∞-points of the wanted compactification MΓ.

Definition 9. Let Pi ↪→ G := GL(r) be the maximal parabolic subgroup of matrices
with first i columns being zero. LetHi be the obvious factor group isomorphicGL(r−i).
Then Pi(K) acts via Hi(K) on Kr−i and thus on Ωr−i. From

G(K)/Pi(K) →̃ {subspaces V of dimension r − i of Kr}

we get bijections

(4.5.1)
G(K)×Pi(K) Ω

r−i →̃Ω
r,r−i,

(g, ωi+1 : . . . : ωr) 7−→ (0 : · · · : 0 : ωi+1 : . . . : ωr)g−1

and

(4.5.2) Γ \Ω
r,r−i →̃

·⋃
g∈Γ\G(K)/Pi(K)

Γ(i, g) \Ω
r−i,

where Γ(i, g) := Pi ∩ g−1Γg, and the double quotient Γ \ G(K)/Pi(K) is finite by
elementary lattice theory. Note that the image of Γ(i, g) in Hi(K) (the group that
effectively acts on Ωr−i) is again an arithmetic subgroup of Hi(K) = GL(r − i,K),
and so the right hand side of (4.5.2) is the disjoint union of analytic spaces of the same
type Γ′ \Ωr′ .

Example 5. Let Γ = Γ(1) = GL(r,A) and i = 1. Then Γ\G(K)/P1(K) equals the set
of isomorphism classes of projective A-modules of rank r − 1, which in turn (through
the determinant map) is in one-to-one correspondence with the class group Pic(A).

Let FV be the image of ΩV in Γ\Ωr. The different analytic spaces FV , correspond-
ing to locally closed subvarieties of MΓ, are glued together in such a way that FU lies
in the Zariski closure FV of FV if and only if U is Γ-conjugate to a K-subspace of V .
Taking into account that FV ' Γ′ \Ωdim(V ) = MΓ′(C∞) for some arithmetic subgroup
Γ′ of GL(dim(V ),K), FV corresponds to the compactification MΓ′ of MΓ′ .

The details of the gluing procedure are quite technical and complicated and cannot
be presented here (see [G2] and [K] for some special cases). Suffice it to say that
for each boundary component FV of codimension one, a vertical coordinate tV may
be specified such that FV is locally given by tV = 0. The result (we refrain from
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stating a “theorem” since proofs of the assertions below in full strength and generality
are published neither in [G2] nor in [K]) will be a normal projective C∞-variety MΓ

provided with an open dense embedding i:MΓ ↪→MΓ with the following properties:
• MΓ(C∞) = Γ \Ωr, and the inclusion Γ \Ωr ↪→ Γ \Ωr corresponds to i;
• MΓ is defined over the same finite abelian extension of K as is MΓ;
• for Γ′ ↪→ Γ, the natural map MΓ′ →MΓ extends to MΓ′ →MΓ;
• the FV correspond to locally closed subvarieties, and FV = ∪FU , where U runs

through the K-subspaces of V contained up to the action of Γ in V ;
• MΓ is “virtually non-singular”, i.e., Γ contains a subgroup Γ′ of finite index such

that MΓ′ is non-singular; in that case, the boundary components of codimension
one present normal crossings.
Now suppose that MΓ is non-singular and that x ∈ MΓ(C∞) =

⋃
16i6r Ωr,i

belongs to Ωr,1. Then we can find a sequence {x} = X0 ⊂ · · ·Xi · · · ⊂ Xr−1 = MΓ of
smooth subvarieties Xi = FVi of dimension i. Any holomorphic function around x (or
more generally, any modular form for Γ) may thus be expanded as a series in tV with
coefficients in the function field of FVr−1 , etc. Hence MΓ (or rather its completion at
the Xi) may be described through (r − 1)-dimensional local fields with residue field
C∞. The expansion of some standard modular forms can be explicitly calculated, see
[G1, VI] for the case of r = 2. In the last section we shall present at least the vanishing
orders of some of these forms.

Example 6. Let A be the polynomial ring Fq[T ] and Γ = GL(r,A). As results from
Example 3, (4.3.3) and (4.4.2),

MΓ(C∞) = Mr(1)(C∞) = {(g1, . . . , gr) ∈ Cr∞: gr 6= 0}/C∗∞,

whereC∗∞ acts diagonally through c(g1, . . . , gr) = (. . . , cq
i−1gi, . . . ), which is the open

subspace of weighted projective space Pr−1(q− 1, . . . , qr − 1) with non-vanishing last
coordinate. The construction yields

MΓ(C∞) = Pr−1(q − 1, . . . , qr − 1)(C∞) =
·⋃

16i6r
M i(1)(C∞).

Its singularities are rather mild and may be removed upon replacing Γ by a congruence
subgroup.

4.6. Vanishing orders of modular forms

In this final section we state some results about the vanishing orders of certain modular
forms along the boundary divisors ofMΓ, in the case where Γ is either Γ(1) = GL(r,A)
or a full congruence subgroup Γ(n) of Γ(1). These are relevant for the determination of
K- and Chow groups, and for standard conjectures about the arithmetic interpretation
of partial zeta values.
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In what follows, we suppose that r > 2, and put zi := ωi
ωr

(1 6 i 6 r) for the
coordinates (ω1 : . . . : ωr) of ω ∈ Ωr. Quite generally, a = (a1, . . . , ar) denotes a
vector with r components.

Definition 10. The Eisenstein series Ek of weight k on Ωr is defined as

Ek(ω) :=
∑

0 6=a∈Ar

1
(a1z1 + · · · + arzr)k

.

Similarly, we define for u ∈ n−1 × · · · × n−1 ⊂ Kr

Ek,u(ω) =
∑

0 6=a∈Kr
a≡umodAr

1
(a1z1 + · · · + arzr)k

.

These are modular forms for Γ(1) and Γ(n), respectively, that is, they are holomorphic,
satisfy the obvious transformation values under Γ(1) (resp. Γ(n)), and extend to sections
of a line bundle on MΓ. As in Example 4, there is a second type of modular forms
coming directly from Drinfeld modules.

Definition 11. For ω ∈ Ωr write Λω = Az1 + · · · + Azr and eω, φω for the lattice
function and Drinfeld module associated with Λω, respectively. If a ∈ A has degree
d = deg(a),

φ
ω
a = a +

∑
16i6r·d

`i(a, ω)τ i.

The `i(a, ω) are modular forms of weight qi − 1 for Γ. This holds in particular for

∆a(ω) := `rd(a, ω),

which has weight qrd − 1 and vanishes nowhere on Ωr. The functions g and ∆ in
Example 4 merely constitute a very special instance of this construction. We further let,
for u ∈ (n−1)r,

eu(ω) := eω(u1z1 + · · · + urzr),
the n-division point of type u of φω. If u 6∈ Ar, eu(ω) vanishes nowhere on Ωr, and it
can be shown that in this case,

(4.6.1) e−1
u = E1,u.

We are interested in the behavior around the boundary of MΓ of these forms. Let us
first describe the set {FV } of boundary divisors, i.e., of irreducible components, all of
codimension one, of MΓ −MΓ. For Γ = Γ(1) = GL(r,A), there is a natural bijection

(4.6.2) {FV } →̃Pic(A)

described in detail in [G1, VI 5.1]. It is induced from V 7→ inverse of Λr−1(V ∩ Ar).
(Recall that V is a K-subspace of dimension r − 1 of Kr, thus V ∩ Ar a projective
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module of rank r − 1, whose (r − 1)-th exterior power Λr−1(V ∩ Ar) determines an
element of Pic(A).) We denote the component corresponding to the class (a) of an ideal
a by F (a). Similarly, the boundary divisors of MΓ for Γ = Γ(n) could be described via
generalized class groups. We simply use (4.5.1) and (4.5.2), which now give

(4.6.3) {FV } →̃Γ(n) \GL(r,K)/P1(K).

We denote the class of ν ∈ GL(r,K) by [ν]. For the description of the behavior of our
modular forms along the FV , we need the partial zeta functions of A and K. For more
about these, see [W] and [G1, III].

Definition 12. We let

ζK(s) =
∑
|a|−s =

P (q−s)
(1− q−s)(1− q1−s)

be the zeta function of K with numerator polynomial P (X) ∈ Z[X]. Here the sum
is taken over the positive divisors a of K (i.e., of the curve C with function field K).
Extending the sum only over divisors with support in Spec(A), we get

ζA(s) =
∑

0 6=a⊂A ideal

|a|−s = ζK(s)(1− q−d∞s),

where d∞ = degFq (∞). For a class c ∈ Pic(A) we put

ζc(s) =
∑
a∈c
|a|−s.

If finally n ⊂ K is a fractional A-ideal and t ∈ K, we define

ζtmodn(s) =
∑
a∈K

a≡tmodn

|a|−s.

Among the obvious distribution relations [G1, III sect.1] between these, we only mention

(4.6.4) ζ(n−1)(s) =
|n|s

q − 1
ζ0modn(s).

We are now in a position to state the following theorems, which may be proved following
the method of [G1, VI].

Theorem 4. Let a ∈ A be non-constant and c a class in Pic(A). The modular form ∆a

for GL(r,A) has vanishing order

ordc(∆a) = −(|a|r − 1)ζc(1− r)

at the boundary component F c corresponding to c.

Theorem 5. Fix an ideal n of A and u ∈ Kr − Ar such that u · n ⊂ Ar, and let
e−1
u = E1,u be the modular form for Γ(n) determined by these data. The vanishing
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order ord[ν] of E1,u(ω) at the component corresponding to ν ∈ GL(r,K) (see (4.6.2))
is given as follows: let π1:Kr → K be the projection to the first coordinate and let a
be the fractional ideal π1(Ar · ν). Write further u · ν = (v1, . . . , vr). Then

ord[ν]E1,u(ω) =
|n|r−1

|a|r−1 (ζv1 moda(1− r)− ζ0moda(1− r)).

Note that the two theorems do not depend on the full strength of properties of MΓ

as stated without proofs in the last section, but only on the normality of MΓ, which is
proved in [K] for A = Fq[T ], and whose generalization to arbitrary Drinfeld rings is
straightforward (even though technical).
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5. Harmonic analysis on algebraic groups over
two-dimensional local fields of equal characteristic

Mikhail Kapranov

In this section we review the main parts of a recent work [4] on harmonic analysis on
algebraic groups over two-dimensional local fields.

5.1. Groups and buildings

Let K (K = K2 whose residue field is K1 whose residue field is K0, see the notation
in section 1 of Part I) be a two-dimensional local field of equal characteristic. Thus K2
is isomorphic to the Laurent series field K1((t2)) over K1. It is convenient to think of
elements of K2 as (formal) loops over K1. Even in the case where char (K1) = 0, it is
still convenient to think of elements of K1 as (generalized) loops over K0 so that K2
consists of double loops.

Denote the residue map OK2 → K1 by p2 and the residue map OK1 → K0 by p1.
Then the ring of integers OK of K as of a two-dimensional local field (see subsection
1.1 of Part I) coincides with p−1

2 (OK1 ).
Let G be a split simple simply connected algebraic group over Z (e.g. G = SL2).

Let T ⊂ B ⊂ G be a fixed maximal torus and Borel subgroup of G; put N = [B,B],
and let W be the Weyl group of G. All of them are viewed as group schemes.

Let L = Hom(Gm, T ) be the coweight lattice of G; the Weyl group acts on L.
Recall that I(K1) = p−1

1 (B(Fq)) is called an Iwahori subgroup ofG(K1) andT (OK1 )N (K1)
can be seen as the “connected component of unity” in B(K1). The latter name is ex-
plained naturally if we think of elements of B(K1) as being loops with values in B.

Definition. Put
D0 = p−1

2 p−1
1 (B(Fq)) ⊂ G(OK),

D1 = p−1
2 (T (OK1 )N (K1)) ⊂ G(OK),

D2 = T (OK2 )N (K2) ⊂ G(K).
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Then D2 can be seen as the “connected component of unity” of B(K) when K
is viewed as a two-dimensional local field, D1 is a (similarly understood) connected
component of an Iwahori subgroup of G(K2), and D0 is called a double Iwahori
subgroup of G(K).

A choice of a system of local parameters t1, t2 of K determines the identification of
the group K∗/O∗K with Z⊕ Z and identification L⊕ L with L⊗ (K∗/O∗K).

We have an embedding of L⊗ (K∗/O∗K) into T (K) which takes a⊗ (tj1t
j
2), i, j ∈ Z,

to the value on ti1t
j
2 of the 1-parameter subgroup in T corresponding to a.

Define the action of W on L⊗ (K∗/O∗K) as the product of the standard action on L
and the trivial action on K∗/O∗K . The semidirect product

̂̂
W = (L⊗K∗/O∗K)oW

is called the double affine Weyl group of G.

A (set-theoretical) lifting of W into G(OK) determines a lifting of ̂̂W into G(K).

Proposition. For every i, j ∈ {0, 1, 2} there is a disjoint decomposition

G(K) =
·⋃
w∈ ̂̂WDiwDj .

The identification Di\G(K)/Dj with ̂̂W doesn’t depend on the choice of liftings.

Proof. Iterated application of the Bruhat, Bruhat–Tits and Iwasawa decompositions to
the local fields K2, K1.

For the Iwahori subgroup I(K2) = p−1
2 (B(K1)) of G(K2) the homogeneous space

G(K)/I(K2) is the “affine flag variety” of G, see [5]. It has a canonical structure of an
ind-scheme, in fact, it is an inductive limit of projective algebraic varieties overK1 (the
closures of the affine Schubert cells).

Let B(G,K2/K1) be the Bruhat–Tits building associated to G and the field K2.
Then the spaceG(K)/I(K2) is aG(K)-orbit on the set of flags of type (vertex, maximal
cell) in the building. For every vertex v of B(G,K2/K1) its locally finite Bruhat–Tits
building βv isomorphic to B(G,K1/K0) can be viewed as a “microbuilding” of the
double Bruhat–Tits building B(G,K2/K1/K0) of K as a two-dimensional local field
constructed by Parshin ([7], see also section 3 of Part II). Then the set G(K)/D1 is
identified naturally with the set of all the horocycles {w ∈ βv : d(z, w) = r}, z ∈ ∂βv of
the microbuildings βv (where the “distance” d(z, ) is viewed as an element of a natural
L-torsor). The fibres of the projection G(K)/D1 → G(K)/I(K2) are L-torsors.
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5.2. The central extension and the affine Heisenberg–Weyl group

According to the work of Steinberg, Moore and Matsumoto [6] developed by Brylinski
and Deligne [1] there is a central extension

1→ K∗1 → Γ→ G(K2)→ 1

associated to the tame symbolK∗2 ×K∗2 → K∗1 for the couple (K2,K1) (see subsection
6.4.2 of Part I for the general definition of the tame symbol).

Proposition. This extension splits over every Di, 0 6 i 6 2.

Proof. Use Matsumoto’s explicit construction of the central extension.

Thus, there are identifications of every Di with a subgroup of Γ. Put

∆i = O∗K1
Di ⊂ Γ, Ξ = Γ/∆1.

The minimal integer scalar product Ψ on L and the composite of the tame symbol
K∗2 × K∗2 → K∗1 and the discrete valuation vK1 :K∗ → Z induces a W -invariant
skew-symmetric pairing L⊗K∗/O∗K × L⊗K∗/O∗K → Z. Let

1→ Z→ L→ L⊗K∗/O∗K → 1

be the central extension whose commutator pairing corresponds to the latter skew-
symmetric pairing. The group L is called the Heisenberg group.

Definition. The semidirect product

W̃ = LoW

is called the double affine Heisenberg–Weyl group of G.

Theorem. The group W̃ is isomorphic to LaffoŴ where Laff = Z ⊕ L, Ŵ = LoW
and

w ◦ (a, l′) = (a,w(l)), l ◦ (a, l′) = (a + Ψ(l, l′), l′), w ∈W, l, l′ ∈ L, a ∈ Z.

For every i, j ∈ {0, 1, 2} there is a disjoint union

Γ =
·⋃
w∈W̃

∆iw∆j

and the identification ∆i\Γ/∆j with W̃ is canonical.
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5.3. Hecke algebras in the classical setting

Recall that for a locally compact group Γ and its compact subgroup ∆ the Hecke
algebraH(Γ,∆) can be defined as the algebra of compactly supported double ∆-invariant
continuous functions of Γ with the operation given by the convolution with respect to
the Haar measure on Γ. For C = ∆γ∆ ∈ ∆\Γ/∆ the Hecke correspondence ΣC =
{(α∆, β∆) : αβ−1 ∈ C} is a Γ-orbit of (Γ/∆)× (Γ/∆).

For x ∈ Γ/∆ put ΣC(x) = ΣC ∩ (Γ/∆) × {x}. Denote the projections of ΣC to the
first and second component by π1 and π2.

Let F(Γ/∆) be the space of continuous functions Γ/∆→ C. The operator

τC :F(Γ/∆)→ F(Γ/∆), f → π2∗π
∗
1 (f )

is called the Hecke operator associated to C. Explicitly,

(τCf )(x) =
∫
y∈ΣC (x)

f (y)dµC,x,

where µC,x is the Stab(x)-invariant measure induced by the Haar measure. Elements
of the Hecke algebra H(Γ,∆) can be viewed as “continuous” linear combinations of
the operators τC , i.e., integrals of the form

∫
φ(C)τCdC where dC is some measure

on ∆\Γ/∆ and φ is a continuous function with compact support. If the group ∆ is also
open (as is usually the case in the p-adic situation), then ∆\Γ/∆ is discrete and H(Γ,∆)
consists of finite linear combinations of the τC .

5.4. The regularized Hecke algebra H(Γ,∆1)

Since the two-dimensional local field K and the ring OK are not locally compact, the
approach of the previous subsection would work only after a new appropriate integration
theory is available.

The aim of this subsection is to make sense of the Hecke algebra H(Γ,∆1).
Note that the fibres of the projection Ξ = Γ/∆1 → G(K)/I(K2) are Laff-torsors and

G(K)/I(K2) is the inductive limit of compact (profinite) spaces, so Ξ can be considered
as an object of the category F1 defined in subsection 1.2 of the paper of Kato in this
volume.

Using Theorem of 5.2 for i = j = 1 we introduce:

Definition. For (w, l) ∈ W̃ = LaffoŴ denote by Σw,l the Hecke correspondence (i.e.,
the Γ-orbit of Ξ× Ξ) associated to (w, l). For ξ ∈ Ξ put

Σw,l(ξ) = {ξ′ : (ξ, ξ′) ∈ Σw,l}.

The stabilizer Stab(ξ) 6 Γ acts transitively on Σw,l(ξ).
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Proposition. Σw,l(ξ) is an affine space over K1 of dimension equal to the length of
w ∈ Ŵ . The space of compex valued Borel measures on Σw,l(ξ) is 1-dimensional. A
choice of a Stab(ξ)-invariant measure µw,l,ξ on Σw,l(ξ) determines a measure µw,l,ξ′
on Σw,l(ξ′) for every ξ′.

Definition. For a continuous function f : Ξ→ C put

(τw,lf )(ξ) =
∫
η∈Σw,l(ξ)

f (η)dµw,l,ξ.

Since the domain of the integration is not compact, the integral may diverge. As a
first step, we define the space of functions on which the integral makes sense. Note that
Ξ can be regarded as an Laff-torsor over the ind-object G(K)/I(K2) in the category
pro(C0), i.e., a compatible system of Laff-torsors Ξν over the affine Schubert varieties
Zν forming an exhaustion of G(K)/I(K1). Each Ξν is a locally compact space and
Zν is a compact space. In particular, we can form the space F0(Ξν) of locally constant
complex valued functions on Ξν whose support is compact (or, what is the same, proper
with respect to the projection to Zν). Let F(Ξν) be the space of all locally constant
complex functions on Ξν . Then we define F0(Ξ) ="lim←−"F0(Ξν) and F(Ξ) ="lim←−"F(Ξν).
They are pro-objects in the category of vector spaces. In fact, because of the action of
Laff and its group algebraC[Laff] on Ξ, the spaces F0(Ξ),F(Ξ) are naturally pro-objects
in the category of C[Laff]-modules.

Proposition. If f = (fν) ∈ F0(X) then Supp(fν)∩Σw,l(ξ) is compact for everyw, l, ξ, ν
and the integral above converges. Thus, there is a well defined Hecke operator

τw,l:F0(Ξ)→ F(Ξ)

which is an element of Mor(pro(ModC [Laff ])). In particular, τw,l is the shift by l and
τw,l+l′ = τw,l′τe,l.

Thus we get Hecke operators as operators from one (pro-)vector space to another,
bigger one. This does not yet allow to compose the τw,l. Our next step is to consider
certain infinite linear combinations of the τw,l.

Let T∨aff = Spec(C[Laff]) be the “dual affine torus” of G. A function with finite
support on Laff can be viewed as the collection of coefficients of a polynomial, i.e., of
an element of C[Laff] as a regular function on T∨aff . Further, let Q ⊂ Laff ⊗ R be a
strictly convex cone with apex 0. A function on Laff with support in Q can be viewed
as the collection of coefficients of a formal power series, and such series form a ring
containing C[Laff]. On the level of functions the ring operation is the convolution. Let
FQ(Laff) be the space of functions whose support is contained in some translation ofQ.
It is a ring with respect to convolution.

Let C(Laff) be the field of rational functions on T∨aff . Denote by F rat
Q (Laff) the

subspace in FQ(Laff) consisting of functions whose corresponding formal power series
are expansions of rational functions on T∨aff .
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If A is any Laff-torsor (over a point), then F0(A) is an (invertible) module over
F0(Laff) = C[Laff] and we can define the spaces FQ(A) and Frat

Q (A) which will be
modules over the corresponding rings for Laff . We also write Frat(A) = F0(A)⊗C[Laff ]
C(Laff).

We then extend the above concepts “fiberwise” to torsors over compact spaces
(objects of pro(C0)) and to torsors over objects of ind(pro(C0)) such as Ξ.

Let w ∈ Ŵ . We denote by Q(w) the image under w of the cone of dominant affine
coweights in Laff .

Theorem. The action of the Hecke operator τw,l takes F0(Ξ) into Frat
Q(w)(Ξ). These

operators extend to operators

τ rat
w,l : Frat(Ξ)→ Frat(Ξ).

Note that the action of τ rat
w,l involves a kind of regularization procedure, which is

hidden in the identification of the Frat
Q(w)(Ξ) for different w, with subspaces of the same

space Frat(Ξ). In practical terms, this involves summation of a series to a rational
function and re-expansion in a different domain.

Let Hpre be the space of finite linear combinations
∑
w,l aw,lτw,l. This is not yet

an algebra, but only a C[Laff]-module. Note that elements of Hpre can be written as
finite linear combinations

∑
w∈Ŵ fw(t)τw where fw(t) =

∑
l aw,lt

l, t ∈ T∨aff , is the
polynomial in C[Laff] corresponding to the collection of the aw,l. This makes the
C[Laff]-module structure clear. Consider the tensor product

Hrat = Hpre ⊗C [Laff ] C(Laff).

Elements of this space can be considered as finite linear combinations
∑
w∈Ŵ fw(t)τw

where fw(t) are now rational functions. By expanding rational functions in power
series, we can consider the above elements as certain infinite linear combinations of the
τw,l.

Theorem. The space Hrat has a natural algebra structure and this algebra acts in the
space Frat(Ξ), extending the action of the τw,l defined above.

The operators associated to Hrat can be viewed as certain integro-difference opera-
tors, because their action involves integration (as in the definition of the τw,l) as well
as inverses of linear combinations of shifts by elements of L (these combinations act as
difference operators).

Definition. The regularized Hecke algebra H(Γ,∆1) is, by definition, the subalgebra
in Hrat consisting of elements whose action in Frat(Ξ) preserves the subspace F0(Ξ).
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5.5. The Hecke algebra and the Cherednik algebra

In [2] I. Cherednik introduced the so-called double affine Hecke algebra Cherq asso-
ciated to the root system of G. As shown by V. Ginzburg, E. Vasserot and the author
[3], Cherq can be thought as consisting of finite linear combinations

∑
w∈Ŵad

fw(t)[w]

where Wad is the affine Weyl group of the adjoint quotient Gad of G (it contains Ŵ )
and fw(t) are rational functions on T∨aff satisfying certain residue conditions. We define
the modified Cherednik algebra Ḧq to be the subalgebra in Cherq consisting of linear
combinations as above, but going over Ŵ ⊂ Ŵad.

Theorem. The regularized Hecke algebraH(Γ,∆1) is isomorphic to the modified Chered-
nik algebra Ḧq. In particular, there is a natural action of Ḧq on F0(Ξ) by integro-
difference operators.

Proof. Use the principal series intertwiners and a version of Mellin transform. The
information on the poles of the intertwiners matches exactly the residue conditions
introduced in [3].

Remark. The only reason we needed to assume that the 2-dimensional local field K
has equal characteristic was because we used the fact that the quotient G(K)/I(K2)
has a structure of an inductive limit of projective algebraic varieties over K1. In fact,
we really use only a weaker structure: that of an inductive limit of profinite topological
spaces (which are, in this case, the sets of K1-points of affine Schubert varieties over
K1). This structure is available for any 2-dimensional local field, although there seems
to be no reference for it in the literature. Once this foundational matter is established,
all the constructions will go through for any 2-dimensional local field.
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6. Φ-Γ-modules and Galois cohomology

Laurent Herr

6.0. Introduction

Let G be a profinite group and p a prime number.

Definition. A finitely generated Zp-module V endowed with a continuous G-action
is called a Zp-adic representation of G. Such representations form a category denoted
by RepZp (G); its subcategory Rep Fp (G) (respectively Repp-tor(G)) of mod p repre-
sentations (respectively p-torsion representations) consists of the V annihilated by p
(respectively a power of p).

Problem. To calculate in a simple explicit way the cohomology groups Hi(G,V ) of
the representation V .

A method to solve it for G = GK (K is a local field) is to use Fontaine’s theory of
Φ-Γ-modules and pass to a simpler Galois representation, paying the price of enlarging
Zp to the ring of integers of a two-dimensional local field. In doing this we have to
replace linear with semi-linear actions.

In this paper we give an overview of the applications of such techniques in different
situations. We begin with a simple example.

6.1. The case of a field of positive characteristic

LetE be a field of characteristic p,G = GE and σ:Esep → Esep, σ(x) = xp the absolute
Frobenius map.

Definition. For V ∈ RepFp (GE) put D(V ) := (Esep ⊗Fp V )GE ; σ acts on D(V ) by
acting on Esep.
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Properties.
(1) dimE D(V ) = dim Fp V ;
(2) the “Frobenius” map ϕ:D(V )→ D(V ) induced by σ ⊗ id V satisfies:

a) ϕ(λx) = σ(λ)ϕ(x) for all λ ∈ E, x ∈ D(V ) (so ϕ is σ-semilinear);
b) ϕ(D(V )) generates D(V ) as an E-vector space.

Definition. A finite dimensional vector space M over E is called an étale Φ-module
over E if there is a σ-semilinear map ϕ:M → M such that ϕ(M ) generates M as an
E-vector space.

Étale Φ-modules form an abelian category ΦM ét
E (the morphisms are the linear maps

commuting with the Frobenius ϕ).

Theorem 1 (Fontaine, [F]). The functor V → D(V ) is an equivalence of the categories
Rep Fp (GE) and ΦM ét

E .

We see immediately that H0(GE , V ) = V GE ' D(V )ϕ.
So in order to obtain an explicit description of the Galois cohomology of mod p

representations ofGE , we should try to derive in a simple manner the functor associating
to an étale Φ-module the group of points fixed under ϕ. This is indeed a much simpler
problem because there is only one operator acting.

For (M,ϕ) ∈ ΦM ét
E define the following complex of abelian groups:

C1(M ) : 0 −→M
ϕ−1−−→M −→ 0

(M stands at degree 0 and 1).
This is a functorial construction, so by taking the cohomology of the complex, we

obtain a cohomological functor (Hi := Hi ◦ C1)i∈N from ΦM ét
E to the category of

abelian groups.

Theorem 2. The cohomological functor (Hi ◦D)i∈N can be identified with the Galois
cohomology functor (Hi(GE , . ))i∈N for the category Rep Fp (GE). So, if M = D(V )
then Hi(M ) provides a simple explicit description of Hi(GE , V ).

Proof of Theorem 2. We need to check that the cohomological functor (Hi)i∈N is
universal; therefore it suffices to verify that for every i > 1 the functor Hi is effaceable:
this means that for every (M,ϕM ) ∈ ΦM ét

E and every x ∈ Hi(M ) there exists an
embedding u of (M,ϕM ) in (N,ϕN ) ∈ ΦM ét

E such that Hi(u)(x) is zero in Hi(N ).
But this is easy: it is trivial for i > 2; for i = 1 choose an element m belonging to the
class x ∈M/(ϕ− 1)(M ), put N := M ⊕ Et and extend ϕM to the σ-semi-linear map
ϕN determined by ϕN (t) := t +m.
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6.2. Φ-Γ-modules and Zp-adic representations

Definition. Recall that a Cohen ring is an absolutely unramified complete discrete
valuation ring of mixed characteristic (0, p > 0), so its maximal ideal is generated by p.

We describe a general formalism, explained by Fontaine in [F], which lifts the
equivalence of categories of Theorem 1 in characteristic 0 and relates the Zp-adic
representations of G to a category of modules over a Cohen ring, endowed with a
“Frobenius” map and a group action.

LetR be an algebraically closed complete valuation (of rank 1) field of characteristic
p and let H be a normal closed subgroup of G. Suppose that G acts continuously on R
by ring automorphisms. Then F := RH is a perfect closed subfield of R.

For every integer n ≥ 1, the ring Wn(R) of Witt vectors of length n is endowed
with the product of the topology on R defined by the valuation and then W (R) with the
inverse limit topology. Then the componentwise action of the group G is continuous
and commutes with the natural Frobenius σ on W (R). We also have W (R)H = W (F ).

LetE be a closed subfield of F such that F is the completion of the p-radical closure
of E in R. Suppose there exists a Cohen subring OE of W (R) with residue field E
and which is stable under the actions of σ and of G. Denote by O

Êur
the completion of

the integral closure of OE in W (R): it is a Cohen ring which is stable by σ and G, its
residue field is the separable closure of E in R and (O

Êur
)H = OE.

The natural map from H to GE is an isomorphism if and only if the action of H on
R induces an isomorphism from H to GF . We suppose that this is the case.

Definition. Let Γ be the quotient group G/H . An étale Φ-Γ-module over OE is a
finitely generated OE-module endowed with a σ-semi-linear Frobenius map
ϕ:M → M and a continuous Γ-semi-linear action of Γ commuting with ϕ such that
the image of ϕ generates the module M .

Étale Φ-Γ-modules over OE form an abelian category ΦΓM ét
OE

(the morphisms are
the linear maps commuting with ϕ). There is a tensor product of Φ-Γ-modules, the
natural one. For two objects M and N of ΦΓM ét

OE
the OE-module HomOE

(M,N ) can
be endowed with an étale Φ-Γ-module structure (see [F]).

For every Zp-adic representation V of G, let DH (V ) be the OE-module (O
Êur
⊗Zp

V )H . It is naturally an étale Φ-Γ-module, with ϕ induced by the map σ ⊗ id V and Γ

acting on both sides of the tensor product. From Theorem 2 one deduces the following
fundamental result:

Theorem 3 (Fontaine, [F]). The functor V → DH (V ) is an equivalence of the cate-
gories RepZp (G) and ΦΓM ét

OE
.

Remark. If E is a field of positive characteristic, OE is a Cohen ring with residue
field E endowed with a Frobenius σ, then we can easily extend the results of the whole
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subsection 6.1 to Zp-adic representations of G by using Theorem 3 for G = GE and
H = {1}.

6.3. A brief survey of the theory of the field of norms

For the details we refer to [W], [FV] or [F].
Let K be a complete discrete valuation field of characteristic 0 with perfect residue

field k of characteristic p. Put G = GK = Gal(Ksep/K).
Let C be the completion of Ksep, denote the extension of the discrete valuation vK

of K to C by vK . Let R∗ = lim←−C
∗
n where Cn = C and the morphism from Cn+1 to

Cn is raising to the pth power. Put R := R∗ ∪ {0} and define vR((xn)) = vK(x0). For
(xn), (yn) ∈ R define

(xn) + (yn) = (zn) where zn = lim
m

(xn+m + yn+m)p
m

.

Then R is an algebraically closed field of characteristic p complete with respect to vR
(cf. [W]). Its residue field is isomorphic to the algebraic closure of k and there is a
natural continuous action of G on R. (Note that Fontaine denotes this field by Fr R in
[F]).

Let L be a Galois extension of K in Ksep. Recall that one can always define the
ramification filtration on Gal(L/K) in the upper numbering. Roughly speaking, L/K is
an arithmetically profinite extension if one can define the lower ramification subgroups
of G so that the classical relations between the two filtrations for finite extensions are
preserved. This is in particular possible if Gal(L/K) is a p-adic Lie group with finite
residue field extension.

The field R contains in a natural way the field of norms N (L/K) of every arith-
metically profinite extension L of K and the restriction of v to N (L/K) is a discrete
valuation. The residue field of N (L/K) is isomorphic to that of L and N (L/K) is
stable under the action of G. The construction is functorial: if L′ is a finite extension
of L contained in Ksep, then L′/K is still arithmetically profinite and N (L′/K) is a
separable extension of N (L/K). The direct limit of the fields N (L′/K) where L′ goes
through all the finite extensions of L contained in Ksep is the separable closure Esep of
E = N (L/K). It is stable under the action of G and the subgroup GL identifies with
GE . The field Esep is dense in R.

Fontaine described how to lift these constructions in characteristic 0 when L is the
cyclotomic Zp-extension K∞ of K. Consider the ring of Witt vectors W (R) endowed
with the Frobenius map σ and the natural componentwise action of G. Define the
topology of W (R) as the product of the topology defined by the valuation on R. Then
one can construct a Cohen ring O

Êur
with residue field Esep (E = N (L/K)) such that:

(i) O
Êur

is stable by σ and the action of G,
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(ii) for every finite extensionL ofK∞ the ring (O
Êur

)GL is a Cohen ring with residue
field E.

Denote by OE(K) the ring (O
Êur

)GK∞ . It is stable by σ and the quotient Γ = G/GK∞
acts continuously on OE(K) with respect to the induced topology. Fix a topological
generator γ of Γ: it is a continuous ring automorphism commuting with σ. The fraction
field of OE(K) is a two-dimensional standard local field (as defined in section 1 of
Part I). If π is a lifting of a prime element of N (K∞/K) in OE(K) then the elements of
OE(K) are the series

∑
i∈Z aiπ

i, where the coefficients ai are in W (kK∞ ) and converge
p-adically to 0 when i→ −∞.

6.4. Application of Zp-adic representations of G
to the Galois cohomology

If we put together Fontaine’s construction and the general formalism of subsection 6.2
we obtain the following important result:

Theorem 3’ (Fontaine, [F]). The functor V → D(V ) := (O
Êur
⊗Zp V )GK∞ defines an

equivalence of the categories RepZp (G) and ΦΓM ét
OE(K)

.

Since for everyZp-adic representation ofGwe haveH0(G,V ) = V G ' D(V )ϕ, we
want now, as in paragraph 6.1, compute explicitly the cohomology of the representation
using the Φ-Γ-module associated to V .

For every étale Φ-Γ-module (M,ϕ) define the following complex of abelian groups:

C2(M ) : 0 −→M
α−→M ⊕M β−→M −→ 0

where M stands at degree 0 and 2,

α(x) = ((ϕ− 1)x, (γ − 1)x), β((y, z)) = (γ − 1)y − (ϕ− 1)z.

By functoriality, we obtain a cohomological functor (Hi := Hi ◦ C2)i∈N from
ΦΓM ét

OE(K)
to the category of abelian groups.

Theorem 4 (Herr, [H]). The cohomological functor (Hi ◦ D)i∈N can be identified
with the Galois cohomology functor (Hi(G, . ))i∈N for the category Repp-tor(G). So,
if M = D(V ) then Hi(M ) provides a simple explicit description of Hi(G,V ) in the
p-torsion case.

Idea of the proof of Theorem 4. We have to check that for every i > 1 the functor Hi is
effaceable. For every p-torsion object (M,ϕM ) ∈ ΦΓM ét

OE(K)
and every x ∈ Hi(M ) we

construct an explicit embedding u of (M,ϕM ) in a certain (N,ϕN ) ∈ ΦΓM ét
OE(K)

such
that Hi(u)(x) is zero in Hi(N ). For details see [H]. The key point is of topological

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



268 L. Herr

nature: we prove, following an idea of Fontaine in [F], that there exists an open
neighbourhood of 0 in M on which (ϕ − 1) is bijective and use then the continuity of
the action of Γ.

As an application of theorem 4 we can prove the following result (due to Tate):

Theorem 5. Assume that kK is finite and let V be in Repp-tor(G). Without using class
field theory the previous theorem implies that Hi(G,V ) are finite, Hi(G,V ) = 0 for
i > 3 and

2∑
i=0

l(Hi(G,V )) = −|K:Qp| l(V ),

where l( ) denotes the length over Zp.

See [H].

Remark. Because the finiteness results imply that the Mittag–Leffler conditions are
satisfied, it is possible to generalize the explicit construction of the cohomology and to
prove analogous results for Zp (or Qp)-adic representations by passing to the inverse
limits.

6.5. A new approach to local class field theory

The results of the preceding paragraph allow us to prove without using class field theory
the following:

Theorem 6 (Tate’s local duality). Let V be in Repp-tor(G) and n ∈ N such that pnV = 0.
Put V ∗(1) := Hom(V, µpn ). Then there is a canonical isomorphism from H2(G,µpn )
to Z/pn and the cup product

Hi(G,V )×H2−i(G,V ∗(1)) ∪−→ H2(G,µpn ) ' Z/pn

is a perfect pairing.

It is well known that a proof of the local duality theorem of Tate without using
class field theory gives a construction of the reciprocity map. For every n > 1 we
have by duality a functorial isomorphism between the finite groups Hom(G,Z/pn) =
H1(G,Z/pn) and H1(G,µpn ) which is isomorphic to K∗/(K∗)p

n

by Kummer theory.
Taking the inverse limits gives us the p-part of the reciprocity map, the most difficult
part.
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Sketch of the proof of Theorem 6. ([H2]).
a) Introduction of differentials:
Let us denote by Ω1

c the OE(K)-module of continuous differential forms of OE over
W (kK∞ ). If π is a fixed lifting of a prime element of E(K∞/K) in OE(K), then this
module is free and generated by dπ. Define the residue map from Ω1

c to W (kK∞ ) by
res
(∑

i∈Z aiπ
idπ
)

:= a−1; it is independent of the choice of π.

b) Calculation of some Φ-Γ-modules:
The OE(K)-module Ω1

c is endowed with an étale Φ-Γ-module structure by the fol-
lowing formulas: for every λ ∈ OE(K) we put:

pϕ(λdπ) = σ(λ)d(σ(π)) , γ(λdπ) = γ(λ)d(γ(π)).

The fundamental fact is that there is a natural isomorphism of Φ-Γ-modules over
OE(K) between D(µpn ) and the reduction Ω1

c,n of Ω1
c modulo pn.

The étale Φ-Γ-module associated to the representation V ∗(1) is
M̃ := Hom(M,Ω1

c,n), where M = D(V ). By composing the residue with the trace
we obtain a surjective and continuous map Trn from M to Z/pn. For every f ∈ M̃ ,
the map Trn ◦ f is an element of the group M∨ of continuous group homomorphisms
from M to Z/pn. This gives in fact a group isomorphism from M̃ to M∨ and we can
therefore transfer the Φ-Γ-module structure from M̃ to M∨. But, since k is finite, M is
locally compact and M∨ is in fact the Pontryagin dual of M .

c) Pontryagin duality implies local duality:
We simply dualize the complexC2(M ) using Pontryagin duality (all arrows are strict

morphisms in the category of topological groups) and obtain a complex:

C2(M )∨ : 0 −→M∨
β∨−−→M∨ ⊕M∨ α∨−−→M∨ −→ 0,

where the two M∨ are in degrees 0 and 2. Since we can construct an explicit quasi-
isomorphism betweenC2(M∨) andC2(M )∨, we easily obtain a duality betweenHi(M )
and H2−i(M∨) for every i ∈ {0, 1, 2}.

d) The canonical isomorphism from H2(Ω1
c,n) to Z/pn:

The map Trn from Ω1
c,n to Z/pn factors through the group H2(Ω1

c,n) and this gives
an isomorphism. But it is not canonical! In fact the construction of the complex
C2(M ) depends on the choice of γ. Fortunately, if we take another γ, we get a quasi-
isomorphic complex and if we normalize the map Trn by multiplying it by the unit
−pvp(log χ(γ))/ log χ(γ) of Zp, where log is the p-adic logarithm, χ the cyclotomic
character and vp = vQp , then everything is compatible with the change of γ.

e) The duality is given by the cup product:
We can construct explicit formulas for the cup product:

Hi(M )×H2−i(M∨) ∪−→ H2(Ω1
c,n)
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associated with the cohomological functor (Hi)i∈N and we compose them with the pre-
ceding normalized isomorphism from H2(Ω1

c,n) to Z/pn. Since everything is explicit,
we can compare with the pairing obtained in c) and verify that it is the same up to a unit
of Zp.

Remark. Benois, using the previous theorem, deduced an explicit formula of Cole-
man’s type for the Hilbert symbol and proved Perrin-Riou’s formula for crystalline
representations ([B]).

6.6. Explicit formulas for the generalized Hilbert symbol
on formal groups

Let K0 be the fraction field of the ring W0 of Witt vectors with coefficients in a finite
field of characteristic p > 2 and F a commutative formal group of finite height h defined
over W0.

For every integer n > 1, denote by F[pn] the pn-torsion points in F(MC), where
MC is the maximal ideal of the completion C of an algebraic closure of K0. The group
F[pn] is isomorphic to (Z/pnZ)h.

Let K be a finite extension of K0 contained in Ksep and assume that the points of
F[pn] are defined over K. We then have a bilinear pairing:

( , ]F,n:Gab
K × F(MK)→ F[pn]

(see section 8 of Part I).
When the field K contains a primitive pnth root of unity ζpn , Abrashkin gives an

explicit description for this pairing generalizing the classical Brückner–Vostokov for-
mula for the Hilbert symbol ([A]). In his paper he notices that the formula makes sense
even if K does not contain ζpn and he asks whether it holds without this assumption.
In a recent unpublished work, Benois proves that this is true.

Suppose for simplicity that K contains only ζp. Abrashkin considers in his paper
the extension K̃ := K(πp

−r
, r > 1), where π is a fixed prime element of K. It is not

a Galois extension of K but is arithmetically profinite, so by [W] one can consider the
field of norms for it. In order not to loose information given by the roots of unity of
order a power of p, Benois uses the composite Galois extension L := K∞K̃/K which
is arithmetically profinite. There are several problems with the field of normsN (L/K),
especially it is not clear that one can lift it in characteristic 0 with its Galois action. So,
Benois simply considers the completion F of the p-radical closure ofE = N (L/K) and
its separable closure F sep in R. If we apply what was explained in subsection 6.2 for
Γ = Gal(L/K), we get:

Theorem 7. The functor V → D(V ) := (W (F sep)⊗Zp V )GL defines an equivalence of
the categories RepZp (G) and ΦΓM ét

W (F ).
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Choose a topological generatorγ′ of Gal(L/K∞) and liftγ to an element of Gal(L/K̃).
Then Γ is topologically generated by γ and γ′, with the relation γγ′ = (γ′)aγ, where
a = χ(γ) (χ is the cyclotomic character). For (M,ϕ) ∈ ΦΓM ét

W (F ) the continuous
action of Gal(L/K∞) on M makes it a module over the Iwasawa algebra Zp[[γ′ − 1]].
So we can define the following complex of abelian groups:

C3(M ) : 0 −→M0
α 7→A0α−−−−−→M1

α7→A1α−−−−−→M2
α7→A2α−−−−−→M3 −→ 0

where M0 is in degree 0, M0 = M3 = M , M1 = M2 = M3,

A0 =

 ϕ− 1
γ − 1
γ′ − 1

 , A1 =

 γ − 1 1− ϕ 0
γ′ − 1 0 1− ϕ

0 γ′
a − 1 δ − γ

 , A2 = ((γ′)a − 1 δ − γ ϕ− 1)

and δ = ((γ′)a − 1)(γ′ − 1)−1 ∈ Zp[[γ′ − 1]].
As usual, by taking the cohomology of this complex, one defines a cohomological

functor (Hi)i∈N from ΦΓM ét
W (F ) in the category of abelian groups. Benois proves

only that the cohomology of a p-torsion representation V of G injects in the groups
Hi(D(V )) which is enough to get the explicit formula. But in fact a stronger statement
is true:

Theorem 8. The cohomological functor (Hi ◦D)i∈N can be identified with the Galois
cohomology functor (Hi(G, . ))i∈N for the category Repp-tor(G).

Idea of the proof. Use the same method as in the proof of Theorem 4. It is only more
technically complicated because of the structure of Γ.

Finally, one can explicitly construct the cup products in terms of the groups Hi and,
as in [B], Benois uses them to calculate the Hilbert symbol.

Remark. Analogous constructions (equivalence of category, explicit construction of
the cohomology by a complex) seem to work for higher dimensional local fields. In
particular, in the two-dimensional case, the formalism is similar to that of this paragraph;
the group Γ acting on the Φ-Γ-modules has the same structure as here and thus the
complex is of the same form. This work is still in progress.
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[W] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux;

applications, Ann. Sci. E.N.S. 16(1983), 59–89.
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7. Recovering higher global and local fields
from Galois groups — an algebraic approach

Ido Efrat

7.0. Introduction

We consider the following general problem: let F be a known field with absolute Galois
groupGF . LetK be a field withGK ' GF . What can be deduced about the arithmetic
structure of K?

As a prototype of this kind of questions we recall the celebrated Artin–Schreier
theorem: GK ' GR if and only if K is real closed. Likewise, the fields K with
GK ' GE for some finite extension E of Qp are the p-adically closed fields (see [Ne],
[P1], [E1], [K]). Here we discuss the following two cases:

1. K is a higher global field
2. K is a higher local field

7.1. Higher global fields

We call a field finitely generated (or a higher global field) if it is finitely generated
over its prime subfield. The (proven) 0-dimensional case of Grothendieck’s anabelian
conjecture ([G1], [G2]) can be stated as follows:

Let K,F be finitely generated infinite fields. Any isomorphism GK ' GF is induced in
a functorial way by an (essentially unique) isomorphism of the algebraic closures of K
and F .

This statement was proven:
• by Neukirch [Ne] for finite normal extensions of Q;
• by Iwasawa (unpublished) and Uchida [U1–3] (following Ikeda [I]) for all global

fields;
• by Pop [P2] and Spiess [S] for function fields in one variable over Q;
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• by Pop ([P3–5]) in general.
For recent results on the 1-dimensional anabelian conjecture – see the works of

Mochizuki [M], Nakamura [N] and Tamagawa [T].

7.2. Earlier approaches

Roughly speaking, the above proofs in the 0-dimensional case are divided into a local
part and a global part. To explain the local part, define the Kronecker dimension dim(K)
of a fieldK as trdeg(K/Fp) if char (K) = p > 0, and as trdeg(K/Q) + 1 if char (K) = 0.
Now let v be a Krull valuation on K (not necessarily discrete or of rank 1) with residue
field Kv. It is called 1-defectless if dim K = dim Kv + 1. The main result of the local
theory is the following local correspondence: given an isomorphism ϕ:GK →̃GF , a
closed subgroup Z of GK is the decomposition group of some 1-defectless valuation v
on K if and only if ϕ(Z) is the decomposition group of some 1-defectless valuation v′

on F . The ‘global theory’ then combines the isomorphisms between the corresponding
decomposition fields to construct the desired isomorphism of the algebraic closures (see
[P5] for more details).

The essence of the local correspondence is clearly the detection of valuations on a
field K just from the knowledge of the group-theoretic structure of GK . In the earlier
approaches this was done by means of various Hasse principles; i.e., using the injectivity
of the map

H(K)→
∏
v∈S

H(Kh
v )

for some cohomological functorH and some setS of non-trivial valuations onK, where
Kh
v is the henselization of K with respect to v. Indeed, if this map is injective and

H(K) 6= 0 then H(Kh
v ) 6= 0 for at least one v ∈ S. In this way one finds “arithmetically

interesting" valuations on K.
In the above-mentioned works the local correspondence was proved using known

Hasse principles for:
(1) Brauer groups over global fields (Brauer, Hasse, Noether);
(2) Brauer groups over function fields in one variable over local fields (Witt, Tate,

Lichtenbaum, Roquette, Sh. Saito, Pop);
(3) H3(GK ,Q/Z(2)) over function fields in one variable over Q (Kato, Jannsen).

Furthermore, in his proof of the 0-dimensional anabelian conjecture in its general case,
Pop uses a model-theoretic technique to transfer the Hasse principles in (2) to a more
general context of conservative function fields in one variable over certain henselian
valued fields. More specifically, by a deep result of Kiesler–Shelah, a property is
elementary in a certain language (in the sense of the first-order predicate calculus)
if and only if it is preserved by isomorphisms of models in the language, and both
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the property and its negation are preserved by nonprincipal ultrapowers. It turns out
that in an appropriate setting, the Hasse principle for the Brauer groups satisfies these
conditions, hence has an elementary nature. One can now apply model-completeness
results on tame valued fields by F.-V. Kuhlmann [Ku].

This led one to the problem of finding an algebraic proof of the local correspondence,
i.e., a proof which does not use non-standard arguments (see [S, p. 115]; other model-
theoretic techniques which were earlier used in the global theory of [P2] were replaced
by Spiess in [S] by algebraic ones).

We next explain how this can indeed be done (see [E3] for details and proofs).

7.3. Construction of valuations from K-theory

Our algebraic approach to the local correspondence is based on a K-theoretic (yet
elementary) construction of valuations, which emerged in the early 1980’s in the context
of quadratic form theory (in works of Jacob [J], Ware [W], Arason–Elman–Jacob
[AEJ], Hwang–Jacob [HJ]; see the survey [E2]). We also mention here the alternative
approaches to such constructions by Bogomolov [B] and Koenigsmann [K]. The main
result of (the first series of) these constructions is:

Theorem 1. Let p be a prime number and let E be a field. Assume that char (E) 6= p
and that 〈−1, E∗p〉 6 T 6 E∗ is an intermediate group such that:
(a) for all x ∈ E∗ \ T and y ∈ T \ E∗p one has {x, y} 6= 0 in K2(E)
(b) for all x, y ∈ E∗ which are Fp-linearly independent mod T one has {x, y} 6= 0 in

K2(E).

Then there exists a valuation v on E with value group Γv such that:
(i) char (Ev) 6= p;
(ii) dim Fp (Γv/p) > dim Fp (E∗/T )− 1;
(iii) either dim Fp (Γv/p) = dim Fp (E∗/T ) or Ev 6= Epv.

In particular we have:

Corollary. Let p be a prime number and let E be a field. Suppose that char (E) 6= p,
−1 ∈ E∗p, and that the natural symbolic map induces an isomorphism

∧2(E∗/E∗p) →̃K2(E)/p.

Then there is a valuation v on E such that
(i) char (Ev) 6= p;
(ii) dim Fp (Γv/p) > dim Fp (E∗/E∗p)− 1;
(iii) either dim Fp (Γv/p) = dim Fp (E∗/E∗p) or Ev 6= Epv.
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We remark that the construction used in the proof of Theorem 1 is of a completely
explicit and elementary nature. Namely, one chooses a certain intermediate group
T 6 H 6 E∗ with (H : T )|p and denotes

O− =
{
x ∈ E \H : 1− x ∈ T

}
, O+ =

{
x ∈ H : xO− ⊂ O−

}
.

It turns out thatO = O− ∪O+ is a valuation ring on E, and the corresponding valuation
v is as desired.

The second main ingredient is the following henselianity criterion proven in [E1]:

Proposition 1. Let p be a prime number and let (E, v) be a valued field with char (Ev) 6=
p, such that the maximal pro-p Galois group GEv (p) of Ev is infinite. Suppose that

supE′ rk(GE′ (p)) <∞

with E′ ranging over all finite separable extensions of E. Then v is henselian.

Here the rank rk(G) of a profinite group G is its minimal number of (topological)
generators.

After translating the Corollary to the Galois-theoretic language using Kummer theory
and the Merkur’ev–Suslin theorem and using Proposition 1 we obtain:

Proposition 2. Let p be a prime number and let E be a field such that char (E) 6= p.
Suppose that for every finite separable extension E′ of E one has
(1) H1(GE′ ,Z/p) ' (Z/p)n+1;
(2) H2(GE′ ,Z/p) ' ∧2H1(GE′ ,Z/p) via the cup product;
(3) dim Fp (Γu/p) 6 n for every valuation u on E′.

Then there exists a henselian valuation v on E such that char (Ev) 6= p and
dim Fp (Γv/p) = n.

7.4. A Galois characterization of 1-defectless valuations

For a fieldL and a prime number p, we recall that the virtual p-cohomological dimension
vcdp(GL) is the usual p-cohomological dimension cdp(GL) if char (L) 6= 0 and is
vcdp(GL(

√
−1)) if char (L) = 0.

Definition. Let p be a prime number and let L be a field with n = dim L < ∞ and
char (L) 6= p. We say that L is p-divisorial if there exist subfields L ⊂ E ⊂ M ⊂ Lsep

such that
(a) M/L is Galois;
(b) every p-Sylow subgroup of GM is isomorphic to Zp;
(c) the virtual p-cohomological dimension vcdp(GL) of GL is n + 1;
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(d) either n = 1 or Gal(M/L) has no non-trivial closed normal pro-soluble subgroups;
(e) for every finite separable extension E′/E one has

H1(GE′ ,Z/p) ' (Z/p)n+1, H2(GE′ ,Z/p) ' ∧2H1(GE′ ,Z/p)

via the cup product.

The main result is now:

Theorem 2 ([E3]). Let p be a prime number and let K be a finitely generated field of
characteristic different from p. LetL be an algebraic extension of K. Then the following
conditions are equivalent:
(i) there exists a 1-defectless valuation v on K such that L = Kh

v ;
(ii) L is a minimal p-divisorial separable algebraic extension of K.

Idea of proof. Suppose first that v is a 1-defectless valuation on K. Take L = Kh
v and

letM be a maximal unramified extension of L. Also letw be a valuation onK such that
Γw ' Zdim (K), char (Kw) 6= p, and such that the corresponding valuation rings satisfy
Ow ⊂ Ov. Let Kh

w be a henselization of (K,w) containing L and take E = Kh
w(µp)

(E = Kh
w(µ4) if p = 2). One shows that L is p-divisorial with respect to this tower of of

extensions.
Conversely, suppose that L is p-divisorial, and let L ⊂ E ⊂ M ⊂ Lsep be a tower

of extensions as in the definition above. Proposition 2 gives rise to a henselian valuation
w on E such that char (Ew) 6= p and dim Fp (Γw/p) = dim (K). Let w0 be the unique
valuation onE of rank 1 such that Ow0⊃Ow, and let u be its restriction toL. The unique
extension uM of w0 to M is henselian. Since M/L is normal, every extension of u to
M is conjugate to uM , hence is also henselian. By a classical result of F.-K. Schmidt,
the non-separably closed fieldM can be henselian with respect to at most one valuation
of rank 1. Conclude that u is henselian as well. One then shows that it is 1-defectless.

The equivalence of (i) and (ii) now follows from these two remarks, and a further
application of F.-K. Schmidt’s theorem.

The local correspondence now follows from the observation that condition (ii) of
the Theorem is actually a condition on the closed subgroup GL of the profinite group
GK (note that dim(L) = vcd(GK)− 1).

7.5. Higher local fields

Here we report on a joint work with Fesenko [EF].
An analysis similar to the one sketched in the case of higher global fields yields:
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Theorem 3 ([EF]). Let F be an n-dimensional local field. Suppose that the canonical
valuation on F of rank n has residue characteristic p. Let K be a field such that
GK ' GF . Then there is a henselian valuation v on K such that Γv/l ' (Z/l)n for
every prime number l 6= p and such that char (Kv) = p or 0.

Theorem 4 ([EF]). Let q = pr be a prime power and let K be a field with
GK ' GFq((t)). Then there is a henselian valuation v on K such that
(1) Γv/l ' Z/l for every prime number l 6= p;
(2) char (Kv) = p;
(3) the maximal prime-to-p Galois group GKv

(p′) of Kv is isomorphic to
∏
l 6=p Zl;

(4) if char (K) = 0 then Γv = pΓv and Kv is perfect.

Moreover, for every positive integer d there exist valued fields (K, v) as in Theorem
4 with characteristic p and for which Γv/p ' (Z/p)d. Likewise there exist examples
with Γv ' Z, GKv

6' Ẑ and Kv imperfect, as well as examples with char (K) = 0.
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8. Higher local skew fields

Alexander Zheglov

n-dimensional local skew fields are a natural generalization of n-dimensional local
fields. The latter have numerous applications to problems of algebraic geometry, both
arithmetical and geometrical, as it is shown in this volume. From this viewpoint,
it would be reasonable to restrict oneself to commutative fields only. Nevertheless,
already in class field theory one meets non-commutative rings which are skew fields
finite-dimensional over their center K. For example, K is a (commutative) local field
and the skew field represents elements of the Brauer group of the field K (see also an
example below). In [Pa] A.N. Parshin pointed out another class of non-commutative
local fields arising in differential equations and showed that these skew fields possess
many features of commutative fields. He defined a skew field of formal pseudo-
differential operators in n variables and studied some of their properties. He raised a
problem of classifying non-commutative local skew fields.

In this section we treat the case of n = 2 and list a number of results, in particular a
classification of certain types of 2-dimensional local skew fields.

8.1. Basic definitions

Definition. A skew field K is called a complete discrete valuation skew field if K is
complete with respect to a discrete valuation (the residue skew field is not necessarily
commutative). A field K is called an n-dimensional local skew field if there are skew
fields K = Kn,Kn−1, . . . ,K0 such that each Ki for i > 0 is a complete discrete
valuation skew field with residue skew field Ki−1.

Examples.
(1) Let k be a field. Formal pseudo-differential operators over k((X)) form a 2-

dimensional local skew fieldK = k((X))((∂−1
X )), ∂XX = X∂X + 1. If char (k) = 0

we get an example of a skew field which is an infinite dimensional vector space
over its centre.
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(2) Let L be a local field of equal characteristic (of any dimension). Then an element
of Br(L) is an example of a skew field which is finite dimensional over its centre.

From now on let K be a two-dimensional local skew field. Let t2 be a generator of
MK2 and t′1 be a generator of MK1 . If t1 ∈ K is a lifting of t′1 then t1, t2 is called a
system of local parameters of K. We denote by vK2 and vK1 the (surjective) discrete
valuations of K2 and K1 associated with t2 and t′1.

Definition. A two-dimensional local skew field K is said to split if there is a section
of the homomorphism OK2 → K1 where OK2 is the ring of integers of K2.

Example (N. Dubrovin). Let Q ((u))〈x, y〉 be a free associative algebra over Q ((u))
with generators x, y. Let I = 〈[x, [x, y]], [y, [x, y]]〉. Then the quotient

A = Q ((u))〈x, y〉/I

is a Q-algebra which has no non-trivial zero divisors, and in which z = [x, y] + I is a
central element. Any element of A can be uniquely represented in the form

f0 + f1z + . . . + fmzm

where f0, . . . , fm are polynomials in the variables x, y.
One can define a discrete valuation w onA such that w(x) = w(y) = w(Q ((u))) = 0,

w([x, y]) = 1, w(a) = k if a = fkzk + . . .+ fmzm, fk 6= 0. The skew fieldB of fractions
of A has a discrete valuation v which is a unique extension of w. The completion of B
with respect to v is a two-dimensional local skew field which does not split (for details
see [Zh, Lemma 9]).

Definition. Assume that K1 is a field. The homomorphism

ϕ0:K∗ → Int(K), ϕ0(x)(y) = x−1yx

induces a homomorphism ϕ:K∗2 /O
∗
K2
→ Aut(K1). The canonical automorphism of

K1 is α = ϕ(t2) where t2 is an arbitrary prime element of K2.

Definition. Two two-dimensional local skew fields K and K ′ are isomorphic if there
is an isomorphism K → K ′ which maps OK onto OK′ , MK onto MK′ and OK1 onto
OK′1

, MK1 onto MK′1
.
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8.2. Canonical automorphisms of infinite order

Theorem.
(1) Let K be a two-dimensional local skew field. If αn 6= id for all n > 1 then

char (K2) = char (K1), K splits and K is isomorphic to a two-dimensional local
skew field K1((t2)) where t2a = α(a)t2 for all a ∈ K1.

(2) Let K,K ′ be two-dimensional local skew fields and let K1,K
′
1 be fields. Let

αn 6= id , α′n 6= id for all n > 1. ThenK is isomorphic toK ′ if and only if there is
an isomorphism f :K1 → K ′1 such that α = f−1α′f where α, α′ are the canonical
automorphisms of K1 and K ′1.

Remarks.
1. This theorem is true for any higher local skew field.
2. There are examples (similar to Dubrovin’s example) of local skew fields which do

not split and in which αn = id for some positive integer n.

Proof. (2) follows from (1). We sketch the proof of (1). For details see [Zh, Th.1].
If char (K) 6= char (K1) then char (K1) = p > 0. Hence v(p) = r > 0. Then for any

element t ∈ K with v(t) = 0 we have ptp−1 ≡ αr(t) mod MK where t is the image of
t in K1. But on the other hand, pt = tp, a contradiction.

Let F be the prime field inK. Since char (K) = char (K1) the field F is a subring of
O = OK2 . One can easily show that there exists an element c ∈ K1 such that αn(c) 6= c
for every n > 1 [Zh, Lemma 5].

Then any lifting c′ in O of c is transcendental over F . Hence we can embed the
field F (c′) in O. Let L be a maximal field extension of F (c′) which can be embedded
in O. Denote by L its image in O. Take a ∈ K1 \L. We claim that there exists a lifting
a′ ∈ O of a such that a′ commutes with every element in L. To prove this fact we use
the completeness of O in the following argument.

Take any lifting a inO of a. For every element x ∈ Lwe have axa−1 ≡ xmod MK .
If t2 is a prime element of K2 we can write

axa−1 = x + δ1(x)t2

where δ1(x) ∈ O. The map δ1:L 3 x→ δ1(x) ∈ K1 is an α-derivation, i.e.

δ1(ef ) = δ1(e)α(f ) + eδ1(f )

for all e, f ∈ L. Take an element h such that α(h) 6= h, then δ1(a) = gα(a)− ag where
g = δ1(h)/(α(h)− h). Therefore there is a1 ∈ K1 such that

(1 + a1t2)axa−1(1 + a1t2)−1 ≡ xmod M2
K .

By induction we can find an element a′ = . . . · (1 + a1t2)a such that a′xa′−1 = x.
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Now, if a is not algebraic over L, then for its lifting a′ ∈ O which commutes with
L we would deduce that L(a′) is a field extension of F (c′) which can be embedded in
O, which contradicts the maximality of L.

Hence a is algebraic and separable over L. Using a generalization of Hensel’s
Lemma [Zh, Prop.4] we can find a lifting a′ of a such that a′ commutes with elements
of L and a′ is algebraic over L, which again leads to a contradiction.

Finally let a be purely inseparable overL, ap
k

= x, x ∈ L. Let a′ be its lifting which
commutes with every element of L. Then a′p

k

− x commutes with every element of L.
If vK(a′p

k

− x) = r 6= ∞ then similarly to the beginning of this proof we deduce that
the image of (a′p

k

− x)c(a′p
k

− x)−1 in K1 is equal to αr(c) (which is distinct from
c), a contradiction. Therefore, a′p

k

= x and the field L(a′) is a field extension of F (c′)
which can be embedded in O, which contradicts the maximality of L.

Thus, L = K1.
To prove that K is isomorphic to a skew field K1((t2)) where t2a = α(a)t2 one

can apply similar arguments as in the proof of the existence of an element a′ such that
a′xa′

−1 = x (see above). So, one can find a parameter t2 with a given property.

In some cases we have a complete classification of local skew fields.

Proposition ([Zh]). Assume that K1 is isomorphic to k((t1)). Put

ζ = α(t1)t−1
1 mod MK1 .

Put iα = 1 if ζ is not a root of unity in k and iα = vK1 (αn(t1) − t1) if ζ is a primitive
nth root. Assume that k is of characteristic zero. Then there is an automorphism f ∈
Autk(K1) such that f−1αf = β where

β(t1) = ζt1 + xtiα1 + x2yt2iα−1
1

for some x ∈ k∗/k∗(iα−1), y ∈ k.
Two automorphisms α and β are conjugate if and only if

(ζ(α), iα, x(α), y(α)) = (ζ(β), iβ , x(β), y(β)).

Proof. First we prove that α = fβ′f−1 where

β′(t1) = ζt1 + xtin+1
1 + yt2in+1

1

for some natural i. Then we prove that iα = iβ′ .
Consider a set {αi : i ∈ N } where αi = fiαi−1f

−1
i , fi(t1) = t1 + xiti1 for some

xi ∈ k, α1 = α. Write

αi(t1) = ζt1 + a2,it
2
1 + a3,it

3
1 + . . . .

One can check that a2,2 = x2(ζ2 − ζ) + a2,1 and hence there exists an element x2 ∈ k
such that a2,2 = 0. Since aj,i+1 = aj,i, we have a2,j = 0 for all j > 2. Further,
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a3,3 = x3(ζ3 − ζ) + a3,2 and hence there exists an element x3 ∈ k such that a3,3 = 0.
Then a3,j = 0 for all j > 3. Thus, any element ak,k can be made equal to zero if
n 6 |(k − 1), and therefore α = fα̃f−1 where

α̃(t1) = ζt1 + ãin+1t
in+1
1 + ãin+n+1t

in+n+1
1 + . . .

for some i, ãj ∈ k. Notice that ãin+1 does not depend on xi. Put x = x(α) = ãin+1.
Now we replace α by α̃. One can check that if n|(k − 1) then

aj,k = aj,k−1 for 2 6 j < k + in

and

ak+in,k = xkx(k − in− 1) + ak+in + some polynomial which does not depend on xk.

From this fact it immediately follows that a2in+1,in+1 does not depend on xi and for all
k 6= in + 1 ak+in,k can be made equal to zero. Then y = y(α) = a2in+1,in+1.

Now we prove that iα = iβ′ . Using the formula

β′
n(t1) = t1 + nx(α)ζ−1tin+1

1 + . . .

we get iβ′ = in+1. Then one can check that vK1 (f−1(αn− id )f ) = vK1 (αn− id ) = iα.
Since β′n − id = f−1(αn − id )f , we get the identity iα = iβ′ .

The rest of the proof is clear. For details see [Zh, Lemma 6 and Prop.5].

8.3. Canonical automorphisms of finite order

8.3.1. Characteristic zero case.
Assume that
a two-dimensional local skew field K splits,
K1 is a field, K0 ⊂ Z(K),
char (K) = char (K0) = 0,
αn = id for some n > 1,
for any convergent sequence (aj) in K1 the sequence (t2ajt−1

2 ) converges in K.

Lemma. K is isomorphic to a two-dimensional local skew field K1((t2)) where

t2at
−1
2 = α(a) + δi(a)ti2 + δ2i(a)t2i2 + δ2i+n(a)t2i+n2 + . . . for all a ∈ K1

where n|i and δj : K1 → K1 are linear maps and

δi(ab) = δi(a)α(b) + α(a)δi(b) for every a, b ∈ K1.

Moreover

tn2 at
−n
2 = a + δ′i(a)ti2 + δ′2i(a)t2i2 + δ′2i+n(a)t2i+n2 + . . .

where δ′j are linear maps and δ′i and δ := δ′2i − ((i + 1)/2)δ′i
2 are derivations.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



286 A. Zheglov

Remark. The following fact holds for the fieldK of any characteristic: K is isomorphic
to a two-dimensional local skew field K1((t2)) where

t2at
−1
2 = α(a) + δi(a)ti2 + δi+1(a)ti+1

2 + . . .

where δj are linear maps which satisfy some identity. For explicit formulas see [Zh, Prop.2
and Cor.1].

Proof. It is clear that K is isomorphic to a two-dimensional local skew field K1((t2))
where

t2at
−1
2 = α(a) + δ1(a)t2 + δ2(a)t22 + . . . for all a

and δj are linear maps. Then δ1 is a (α2, α)-derivation, that is δ1(ab) = δ1(a)α2(b) +
α(a)δ1(b).

Indeed,

t2abt
−1
2 = t2at−1

2 t2bt
−1
2 = (α(a) + δ1(a)t2 + . . . )(α(b) + δ1(b)t2 + . . . )

=α(a)α(b) + (δ1(a)α2(b) + α(a)δ1(b))t2 + . . . = α(ab) + δ1(ab)t2 + . . . .

From the proof of Theorem 8.2 it follows that δ1 is an inner derivation, i.e. δ1(a) =
gα2(a)− α(a)g for some g ∈ K1, and that there exists a t2,2 = (1 + x1t2)t2 such that

t2,2at
−1
2,2 = α(a) + δ2,2(a)t22,2 + . . . .

One can easily check that δ2,2 is a (α3, α)-derivation. Then it is an inner derivation and
there exists t2,3 such that

t2,3at
−1
2,3 = α(a) + δ3,3(a)t32,3 + . . . .

By induction one deduces that if

t2,jat
−1
2,j = α(a) + δn,j(a)tn2,j + . . . + δkn,j(a)tkn2,j + δj,j(a)tj2,j + . . .

then δj,j is a (αj+1, α)-derivation and there exists t2,j+1 such that

t2,j+1at
−1
2,j+1 = α(a) + δn,j(a)tn2,j+1 + . . . + δkn,j(a)tkn2,j+1 + δj+1,j+1(a)tj+1

2,j+1 + . . . .

The rest of the proof is clear. For details see [Zh, Prop.2, Cor.1, Lemmas 10, 3].

Definition. Let i = vK2 (ϕ(tn2 )(t1)− t1) ∈ nN∪∞, (ϕ is defined in subsection 8.1) and
let r ∈ Z/i be vK1 (x) mod i where x is the residue of (ϕ(tn2 )(t1)− t1)t−i2 . Put

a = rest1

(
(δ′2i −

i+1
2 δ
′
i
2)(t1)

δ′i(t1)2 dt1

)
∈ K0.

(δ′i, δ
′
2i are the maps from the preceding lemma).
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Proposition. If n = 1 then i, r don’t depend on the choice of a system of local param-
eters; if i = 1 then a does not depend on the choice of a system of local parameters; if
n 6= 1 then a depends only on the maps δi+1, . . . , δ2i−1, i, r depend only on the maps
δj , j /∈ nN , j < i.

Proof. We comment on the statement first. The maps δj are uniquely defined by
parameters t1, t2 and they depend on the choice of these parameters. So the claim that
i, r depend only on the maps δj , j /∈ nN , j < i means that i, r don’t depend on the
choice of parameters t1, t2 which preserve the maps δj , j /∈ nN , j < i.

Note that r depends only on i. Hence it is sufficient to prove the proposition only
for i and a. Moreover it suffices to prove it for the case where n 6= 1, i 6= 1, because if
n = 1 then the sets {δj : j /∈ nN } and {δi+1 : . . . , δ2i−1} are empty.

It is clear that i depends on δj , j /∈ nN . Indeed, it is known that δ1 is an inner
(α2, α)-derivation (see the proof of the lemma). By [Zh, Lemma 3] we can change a
parameter t2 such that δ1 can be made equal δ1(t1) = t1. Then one can see that i = 1.
From the other hand we can change a parameter t2 such that δ1 can be made equal to
0. In this case i > 1. This means that i depends on δ1. By [Zh, Cor.3] any map δj
is uniquely determined by the maps δq, q < j and by an element δj(t1). Then using
similar arguments and induction one deduces that i depends on other maps δj , j /∈ nN ,
j < i.

Now we prove that i does not depend on the choice of parameters t1, t2 which
preserve the maps δj , j /∈ nN , j < i.

Note that i does not depend on the choice of t1: indeed, if t′1 = t1 + bzj , b ∈ K1
then znt′1z

−n = znt1z
−n + (znbz−n)zj = t′1 + r, where r ∈ Mi

K\Mi+1
K . One can see

that the same is true for t′1 = c1t1 + c2t
2
2 + . . . , cj ∈ K0.

Let δq be the first non-zero map for given t1, t2. If q 6= i then by [Zh, Lemma 8,
(ii)] there exists a parameter t′1 such that zt′1z

−1 = t′1
α + δq+1(t′1)zq+1 + . . . . Using this

fact and Proposition 8.2 we can reduce the proof to the case where q = i, α(t1) = ξt1,
α(δi(t1)) = ξδi(t1) (this case is equivalent to the case of n = 1). Then we apply
[Zh, Lemma 3] to show that

vK2 ((φ(t′2)− 1)(t1)) = vK2 ((φ(t2)− 1)(t1)),

for any parameters t2, t′2, i.e. i does not depend on the choice of a parameter t2. For
details see [Zh, Prop.6].

To prove that a depends only on δi+1, . . . , δ2i−1 we use the fact that for any pair
of parameters t′1, t

′
2 we can find parameters t′′1 = t1 + r, where r ∈ Mi

K , t′′2 such that
corresponding maps δj are equal for all j. Then by [Zh, Lemma 8] a does not depend
on t′′1 and by [Zh, Lemma 3] a depends on t′′2 = t2 + a1t

2
2 + . . . , aj ∈ K1 if and only

if a1 = . . . = ai−1. Using direct calculations one can check that a doesn’t depend on
t′′2 = a0t2, a0 ∈ K∗1 .

To prove the fact it is sufficient to prove it for t′′1 = t1 + cth1z
j for any j < i, c ∈ K0.

Using [Zh, Lemma 8] one can reduce the proof to the assertion that some identity holds.
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The identity is, in fact, some equation on residue elements. One can check it by direct
calculations. For details see [Zh, Prop.7].

Remark. The numbers i, r, a can be defined only for local skew fields which splits.
One can check that the definition can not be extended to the skew field in Dubrovin’s
example.

Theorem.
(1) K is isomorphic to a two-dimensional local skew field K0((t1))((t2)) such that

t2t1t
−1
2 = ξt1 + xti2 + yt2i2

where ξ is a primitive nth root, x = ctr1, c ∈ K∗0 /(K∗0 )d,

y = (a + r(i + 1)/2)t−1
1 x2, d = gcd(r − 1, i).

If n = 1, i =∞, then K is a field.
(2) Let K,K ′ be two-dimensional local skew fields of characteristic zero which splits;

and let K1,K
′
1 be fields. Let αn = id , α′n

′
= id for some n, n′ > 1. Then K

is isomorphic to K ′ if and only if K0 is isomorphic to K ′0 and the ordered sets
(n, ξ, i, r, c, a) and (n′, ξ′, i′, r′, c′, a′) coincide.

Proof. (2) follows from the Proposition of 8.2 and (1). We sketch the proof of (1).
From Proposition 8.2 it follows that there exists t1 such that α(t1) = ξt1; δi(t1) can

be represented as ctr1a
i. Hence there exists t2 such that

t2t1t
−1
2 = ξt1 + xti2 + δ2i(t1)t2i2 + . . .

Using [Zh, Lemma 8] we can find a parameter t′1 = t1 mod MK such that

t2t
′
1t
−1
2 = ξt1 + xti2 + yt2i2 + . . .

The rest of the proof is similar to the proof of the lemma. Using [Zh, Lemma 3] one
can find a parameter t′2 = t2 mod M2

K such that δj(t1) = 0, j > 2i.

Corollary. Every two-dimensional local skew field K with the ordered set

(n, ξ, i, r, c, a)

is a finite-dimensional extension of a skew field with the ordered set (1, 1, 1, 0, 1, a).

Remark. There is a construction of a two-dimensional local skew field with a given
set (n, ξ, i, r, c, a).

Examples.
(1) The ring of formal pseudo-differential equations is the skew field with the set

(n = 1, ξ = 1, i = 1, r = 0, c = 1, a = 0).
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(2) The elements of Br(L) where L is a two-dimensional local field of equal charac-
teristic are local skew fields. If, for example, L is a C2- field, they split and i =∞.
Hence any division algebra in Br(L) is cyclic.

8.3.2. Characteristic p case.

Theorem. Suppose that a two-dimensional local skew field K splits, K1 is a field,
K0 ⊂ Z(K), char (K) = char (K0) = p > 2 and α = id .

Then K is a finite dimensional vector space over its center if and only if K is
isomorphic to a two-dimensional local skew field K0((t1))((t2)) where

t−1
2 t1t2 = t1 + xti2

with x ∈ Kp
1 , (i, p) = 1.

Proof. The “if” part is obvious. We sketch the proof of the “only if” part.
If K is a finite dimensional vector space over its center then K is a division algebra

over a henselian field. In fact, the center ofK is a two-dimensional local field k((u))((t)).
Then by [JW, Prop.1.7] K1/(Z(K))1 is a purely inseparable extension. Hence there
exists t1 such that tp

k

1 ∈ Z(K) for some k ∈ N and K ' K0((t1))((t2)) as a vector
space with the relation

t2t1t
−1
2 = t1 + δi(t1)ti2 + . . .

(see Remark 8.3.1). Then it is sufficient to show that i is prime to p and there exist
parameters t1 ∈ K1, t2 such that the maps δj satisfy the following property:

(*) If j is not divisible by i then δj = 0. If j is divisible by i then δj = cj/iδ
j/i
i with

some cj/i ∈ K1.
Indeed, if this property holds then by induction one deduces that cj/i ∈ K0, cj/i =

((i+ 1) . . . (i(j/i− 1) + 1))/(j/i)!. Then one can find a parameter t′2 = bt2, b ∈ K1 such
that δ′j satisfies the same property and δ2

i = 0. Then

t′2
−1
t1t
′
2 = t1 − δ′i(t1)ti2.

First we prove that (i, p) = 1. To show it we prove that if p|i then there exists a
map δj such that δj(t

pk

1 ) 6= 0. To find this map one can use [Zh, Cor.1] to show that

δip(tp1) 6= 0, δip2 (tp
2

1 ) 6= 0, . . . , δipk (tp
k

1 ) 6= 0.
Then we prove that for some t2 property (*) holds. To show it we prove that if

property (*) does not hold then there exists a map δj such that δj(t
pk

1 ) 6= 0. To find this
map we reduce the proof to the case of i ≡ 1 mod p. Then we apply the following idea.

Let j ≡ 1 mod p be the minimal positive integer such that δj is not equal to zero on

Kpl

1 . Then one can prove that the maps δm, kj 6 m < (k + 1)j, k ∈ {1, . . . , p − 1}
satisfy the following property:
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there exist elements cm,k ∈ K1 such that

(δm − cm,1δ − . . .− cm,kδk)|
Kpl

1
= 0

where δ:K1 → K1 is a linear map, δ|
Kpl

1
is a derivation, δ(tj1) = 0 for j /∈ plN,

δ(tp
l

1 ) = 1, ckj,k = c(δj(t
pl

1 ))
k

, c ∈ K0.

Now consider maps δ̃q which are defined by the following formula

t−1
2 at2 = a + δ̃i(a)ti2 + δ̃i+1(a)ti+1

2 + . . . , a ∈ K1.

Then δ̃q + δq +
∑q−1
k=1 δk δ̃q−k = 0 for any q. In fact, δ̃q satisfy some identity which is

similar to the identity in [Zh, Cor.1]. Using that identity one can deduce that
if

j ≡ 1 mod p and there exists the minimal m (m ∈ Z) such that δmp+2i|Kpl

1
6= 0

if j 6 |(mp + 2i) and δmp+2i|Kpl

1
6= sδ

(2i+mp)/j
j |

Kpl

1
for any s ∈ K1 otherwise, and

δq(t
pl

1 ) = 0 for q < mp + 2i, q 6≡ 1 mod p,
then

(mp + 2i) + (p− 1)j is the minimal integer such that δ(mp+2i)+(p−1)j |
Kpl+1

1
6= 0.

To complete the proof we use induction and [Zh, Lemma 3] to show that there exist
parameters t1 ∈ K1, t2 such that δq(t

pl

1 ) = 0 for q 6≡ 1, 2 mod p and δ2
j = 0 on Kpl

1 .

Corollary 1. If K is a finite dimensional division algebra over its center then its index
is equal to p.

Corollary 2. Suppose that a two-dimensional local skew field K splits, K1 is a field,
K0 ⊂ Z(K), char (K) = char (K0) = p > 2, K is a finite dimensional division algebra
over its center of index pk.

Then either K is a cyclic division algebra or has index p.

Proof. By [JW, Prop. 1.7] K1/Z(K) is the compositum of a purely inseparable ex-
tension and a cyclic Galois extension. Then the canonical automorphism α has order
pl for some l ∈ N. By [Zh, Lemma 10] (which is true also for char (K) = p > 0),
K ' K0((t1))((t2)) with

t2at
−1
2 = α(a) + δi(a)ti2 + δi+pl (a)ti+p

l

2 + δi+pl (a)ti+2pl
2 + . . .

where i ∈ plN, a ∈ K1. Suppose that α 6= 1 and K1 is not a cyclic extension of Z(K).
Then there exists a field F ⊂ K1, F 6⊂ Z(K) such that α|F = 1. If a ∈ F then for some
m the element ap

m

belongs to a cyclic extension of the field Z(K), hence δj(ap
m

) = 0
for all j. But we can apply the same arguments as in the proof of the preceding theorem
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to show that if δi 6= 0 then there exists a map δj such that δj(ap
m

) 6= 0, a contradiction.
We only need to apply [Zh, Prop.2] instead of [Zh, Cor.1] and note that αδ = xδαwhere
δ is a derivation on K1, x ∈ K1, x ≡ 1 mod MK1 , because α(t1)/t1 ≡ 1 mod MK1 .

Hence t2at−1
2 = α(a) and K1/Z(K) is a cyclic extension and K is a cyclic division

algebra (K1(tp
k

2 )/Z(K), α, tp
k

2 ).

Corollary 3. Let F = F0((t1))((t2)) be a two-dimensional local field, where F0 is an
algebraically closed field. Let A be a division algebra over F .

Then A ' B⊗C, where B is a cyclic division algebra of index prime to p and C is
either cyclic (as in Corollary 2) or C is a local skew field from the theorem of index p.

Proof. Note that F is a C2-field. Then A1 is a field, A1/F1 is the compositum of a
purely inseparable extension and a cyclic Galois extension, and A1 = F0((u)) for some
u ∈ A1. Hence A splits. So, A is a splitting two-dimensional local skew field.

It is easy to see that the index of A is |A : F | = pqm, (m, p) = 1. Consider
subalgebras B = CA(F1), C = CA(F2) where F1 = F (up

q

), F2 = F (um). Then by
[M, Th.1] A ' B ⊗ C.

The rest of the proof is clear.

Now one can easily deduce that

Corollary 4. The following conjecture: the exponent of A is equal to its index for any
division algebra A over a C2-field F (see for example [PY, 3.4.5.])
has the positive answer for F = F0((t1))((t2)).
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9. Local reciprocity cycles

Ivan Fesenko

In this section we introduce a description of totally ramified Galois extensions of a local
field with finite residue field (extensions have to satisfy certain arithmetical restrictions
if they are infinite) in terms of subquotients of formal power series Fsep

p [[X]]
∗
. This

description can be viewed as a non-commutative local reciprocity map (which is not in
general a homomorphism but a cocycle) which directly describes the Galois group in
terms of certain objects related to the ground field. Abelian class field theory as well
as metabelian theory of Koch and de Shalit [K], [KdS] (see subsection 9.4) are partial
cases of this theory.

9.1. Group U�̂N (L/F )

Let F be a local field with finite residue field. Denote by ϕ ∈ GF a lifting of the
Frobenius automorphism of Fur/F .

Let Fϕ be the fixed field of ϕ. The extension Fϕ/F is totally ramified.

Lemma ([KdS, Lemma 0.2]). There is a unique norm compatible sequence of prime
elements πE in finite subextensions E/F of Fϕ/F .

Proof. Uniqueness follows from abelian local class field theory, existence follows from
the compactness of the group of units.

In what follows we fix Fϕ and consider Galois subextensions L/F of Fϕ/F .
Assume that L/F is arithmetically profinite, ie for every x the ramification group
Gal(L/F )x is open in Gal(L/F ) (see also subsection 6.3 of Part II). For instance, a
totally ramified p-adic Lie extension is arithmetically profinite.

For an arithmetically profinite extension L/F define its Hasse–Herbrand function
hL/F : [0,∞)→ [0,∞) as hL/F (x) = limhM/F (x) where M/F runs over finite subex-
tensions of L/F (cf. [FV, Ch. III §5]).

Published 10 December 2000: c© Geometry & Topology Publications



294 I. Fesenko

If L/F is infinite letN (L/F ) be the field of norms of L/F . It can be identified with
kF ((Π)) where Π corresponds to the norm compatible sequence πE (see subsection 6.3
of Part II, [W], [FV, Ch.III §5]).

Denote by ϕ the automorphism of N (L/F )ur and of its completion ̂N (L/F ) corre-
sponding to the Frobenius automorphism of Fur/F .

Definition. Denote by U�̂N(L/F )
the subgroup of the group U ̂N(L/F )

of those elements

whose F̂ -component belongs toUF . An element ofU�̂N(L/F )
such that its F̂ -component

is ε ∈ UF will be called a lifting of ε.

The group U�̂N(L/F )
/UN(L/F ) is a direct product of a quotient group of the group

of multiplicative representatives of the residue field kF of F , a cyclic group Z/pa
and a free topological Zp-module. The Galois group Gal(L/F ) acts naturally on
U�̂N(L/F )

/UN(L/F ).

9.2. Reciprocity map NL/F

To motivate the next definition we interpret the map ϒL/F (defined in 10.1 and 16.1)
for a finite Galois totally ramified extension L/F in the following way. Since in this
case both πΣ and πL are prime elements of Lur, there is ε ∈ ULur such that πΣ = πLε.
We can take σ̃ = σϕ. Then πσ−1

L = ε1−σϕ. Let η ∈ U
L̂

be such that ηϕ−1 = ε. Since
(ησϕ−1ε−1)ϕ−1 = (η(σ−1)ϕ)ϕ−1, we deduce that ε = ησϕ−1η(1−σ)ϕρ with ρ ∈ UL.
Thus, for ξ = ησϕ−1

ϒL/F (σ) ≡ NΣ/FπΣ ≡ NL̂/F̂ ξmod NL/FL
∗, ξ1−ϕ = πσ−1

L .

Definition. For a σ ∈ Gal(L/F ) let Uσ ∈ U ̂N(L/F )
be a solution of the equation

U1−ϕ = Π
σ−1

(recall that id − ϕ:U ̂N(L/F )
→ U ̂N(L/F )

is surjective). Put

NL/F : Gal(L/F )→ U�̂N(L/F )
/UN(L/F ), NL/F (σ) = Uσ mod UN(L/F ).

Remark. Compare the definition with Fontaine-Herr’s complex defined in subsec-
tion 6.4 of Part II.

Properties.
(1) NL/F ∈ Z1(Gal(L/F ), U�̂N(L/F )

/UN(L/F )) is injective.
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(2) For a finite extension L/F the F̂ -component of NL/F (σ) is equal to the value
ϒL/F (σ) of the abelian reciprocity map ϒL/F (see the beginning of 9.2).

(3) Let M/F be a Galois subextension of L/F and E/F be a finite subextension of
L/F . Then the following diagrams of maps are commutative:

Gal(L/E)
NL/E−−−−→ U�̂N(L/E)

/UN(L/E)y y
Gal(L/F )

NL/F−−−−→ U�̂N(L/F )
/UN(L/F )

Gal(L/F )
NL/F−−−−→ U�̂N(L/F )

/UN(L/F )y y
Gal(M/F )

NM/F−−−−→ U�̂N(M/F )
/UN(M/F ).

(4) Let U�
n, ̂N(L/F )

be the filtration induced from the filtration U
n, ̂N(L/F )

on the field

of norms. For an infinite arithmetically profinite extension L/F with the Hasse–

Herbrand function hL/F put Gal(L/F )n = Gal(L/F )h
−1
L/F

(n). Then NL/F maps
Gal(L/F )n \ Gal(L/F )n+1 into U�

n, ̂N(L/F )
UN(L/F ) \ U�

n+1, ̂N(L/F )
UN(L/F ).

(6) The set im(NL/F ) is not closed in general with respect to multiplication in the
group

U ̂N(L/F )
/UN(L/F ). Endow im(NL/F ) with a new group structure given by x ? y =

xN−1
L/F (x)(y). Then clearly im(NL/F ) is a group isomorphic to Gal(L/F ).

Problem. What is im(NL/F )?

One method to solve the problem is described below.

9.3. Reciprocity map HL/F

Definition. Fix a tower of subfields F = E0 − E1 − E2 − . . . , such that L = ∪Ei,
Ei/F is a Galois extension, and Ei/Ei−1 is cyclic of prime degree. We can assume
that |Ei+1 : Ei| = p for all i > i0 and |Ei0 : E0| is relatively prime to p.

Let σi be a generator of Gal(Ei/Ei−1). Denote

Xi = Uσi−1
Êi

.

The group Xi is a Zp-submodule of U1,Êi
. It is the direct sum of a cyclic torsion

group of order pni , ni > 0, generated by, say, αi (αi = 1 if ni = 0) and a free topological
Zp-module Yi.

We shall need a sufficiently “nice” injective map from characteristic zero or p to
characteristic p

fi:Uσi−1
Êi

→ U ̂N(L/Ei)
→ U N(L/F ).
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If F is a local field of characteristic zero containing a non-trivial pth root ζ and fi is
a homomorphism, then ζ is doomed to go to 1. Still, from certain injective maps (not
homomorphisms) fi specifically defined below we can obtain a subgroup

∏
fi(Uσi−1

Êi
)

of U�̂N(L/F )
.

Definition. If ni = 0, set A(i) ∈ U ̂N(L/Ei)
to be equal to 1.

If ni > 0, let A(i) ∈ U ̂N(L/Ei)
be a lifting of αi with the following restriction: A(i)

Êi+1
is

not a root of unity of order a power of p (this condition can always be satisfied, since
the kernel of the norm map is uncountable).

Lemma ([F]). If A(i) 6= 1, then βi+1 = A(i)
Êi+1

pni

belongs to Xi+1.

Note that every βi+1 when it is defined doesn’t belong to Xp
i+1. Indeed, otherwise

we would have A(i)
Êi+1

pni

= γp for some γ ∈ Xi+1 and then A(i)
Êi+1

pni−1

= γζ for a root

ζ of order p or 1. Taking the norm down to Êi we get αp
ni−1

i = N
Êi+1/Êi

γ = 1, which
contradicts the definition of αi.

Definition. Let βi,j , j > 1 be free topological generators of Yi which include βi
whenever βi is defined. Let B(i,j) ∈ U ̂N(L/Ei)

be a lifting of βi,j (i.e. B(i,j)
Êi

= βi,j),

such that if βi,j = βi, then B(i,j)
Êk

= B(i)
Êk

= A(i−1)
Êk

p
ni−1

for k > i.

Define a map Xi → U ̂N(L/Ei)
by sending a convergent product αci

∏
j β

cj
i,j , where

0 6 c 6 ni − 1, cj ∈ Zp, to A(i)c∏
j B

(i,j)cj (the latter converges). Hence we get a
map

fi:Uσi−1
Êi

→ U ̂N(L/Ei)
→ U N(L/F )

which depends on the choice of lifting. Note that fi(α)
Êi

= α.
Denote by Zi the image of fi. Let

ZL/F = ZL/F ({Ei, fi}) =
{∏

i

z(i) : z(i) ∈ Zi
}
,

YL/F = {y ∈ U ̂N(L/F )
: y1−ϕ ∈ ZL/F }.

Lemma. The product of z(i) in the definition of ZL/F converges. ZL/F is a subgroup
of U�̂N(L/F )

. The subgroup YL/F contains UN(L/F ).
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Theorem ([F]). For every (u
Êi

) ∈ U�̂N(L/F )
there is a unique automorphism τ in the

group Gal(L/F ) satisfying

(u
Êi

)1−ϕ ≡ Π
τ−1 mod ZL/F .

If (u
Êi

) ∈ YL/F , then τ = 1.

Hint. Step by step, passing from Êi to Êi+1.

Remark. This theorem can be viewed as a non-commutative generalization for finite
k of exact sequence (∗) of 16.2.

Corollary. Thus, there is map

HL/F :U�̂N(L/F )
→ Gal(L/F ), HL/F ((u

Êi
)) = τ.

The composite of NL/F and HL/F is the identity map of Gal(L/F ).

9.4. Main Theorem

Theorem ([F]). Put

HL/F :U�̂N(L/F )
/YL/F → Gal(L/F ), HL/F ((u

Ê
)) = τ

where τ is the unique automorphism satisfying (u
Ê

)1−ϕ ≡ Πτ−1 mod ZL/F . The
injective map HL/F is a bijection. The bijection

NL/F : Gal(L/F )→ U�̂N(L/F )
/YL/F

induced by NL/F defined in 9.2 is a 1-cocycle.

Corollary. Denote by q the cardinality of the residue field of F . Koch and de Shalit
[K], [KdS] constructed a sort of metabelian local class field theory which in particular
describes totally ramified metabelian extensions of F (the commutator group of the
commutator group is trivial) in terms of the group

n(F ) =
{

(u ∈ UF , ξ(X) ∈ F sep
p [[X]]∗) : ξ(X)ϕ−1 = {u}(X)/X

}
with a certain group structure. Here {u}(X) is the residue series in F sep

p [[X]]∗ of the
endomorphism [u](X) ∈ OF [[X]] of the formal Lubin–Tate group corresponding to
πF , q, u.

LetM/F be the maximal totally ramified metabelian subextension ofFϕ, thenM/F
is arithmetically profinite. Let R/F be the maximal abelian subextension of M/F .
Every coset of U�̂N(M/F )

modulo YM/F has a unique representative in im(NM/F ). Send
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a coset with a representative (u
Q̂

) ∈ U�̂N(M/F )
(F ⊂ Q ⊂M , |Q : F | <∞) satisfying

(u
Q̂

)1−ϕ = (πQ)τ−1 with τ ∈ Gal(M/F ) to(
u−1
F̂
, (u

Ê
) ∈ U�̂N(R/F )

)
(F ⊂ E ⊂ R, |E : F | <∞).

It belongs to n(F ), so we get a map

g:U�̂N(M/F )
/YM/F → n(F ).

This map is a bijection [F] which makes Koch–de Shalit’s theory a corollary of the main
results of this section.
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10. Galois modules and class field theory

Boas Erez

In this section we shall try to present the reader with a sample of several significant
instances where, on the way to proving results in Galois module theory, one is lead to
use class field theory. Conversely, some contributions of Galois module theory to class
fields theory are hinted at. We shall also single out some problems that in our opinion
deserve further attention.

10.1. Normal basis theorem

The Normal Basis Theorem is one of the basic results in the Galois theory of fields. In
fact one can use it to obtain a proof of the fundamental theorem of the theory, which
sets up a correspondence between subgroups of the Galois group and subfields. Let us
recall its statement and give a version of its proof following E. Noether and M. Deuring
(a very modern proof!).

Theorem (Noether, Deuring). Let K be a finite extension of Q. Let L/K be a finite
Galois extension with Galois groupG = Gal(L/K). Then L is isomorphic toK[G] as a
K[G]-module. That is: there is an a ∈ L such that {σ(a)}σ∈G is a K-basis of L. Such
an a is called a normal basis generator of L over K.

Proof. Use the isomorphism

ϕ:L⊗K L→ L[G], ϕ(x⊗ y) =
∑
σ∈G

σ(x)yσ−1 ,

then apply the Krull–Schmidt theorem to deduce that this isomorphism descends to
K. Note that an element a in L generates a normal basis of L over K if and only if
ϕ(a) ∈ L[G]∗.
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10.1.1. Normal integral bases and ramification.

Let us now move from dimension 0 (fields) to dimension 1, and consider rings of
algebraic integers.

Let p be a prime number congruent to 1 modulo an (odd) prime l. Let L1 = Q(µp),
and let K be the unique subfield of L1 of degree l over Q. Then G = Gal(K/Q) is
cyclic of order l and K is tamely ramified overQ. One can construct a normal basis for
the ring OK of integers in K over Z: indeed if ζ denotes a primitive p-th root of unity,
then ζ is a normal basis generator for L1/Q and the trace of ζ to K gives the desired
normal integral basis generator. Let now L2 = Q(µl2 ). It is easy to see that there is no
integral normal basis for L2 over Q. As noticed by Noether, this is related to the fact
that L2 is a wildly ramified extension of the rationals. However there is the following
structure result, which gives a complete and explicit description of the Galois module
structure of rings of algebraic integers in absolute abelian extensions.

Theorem (Leopoldt 1959). Let K be an abelian extension of Q. Let G = Gal(K/Q).
Define

Λ = {λ ∈ Q[G] : λOK ⊂ OK}

where OK is the ring of integers of K. Then OK is isomorphic to Λ as a Λ-module.

Note that the statement is not true for an arbitrary global field, nor for general relative
extensions of number fields. The way to prove this theorem is by first dealing with the
case of cyclotomic fields, for which one constructs explicit normal basis generators in
terms of roots of unity. In this step one uses the criterion involving the resolvent map ϕ
which we mentioned in the previous theorem. Then, for a general absolute abelian field
K, one embeds K into the cyclotomic field Q(fK) with smallest possible conductor by
using the Kronecker–Weber theorem, and one “traces the result down” to K. Here it
is essential that the extension Q(fK)/K is essentially tame. Explicit class field theory
is an important ingredient of the proof of this theorem; and, of course, this approach
has been generalized to other settings: abelian extensions of imaginary quadratic fields
(complex multiplication), extensions of Lubin–Tate type, etc.

10.1.2. Factorizability.

While Leopoldt’s result is very satisfactory, one would still like to know a way to
express the relation there as a relation between the Galois structure of rings of integers
in general Galois extensions and the most natural integral representation of the Galois
group, namely that given by the group algebra. There is a very neat description of this
which uses the notion of factorizability, introduced by A. Fröhlich and A. Nelson. This
leads to an equivalence relation on modules which is weaker than local equivalence
(genus), but which is non-trivial.

Let G be a finite group, and let S = {H : H 6 G}. Let T be an abelian group.
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Definition. A map f :S → T is called factorizable if every relation of the form∑
H∈S

aH indGH 1 = 0

with integral coefficients aH , implies the relation∏
H∈S

f (H)aH = 1 .

Example. Let G = Gal(L/K), then the discriminant of L/K defines a factorizable
function (conductor-discriminant formula).

Definition. Let i:M → N be a morphism of OK[G]-lattices. The lattices M and N
are said to be factor-equivalent if the map H → |LH : i(M )H | is factorizable.

Theorem (Fröhlich, de Smit). If G = Gal(L/K) and K is a global field, then OL is
factor-equivalent to OK[G].

Again this result is based on the isomorphism induced by the resolvent map ϕ and
the fact that the discriminant defines a factorizable function.

10.1.3. Admissible structures.
Ideas related to factorizability have very recently been used to describe the Galois

module structure of ideals in local field extensions. Here is a sample of the results.

Theorem (Vostokov, Bondarko). Let K be a local field of mixed characteristic with
finite residue field. Let L be a finite Galois extension of K with Galois group G.
(1) Let I1 and I2 be indecomposable OK[G]-submodules of OL. Then I1 is isomorphic

to I2 as OK[G]-modules if and only if there is an a in K∗ such that I1 = aI2.
(2) OL contains decomposable ideals if and only if there is a subextension E/L of

L/K such that |L : E|OL contains the different DL/E .
(3) If L is a totally ramified Galois p-extension of K and OL contains decomposable

ideals, then L/K is cyclic and |L : K|OL contains the different DL/K .

In fact what is remarkable with these results is that they do not involve class field
theory.

10.2. Galois module theory in geometry

Let X be a smooth projective curve over an algebraically closed field k. Let a finite
group G act on X . Put Y = X/G.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



302 B. Erez

Theorem (Nakajima 1975). The covering X/Y is tame if and only if for every line
bundle L of sufficiently large degree which is stable under the G-action H0(X,L) is a
projective k[G]-module.

This is the precise analogue of Ullom’s version of Noether’s Criterion for the ex-
istence of a normal integral basis for ideals in a Galois extension of discrete valuation
rings. In fact if (X,G) is a tame action of a finite group G on any reasonable proper
scheme over a ring A like Z or Fp, then for any coherent G-sheaf F on X one can
define an equivariant Euler–Poincaré characteristic χ(F, G) in the Grothendieck group
K0(A[G]) of finitely generated projective A[G]-modules. It is an outstanding problem
to compute these equivariant Euler characteristics. One of the most important results
in this area is the following. Interestingly it relies heavily on results from class field
theory.

Theorem (Pappas 1998). LetG be an abelian group and let X be an arithmetic surface
over Z with a free G-action. Then 2χ(OX, G) = 0 in K0(Z[G])/〈Z[G]〉.

10.3. Galois modules and L-functions

Let a finite group G act on a projective, regular scheme X of dimension n defined over
the finite field Fq and let Y = X/G. Let ζ(X, t) be the zeta-function of X . Let eX be
the l-adic Euler characteristic of X . Recall that

ζ(X, t) = ±(qnt2)−eX/2ζ(X, q−nt−1), eX · n = 2
∑

06i6n

(−1)i(n− i)χ(Ωi
X/Fq )

the latter being a consequence of the Hirzebruch–Riemann–Roch theorem and Serre
duality. It is well known that the zeta-function of X decomposes into product of
L-functions, which also satisfy functional equations. One can describe the constants
in these functional equations by “taking isotypic components” in the analogue of the
above expression for eX · n/2 in terms of equivariant Euler-Poincaré characteristics.
The results that have been obtained so far do not use class field theory in any important
way. So we are lead to formulate the following problem:

Problem. Using Parshin’s adelic approach (sections 1 and 2 of Part II) find another
proof of these results.

Let us note that one of the main ingredients in the work on these matters is a formula
on ε-factors of T. Saito, which generalizes one by S. Saito inspired by Parshin’s results.
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10.4. Galois structure of class formations

Let K be a number field and let L be a finite Galois extension of K, with Galois
group G = Gal(L/K). Let S be a finite set of primes including those which ramify in
L/K and the archimedean primes. Assume that S is stable under the G-action. Put
∆S = ker(ZS → Z). Let US be the group of S-units of L. Recall that US ⊗ Q is
isomorphic to ∆S ⊗Q as Q[G]-modules. There is a well known exact sequence

0→ US → A→ B → ∆S → 0

with finitely generated A,B such that A has finite projective dimension and B is
projective. The latter sequence is closely related to the fundamental class in global
class field theory and the class Ω = (A)− (B) in the projective class group Cl (Z[G] is
clearly related to the Galois structure of S-units. There are local analogues of the above
sequence, and there are analogous sequences relating (bits) of higher K-theory groups
(the idea is to replace the pair (US , ∆S) by a pair (K ′i(O), K ′i−1(O))).

Problem. Using complexes ofG-modules (as in section 11 of part I) can one generalize
the local sequences to higher dimensional fields?

For more details see [E].
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