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Noncommutative local reciprocity maps

Ivan Fesenko

There are several approaches to the reciprocity map, the essence of class field theory, which links the
maximal abelian quotient (or sometimes the maximal abelian pro-p-quotient) of the absolute Galois
group of a particular field with an appropriate abelian object associated to the field such that certain
functorial properties hold.

One of those approaches originates from works of Dwork [D], Serre [S], Hazewinkel [H1], [H2],
Iwasawa [I1], [I2] and Neukirch [N1], [N2]. Recall it briefly.

Let F be a local field with finite residue field. Let F ur be the maximal unramified extension
of F and let F̂ be the completion of F ur . For a separable extension L of F put Lur = LF ur ,
L̂ = LF̂ .

For an element σ of Gal(L/F ) let σ̃ be any element of Gal(Lur/F ur) such that σ̃|L = σ and
σ̃|F ur is a positive integer power of the Frobenius automorphism ϕ ∈ Gal(F ur/F ). Let Σ be the
fixed field of σ̃; it is a finite extension of F .

Let Gal(L/F )ab be the maximal abelian quotient of Gal(L/F ).
Define the map [N1], [N2]

N : Gal(L/F )→ F ∗/NL/FL
∗

by σ → NΣ/FπΣ mod NL/FL∗ where πΣ is any prime element of Σ. During the conference on
class field theory in Tokyo, June 1998, Professor T. Tamagawa informed the author that similar
constructions were independently developed by K. Iwasawa. We call N the Neukirch–Iwasawa
map.

On the other hand, for a finite Galois totally ramified extension L/F of local fields there is a
fundamental exact sequence [Se, (2.3)], [H1, (2.7)]

1 −−−−→ Gal(L/F )ab c−−−−→ U
L̂
/V (L/F )

N
L̂/F̂−−−−→ U

F̂
−−−−→ 1

where V (L/F ) is the subgroup of U
L̂

generated by elements uσ−1 with u ∈ U
L̂
, σ ∈ Gal(L/F )

and c(σ) = σ(π)/π mod V (L/F ) for a prime element π of L. Note that the same sequence for the
maximal unramified extensions instead of their completion is exact.

Define the Hazewinkel homomorphism [H1], [H2], [I1]

H:UF /NL/FUL → Gal(L/F )ab

by H(u) = σ where u = N
L̂/F̂

(v) and c(σ) = σ(π)/π = v/ϕ(v) mod V (L/F ). This map can be
extended to finite and infinite Galois extensions [H1], [H2], [I1].
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The shortest way to deduce properties of N and H is to work with both maps simultaneously.
For a finite Galois extension L/F the composition H ◦ N coincides with the epimorphism
Gal(L/F ) → Gal(L/F )ab and the composition N ◦ H is the identity map of UF /NL/FUL .
Hence N is an epimomorphism with the kernel equal to the commutator group of the Galois group.

This approach with appropriate modifications and generalizations works well in (p-) class field
theories of local fields with perfect residue field [F3, H1], higher local fields [F1], [F2], [F4],
complete discrete valuation fields with residue field of characteristic p [F5].

In this paper we shall define noncommutative reciprocity maps for arithmetically profinite Galois
extensions of local fields extending the approach discussed above. For Fontaine–Wintenberger’s
theory of arithmetically profinite extension and fields of norms see [W], [FV,Ch.III,sect.5]. For
simplicity we treat the case of totally ramified extensions, however, the constructions of this work
can undoubtedly be defined for arbitrary Galois arithmetically profinite extensions, in particular,
arbitrary finite Galois extensions of local fields.

We use terminology "the field of norms" for finite extensions as well, meaning just the set of
norm-compatible sequences in subextensions. In this case by UN(L/K) we mean the group of
norm-compatible sequences in the group of units of subextensions in L/K .

We shall work with maps NL/F , NL/F and HL/F . The map NL/F is a generalization of the
map N. It injects the Galois group Gal(L/F ) of a finite or infinite arithmetically profinite totally
ramified extension L of a local field F into a certain subquotient U�̂N(L/F )

/UN(L/F ) of the group

of units U ̂N(L/F )
of the field of norms ̂N (L/F ) = N (L̂/F̂ ) of the arithmetically profinite extension

L̂/F̂ which is a natural Gal(L/F )-module.
The map NL/F is a 1-cocycle. It is compatible with the ramification filtration on the Galois

group and the natural filtration on local fields.
We shall study the image of NL/F and show that there is a bijection

NL/F : Gal(L/F )→ U�̂N(L/F )
/YL/F

for a certain subgroup YL/F of U�̂N(L/F )
which contains UN(L/F ) . To check the properties of

NL/F we shall define a map

HL/F :U�̂N(L/F )
/YL/F → Gal(L/F )

which acts in the reverse direction. The latter is a generalization of the fundamental exact sequence.
The set U�̂N(L/F )

/YL/F with a new group structure given by

x ? y = xN−1
L/F (x)(y)

is isomorphic to Gal(L/F ).

Recall that the field of norms ̂N (L/F ) is isomorphic to F sep
p ((X)), so U ̂N(L/F )

is isomorphic to

F sep
p [[X]]∗ . Thus, every Galois group of a totally ramified arithmetically profinite extension L/F in

isomorphic to a certain subquotient of F sep
p [[X]]∗ which is endowed with the new (noncommutative

in general) group structure on it.

The classical abelian reciprocity isomorphism is the F̂ -component of the NL/F and HL/F . If
R/F is the maximal abelian subextension of L/F , then the R̂-component of the NL/F and HL/F

is in fact the metabelian reciprocity map introduced by Koch and de Shalit [K], [KdSh].
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Let F be a local field with finite residue field. Let ϕ in the absolute Galois group GF of F be
an extension of the Frobenius automorphism of the maximal unramified extension F ur over F .

Let Fϕ be the fixed field of ϕ. It is a totally ramified extension of F and its compositum with
F ur coincides with the maximal separable extension of F . We shall work with Galois extensions of
F inside Fϕ . The reason why in the noncommutative theory one is deemed to work with extensions
inside Fϕ is explained in [KdSh, 0.2].

From abelian local class field theory and a compactness argument one deduces that there is a
unique norm-compatible sequence of prime elements (πE) in finite subextensions of Fϕ/F , see
for instance [KdSh, Lemma 0.2].

Recall that a separable extension L of a local field K is called arithmetically profinite if the
subgroup GLG

x
K is of finite index in GK for every x (where GxK is the upper ramification group

of GK ). Equivalently, L/K is arithmetically profinite if it has finite residue field extension and
the Hasse–Herbrand function hL/K(x) = limhE/K(x) takes real values for all real x > 0 where
E/K runs through all finite subextensions in L/K , see [W], [FV, Ch. III, sect. 5]. For an
infinite arithmetically profinite extension L/K the field of norms N = N (L/K) is the set of all
norm-compatible sequences

{(aE) : aE ∈ E∗, E/K is a finite subextension of L/K }

and zero, such that the multiplication is componentwise and the addition (aE) + (bE) = (cE) is
defined as cE = limM NM/E(aM + bM ) where M runs through all finite subextension of E in L.
An element of the field of norms has E -component for every finite subextension E/K of L/K .
The field N is a local field of characteristic p with the residue field isomorphic to the residue field
of L and a prime element t = (πE) which is a sequence of norm-compatible prime elements of
finite subextensions of L/K . If the extension L/F is totally ramified, then the discrete valuation
vN(L/F ) is given by vN(L/F )((aE)) = vF (aF ) = vE(aE). Every automorphism τ of L over K
induces an automorphism τ of the field of norms: τ ((πE)) = (τπE). If M is a separable extension
of L, then one defines N (M,L/K) as the compositum of all N (F ′/K) where F ′ runs through
finite extensions of L in M .

For Fontaine–Wintenberger’s theory of fields of norms see [W], [9, Ch. III, sect. 5]. For a
finite subextension M/K of an arithmetically profinite extension L/K the extension L/M is
arithmetically profinite; for every subextension M/K of an arithmetically profinite extension L/K
the extension M/K is arithmetically profinite.

One of the central theorems of the theory of fields of norms tells that the absolute Galois group of
N (L/K) coincides with G(N (Lsep, L/K)/N (L/K)) and the latter is isomorphic to G(Lsep/L),
see [W, 3.2.2]. Every abelian totally ramified extension is arithmetically profinite.

If L/K is finite, then denote by N (L/K) the set consisting of norm-compatible sequences in
the multiplicative groups of finite subextensions in L/K and of 0. By UN(L/K) we mean the group
of norm-compatible sequences in the group of units of subextensions in L/K .

Let L ⊂ Fϕ be a Galois (possibly infinite) totally ramified arithmetically profinite extension
of F . The canonical sequence of norm-compatible prime elements (πE) in finite subextensions
of Fϕ/F supplies the canonical sequence of norm-compatible prime elements (πE) in finite
subextensions of L/F and therefore the canonical prime element X of the local field N (L/F ).
Denote by ϕ the automorphism of N (L/F )ur and ̂N (L/F ) corresponding to ϕ.

Using solvability of Galois extensions in the local situation fix a tower of subfields F = E0 −
E1 − E2 − . . . , such that L = ∪Ei , Ei/F is a Galois extension, and Ei/Ei−1 is cyclic of prime
degree p for i > 1, E1/E0 is cyclic of degree relatively prime to p.
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Let N (L̂/Êi) be the field of norms of the arithmetically profinite extension LÊi/Êi . It can
be identified with the completion ̂N (L/Ei) of the maximal unramified extension N (L/Ei)ur of
N (L/Ei).

For a local field K the symbols UK , Ui,K denote, as usual, the group of units of the ring of
integers and the higher groups of units.

Definition 1. Denote by U�̂N(L/F )
the subgroup of the group U ̂N(L/F )

of those elements whose

F̂ -component belongs to UF .

Recall that every element of the group of units of a local field with separably closed residue field
is (ϕ− 1)-divisible, see for instance [I2, Lemma 3.11].

To motivate the next definition we interpret the map N for a finite Galois totally ramified
extension L/F in the following way. Since in this case both πΣ and πL are prime elements of Lur ,
there is ε ∈ ULur such that πΣ = πLε. We can take σ̃ = σϕ. Then πσ−1

L = ε1−σϕ . Let η ∈ U
L̂

be such that ηϕ−1 = ε. Since (ησϕ−1ε−1)ϕ−1 = (η(σ−1)ϕ)ϕ−1 , we deduce that ε = ησϕ−1η(1−σ)ϕρ
with ρ ∈ UL . Thus, for ξ = ησϕ−1

N (σ) ≡ NΣ/FπΣ ≡ NL̂/F̂ ξ mod NL/FL∗, ξ1−ϕ = πσ−1
L .

Definition 2. Define the map

NL/F : Gal(L/F )→ U�̂N(L/F )
/UN(L/F )

by
NL/F (σ) = (u

Êi
) mod UN(L/F ),

where U = (u
Êi

) ∈ U ̂N(L/F )
satisfies the equation

U1−ϕ = Xσ−1

Then, clearly, (u
Êi

) belongs to U�̂N(L/F )
and is defined modulo UN(L/F ) .

Note that U�̂N(L/F )
/NU(L/F ) is the direct product of a quotient group of the group of multiplica-

tive representatives of the residue field of L, a cyclic group Z/paZ and a countable free topological
Zp -module.

Remark 1. For a finite extension L/F the F̂ -component of NL/F (σ) is equal to

N
L̂/F̂

ξ mod NL/FUL where ξ1−ϕ = πσ−1
L . In other words, the F̂ -component of NL/F is the

classical Neukirch–Iwasawa map N .

Lemma 1. Let M/F be a Galois subextension of L/F and E/F be a finite subextension of L/F .
Then the following diagrams of maps are commutative:

Gal(L/E)
NL/E−−−−→ U�̂N(L/E)

/UN(L/E)y y
Gal(L/F )

NL/F−−−−→ U�̂N(L/F )
/UN(L/F ),
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Gal(L/F )
NL/F−−−−→ U�̂N(L/F )

/UN(L/F )y y
Gal(M/F )

NM/F−−−−→ U�̂N(M/F )
/UN(M/F ).

Lemma 2. NL/F is injective and NL/F (στ ) = NL/F (σ)σNL/F (τ ).

Proof. If NL/F (σ) = (u
Êi

) ∈ UN(L/F ) , then (u
Êi

)ϕ−1 = 1, so σ acts trivially on the prime
elements πE , therefore σ = 1.

Remark 2. The set im(NL/F ) isn’t closed in general with respect to the multiplication in
U ̂N(L/F )

/UN(L/F ) . However, Lemma 2 implies that being endowed with a new group structure
given by

x ? y = xN−1
L/F (x)(y)

im(NL/F ) is a group isomorphic to Gal(L/F ).

Let U�
n, ̂N(L/F )

be the filtration induced from the filtration U
n, ̂N(L/F )

on the field of norms.

For an infinite arithmetically profinite extension L/F with the Hasse–Herbrand function hL/F put

Gal(L/F )n = Gal(L/F )h
−1
L/F

(n) .

Proposition 1. NL/F maps

Gal(L/F )n \ Gal(L/F )n+1 into U�
n, ̂N(L/F )

UN(L/F ) \ U�
n+1, ̂N(L/F )

UN(L/F ).

Proof. Let τ ∈ Gal(L/F )n . Then due to the properties of arithmetically profinite extensions [W,
3.3.2 and 3.3.4] there is a finite subextension Q/F of L/F such that πτ−1

E′ ∈ Un,E′ for every
E′ ⊃ Q.

Choose a solution (u
Ê

) of the equation (u
Ê

)1−ϕ = (πE)τ−1 such that u
Ê′
∈ U

n,Ê′
for

E′ ⊃ Q. Then v
Ê′′

(((u
Ê

)− 1)
Ê′′

) > n for sufficiently large E′′ ⊃ Q [W, 2.3.2.2, 2.3.2.3]. Hence
(u
Ê

) ∈ U
n, ̂N(L/F )

.

If (πE)τ−1 = (u
Ê

)1−ϕ with (u
Ê

) ∈ U�
n+1, ̂N(L/F )

UN(L/F ) , then

(πE)τ−1 ∈ U�
n+1, ̂N(L/F )

, so πτ−1
E′ ∈ Un+1,E′ for sufficiently large E′ [W,3.2].

Thus, by [W,3.3.2 and 3.3.4], τ ∈ Gal(L/F )n+1 .

To study the image of NL/F we shall define after some preliminary considerations a map HL/F

which takes values in Gal(L/F ).
Recall that the norm map is surjective for finite extensions of local fields with separably closed

residue field, see for instance [Se, 2.2].

Definition 3. Let σi be a generator of Gal(Ei/Ei−1). Let v
Êi

be the discrete valuation of

Êi . Put si = v
Êi

(πσi−1
Ei

− 1). Denote Xi = Uσi−1
Êi

. Note that Xi 6 U
si+1,Êi

. The group Xi
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is a Zp-submodule of U1,Êi
. It is the direct sum of a cyclic torsion group of order pni , ni > 0,

generated by, say, αi (αi = 1 if ni = 0 ) and a free topological Zp-module Yi . If Êi is of positive
characteristic then ni = 0.

The following paragraph should replace the paragraph in the published version of this paper.

Let F̂ be of characteristic zero, and let i 6 i0 . If a primitive p th root of unity ζp equals uσi−1

with u ∈ U
Êi

, then N
Êi/Êi−1

(ζp) = 1. Hence if ζp 6∈ L̂ \ F̂ then ni = 0. We will call extensions

L/F for which no primitive p th root belongs to L̂ \ F̂ regular. In particular, every extension in
positive characteristic is regular, and if ζp belongs to F , then L/F is regular. For the rest of the
paper we assume that L/F is a regular extension.

Definition 3’. If ni = 0, set A(i) ∈ U ̂N(L/Ei)
to be equal to 1. If ni > 0, let A(i) ∈ U ̂N(L/Ei)

be a lifting of αi with the following restriction: A(i)
Êi+1

is not a root of unity of order a power of

p and (this condition can be satisfied by multiplying the Êi+1-component of A(i) , if necessary, by
γσi+1−1 where γ ∈ U

Êi+1
is sufficiently small).

Lemma 3. If ni > 0, then βi+1 = A(i)
Êi+1

pni

belongs to Xi+1 .

In addition, if ni > 0, then A(i) can be chosen such that βi+1 6∈ 〈ζp〉Xp
i+1 .

Proof. Clearly N
Êi+1/Êi

βi+1 = 1, so βi+1 = πρ−1
Ei+1

uσi+1−1 with ρ ∈ Gal(Ei+1/Ei). We need to
show that ρ = 1.

Since A(i)
Êi

∈ Uσi−1
Êi

is a primitive root of unity of order a power of p, we deduce that

0 < si < e(Ei)/(p− 1), hence (si, p) = 1. Note that if si+1 is divisible by p, then from [FV, sect.
1 Ch. III] si+1 must be equal to pe(Êi)/(p− 1), and so si+1 > si . It is well known, however, that
since si < si+1 they have the same remainder modulo p, so si+1 is prime to p, a contradiction.
Thus, si+1 is prime to p.

Let δ1−ϕ = A(i)
Êi+1

pni−1

. Then N (ρ) = (N
Êi+1/Êi

δ)p mod NEi+1/Ei
UEi+1 . If ε = N

Êi+1/Êi
δ ∈

Ei , then N (ρ) belongs to NEi+1/Ei
UEi+1 , and hence ρ = 1. If ε 6∈ Ei , then εp = apω where

a ∈ UEi and ω ∈ UEi is a p-primary element (the extension Ei( p
√
ω)/Ei is unramified of degree

p ). If ω ∈ NEi+1/Ei
UEi+1 , then N (ρ) = εp belongs to NEi+1/Ei

UEi+1 , and hence ρ = 1. If
ω 6∈ NEi+1/Ei

UEi+1 , then si+1 = pe(Ei)/(p− 1), a contradiction. Thus, ρ = 1.

Since si+1 is prime to p, ζp belongs to Xi+1 . On the other hand, πσi+1−1
Ei+1

6∈ Xi+1 . If

A(i)
Êi+1

p
= ζjpx

p with x ∈ Xi+1 , then, since N
Êi+1/Êi

A(i)
Êi+1

= ζp , we deduce that A(i)
Êi+1

= xζk
p2

with k prime to p. Replace then A(i) with A(i)
1 such that A(i)

1 Êi+1
= A(i)

Êi+1
π
σi+1−1
Ei+1

. If A(i)
1
p

Êi+1

were in 〈ζp〉Xi+1 , then we would have A(i)
1 Êi+1

= yζl
p2 with l prime to p and y ∈ Xi+1 .

Therefore, πσi+1−1
Ei+1

= ζl−k
p2 yx−1 . Applying N

Êi+1/Êi
we deduce that ζl−k

p2 ∈ 〈ζp〉 6 Xi+1 and so

π
σi+1−1
Ei+1

∈ Xi+1 , a contradiction. Thus, A(i)
1 is the required element.

From now one we denote by A(i) an element of ̂N (L/F ) which can be chosen in accordance
with the previous lemma.
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We assume that if F is of characteristic 0 and contains a primitive p th root of unity, then L/F
is of infinite degree.

Definition 3”. Let βi,j , j ∈ N be free generators of Yi which include βi whenever βi is
defined (keeping in mind the right choice of βi according to Lemma 3). Let B(i,j) ∈ U ̂N(L/Ei)

be

a lifting of βi,j (i.e. B(i,j)
Êi

= βi,j ), such that if βi,j = βi , then B(i,j)
Êk

= B(i)
Êk

= A(i−1)
Êk

p
ni−1

for
k > i.

Definition 4. Define a map Xi → U ̂N(L/Ei)
by sending αci

∏
j β

cj
i,j , where 0 6 c 6 pni − 1,

cj ∈ Zp , to A(i)c∏
j B

(i,j)cj . We get a map

fi:Uσi−1
Êi

→ U ̂N(L/Ei)
→ U ̂N(L/F )

.

Note that fi(α)
Êi

= α.

Definition 5. Denote by Zi the image of fi . Zi depends on the choice of the lifting, but is
unique up to an isomorphism. Let

ZL/F = ZL/F ({Ei, fi}) =
{∏

i

z(i) : z(i) ∈ Zi
}

and

YL/F = {y ∈ U ̂N(L/F )
: y1−ϕ ∈ ZL/F }.

Lemma 4. The product of z(i) in the definition of ZL/F converges. ZL/F is a subgroup of
U�̂N(L/F )

. The subgroup YL/F contains UN(L/F ) .

Proof. Let L/F be infinite. If hL/F is the Hasse–Herbrand function of L/F , then h(L/F )−1(si)
tend to +∞ when i tends to infinity [FV, Ch. III, sect. 5]. So, if q(Ek|Ei) is the minimal real
number such that hEk/Ei

(x) = x for x 6 q(Ek|Ei), then q(Ek|Ei), k > i, tends to infinity when
i tends to infinity (see [FV, Ch.III,(5.2)]). Note that v

Êi
(z(i)
Êi

− 1) > si , so from [FV, Ch.III, (5.5)]
we deduce that

v
Êi

((z(i) − 1)
Êi

) > min((1− p−1) min
k>i

q(Ek|Ei), si).

Hence the product of z(i) converges.
Due to the previous definitions the subgroup of U ̂N(L/F )

generated by Zi is equal to

{A(i)c
∏
j

B(i,j)cj : c, cj ∈ Zp}.

Since A(i)p
nid

= B(i+1)d , ZL/F is a subgroup of U ̂N(L/F )
.



70 I. Fesenko

Denote by U1̂N(L/F )
the subgroup of elements whose F̂ -component is 1.

The first assertion of the following theorem is a generalization of the fundamental exact sequence.

Theorem 1. The map

Gal(L/F ) −→ U1̂N(L/F )
/ZL/F , τ 7→ Xτ−1

is a bijection.
For every (u

Êi
) ∈ U�̂N(L/F )

there is a unique automorphism τ ∈ Gal(L/F ) satisfying

(u
Êi

)1−ϕ ≡ Xτ−1 mod ZL/F .

If (u
Êi

) ∈ YL/F , then τ = 1.

Proof . The first assertion certainly implies the second; and the proof of the second assertion below
also verifies the first assertion of the theorem.

Assume that u
Êj−1

∈ UEj−1 , u
Êj
6∈ UEj . Then N

Êj/Êj−1
u1−ϕ
Êj

= 1, so from the fundamental

exact sequence u1−ϕ
Êj

= π
τj−1
Ej

wσj−1 with τj ∈ Gal(Ej/Ej−1), w ∈ U
Êj

. Both τj and wσj−1

are uniquely determined by (u
Êi

). Let w(j) = fj(wσj−1).

Now assume that for i > j we get

u1−ϕ
Êi−1

= πτi−1−1
Ei−1

∏
j6k6i−1

w(k)
Êi−1

with uniquely determined τi−1 ∈ Gal(Ei−1/F ), w(k) ∈ fk(Uσk−1
Êk

). We shall show that a similar

statement holds for u1−ϕ
Êi

.

Let τ ′i−1 ∈ Gal(Ei/F ) be an extension of τi−1 . Then

N
Êi/Êi−1

u1−ϕ
Êi

= N
Êi/Êi−1

(
π
τ ′
i−1−1
Ei

∏
j6k6i−1

w(k)
Êi

)
,

so

u1−ϕ
Êi

= επ
τ ′
i−1−1
Ei

∏
j6k6i−1

w(k)
Êi

with ε in the kernel of N
Êi/Êi−1

. From the fundamental exact sequence we get ε = π
σa
i −1
Ei

vσi−1
i

with vi ∈ UÊi
, 1 6 a 6 |Ei : Ei−1|. Write

π
τ ′
i−1−1
Ei

π
σa
i −1
Ei

= π
σa
i τ
′
i−1−1

Ei
(π

1−τ ′
i−1

Ei
)σ

a
i −1.

Put τi = σai τ
′
i−1|Ei

, wi = vi(π
1−τ ′

i−1
Ei

)1+σi+···+σa−1
i , w(i) = fi(wσi−1

i ). Then

u1−ϕ
Êi

= πτi−1
Ei

∏
j6k6i

w(k)
Êi

.

It remains to show that τi , w(i) are uniquely determined. If ρi ∈ Gal(Ei/F ), v(i) ∈ fi(Uσi−1
Êi

)
are such that

u1−ϕ
Êi

= πρi−1
Ei

v(i)
Êi

∏
j6k6i−1

w(k)
Êi
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and τi|Ei−1 = ρi|Ei−1 , then τi = ρρi with ρ ∈ Gal(Ei/Ei−1) and

πρ−1
Ei

= (πρi−1
Ei

)1−ρv(i)
Êi

/w(i)
Êi

.

Since v(i)
Êi

, w(i)
Êi

∈ Uσi−1
Êi

, we deduce that the right hand side of the last equation belongs to

V (Ei|Ei−1). Therefore, from the fundamental exact sequence ρ = 1. Consequently v(i)
Êi

= w(i)
Êi

and v(i) = w(i) .
Thus, there is a unique automorphism τ ∈ Gal(L/F ), τ |Ei

= τi , satisfying

(u
Êi

)1−ϕ = Xτ−1z with z ∈ ZL/F .

If (u
Êi

) ∈ YL/F , then from the uniqueness we get τ = 1.

Corollary. Thus, we get the map

HL/F :U�̂N(L/F )
→ Gal(L/F )

defined by HL/F ((u
Êi

)) = τ . The composition of NL/F and HL/F is the identity map of Gal(L/F ).

Definition 6. Define the map

HL/F :U�̂N(L/F )
/YL/F → Gal(L/F )

by
HL/F ((u

Ê
)) = τ,

where τ is the unique automorphism satisfying (u
Ê

)1−ϕ ≡ Xτ−1 mod ZL/F .

Note that U�̂N(L/F )
/YL/F is a direct product of a quotient group of the group of multiplicative

representatives of the residue field of L, a cyclic group Z/paZ and a countable free topological
Zp-module.

Lemma 5. HL/F is injective.

Proof. If (u
Ê

)1−ϕ ∈ ZL/F , then (u
Ê

) ∈ YL/F .

Theorem 2. The map HL/F and the map NL/F : Gal(L/F )→ U�̂N(L/F )
/YL/F induced by NL/F

are inverse bijections.

Proof. From the definitions HL/F ◦ NL/F = id. Since (u
Êi

)1−ϕ = (u′
Êi

)1−ϕz with z ∈ ZL/F
implies (u

Êi
)(u′

Êi

)−1 ∈ YL/F we get NL/F ◦HL/F = id. It remains to refer to Lemma 2.

Corollary. im(NL/F ) ∩ YL/F /UN(L/F ) = (1) and im(NL/F ) is a set of representatives
of U�̂N(L/F )

/UN(L/F ) modulo YL/F /UN(L/F ) .
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Proof. im(NL/F ) ∩ YL/F /UN(L/F ) coincides with the intersection of im(NL/F ) and the kernel
of the epimorphism U�̂N(L/F )

/UN(L/F ) → U�̂N(L/F )
/YL/F which is trivial according to Theorem

2. The second assertion follows in the same way.

Remark 3. To the natural homomorphism λ: Gal(L/F )→ AutU�̂N(L/F )
/UN(L/F ) , λ(σ)x = σx,

the 1-cocycle NL/F associates a twisted monomorphism λN which acts from Gal(L/F ) into the
group AutS U�̂N(L/F )

/UN(L/F ) of automorphisms of

U�̂N(L/F )
/UN(L/F ) as a set defined by

λN(σ)u = NL/F (σ)σ(u).

Remark 4 (on abelian class field theory). To deduce abelian reciprocity map from Theorem
2 it suffices to prove that for an abelian extension L/F the natural epimorphism

U�̂N(L/F )
/YL/F → UF /NL/FUL, (u

Ê
) mod YL/F → u

F̂
mod NL/FUL

is an isomorphism.
Assume that (u

Ê
) ∈ U�̂N(L/F )

, u
F̂
∈ NL/FUL and show that then (u

Ê
) ∈ YL/F .

Let (vE) ∈ UN(L/F ) with vF = u
F̂

. Then u
Ê
v−1
E belongs to the kernel of N

Ê/F̂
, so from the

fundamental sequence u
Ê
v−1
E = πσE−1

E v with v ∈ V (E/F ). Then u1−ϕ
Ê
∈ V (E/F ).

Furthermore, let by induction on i

u1−ϕ
Êi−1

=
∏

j6k6i−1

w(k)
Êi−1

, w(k) ∈ fk(Uσk−1
Êk

)

as in the proof of Theorem 1. Then

u1−ϕ
Êi

= ασi−1
∏

j6k6i−1

w(k)
Êi

with some α ∈ Êi
∗
. Since u1−ϕ

Êi

, w(k)
Êi

belong to V (Ei/F ) and the extension Ei/F is abelian,

from the fundamental exact sequence we deduce that ασi−1 ∈ Uσi−1
Êi

. Put w(i) = fi(ασi−1), then

u1−ϕ
Êi

=
∏

j6k6i

w(k)
Êi

.

Thus, (u
Ê

) ∈ YL/F . In particular, YL/F doesn’t depend on the choice of Ei, fi .

For a totally ramified Galois arithmetically profinite extension L/F denote by
U1̂N(L/F )

the subgroup of U�̂N(L/F )
of elements with the ground component 1. Then HL/F (U1̂N(L/F )

YL/F /YL/F )

is equal to the commutator subgroup Gal(L/F )′ of
Gal(L/F ). The latter is mapped by NL/F into a subset of U1̂N(L/F )

UN(L/F )/UN(L/F ) .

Remark 5 (on metabelian class field theory). Denote by q the cardinality of the residue
field of F . Koch and de Shalit in [KdSh] constructed a metabelian class field theory which in
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particular describes totally ramified metabelian extensions of F (the commutator group of the
commutator group is trivial) in terms of the following group (we indicate here only that part of their
group G(F,ϕ) which is relevant for totally ramified extensions)

g(F ) =
{

(u ∈ UF , ξ(X) ∈ F sep
p [[X]]∗) : ξ(X)ϕ−1 = {u}(X)/X

}
with a certain group structure. Here {u}(X) is the residue series in F sep

p [[X]]∗ of the endomorphism
[u](X) ∈ OF [[X]] of the formal Lubin–Tate group corresponding to πF , q, u.

Denote R = F ab ∩Fϕ , M = Rab ∩Fϕ . Since R/F and N (M,R/F )/N (R/F ) are arithmeti-
cally profinite, the extension M/F is arithmetically profinite [W, 3.4.1].

Note that if τ = H(u−1) is the automorphism of Gal(R/F ) corresponding via abelian class field
theory to u−1 , then the equation ξ(X)ϕ−1 = {u}(X)/X can be interpreted as (u

Ê
)1−ϕ = (πE)τ−1

in the field of norms of R/F . This follows from the description of the field of norms construction, as,
e.g., in [W, 3.2.5.1], since
(p − 1)(qi+1 − 1)/(p(q − 1)2qi−1) → (1 − p−1)(1 − q−1)−2 . Hence g(F ) can be identified
with the UF × UN(R/F )-torsor n(F ) of all pairs (u, (u

Ê
)) ∈ UF × U�̂N(R/F )

which satisfy the

equation (u
Ê

)1−ϕ = (πE)H(u−1)−1 .
According to Corollary of Theorem 2 every coset of U�̂N(M/F )

modulo YM/F has a unique

representative in im(NM/F ). Send a coset with a representative

(u
Q̂

) ∈ U�̂N(M/F )

satisfying (u
Q̂

)1−ϕ = (πQ)τ−1 with τ ∈ Gal(M/F ) to(
u−1
F̂
, (u

Ê
) ∈ U�̂N(R/F )

)
.

It belongs to n(F ) by Remark 4. Thus, we get a map

g:U�̂N(M/F )
/YM/F → n(F ).

Now we construct an inverse map to g. For a pair (u, (u
Ê

)) ∈ UF × U�̂N(R/F )
satisfying

(u
Ê

)1−ϕ = (πE)τ−1 fix a finite subextension E/F of R/F . We claim that for every finite abelian
subextension Q/E of M/E such that Q is normal over F there are unique u

Q̂
∈ U

Q̂
and

τQ ∈ Gal(Q/F ) satisfying

N
Q̂/Ê

u
Q̂

= u
Ê
, u1−ϕ

Q̂
= πτQ−1

Q , τQ|E = τ |E .

Write u
Ê

= N
Q̂/Ê

u with u ∈ U
Q̂

and observe that N
Q̂/Ê

(u1−ϕπ1−τ ′
Q ) = 1 for a lifting

τ ′ ∈ Gal(Q/F ) of τ . The group V (Q/E) is (ϕ − 1)-divisible, so πστ
′−1

Q = wϕ−1πτ
′−1
Q πσ−1

Q

with w ∈ V (Q/E). From the fundamental exact sequence for the abelian extension Q/E we get
u1−ϕπ1−τ ′

Q = πσ−1
Q vϕ−1 for some σ ∈ Gal(Q/E), v ∈ V (Q/E). Hence u

Q̂
= uvw−1 satisfies

N
Q̂/Ê

u
Q̂

= u
Ê

, u1−ϕ
Q̂

= πτQ−1
Q , where τQ = στ ′ .

If u′
Q̂

1−ϕ = π
τ ′Q−1
Q and N

Q̂/Ê
u′
Q̂

= u
Ê

, then u−1
Q̂
u′
Q̂

belongs to the kernel of N
Q̂/Ê

, so from

the fundamental sequence we deduce that (πτQQ )τ
′
Qτ
−1
Q
−1 = (u−1

Q̂
u′
Q̂

)1−ϕ ∈ V (Q/E). Since Q/E

is abelian, τ ′Q = τQ , u′
Q̂

= u
Q̂

.
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Now let E1/F be a subextension of an abelian extension E2/F , let Q1/E1 , Q2/E2 be abelian
finite subextensions in M/F and let Q1 ⊂ Q2 be normal over F . Then

N
Q̂2/Q̂1

u
Q̂2
, τQ2 |Q1 ,

where u
Q̂2

, τQ2 constructed for Q2/E2 , satisfy the conditions for Q1/E1 , therefore the uniqueness
implies N

Q̂2/Q̂1
u
Q̂2

= u
Q̂1

, τQ2 |Q1 = τQ1 .

Hence the pair (u, (u
Ê

)) ∈ UF × U�̂N(R/F )
satisfying (u

Ê
)1−ϕ = (πE)H(u−1)−1 uniquely

determines τM ∈ Gal(M/F ) and (u
Q̂

) ∈ U�̂N(M/F )
satisfying (u

Q̂
)1−ϕ = (πQ)τM−1 .

Thus, we get the inverse map h: n(F )→ U�̂N(M/F )
/YM/F to g.

Now it is easy to show that the reciprocity map

n(F )→ Gal(M/F )

of [KdSh] coincides with (HM/F ◦ h)−1 and it associates τ−1
M to (u, (u

Ê
)) ∈ n(F ). The map

(g ◦NL/F )−1 is the inverse one.
Thus, without using Coleman’s homomorphism and Lubin–Tate theory (employed in [KdSh])

one can deduce the metabelian reciprocity map as a partial case of NL/F ,HL/F . Note that the group
structure on g(F ) defined in [KdSh] corresponds to the group structure on im(NM/F ) discussed in
Remark 2.

Remark 6. Similarly one can deduce the reciprocity map constructed by Gurevich [G] for
extensions L/F for which the n-th derived group of the Galois group Gal(L/F ) is trivial.
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Ann. Sci. E.N.S., 4 série 16(1983), 59–89.

Department of Mathematics University of Nottingham
NG7 2RD Nottingham England


