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0. Introduction.

Let F be a local field of characteristic p > 0 with perfect residue field k. The wild group

R = Aut1 F is the group of wild continuous automorphisms {σ : (σ− 1)OF ⊂M2
F } of the

local field F . A choice of a prime element t of a local field F determines an isomorphism

of Aut1 F and the group of formal power series f(t) = t+ a2t
2 + . . . with coefficients from

k with respect to the composition (f ◦ g)(t) = f(g(t)). We shall write Rk for R to specify

the residue field.

The group Rk plays an important role in the theory of pro-p-groups. Recall that an

infinite pro-p-group is called just infinite if it has no proper infinite quotients. It is easy to

show that every finitely generated pro-p-group has a just infinite quotient. Just infinite

groups of finite width (the lower central series have bounded orders) are split into three

families (see for instance [18]): (i) those which are analytic over Zp; (ii) those which are

analytic over other infinite commutative noetherian local rings which are integral domains

with finite residue field; (iii) the rest. The wild group Rk belongs to the latter family

(for a complete proof see section 5 of [32]). If Fontaine–Mazur–Boston’s conjecture holds

(see [2]), every just infinite pro-p-quotient of the Galois group of the maximal unramified

outside a finite set of primes of a finite extension of Q none of which lies over p should

belong to the third family.

Group theoretists sometimes call Rk the Nottingham group. It has been investigated

by group theoretical methods (D. Johnson, I. York, A. Weiss, C. Leedham-Green, A.

Weiss, A. Shalev, R. Camina, Y. Barnea, B. Klopsch) and number theoretical methods

(Sh. Sen, J.-M. Fontaine, J.-P. Wintenberger, F. Laubie).

This paper consists of two parts.

In the first part, sections 1 – 5, we apply Fontaine–Wintenberger’s theory of fields

of norms to study the structure of the wild group Rk. In particular we provide a new

short proof of R. Camina’s theorem which says that every countably based pro-p-group

(i.e. with countably many open subgroups) is isomorphic to a closed subgroup of R Fp
.
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The proof is an immediate corollary of Proposition of section 5: every pro-p-group with

countably many open subgroups is realizable as the Galois group of an arithmetically

profinite extension of a local field of characteristic p. Lubotzky–Wilson’s theorem is

deduced as another corollary. It is interesting to investigate which finitely generated pro-

p-groups are realizable as the Galois group of an arithmetically profinite extension of a

local field of characteristic 0. Due to Sen [25] p-adic Lie groups are; another realizable

set of groups T [r] is provided in this work.

In the second part, sections 6 – 8, we study specific subgroups T [r] of R Fp . Fix a

power pr and define T = T [r] =
{∑

i>0 ait
1+pri : a0 = 1, ai ∈ Fp

}
. These subgroups of R Fp

have various bizarre properties, sometimes similar to those of p-adic Lie groups. At the

same time, the commutator subgroup is unusually small and the abelian quotient is of

exponent greater than p which is important for number theory applications. Section 6,

the longest in this work, is filled with combinatorial arguments required for the study of

T [r]. Subgroups T [r] are torsion free and don’t belong to the first family of just infinite

pro-p-groups; most likely they are in the third family.

In section 7 we realize the group T [r] for r > 2 as the Galois group of an arithmeti-

cally profinite extensions of p-adic fields. We answer affirmatively in section 8 Coates–

Greenberg’s problem on deeply ramified extensions of local fields stated in [5].

I am thankful to Moshe Jarden and Shankar Sen for their suggestions which helped

greatly improve the exposition and to Marcus du Sautoy for several discussions. For a

leisurely introduction to various topics related to this work see [33].

This study of deeply ramified extensions and Coates–Greenberg’s problem was initiated

by a dinner question of Jürgen Neukirch in June 1994 during a number theory conference

in Oberwolfach and following conversations with John Coates and Ralph Greenberg. I

am very grateful to them for numerous discussions and continuous encouragements.

1. The wild group.

Let vF be the discrete valuations of F = k((t)). We use simultaneously two interpreta-

tions of R = Rk: as formal power series t+a2t
2 + . . . with respect to the composition and

as wild automorphisms of F . When we use formal power series f, g their multiplication is

denoted by f ◦ g, when we use automorphisms σ, τ their product in R is denoted by στ .

For a formal power series f(t) denote i(f(t)) = min{i > 2 : ai 6= 0}− 1. Let Ri = {f(t) :
i(f(t)) > i}.

Denote [σ, τ ] = στσ−1τ−1. The following property of commutators is useful

[στ, ρ] = [σ, [τ, ρ]][τ, ρ][σ, ρ].

As usual, we denote by dots terms of higher order. For a, b ∈ k

[t+ ati, t+ btj ] = t+ ab(i− j)ti+j−1 + . . . .

Therefore, Ri are normal subgroups of R. The group R being the projective limit of finite

p-groups R/Ri is a pro-p-group. From the commutator formula one immediately deduces
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that [Rn, Rm] = Rn+m if m − n is relatively prime to p and [Rn, Rm] = Rn+m+1 if m − n
is divisible by p, see for example [7], Prop. 12. In addition, Rpn 6 Rnp, see the proof of

part (1) of the theorem in section 6. Thus, [R,R] = [R,R]Rp = R3. The group R Fp
is

a pro-p-group with 2 generators, generated by any two elements of R1 \ R2 and R2 \ R3,

hence by t+ t2 of infinite order and t/(1− t) of order p (note that any of their quotients

is in R2 \R3).

Moreover, the group R is a so called hereditarily just infinite group: every non-trivial

normal closed subgroup G of an open subgroup is open. Indeed, to use the commutator

formula above put σ = t + ati+1, στ = t + ati+1 + . . . , ρ = t + btj+1. Then [t + ati+1 +
. . . , t + btj+1] = t + ab(i − j)ti+j+1 + . . . . Hence the set H = [t + ati+1 + . . . , Rj ] has the

property Ru 6 Ru+1H for u > j + i, (p, u − i) = 1. Then for an odd p and sufficiently

large l the group G contains some t+ atl + . . . and t+ atl+1 + . . . , so G contains Rw for

sufficiently large w. For p = 2 use in the property (t+ ati) ◦ (t+ ati) = t+ a2t2i−1 + . . . .

For additional remarks and illustrative examples see [33].

2. Theorem of Sen.

For a closed subgroup G of R put Gi = G ∩Ri for i ∈ N, Gx = Gdxe for x ∈ R. Denote

ϕG(x) =
∫ x
0

d y
|G:Gy| . The group G is called an arithmetically profinite subgroup of R if

limx→+∞ ϕG(x) = +∞, see [27]. If this is the case, define ψG(x) as the inverse function

to ϕG(x) and put G(x) = GψG(x). The points of discontinuity of the derivative of ϕG are

called breaks of G; the points of discontinuity of the derivative of ψG are called upper

breaks of G.

A theorem of Sen [24] says that the subgroup of G generated by an element σ of infinite

order is arithmetically profinite and i(σp
n

) ≡ i(σp
n−1

) mod pn. For generalizations and

other proofs see [29], [20], [19]. For a leisurely discussion of Sen’s theorem see [33].

3. Fields of norms of arithmetically profinite extensions.

Let K be a local field with perfect residue field k = kK of characteristic p. A Galois

extension L/K is called arithmetically profinite if the upper ramification groups G(L/K)x

are open in G(L/K) for every x. Equivalently, L/K is arithmetically profinite if it has

finite residue field extension and the Hasse–Herbrand function hL/K(x) = limhE/K(x)
takes real values for all real x > 0 where E/K runs through all finite subextensions in

L/K, see [30]; [9], Ch. III, sect. 5.

For an infinite Galois arithmetically profinite extension L/K the field of norms N =
N(L/K) is the set of all norm-compatible sequences

{(aE) : aE ∈ E∗, E/K is a finite subextension of L/K}

and zero, such that the multiplication is componentwise and the addition (aE) + (bE) =
(cE) is defined as cE = limM NM/E(aM+bM ) where M runs through all finite subextension

of E in L. For the properties of the fields of norms see [27]; [30]; [9], Ch. III, sect. 5.
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In this paper with sections 7 and 8 excluded all Galois arithmetically profinite ex-

tensions are totally ramified p-extensions; therefore the Galois group consists of wild

automorphisms only.

The field N is a local field of characteristic p with the residue field kL and a prime ele-

ment t = (πE) which is a sequence of norm-compatible prime elements of finite subexten-

sions of L/K. Every automorphism τ of L over K being wild induces a wild automorphism

σ of the field of norms: σ((πE)) = (τπE).
A Galois infinite subextension of a Galois arithmetically profinite extension is arith-

metically profinite. Let F/K be a Galois totally ramified p-extension and F contain L

which is an arithmetically profinite extension of K. If |F : L| < +∞, then F/K is an

arithmetically profinite extension. The field of norms N(L/K) can be identified with a

subfield of N(F/K); the extension N(F/K)/N(L/K) is an extension of local fields. If F

is a Galois extension of L, then one defines N(F,L/K) as the compositum of all N(F ′/K)
where F ′ runs through Galois extensions of K in F with |F ′ : L| < +∞. One of the central

theorems of the theory of fields of norms says that the absolute Galois group of N(L/K)
coincides with G(N(Lsep, L/K)/N(L/K)) and the latter is isomorphic to G(Lsep/L), see

[30], (3.2.2).

The functor of field of norms W = WL/K associates to an infinite Galois arithmetically

profinite extension L/K its field of norms N(L/K) and the closed arithmetically profinite

subgroup G of the group Rk = Aut1N(L/K) which is the image of the Galois group of

L/K; the upper ramification filtration G(L/K)x is mapped onto the filtration G(x) of G,

see [30], (3.3).

For a finite Galois totally ramified p-extension N/K of local fields of characteristic p the

Galois group G(N/K) is isomorphic to a subgroup of Rk = Aut1N . The extension F/K is

arithmetically profinite if and only if N(F,L/K) is an arithmetically profinite extension

of N(L/K); then the image of the group G(N(F,L/K)/N(L/K)) under WN(F,L/K)/N(L/K)

in Rk coincides with the image of G(F/L) as a closed subgroup in G(F/K) in Rk under

WF/K , see [30], (3.2).

4. Theorem of Wintenberger.

A theorem of Wintenberger ([29]) says that for every abelian closed subgroup G of the

group Rk there exists a Galois arithmetically profinite extension L/K of local fields such

that W (L/K) = (k((t)), G).
For example, the group topologically generated by an element σ of infinite order in R

comes from an arithmetically profinite Zp-extension L/K. It is easy to deduce that the

sequence i(σp
n

)/pn is increasing. Denote pe/(p− 1) = lim i(σp
n

)/pn. Then either e = +∞
or e ∈ N. In the first case K is of positive characteristic, in the second case K is of

characteristic 0 and its absolute ramification index is e. By the proposition in section 6

e(τ) = (p− 1)i is finite for τ(t) = t+ t1+pi.

An observation due to Fontaine [10] is that e = +∞ if and only if σ belongs to the

topological closure of the torsion (the set of torsion elements) of R. Indeed, assume that
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the group G topologically generated by σ comes from a Galois arithmetically profinite

extension L/K of fields of characteristic p with a generator τ . Let Kn be the subextension

of L of degree pn over K. Map Kn isomorphically onto N by sending a prime element

πKn of a norm-compatible sequence of prime elements of finite subextensions in L/K to

t. Let Nn ⊂ N be the image of K under this homomorphism, and let σn (of order pn) be

the image of τ . Then i(σσ−1
n ) tends to +∞ when n grows. Conversely, if σ is the limit

of a sequence of automorphisms σn of finite order, then the upper breaks ui of G = (σ)
satisfy ui+1 > u

p
i (see for instance [16]), therefore e = +∞.

Wintenberger and Laubie studied p-adic Lie subgroups in R which are in the image of

the functor W , see [27], [28], [15].

5. Theorem of Camina and Theorem of Lubotzky and Wilson.

The wild group R is not p-adic Lie, since for instance for every n relatively prime to

p there is σ ∈ Rn \ Rn+1 such that σp = e (it suffices to observe that given a natural

number relatively prime to p there a cyclic totally ramified extension of degree p of a

local field of characteristic p with the ramification break equal to that number). Another

way to argue is to use the property of p-adic Lie groups to contain an open subgroup of

finite rank (i.e. an open subgroup for which the supremum of the number of generators

of its closed subgroups is not infinity), see [6], Cor. 9.36. The group R doesn’t contain

an open subgroup of finite rank, since the number of generators of Ri tends to infinity

when i tends to infinity.

For more properties of R see Remark in section 6.

Proposition. Let G be a countably based pro-p-group. Then there exists a Galois arithmeti-

cally profinite extension L of Fp((X)) such that G(L/Fp((X))) is isomorphic to G.

Proof. Let G = lim←−Gi where Gi are finite pro-p-groups such that the kernel of the epi-

morphism Gi+1 → Gi is of order p. Assume that Gi is isomorphic to G(Ki/Fp((X))).
It is well known that the pro-p-part of the absolute Galois group of Fp((X)) is a free

countably generated pro-p-group. Non-positive powers of X of degree relatively prime

to p form a basis of the vector space Fp((X))/℘(Fp((X))), where ℘(x) = xp − x, over

Fp (see, for instance, arguments in [9], Ch. IV, (5.4)), so it is of infinite dimension.

Hence the imbedding problem (Gi+1 → Gi = G(Ki/Fp((X)))) has a solution Ki(β) with

℘(β) = α ∈ Ki, see for instance [12], Th.1’. Following the method of Camina [3] replace α

by α1 = α+ c with c ∈ Fp((X)). Then Ki+1 = Ki(β1) with ℘(β1) = α1 is a solution of the

same imbedding problem. Let πi be a prime element of Ki and Oi be its ring of integers.

Due to the Artin–Schreier theory the kernel of Fp((X))/℘(Fp((X))) → Ki/℘(Ki) is finite

dimensional, so for every k the kernel of Fp((X))/℘(Fp((X)))→ Ki/(℘(Ki)+πki Oi) is finite

dimensional. Then the ramification break of Ki+1/Ki can be made arbitrarily large by

choosing c not in ℘(Ki) + π−ki Oi for sufficiently large k. Therefore one can construct an

arithmetically profinite extension L/Fp((X)) as desired. �
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Corollary 1 (Camina). Every countably based pro-p-group is isomorphic to a closed sub-

group of R Fp
.

Proof. Apply the functor W to the extension L/Fp((X)). �

Remark 1. According to the proof given in this paper every countably based pro-p-group is

isomorphic to infinitely many different closed arithmetically profinite subgroups in the clo-

sure of the torsion of R Fp . Note that if τ ∈ G(L/Fp((X))) is of infinite order, then the fixed

field Lτ of τ is an arithmetically profinite extension of Fp((X)). If it is infinite, the image

of τ in R Fp can be identified with the image of τ ∈ G(N(L,Lτ/Fp((X)))/N(Lτ/Fp((X))))
in R Fp . The latter belongs to the closure of the torsion of R Fp as was indicated in the

previous section. Varying the set of upper ramification breaks as in the proposition every

infinite countably based pro-p-group can be embedded in infinitely many ways into R;

the images have different sets of breaks.

Remark 2. In Camina’s proof every finitely generated pro-p-group is realized as the Galois

group of a totally ramified p-extension with specific properties of its ramification breaks,

then it is embedded into R Fp (actually in the closure of the torsion). Then Lubotzky–

Wilson’s theorem is applied (see Corollary 2) to handle the general case of a countably

based pro-p-group. One can use Example 2.4 of [8] to show that the closed subgroups of

R given by Camina’s construction are not in general arithmetically profinite subgroups

of R.

Remark 3. Discussions with D. Segal and B. Klopsch show that every closed subgroup

G of R which is in the image of the functor of fields of norms has Hausdorff dimension

(for the definition see [1]) equal to zero. Indeed, the non-decreasing sequence of the set

of breaks (si) of G satisfies
∑

(si − si−1)/pi = +∞, hence lim inf i/si = 0.

Remark 4. The closure of the torsion of R is different from R, since every automorphism

with finite e (see the previous section) doesn’t belong to the closure of the torsion of R

(by the way, the closure of the group generated by the torsion of R coincides with R for

p > 2). The same arguments as in the proof of Remark 1 show that every closed subgroup

of R which is in the image of W and isn’t a virtually-pro-p-cyclic group (i.e. it doesn’t

contain Z− p as a finite index subgroup) is inside the closure of the torsion of R. Hence

there is an infinite chain of closed subgroups of R: G1 = R > G2 > . . . such that all Gi

are isomorphic to each other and each next is contained in the closure of the torsion of

the previous one.

Corollary 2 (Lubotzky–Wilson). There is a pro-p-group with 2 generators which contains

as a closed subgroup every countably based pro-p-group.

Proof. The group R Fp does. �

Problem. Given a free pro-p-group G with finite number of generators does there exist a

Galois arithmetically profinite extension L of K, |K : Qp| < +∞, such that G(L/K) is

isomorphic to G?
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The affirmative answer will imply that for every finitely generated pro-p-group G there

is a closed subgroup inside the group RFq
isomorphic to G which comes via the functor

of fields of norms from a Galois arithmetically profinite extension of local number fields.

We shall show in the next section that this is true for specific closed subgroups T of R

which are different from pro-p-cyclic groups.

6. Subgroups T [r] of the wild group.

For m > 2 define the following closed subgroups in the wild group R = R Fp

Sm =
{∑
i>0

ait
1+mi : a0 = 1, ai ∈ Fp

}
.

For m relatively prime to p the group of principal units 1 + tm Fp[[tm]] is uniquely m-

divisible, therefore one can associate to an element σ ∈ R considered as a wild automor-

phism of Fp((tm)) (σ(tm) = tmf(tm) with f(t) ∈ 1 + tFp[[t]]) an automorphism τ ∈ Sm

considered as a wild automorphism of Fp((t)): τ(t) = t m
√
f(tm). Hence Sm is isomorphic

to R and Smpr is isomorphic to Spr .

Fix r > 1, put q = pr and denote

T = T [r] = Sq, Ti = {f(t) ∈ T : f(t) ∈ t+ t1+qi Fp[[t]]}.

To initiate the study of the structure of T we first state and prove five auxiliary lemmas.

The reader can skip their proofs and look first at the main theorem at the end of this

section.

We shall use the following notation: j = pn(j) where  is relatively prime to p.

Lemma 1. Fix s satisfying 1 6 s 6 r. Let i > j > q2 and i be relatively prime to p. Let

im, jm satisfy the following conditions:

(i) im > i, jm > j − q;
(ii) im is relatively prime to p;

(iii) jm > j if im = i; qjm + psim > qj + psi if im > i;

(iv) if im + qjm < j + qi, then im = rmi+ smq with integers rm > 1, sm > 0.

Let vm, wm, xm, ym, zm be non-negative integers such that vm > 0 if and only if wm > 0,

xm > 0 if and only if ym > 0, and zm > 0 only if xm > 0. Let q divide zm if zm 6 qj.

Then the equality∑
(vmim + wmqjm) +

∑
(xmjm + ymqimp

n(jm) + zm) = I + qj, ps−1i < I 6 psi, ps|I

implies that

I = psi;

if ps < q then up to renumbering terms v1 = ps, w1 = 1, i1 = i, j1 = j, and vm = wm = 0
for m > 1, xm = ym = zm = 0 for m > 1;

if ps = q, then either up to renumbering terms v1 = q, w1 = 1, i1 = i, j1 = j, and

vm = wm = 0 for m > 1, xm = ym = zm = 0 for m > 1 or up to renumbering terms x1 = q,
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y1 = 1, i1 = i, j1 = j (so j is relatively prime to p) and vm = wm = zm = 0 for m > 1,

xm = ym = 0 for m > 1.

Proof. Let not all vm be zero. From (i) we deduce im + qjm > i + q(j − q) which is > qj

due to i > q2. Then xm = ym = zm = 0 for m > 1 and
∑

(vmim + wmqjm) = I + qj.

If all vmim + wmqjm are smaller than j + qi, then from (iv) we deduce
∑
vmim =

(
∑
vmrm)i+(

∑
vmsm)q. Since i is relatively prime to p, ps divides

∑
vmrm and therefore∑

vmim > psi. Then I + qj > psi + q(
∑
wmjm). From (i) 2jm > 2(j − q) > j, therefore,

up to renumbering, w1 = 1, vm = wm = 0 for m > 1 and v1i1 + qj1 = I + qj. From (ii) we

deduce that ps divides v1, so v1i1 + qj1 > psi1 + qj1, and the latter is > psi+ qj whenever

i1 6= i by (iii). Hence i1 = i and by (iii) j1 = j, v1 = ps, I = psi.

If not all vmim + wmqjm are smaller than j + qi, then let, up to renumbering, v1i1 +
w1qj1 > j + qi. From (i) and i > j > q2 we deduce that im + qjm > i + q(j − q) > qj,

vm = wm = 0 for m > 1 and v1i1 + w1qj1 = I + qj. Now (ii) implies that ps|v1 and then

v1i1 + w1qj1 > psi1 + qj1 which is > psi + qj if i1 6= i by (iii). Hence i1 = i and by (iii)

j1 = j, v1 = ps, w1 = 1, I = psi.

Let all vm be zero. From (i) and i > j we deduce that 2qim > qi + qj. Then, up to

renumbering, y1 = 1 and xm = ym = zm = 0 for m > 1. Hence from x1j1 + qi1p
n(j1) + z1 =

I + qj we derive that j1 is relatively prime to p and q|z1. Now from (ii) we deduce

that ps divides x1. Hence psi + qj > I + qj > psj1 + qi1. Furthermore, (ps + q)i1 >
(ps + q)i > psi + qj due to (i) and i > j; therefore j1 < i1. Now psj1 + qi1 > psi1 + qj1 if

ps < q, and psi1 + qj1 > psi + qj if i1 6= i by (iii). Therefore, i1 = i, ps = q and by (iii)

j1 = j, x1 = q, y1 = 1, z1 = 0, I = qi. �

Lemma 2. Let i > j. Let t(1 + a(t)) ∈ Tj, t(1 + b(t)) ∈ Ti. Denote by α(t) and β(t) the

inverse series in T to t(1 + a(t)) and t(1 + b(t)) respectively. Then

α(t) ≡ t

1 + a(t)
mod tq

2j Fp[[t]], β(t) ≡ t

1 + b(t)
mod tq

2i Fp[[t]]

and
[t(1 + a(t)), t(1 + b(t))] ≡

t+
t
(
a(t)− a(β(t))

)
(1 + a(t))

−
t
(
b(t)− b(α(t))

)
(1 + b(t))

mod t1+q
2(i+j)+q Fp[[t]].

Proof. Note that for f1(t) ∈ 1 + tq Fp[[tq]], f2(t) ∈ 1 + tl Fp[[t]]

(O) (tf1(t)) ◦ (tf2(t)) ≡ tf1(t)f2(t) mod t1+q(l+1) Fp[[t]].

Call f1(t), f2(t) the reduced parts of tf1(t)) and tf2(t)). Then the previous formula shows

modulo which degree the reduced part of the product of two elements in T is the product

of their reduced parts.

Now, since α(t), β(t) ∈ t+ t1+q Fp[[tq]], we deduce that

α(t) ≡ t/(1 + a(t)) mod t1+q+q
2j Fp[[t]], β(t) ≡ t/(1 + b(t)) mod t1+q+q

2i Fp[[t]],

(α ◦ β)(t) ≡ α(t)/(1 + b(t)) mod t1+q+q
2i Fp[[t]]

(β ◦ α)(t) ≡ β(t)/(1 + a(t)) ≡ t/((1 + a(t))(1 + b(t))) ≡ (α ◦ β)(t) mod t1+q+q
2j Fp[[t]].
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We have [t(1 + a(t)), t(1 + b(t))] = t+ c(α(β(t))), where

c(t) = t(1 + a(t)) ◦ t(1 + b(t))− t(1 + b(t)) ◦ t(1 + a(t))

= t(1 + b(t))(a(t+ tb(t))− a(t))− t(1 + a(t))(b(t+ ta(t))− b(t)).

Let a(t) =
∑
k>j akt

qk and let b(t) =
∑
l>i blt

ql. Then

t
(
1 + b(t)

)(
a(t+ tb(t))− a(t)

)
= t

(
1 +

∑
l>i

blt
ql

)∑
k>j

akt
qk

((
1 +

∑
l>i

blt
q2l
)k − 1

)
.

Working modulo t1+q
2(i+j)+q Fp[[t]] and substituting a series in the previous expression,

we can ignore terms of degree > q2j when substituting in t, terms of degree > qj when

substituting in the first and second sums, terms of degree > j when substituting in the

third sum. From the congruences for α(t), β(t) obtained above we get

(t(1 + b(t))(a(t+ tb(t))− a(t)) ◦ α(t) ◦ β(t)

≡
(
(t+ tb(t)) ◦ β(t) ◦ α(t)

)
·
(
(a(t+ tb(t))− a(t)) ◦ β(t)

)
≡ α(t) · (a(t)− a(β(t)))

≡ t/(1 + a(t)) · (a(t)− a(β(t))) mod t1+q
2(i+j)+q Fp[[t]].

Similarly,

t
(
1 + a(t)

)(
b(t+ ta(t))− b(t)

)
= t

(
1 +

∑
k>j

akt
qk

)∑
l>i

blt
ql

((
1 +

∑
k>j

akt
q2k
)l − 1

)
.

Working modulo t1+q
2(i+j)+q Fp[[t]] and substituting a series in the previous expression,

we can ignore terms of degree > q2i when substituting in t, terms of degree > qi when

substituting in the first and second sums, terms of degree > i when substituting in the

third sum. Then

(t(1 + a(t))(b(t+ ta(t))− b(t)) ◦ α(t) ◦ β(t) ≡ β(t) · (b(t+ ta(t))− b(t)) ◦ α(t)

≡ t/(1 + b(t)) · (b(t)− b(α(t))) mod t1+q
2(i+j)+q Fp[[t]],

which completes the proof. �

Lemma 3. Let i > j > q2 and let i be relatively prime to p. Let aj = a, b ∈ F ∗p . Let ak ∈ Fp
and ak = 0 for k non-strictly between j + 1 and qj which are not divisible by q.

Then

[t+
∑
k>j

akt
1+qk, t+ bt1+qi]

is congruent modulo t1+q
2(i+j)+q Fp[[t]] to

(a)

t+
∑
jm>j

cmt
1+q(vmi+wmqjm) +

∑
jm>j

dmt
1+q(xmjm+ymqip

n(jm)+zm)

where vm, wm, xm, ym, zm together with im = i and jm > j satisfy the conditions of Lemma

1 for every s = 1, . . . , r;
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(b)

t+
∑
ν>i

eνt
1+q(qj+ν) mod t1+q

2(i+j)+q Fp[[t]]

where the coefficients eν satisfy the following conditions:

(b1) if ν + qj < j + qi and eν 6= 0, then ν = sνi+ rνq with integers sν > 1, rν > 0;

(b2) epsi = −iab 6= 0 for 0 6 s < r and eqi = (j − i)ab.

Proof. Use Lemma 2 with a(t) =
∑
k>j akt

qk, b(t) = btqi. Let α(t) and β(t) be the same

as in Lemma 2; then α(t) = t+
∑
k>j ckt

1+qk, cj = −a by Lemma 2. We get

[t+
∑
k>j

akt
1+qk, t+ bt1+qi] ≡

t+
t

1 + a(t)
(a(t)− a(β(t)))− t

1 + b(t)
(b(t)− b(α(t))) mod t1+q

2(i+j)+q Fp[[t]].

Since a(t) belongs to Fp[[tq]], a(β(t)) ≡ a(t/(1 + b(t))) mod t1+q
2(i+j)+q Fp[[t]] by Lemma

2. Now

[t+
∑
k>j

akt
1+qk, t+ bt1+qi] ≡

t+
t

1 +
∑
k>j akt

qk

(∑
k>j

akt
qk (1 + btq

2i)k − 1
(1 + btq2i)k

)
− bt1+qi

1 + btqi

(
1− (1 +

∑
k>j

ckt
q2k)i

)

≡ t+
t

1 +
∑
k>j akt

qk

(∑
k>j

akt
qkkbtq

2ipn(k)
)

+
bt1+qi

1 + btqi
d(t) mod t1+q

2(i+j)+q Fp[[t]],

where

d(t) =
∑

0<l1+···+lm6i

i!
l1! . . . lm!(i− l1 − · · · − lm)!

cl1k1 . . . c
lm
km
tq

2(l1k1+···+lmkm).

The first large term in the previous expression for the commutator consists of terms of

degree 1+q(fk+f1k1 + · · ·+fmkm)+q2ipn(k) with k, k1, . . . , km > j, f > 1, f1, . . . , fm > 0.

Due to the restrictions on ak terms of degree 6 1 + q2(i+ j) are of the type

1 + qfj + q2ipn(j) + q(f1k′1 + · · ·+ fmk
′
m)

with f > 1, f1, . . . , fm > 0, q|k′1, . . . , k′m > j/q. This can be rewritten as 1+q(xj+yqipn(j)+
z) where x, y > 0, z > 0, q|z.

The second large term in the previous expression for the commutator consists of terms

of degree 1 + fqi+ q2(l1k1 + · · ·+ lmkm) with f > 1, k1, . . . , km > j, l1 + · · ·+ lm > 0. We

can rewrite this as 1 + qj+ q(fi+ q(l1k1 + · · ·+ lmkm− j)) or as 1 + q(vi+ qk) where k > j,

v > 0.

Now parts (a) and (b1) follow. To deduce part (b2) apply Lemma 1 to im = i, jm > j

using part (a). Hence for 1 6 s < r the coefficient epsi comes from the second large

expression in the three line formula; the coefficient eqi comes from the both terms. The

coefficient ei is calculated directly. �
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Lemma 4. Let i > j. Let ak, bl ∈ Fp. Then

(1) the commutator [t+
∑
k>j akt

1+qk, t+
∑
l>i blt

1+ql] belongs to Ti+qj and even to T(q+1)i+1

if i = j;

(2) if i > j(qpn(i) − 1)/(q − 1) then

[t+
∑
k>j

akt
1+qk, t+ bt1+qi] ≡ t− ıajbt1+q(i+qp

n(i)j) mod Ti+qpn(i)j+1.

Proof. Apply Lemma 2 to calculate the first commutator. It is congruent modulo Tq(i+j)+1

to

t+
t

1 +
∑
k>j akt

qk

∑
k>j

ak(tqk − β(t)qk)− t

1 +
∑
l>i blt

ql

∑
l>i

bl(tql − α(t)ql),

where α(t), β(t) have the same meaning as in Lemma 2. By the same lemma

β(t) ≡ t− bit1+qi mod t1+qi+q Fp[[t]], α(t) ≡ t− ajt1+qj mod t1+qj+q Fp[[t]],

so

α(t)ql ≡ tql − lajtql+q
2jpn(l)

mod tql+q
2jpn(l)+q Fp[[t]]

and

β(t)qk ≡ tqk − kbitqk+q
2ipn(k)

mod tqk+q
2ipn(k)+q

Fp[[t]].

Since qj + q + q2ipn(k), qi+ q + q2jpn(l) > q(i+ qj + 1), the first commutator is congruent

modulo Ti+qj+1 to

t+ ajbit
1+qj+q2ipn(j)

− ajbiıt1+qi+q
2jpn(j)

and so belongs to Ti+qj and even to Ti+qi+1 if i = j.

To deduce (2) use the first formula in this proof. From the previous calculations

t

1 +
∑
k>j akt

qk

∑
k>j

ak(tqk − β(t)qk) ∈ t1+qj+q
2i Fp[[t]]

and
bt

1 + btqi
(tqi − α(t)qi) ≡ ıajbt1+qi+q

2jpn(i)
mod t1+q+qi+q

2jpn(i)
Fp[[t]].

Thus, to deduce (2) it remains to use qj+q2i > q+qi+q2jpn(i) iff (q−1)i > j(qpn(i)−1). �

A natural number l is said to be associated to a subgroup H of T if Tl 6 Tl+1H.

Lemma 5. Let H be a non-trivial closed normal subgroup of an open subgroup G of T .

Then

(1) for every n > 0 there is ln such that all pnl > ln with l relatively prime to p are

associated to H.

(2) For every a ∈ F ∗p and every j > max(l0, . . . , lr−1) relatively prime to p there is a series

t +
∑
k>j akt

1+qk in H, aj = a, satisfying the following property: if j + 1 6 k 6 qj + q2,

q 6 |k then ak = 0.
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Proof. The group G contains some Tk. Fix n > 0. Take any j = pm with (, p) = 1
such that some element f(t) = t + at1+qp

m + . . . belongs to H. Then [f(t), Tk] 6 H.

From Lemma 4, (2) we deduce that for u > u0 relatively prime to p the element [f(t), t+
bt1+qp

nu] = t − abut1+qpnu+q2pn+m + . . . belongs to H. Hence pn(u + qpm) is associated

to H and there is ln such that all pnl > ln with l relatively prime to p are associated

to H. We work with the wild group over Fp, so if pnl > ln with l relatively prime to

p, then for every a ∈ F ∗p there is a series t + at1+qp
nl + · · · ∈ H: just use the relation

h(t) ◦ h(t) = t+ 2et1+qk + . . . for a series h(t) = t+ et1+qk + . . . .

Let j > max(l0, . . . , lr−1) be relatively prime to p. Assume that for j′ > j there is a

series fj′(t) = t +
∑
k>j bkt

1+qk ∈ H with bk = a, bk = 0 for k between j + 1 and j′ not

divisible by q. If q doesn’t divide j′ + 1, then since j′ + 1 > max(l0, . . . , lr−1) there is a

series g(t) = t +
∑
k>j′+1 ckt

1+qk ∈ H with cj′+1 = −bj′+1. Now by (O) in the proof of

Lemma 2 we deduce that the series fj′+1(t) = fj′(t) ◦ g(t) = t+
∑
k>j dkt

1+qk ∈ H satisfies

the property: dk = a, dk = 0 for k between j + 1 and j′ + 1 not divisible by q. Induction

implies (2). �

Theorem. Let p > 2.

(1) If σ ∈ Ti \Ti+1 then σp ∈ Tpi \Tpi+1; the intersection of T with the closure of the torsion

of R is trivial.

(2) [Ti, Ti] 6 T(q+1)i+1 and the group Ti/T(q+1)i is abelian of exponent pq.

(3) [T, T ]T p > Tq+2; the number of generators of T is at most q + 1.

(4) T is not a p-adic Lie group.

(5) A non-trivial normal closed sugroup of an open subgroup of T is open.

Proof.

(1) For α ∈ F = Fp((t)) one has vF ((σ − 1)α) > vF (α) + i(σ) with equality when vF (α)
is relatively prime to p. Therefore

i(σp) = vF ((σp − 1)(t))− 1 = vF ((σ − 1)p(t))− 1 > pi(σ),

hence Rpn 6 Rnp and i(σp) = vF ((σ − 1)p(t))− 1 = pi(σ) for i(σ) = qi.

(2) From part (1) of Lemma 4 [Ti, Ti] 6 T(q+1)i+1. Then (1) implies that Ti/T(q+1)i is

abelian of exponent pq.

(3) From Lemma 4, (2) we know that if i > j and i is relatively prime to p, then

[t + at1+qj , t + bt1+qi] = t − iabt1+qi+q2j + . . . . Therefore Tl 6 Tl+1[T, T ] for all l > q + 2
relatively prime to p. By (1) Tpi 6 Tpi+1T

p and the assertion follows.

(4) If T were a p-adic Lie group, then by [6], Th. 9.34 it would contain an open

subgroup G which is a uniformly powerful pro-p-group, so in particular Gp = {gp : g ∈ G}
would be a subgroup of [G,G], see [6], Prop. 2.6. However, the subgroup [G,G] contains

some elements t+ t1+qi + . . . with i relatively prime to p which are obviously not in Gp.

Alternatively, the group T doesn’t contain an open subgroup of finite rank (and so it isn’t
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p-adic Lie by [6], Cor. 9.35), since the cardinality of Ti/[Ti, Ti]T
p
i tends to infinity when

i tends to infinity.

(5) The proof of this assertion uses Lemma 1, Lemma 3, Lemma 5 and the congruence

(O) in the proof of Lemma 2. Let j > max(q2, l0, . . . , lr−1) + q where lm are defined in

Lemma 5 (1). Let i > j, and let i, j, i − j be relatively prime to p. Let Ti 6 G. The

main purpose of the following arguments is to find in H a product of several commutators

which is equal to t+ oqit
1+q2i+q2j + . . . , oqi 6= 0, and deduce that q(i+ j) is associated to

H.

In the course of the proof we shall pick up elements θj′(t) = t+at1+qj
′
+ · · · ∈ H, a 6= 0,

as in Lemma 5 (2) applied to j′ > j − q. Then qj′ + q2 > qj and therefore the coefficient

of t1+qk in θj′(t) for k < qj, q 6 |k is zero.

Let θj(t) = t+ at1+qj + · · · ∈ H, a 6= 0, be as in Lemma 5 (2). Then for b 6= 0 Lemma 3

shows that

[θj(t), t+ bt1+qi] ≡ t+
∑
ν>i

eνt
1+q(qj+ν)

≡ t+
∑
jm>j

cmt
1+q(vmi+wmqjm) +

∑
jm>j

dmt
1+q(xmjm+ymqip

n(jm)+zm)

modulo t1+q
2(i+j)+q Fp[[t]], where in particular the following properties are satisfied:

[ if ν + qj < j + qi and eν 6= 0, then ν = rνi+ sνq with integers rν > 1, sν > 0;

for 0 6 s 6 r ](s) epsi 6= 0.

From Lemma 3 it follows that for every ei ∈ F ∗p there is an appropriate b such that the

commutator’s second term is eit
1+q(qj+i). Denote the commutator by ω0(i, j, i+ qj, ei).

Let θj−p(t) = t+ at1+q(j−p) + · · · ∈ H, a 6= 0, be as in Lemma 5 applied to j − p instead

of j. Then Lemma 3 shows that

[θj−p(t), t+ ct1+q(i+qp)] ≡ t+
∑

ν>i+qp

e′νt
1+q(qj+ν−qp)

≡ t+
∑

jm>j−p

c′mt
1+q(vm(i+qp)+wmqjm) +

∑
jm>j−p

d′mt
1+q(xmjm+ymq(i+qp)p

n(jm)+zm)

modulo t1+q
2(i+j)+q Fp[[t]] with the standard properties. If e′ν 6= 0 and ν+q(j−p) < j+qi,

then ν + q(j − p) < j − p+ q(i+ qp), so from [ for i+ qp, j − p we get ν = rν(i+ qp) + sνq

and ν − qp = rνi+ q(sν + p(rν − 1)) with integers rν > 1, sν > 0.

The congruence (O) in the proof of Lemma 2 and the trivial inequality q(q2j + qi) >
q2(i+j) shows that the reduced part of the product in T of [θj(t), t+bt1+qi] and [θj−p(t), t+
ct1+q(i+qp)] modulo t1+q

2(i+j)+q Fp[[t]] is given by the usual product of their reduced parts.

Hence for an appropriate c ∈ Fp

[θj(t), t+ bt1+qi] ◦ [θj−p(t), t+ ct1+q(i+qp)] ≡ t+
∑
ν>i

fνt
1+q(qj+ν) mod t1+q

2(i+j)+q Fp[[t]].

From Lemma 1 applied to (im, jm) ∈ {(i,> j)} ∪ {(i + qp,> j − p)} and the natural

observation

j + qi > ν1 + qj + ν2 + qj =⇒ ν1 + qj + ν2 + qj = (rν1 + rν2)i+ (sν1 + sν2 + j)q + qj
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we deduce that fν satisfy [ and ](1)− ](r).
Lemma 1 shows that fν for ν divisible by p and satisfying i < ν < pi are zero. Let fν0

be the first non-zero coefficient in terms of degree > 1 + q2j + qi and < 1 + qj + q2i in the

last congruence. Since fpi 6= 0, we get ν0 = rν0i+ sν0q 6 pi. Assume that ν0 < pi, then ν0

is relatively prime to p. Consider the product

[θj(t), t+ bt1+qi] ◦ [θj−p(t), t+ ct1+q(i+qp)] ◦ ω0(rν0i+ sν0q, j, ν0 + qj,−fν0).

Note that if ν+qj < j+qi, then ν+qj < j+qν0 and rνν0 +sνq = rνrν0i+q(rνsν0 +sν) with

integers rνrν0 > 1, rνsν0 +sν > 0. Lemma 1 applied to (i,> j), (i+qp,> j−p), (ν0,> j) and

relation (O) in the proof of Lemma 2 imply that the latter product is congruent modulo

t1+q
2(i+j)+q Fp[[t]] to t+

∑
ν>i0

gνt
1+q(qj+ν) and gν satisfy [ and ](1)− ](r).

Repeating, if necessary, we get a product of several commutators, call it ω1(i, j, pi +
qj, hpi), such that

ω1(i, j, pi+ qj, hpi) ≡ t+
∑
ν>pi

hνt
1+q(qj+ν) mod t1+q

2(i+j)+q Fp[[t]]

where hν satisfy [ and ](1)− ](r).
Proceed by induction using Lemma 1, Lemma 3 and the relation (O) in the proof

of Lemma 2. Assume that for 1 6 n 6 s < r we have already constructed elements

ωn(i, j, pni+ qj, kpni) in H as products of appropriate commutators of the type discussed

in Lemma 3 so that in particular

ωn(i, j, pni+ qj, kpni) ≡ t+
∑
ν>pni

kνt
1+q(qj+ν) mod t1+q

2(i+j)+q Fp[[t]]

where kν satisfy [ and ](n)− ](r).
To eliminate the term t+kpst1+q(qj+p

si) for s < r multiply by ωs(i+q, j−ps, psi+qj,−kps)
and apply Lemma 3, Lemma 1 for s+ 1, . . . , r.

To eliminate the term lνt
1+q(qj+ν) where psi < ν < ps+1i, ν = pnν with ν being

relatively prime to p first deduce from Lemma 3, Lemma 1 and (O) that 0 6 n 6 s and

hence ν > i. Then use Lemma 3 and Lemma 1 for s + 1, . . . , r and either multiply by

ωn(ν, j, ν+qj,−lν) if ν+qj > j+qi or by ωn(rνp−ni+sνqp−n, j, ν+qj,−lν) if ν+qj < j+qi,
ν = rνi+ sνq. Note that (rνp−n, p) = 1 by Lemma 1.

Each time the coefficients of the new product of commutators satisfy [ and ](s+1)−](r).
Hence in H we get the element

ωs+1(i, j, ps+1i+ qj,mps+1i) ≡ t+
∑

ν>ps+1i

mνt
1+q(qj+ν) mod t1+q

2(i+j)+q Fp[[t]]

where mν satisfy [ and ](s+ 1)− ](r).
Thus, by induction we produce

ωr(i, j, qi+ qj, oqi) ≡ t+
∑
ν>qi

oνt
1+q(qj+ν) mod t1+q

2(i+j)+q Fp[[t]]

with oqi 6= 0. We conclude that q(i+ j) is associated to H.

Keeping in mind the restrictions on i, j at the beginning of this part and Lemma 5 (1)

we deduce that all sufficiently large l belong to H. Since H is closed, Tl is contained in

H for sufficiently large l and H is open. �
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Remark. Remark 4 in section 5 and the property (1) of the theorem show that no closed

non-pro-p-cyclic subgroups of T are in the image of the functor W . Section 4 implies that

pro-p-cyclic subgroups of T come from arithmetically profinite Zp-extensions in charac-

teristic 0 only.

7. Extensions of local number fields with the Galois group T .

Recall that a Galois extension L/F is called deeply ramified if the set of its upper

ramification breaks is unbounded. The theory of deeply ramified extensions of local fields

and its applications in Kummer’s theory of abelian varieties was developed in [5] by J.

Coates and R. Greenberg. For various examples of deeply ramified extensions and their

relations with arithmetically profinite extensions see [8].

Theorem. Let r > 2 and q = pr. Let F be an unramified extension of Qp of degree > q.

(1) There is a Galois extension L of F which is deeply ramified and G(L/F ) is isomorphic

to T [r].

(2) The extension L/F is arithmetically profinite.

(3) If F ⊂ K ⊂ E ⊂ L with finite K/F and infinite Galois E/K, then G(E/K) is not a

p-adic Lie group.

Proof. (1) According to Shafarevich’s theorem [26] the pro-p-part G(F (p)/F ) of the ab-

solute Galois group of F is a free pro-p-group with |F : Qp|+ 1 generators.

By part (3) of the theorem in the previous section T = T [r] is isomorphic to the quotient

of G(F (p)/F ), so there is a Galois extension L/F with the Galois group isomorphic to T .

Denote by Fi the fixed field of the subgroup in G(L/F ) corresponding to Ti. Let F unp

be the maximal unramified p-extension of F .

For a finite Galois extension E/K and an automorphism σ 6= 1 of E/K denote by

tE/K(σ) the maximal rational number x such that σ doesn’t belong to the upper ram-

ification group G(E/K)v for every v > x. Denote by u(E/K) = max{tE/K(σ) : σ ∈
G(E/K), σ 6= 1} its maximal upper ramification break (see for instance [9], Ch. III,

sect. 5). Following Sen [25] we say that an abelian extension M/K is non-small if

u(M/K) > pe(K)/(p − 1) where e(K) is the absolute ramification index of K. We are

going to apply Lemma 3.7 in [25] to certain subgroups Gn of T . We shall check that all

conditions of Lemma 3.7 in [25] are satisfied.

Due to (1), (2) of the theorem in the previous section T1/Tq decomposes into the

direct product of the cyclic group of order q generated by t + t1+q, the cyclic group

of order q generated by t + t1+2q and an abelian group. Therefore the Galois group

of the extension Fq/Fq ∩ F unp decomposes into the direct product of the cyclic group

of order q and an abelian group. Since the field Fq ∩ F unp is absolutely unramified,

local class field theory implies that Fq/Fq ∩ F unp is non-small. Put I = G(L/L ∩ F unp).
Then I as a normal closed subgroup of T is of finite index in T by (5) of the theorem

in section 6. Put Gn = Tpn−1 ∩ I, G = G1. Since Tpn/Tqpn is abelian by part (2)
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of the theorem in section 6, Gn/Gn+2 is abelian for every n > 1. The abelian field

extension Fq(L ∩ F unp)/L ∩ F unp is non-small, since Fq/Fq ∩ F unp is non-small. Finally,

from part (1) of the theorem in the previous section we deduce that Gn coincides with

{σ ∈ G : σp ∈ Gn+1}. Thus, all conditions of Lemma 3.7 in [25] are satisfied. Therefore

by Lemma 3.7 in [25] u(Fpn+1(L ∩ F unp)/L ∩ F unp) = u(Fpn(L ∩ F unp)/L ∩ F unp) + e(F )
for pn > q. In particular, the extension L/F is deeply ramified.

(2) The extension L/F is arithmetically profinite: every subgroup G(L/F )x of T is

non-trivial by (1) and closed normal, therefore it is open of finite index by property (5)

of the theorem in section 6.

(3) Normal extensions E of K in L are either finite over K or coincide with L and

therefore G(E/K) is not p-adic Lie by part (4) of the theorem in section 6. �

8. Problem of Coates and Greenberg.

The following problem was stated in [5], p. 144:

Is it true that for every finite extension K of Qp there exists a deeply ramified Galois

p-extension M of K such that that no subfield M ′ of M is an infinitely ramified

Galois extension of a finite extension Q of Qp with G(M ′/Q) being a p-adic Lie

group ?

This problem is related to Fontaine–Mazur’s conjecture on unramified Galois represen-

tations of a number field and its generalization by Boston [2]. Note that results of [23] and

[25] (the proof of Serre’s conjecture) imply that every infinite p-adic Lie extension (i.e.

the Galois group being p-adic Lie) in characteristic 0 with finite residue field extension is

deeply ramified, and moreover, arithmetically profinite.

Using the theorem of section 7 one can provide the affirmative answer on Coates–

Greenberg’s problem by taking the normal closure of KL over K as M .

Indeed, the extension M/K is deeply ramified. If ϕ is the Frobenius automorphism of

KF over K and φ is its lifting to the algebraic closure of Qp, then M is the compositum of

a finite number of fields Kφn(L), 0 6 n < |KF : K|. Each φn(L)/F is a normal extension

with the Galois group isomorphic to T .

Let R1 and R2 be infinite Galois extensions of a finite extension R of Qp, and let

G(R1/R) be isomorphic to T . We are going to show that if G(R1R2/R) has an open

subgroup which has an infinite p-adic Lie quotient, then G(R2/R) has an open subgroup

which has an infinite p-adic Lie quotient. Applying that to M and Kφn(L) we then deduce

that if there is a subfield M ′ of M which is a Galois extension of a finite extension Q of

Qp with G(M ′/Q) being infinite p-adic Lie, then T has an open subgroup which has an

infinite p-adic Lie quotient, which contradicts the theorem in section 7.

So let there be a subfield N of R1R2 which is a Galois extension of a finite extension

O of R with G(N/O) being infinite p-adic Lie. We can assume that O/R is a Galois

extension. Let R1 6⊂ R2. Then G(R1/R1 ∩ R2) is a normal non-trivial closed subgroup
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of G(R1/R), so R1/R1 ∩ R2 is infinite. Therefore the group G(R1/R1 ∩ OR) is a normal

non-trivial closed subgroup of G(R1/R), so it and G(OR1/OR) are isomorphic to an open

subgroup of T . Due to the properties of the group T described in the theorem of section 7

the extension N ∩OR1/OR is of finite degree and so is N ∩OR1/O. Therefore N/N ∩OR1

is an infinite p-adic Lie extension and so G(NR1/OR1) is an infinite p-adic Lie quotient

of an open subgroup G(R1R2/OR1) of G(R1R2/R1). We conclude that G(R2/R) has an

open subgroup which has an infinite p-adic Lie quotient, as required.

Remark. The affirmative answer on the problem stated in section 4 will imply that every

finitely generated hereditary just infinite pro-p-group (every non-trivial normal closed

subgroup of an open subgroup is open) can be realized as the Galois group of an arith-

metically profinite extension of a local number field, therefore providing a collection of

extensions L/F answering Coates–Greenberg’s problem.
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