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Abstract. For a higher local field F algebraic properties of Km(F )/∩l>1 lKm(F ) of the Milnor
K -group are studied by using topological and arithmetical considerations. In particular, standartness
of the torsion in the latter group and divisibility of the group ∩l>1lKm(F ) if the last residue field
of F is finite are proved. It is shown that ∩l>1lKm(F ) coincides with the intersection of all
neighbourhoods of zero in Km(F ) (and if F is an m-dimensional local field, it equals to the kernel
of the reciprocity map Km(F ) → Gal(F ab/F ) ). A description of Km(F )/l in the language of
topological generators and relations is provided. The equality of several topologies on Km(F ) at
the level of subgroups is shown and their difference is discussed.

Appendix of this paper written by O. Izhboldin describes a construction of a field F containing
a primitive p th root and such that p-torsion of Km(F )/∩l>1 lKm(F ) is not generated by p-torsion
in F ∗ . He works with the field of rational functions of an infinite product of certain Severi–Brauer
varieties.

1. Introduction

An n-dimensional local field F = kn is a complete discrete valuation field with residue field kn−1
being (n− 1)-dimensional; 0-dimensional local field is a perfect field k0 of positive characteristic p.
From a certain stage we will assume that k0 has nontrivial separable extensions of degree p. Thus to
every n-dimensional field F corresponds n + 1 fields kn = F, kn−1, . . . , k0.

Lifting prime elements of kn, . . . , k1 to the field F one obtains an ordered system of local
parameters tn, . . . , t1 (tn is a prime element of F ).

Let s > 0 be the minimal integer such that char(F ) = char(ks). If s < n, then F is isomorphic to
ks((ts+1)) . . . ((tn)). Note that the group of principal units of F with respect to the discrete valuation
of rank n − s is divisible if char(F ) = 0, and so it is not very interesting from the point of view of
class field theory. The field ks if s 6= 0 is called a mixed characteristic field, it is a natural higher
dimensional analogue of a p-adic field.

From many points of view MilnorK-groups ofF are not the most suitable object for a meaningful
description of abelian extensions of an n-dimensional local field F in higher local class field theory;
the structure of Milnor K-groups of F is still not completely known. It is more convenient and
natural to work with quotients Km(F )/ ∩l>1 lKm(F ) of Milnor K-groups endowed with a special
topology. Arithmetical homomorphisms from Milnor K-groups (like a reciprocity map) factorize
through such quotients.

In this paper we discuss algebraic properties of Km(F )/∩l>1 lKm(F ) by using topological and
arithmetical considerations which are related to topological and arithmetical properties of higher
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local fields. In turn, even though applications are not discussed here, the properties of the quotients
of the K-groups are quite important for the arithmetic of higher local fields due to higher local class
field theory.

We provide a new short approach which replaces longer approaches in [2–5]. It corrects and
clarifies some statements or proofs of [15], [2–5], [21] and links between them.

New methods and results of this paper are:

(1) simultaneous work with several topologies on higher local fields.
(2) new proofs in the case of finite residue field k0 of the following results:

(a) ∩l>1lKm(F ) coincides with the intersection Λm(F ) of all open subgroups
in Km(F ) with respect to the topologies on Km(F ) mentioned above.

(b) ∩l>1lKm(F ) is a divisible group.
(c) If a primitive rth root of unity is contained in F then r-torsion of

K top
m (F ) = Km(F )/ ∩l>1 lKm(F )

is generated by r-torsion in F ∗.
(3) corrections of several errors in [15] including properties of the norm map on topological Milnor

K-groups and the existence theorem in positive characteristic.

Section 2 presents several topologies on the additive and multiplicative group of F which are
defined by induction on n. They are different from the topology of [15] in characteristic p. Their
common feature is that each of them has the same set of convergence sequences. The multiplication
is sequentially continuous but not necessarily continuous with respect to some of them. For class
field theory sequential continuity seems to be more important than continuity. This is a hidden
phenomenon in dimension 1 and 2, where continuity is the same as sequential continuity. In
particular, this can affect our understanding of a generalization of harmonic analysis to higher
multidimensional fields.

Three important pairings of Milnor K-groups are described in section 3. They are in intensive
use in section 4 when studying properties of Milnor K-groups of F endowed with topologies. We
compare various topologies (λm in 4.1, νm, om, σm in 4.6) on MilnorK-groups some of which were
in use in [2–5] and show that they all coincide at the level of subgroups. In subsections 4.5 – 4.7,
central in this paper, we prove (a)–(c). In fact we prove more general results in the case of a perfect
k0; for details see 4.5 – 4.7.

Concerning the structure of K top
m (F ): it is completely known in characteristic p (most of results

except (a) and (b) were stated by Parshin in [15]) and we supply its (partial) description in charac-
teristic 0. As an application in subsection 4.8 we deduce the standard description of the kernel of
the norm map for K top

m (which is not currently established for Km of an arbitrary field if m > 2).
The results of this paper are important for explicit higher local class field theory as presented in

[2–5]; there are further applications, for instance to explicit formulas in class field theory, study of
abelian extensions, Fukaya’s map for Milnor K2-groups of complete discrete valuation fields with
residue field having one element p-basis.

Appendix of this paper written by late O. Izhboldin describes a construction of a fieldF containing
a primitive pth root and such that p-torsion of Km(F )/ ∩l>1 lKm(F ) is not generated by p-torsion
in F ∗. He works with the field of rational functions of an infinite product of certain Severi–Brauer
varieties.

Quite a different construction for irregular prime numbers p follows from works of G. Banaszak
[24]. First, it is easy to see that if p-torsion of Km(F )/ ∩l>1 lKm(F ) is generated by p-torsion in
F ∗, then ∩l>1lKm(F ) = p∩l>1 lKm(F ) and hence the group ∩l>1lKm(F ) is either zero or infinite.
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Now using [23, p.289] for each irregular prime number p there is a totally real field K (maximal
totally real subfield of Q(µp)) such that the p-primary part of the group ∩l>1lK2(K) is non-zero.
Let F = K(µp). Then the p-primary part of the finite [22, Th.8.9] group ∩l>1lK2(F ) is non-zero
and therefore p-torsion of K2(F )/ ∩l>1 lK2(F ) is not generated by p-torsion in F ∗. I am grateful
to G. Banaszak for correspondence on this subject.

Throughout the text we denote by µm the group of mth roots of unity. For an abelian group A
we denote m-torsion points of A by TorsmA.

2. Topology on the multiplicative group

By OF we denote the ring of integers of F with respect to the discrete valuation of rank n associated
to tn, . . . , t1; OF doesn’t depend on the choice of a system of local parameters. Denote by
VF = 1 + (tn, . . . , t1)OF = 1 + t1OF the group of principal units of F as an n-dimensional local
field.

Denote by O0 the subring in F corresponding to the last residue field k0 if char(F ) = p and
the image in F of the ring of Witt vectors of k0 if char(F ) = 0. The ring O0 contains the set of
multiplicative representatives R of k0.

2.1. As an example, for a 2-dimensional local field F with a system of local parameters t2, t1
define a base of neighborhoods of 1 as 1 + ti2OF + tj1O0[[t1, t2]] (e.g. [7]). Then every element
α ∈ F ∗ can be expanded as a convergent with respect to the just defined topology product

α = ta2
2 t

a1
1 θ
∏

(1 + θi,jti2t
j
1)

with θ ∈ R∗, θi,j ∈ R, ai ∈ Z. The set S = {(j, i) : θi,j 6= 0} satisfies the property: for every i there
is ji such that (j, i) ∈ S implies j > ji. Call such a set admissible.

2.2. We provide a short descrition of topology λ on the additive group of F in the case of
char(kn−1) = p. For a more detailed discussion see [26].

Definition. The topology λ on k0 is discrete.
Fix a system of local parameters ti. The residue field kn−1 can be identified with the field

k0((t1)) . . . ((tn−1)). Let F0 be a complete discrete valuation subfield of F which contains the
elements tn−1, . . . , t1 and a prime element t = tn if F is of characteristic p and t = p if F
is of characteristic 0, and which has the residue field k0(t1) . . . (tn−1). Fix a lifting (and thus a
set of representatives S) of k0(t1) . . . (tn−1) in F0 such that elements of k0 are mapped to their
multiplicative representatives in O0, and the residues ti ∈ kn−1, 1 6 i 6 n− 1, are mapped to ti in
F0. By linearity this determines the lifting of k0(t1) . . . (tn−1) to F0.

Given the topology λ on the additive group kn−1, introduce the topology λ on the additive group
F .

First, an element α ∈ F0 is said to be a limit of a sequence of elements αv ∈ F0 if and only if
given any series αv =

∑
i θv,it

i, α =
∑
i θit

i with θ∗ ∈ S, for every set {Ui, −∞ < i < +∞}
of neighbourhoods of zero in kn−1 and every i0 for almost all v the residue of θv,i − θi belongs to
Ui for all i < i0. Second, a subset U in F0 is called open if and only if for every α ∈ U and every
sequence αv ∈ F0 having α as a limit almost all αv belong to U . This determines the topology λ on
F0.
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Now one proves by induction on n that the completion of F0 with respect to λ is a subfield E of
F . The field F is in fact a finite dimensional vector space over E and thus F is endowed with the
topology λ. This topology doesn’t depend on the choice of a system of local parameters [14].

It is not difficult to deduce the following properties (for some relevant details see [14]):

(1) α is a limit of αv if and only if the sequence αv converges to α with respect to the topology λ;
(2) a limit is uniquely determined;
(3) each Cauchy sequence with respect to the topology λ converges in F ;
(4) the limit of the sum of two convergent sequences is the sum of their limits;

Remark. Let F be of characteristic p. The topology λ on the additive group is different from that
introduced by Parshin in [15] for n > 2: for example, the set W = F \ {ta2t

−c
1 + t−a2 tc1 : a, c > 1}

in F = Fp((t1))((t2)) is open in the topology λ: for each convergent sequence xv → x ∈ W almost
all xv belong to W . If for some open subgroups Ui in the additive group of Fp((t1)) such that
Ui = Fp((t1)) for i > a the group {x =

∑
ait

i
2 : x ∈ F, ai ∈ Ui} were contained in W , then for any

positive c such that tc1 ∈ U−a we would have ta2t
−c
1 + t−a2 tc1 ∈W , a contradiction, i.e. W is not open

in the topology of [15]. Also note that the topology of [15] is not the inductive limit topology of the
locally compact topologies on tm2 Fp((t1))[[t2]], since W is open in the inductive limit topology.

However, a sequence of elements in F converges to x ∈ F with respect to λ if and only if it
converges with respect to the topology introduced by Parshin. In fact, the topology λ is the finest
topology in which the set of convergent sequences is the same as in the topology introduced by
Parshin. So λ can be viewed as the sequential saturation of the Parshin topology.

2.3. Definitions. If char(kn−1) = p, then define a topology λ on F ∗ as the product of the induced
from F topology on the group of principal units VF , the discrete topologies on the cyclic groups
generated by ti and the discrete topology on R∗.

If char(F ) = char(ks) = 0, char(ks−1) = p, then define a topology λ on F ∗ as the product of the
trivial topology on 1 + (tn, . . . , ts+1)OF (which is a divisible subgroup of F ∗), the discrete topology
on the cyclic groups generated by ti with i > s and the topology λ on k∗s .

2.4. The following properties of the topology λ on F ∗ can be deduced by induction on dimension
n.

Properties.

(1) Each Cauchy sequence with respect to the topology λ converges inF ∗, the limit of the product of
two convergent sequences is the product of their limits. The multiplication in F ∗ is sequentially
continuous.

(2) For a 2-dimensional local field its multiplicative group F ∗ is a topological group and it has
a countable base of open subgroups (for example see [7]). In the case of a F with n > 3
and s > 2 both assertions don’t hold. For example, let F be a two-dimensional field and let
L = F ((t3)). If Z = 1 +Wt3 + t23F [[t3]] is an open subgroup in 1 + t3F [[t3]], W ⊂ F , then W
is an open subgroup in F . It is easy to see that then WW = F . So the coefficient of t23 in ZZ
can be any element of F . Plenty of open subgroups Y of 1 + t3F [[t3]] don’t satisfy the property
that the coefficient of t23 in Y can be any element of F . Therefore for those open subgroups Y
there is no open subgroup Z of L such that ZZ ⊂ Y .

(3) For every open neighbourhood U of 1 in F ∗ there is r such that V p
r

F ⊂ U (see [21, Lemma
1.6]).
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(4) For any sequence ai ∈ VF the sequence ap
i

i converges to 1. If M = (tn, . . . , tl)OF then any
sequence ai ∈ 1 + Mi converges to 1.

(5) Subgroups V p
r

F are closed in VF . The product of V p
r

F and a closed subgroup in VF is closed.

Remark. If char(F ) = p and k0 is finite then the topology λ on the multiplicative group is different
from that introduced by Parshin in [15]. For example, for n > 3 each open subgroup A in F ∗

with respect to the topology introduced in [15] possesses the property: 1 + t2nOF ⊂ (1 + t3nOF )A
(indeed, it is easy to see that the product of two open subgroups of kn−1 is equal to kn−1; this
implies the indicated property). However, the subgroup in 1 + tnOF topologically generated by
1 + θtinn . . . t

i1
1 with (in, . . . , i1) 6= (2, 1, . . . , 0) (all zeros except the first two components), in > 1

(ie the sequential closure of the subgroup generated by these elements), is open in λ and doesn’t
satisfy the above-mentioned property. So the topology λ and the topology of [15] are distinct even
at the level of subgroups. Another, third topology on F ∗ is discussed in subsection 2.6.

2.5. Definition. Call a subset X of elements of (Z)n greater than 0 admissible if for every
1 < m 6 n and every (im, . . . , in) there is j(im, . . . , in) such that (i1, . . . , in) ∈ X implies
im−1 > j(im, . . . , in), and there is j such that all (i1, . . . , in) ∈ X implies in > j.

If char(kn−1) = 0 then every element α ∈ F ∗ is a product of an infinitely divisible element, a
power of tn and an element of k∗n−1.

If char(kn−1) = p then every element α ∈ F ∗ is a convergent product

α = tann . . . t
a1
1 θ
∏

(1 + θin,...,i1t
in
n . . . t

i1
1 ), θ ∈ R∗, θin,...,i1 ∈ R

with {(i1, . . . , in) : θin,...,i1 6= 0} being an admissible set (see [4], [14]).

2.6. Include a principal unit ε ∈ VF into an arbitrary topological basis {εα} of VF and consider
the subgroup topologically generated by tann , . . . , t

a1
1 , R∗, principal units εα 6∈ 〈ε〉 and εp

s

. It is an
open subgroup of finite index of F ∗. Denote the shift-invariant topology ν on F ∗ which has these
open subgroups as the base of neighbourhoods of 1. A sequence of elements in F ∗ converges to 1
with respect to λ if and only if it converges with respect to ν. The group F ∗ is a topological group
with respect to ν.

Since for every subgroup H of F ∗ and an element α ∈ F ∗ such that there is an open subset
U of F ∗ which includes H and doesn’t contain α there is an open subgroup V which includes
H and doesn’t contain α, every subgroup of F ∗ which is the intersection of some open subsets is
the intersection of some open subgroups. In particular, the intersection of all open subgroups of
finite index containing a closed subgroup H coincides with H . Hence for any subgroup H of F ∗ a
sequence of elements of F ∗/H converges with respect to the quotient topology of ν if and only if
it converges with respect to the quotient topology of λ. Thus, if two sequences converge in F ∗/H ,
then their product converges to the product of their limits.

For other definitions and details see [7] (n = 2), [15], [2–5], [14].

3. Pairings of K-groups of higher local fields

Let Gur,ab,p be the Galois group of the maximal abelian unramified p-extension of F over F (which
corresponds to the maximal p-extension of the last residue field k0). From now on we will assume
that Gur,ab,p is nontrivial, i.e. k0 6= ℘(k0) where ℘(x) = xp − x.
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3.1. Let F be an n-dimensional local field of characteristic p. For α1, . . . , αn ∈ F ∗, a Witt vector
(β0, . . . , βr) ∈Wr(F ) and ϕ ∈ Gur,ab,p put

(α1, . . . , αn, (β0, . . . , βr)]r(ϕ) = (ϕ− 1)(γ0, . . . , γr)

where (Frob−1)(γ0, . . . , γr) = (λ0, . . . , λr); and the ith ghost component λ(i) of (λ0, . . . , λr) is
resk0 (β(i)α−1

1 dα1 ∧ · · · ∧ α−1
n dαn). In fact, to make the previous definition precise one needs, as

usual with Witt vectors, to pass to Witt vectors over a ring of characteristic zero, likeZp((t1)) . . . ((tn))
and then return back.

This is a sequentially continuous and symbolic (ie satisfies the Steinberg property) in the first n
coordinates map. It defines the Artin–Schreier–Witt–Parshin pairing [15] (finite k0 case), [4]:

Kn(F )/pr × Wr(F )/(Frob−1)Wr(F )→ Hom
(
Gur,ab,p,Wr(Fp)

)
where Frob is the Frobenius map.

3.2. Let F be an n-dimensional local field of characteristic 0 and let a primitive prth root of unity
ζ be contained in F . Suppose that p is odd (if p = 2 then formulas become much more complicated).

Suppose first that char(kn−1) = p.
LetX1, . . . , Xn be independent indeterminates over the quotient field of O0 (the latter is defined

at the beginning of section 2). For an element

α = tann . . . t
a1
1 θ
∏

(1 + θin,...,i1t
in
n . . . t

i1
1 )

of F ∗, with θ ∈ R∗, θin,...,i1 ∈ R put

α(X) = Xan
n . . . X

a1
1 θ
∏

(1 + θin,...,i1X
in
n . . . X

i1
1 ).

The formal power series α(X) ∈ O0((X1)) . . . ((Xn)) depends on the choice of local parameters
and the choice of a power series expression of α. Denote z(X) = ζ(X), s(X) = z(X)p

r − 1.
Define the action of the operator ∆ on θ’s and on Xi as raising to the pth power. For α ∈ F ∗ put
l(α) = p−1 logα(X)p−∆.

Now for elements α1, . . . , αn+1 ∈ F ∗ define Φ(α1, . . . , αn+1) as
n+1∑
i=1

(−1)n+1−il(αi)

(
dα1

α1
∧ · · · ∧ dαi−1

αi−1
∧ p−1 dα∆

i+1

α∆
i+1
∧ · · · ∧ p−1 dα∆

n+1

α∆
n+1

)
.

Define the Vostokov map [19] (case of finite k0), [4]:

Vr: (F ∗)⊕n+1 → Hom(Gur,ab,p, µpr )

as
Vr(α1, . . . , αn+1)(ϕ) = ζ(ϕ−1)δ, where (Frob−1)δ = res Φ(α1, . . . , αn+1)/s(X)

for ϕ ∈ Gur,ab,p.
This map Vr doesn’t depend on the attaching formal power series to elements of F and the choice

of a system of local parameters. The map Vr is sequentially continuous and symbolic, so it induces
a homomorphism

Vr:Kn+1(F )/pr → Hom(Gur,ab,p, µpr ).

The latter is in fact an isomorphism, as follows from the results of section 4.7.
For χ ∈ Hom(Gur,ab,p, µpr ) denote byE(χ) any principal unit such that Vr({t1, . . . , tn, E(χ)} =

χ. The elementsE(χ) in their explicit form introduced by Vostokov as primary elements in [19, sect.
1] in the case of finite k0 play an important role in deducing the explicit formula.
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If char(F ) = char(ks) 6= char(ks−1) then define the Vostokov pairing

Km(F )/pr × Kn+1−m(F )/pr → Hom(Gur,ab,p, µpr )

using the canonical surjections K1(F )/pr → K1(ks)/pr.

3.3. The composition of border homomorphisms in K-theory (eg, [9, Ch.IX, sect. 2]) supplies a
homomorphism

∂m:Km(F )→ Km(k0)⊕ · · · ⊕K0(k0).

The kernel of ∂n is the subgroup V Kn(F ) defined in 4.1.

We also get pairings Km(F )×Kn+1−m(F )→ Kn+1(F )
∂n+1−−−→ Km(k0)⊕ · · · ⊕K0(k0).

In particular, the tame symbol c is the composition of ∂n+1 with the projection to K1(k0) and
the lifting K1(k0) → R∗ can be explicitly described as follows. For an element α ∈ F ∗ and its
expression as in 3.2 put v(j)(α) = aj for 1 6 j 6 n. For elements α1, . . . , αn+1 of F ∗ the value
c(α1, α2, . . . , αn+1) is the element of R∗ whose residue is equal to the residue of αb1

1 . . . α
bn+1
n+1 (−1)b

in the last residue field k0, where b =
∑
s,i<j v

(s)(αi)v(s)(αj)bsi,j and bj is the determinant of the
matrix obtained by omitting the jth column with the sign (−1)j−1 from the matrix A = (v(i)(αj)),
and bsi,j is the determinant of the matrix obtained by omitting the ith and jth columns and sth row
from A.

4. K top-groups

4.1. Definition. Let λm be the finest topology on Km(F ) for which the map

φ:F ∗⊕m → Km(F ), φ(α1, . . . , αm) = {α1, . . . , αm}

is sequentially continuous with respect to the product of the topology λ on F ∗ (section 2) and for
which the subtraction in Km(F ) is sequentially continuous. Define

K top
m (F ) = Km(F )/Λm(F )

with the quotient topology where Λm(F ) is the intersection of all neighborhoods of 0 with respect
to λm (and so is a subgroup).

Remark 1. Every sequentially open (closed) subset with respect to λm is open (resp. closed).
The topology λm coincides with the finest topology on Km(F ) for which the map φ is sequentially
continuous with respect to the product of the topology ν on F ∗ (defined in 2.6) or Parshin’s topology
[15] and for which the subtraction in Km(F ) is sequentially continuous.

From the definition it follows that λm is a shift invariant topology. We have λ = λ1 and K top
1 (F )

coincides with the quotient of F ∗ by the maximal divisible subgroup of VF . If the first residue field
kn−1 is of characteristic p and the last residue field k0 is finite, then K top

1 (F ) = K1(F ).

Definition. Denote by V Km(F ) the subgroup of Km(F ) generated by VF ; similarly introduce
V K

top
m (F ).

Remark 2. The induced topology on V Km(F ) by λm coincides with the the finest topology on
V Km(F ) for which the restriction of φ on VF ⊕ F ∗⊕m−1 → V Km(F ) is sequentially continuous
with respect to the product of the topology λ on F ∗ and for which the subtraction in V Km(F ) is
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sequentially continuous. Indeed, the map φ and subtraction in Km(F ) is sequentially continuous
with respect to the shift invariant topology onKm(F ) extended from the finest topology on V Km(F )
as above.

A sequentially continuous symbol homomorphism from the tensor product ofm copies ofF ∗ to a
topological Hausdorff groupG induces a continuous homomorphism fromK

top
m (F ) toG. Therefore

the Artin–Schreier–Parshin, Vostokov pairings and tame symbol defined in section 3 are factorized
through topological K-groups.

From property (5) of 2.4 one deduces that {θ, ε} = 0 in K top
2 (F ) for θ ∈ R∗ and a principal unit

ε.

Suppose that k0 is algebraic over Fp. Then
(1) {θ, θ′} = 0 in K2(F ) for θ, θ′ ∈ R∗. More generally, if the absolute Galois group of k0 is

procyclic then {θ, θ′} ∈ ∩l>1lK2(F ) for θ, θ′ ∈ R∗ (this is due to the fact that the norm map
for a finite extension of k0 is surjective).

(2) Using the tame symbol defined in 3.3 one easily shows that Km(F ) splits into the direct sum of
V Km(F ), several copies of Z and of the group R∗.

(3) K
top
m (F ) splits into the direct sum of V K top

m (F ), several copies of Z and of the group R∗. In
particular,K top

n (F ) is isomorphic to the direct sum of the cyclic group generated by {t1, . . . , tn},
n copies of R∗, and the subgroup V K top

n (F ).

Remark 3. In the general case of a perfect residue field k0 the group K top
m (F )/p splits into the

direct sum of V K top
m (F )/p and several copies of Z/p.

4.2. For two principal units ε, η ∈ F ∗ in K2(F ) the following formula is straightforward:

{ε, η} = {1− ε, 1 + (ε− 1)η} − {1 + (ε− 1)(η − 1)ε−1, η}.

The principal unit 1+(ε−1)(η−1)ε−1 is of higher order than that of ε, η. Now forβ ∈ (tn, . . . , t1)OF
and θ ∈ R∗, we get

{1− θtinn . . . t
i1
1 , 1 + β} = {θtinn . . . t

i1
1 , 1− θt

in
n . . . t

i1
1 (1 + β)}

−{1− θtinn . . . t
i1
1 β(1− θtinn . . . t

i1
1 )−1, 1 + β}.

The first symbol of the right hand side can be written as the sum of symbols {ti, λi} with principal
units λi which sequentially continuously depend on 1− θtinn . . . t

i1
1 and 1 + β, and the first element

of the second symbol is closer to 1 in K2(F ) than 1− θtinn . . . t
i1
1 is.

For an arbitrary principal unit ε factorize it into the convergent product of 1−θtinn . . . t
i1
1 and then

apply the previous argument. One can verify following Parshin’s method [15, sect.2] (put η = 1 +β)
that the symbol {ε, η} can be written in K top

2 (F ) as
∑
i{ρi, ti} + {ρ, η} with principal units ρi,

ρ which sequentially continuously depend on ε and η and ρ closer to 1 than ε is. This implies
(repeating the argument) that for arbitrary principal units ε, η the symbol {ε, η} can be written in
K

top
2 (F ) as

∑
{ρi, ti} with principal units ρi which sequentially continuously depend on ε and η.

Therefore, every element x of V Km(F ) can be written as a sum of an element of Λm(F ) plus a
fixed number of elements of the form {αi} · {some local parameters} with αi ∈ F ∗.

Remark. Since lx for x ∈ V Km(F ) can be written as the sum of symbols {αl}·{local parameters}
(α ∈ VF ) and an element of Λm(F ), from property (4) of 2.4 we get

∩rprV K top
m (F ) = {0}.



Sequential topologies and quotients of Milnor K -groups 9

4.3. From the previous subsection we immediately deduce that the groupV K top
m (F ) is topologically

generated (with admissible sets playing the same role as in the case of F ∗) by symbols {1 +
θtinn . . . t

i1
1 , tj1 , . . . , tjm−1} with θ ∈ R.

Topological relations among these generators (modulo pr for each r in the case of char(F ) = p,
modulo pr in the case char(F ) = 0 and a primitive prth root of unity belongs to F , modulo p if
char(F ) = 0 and a primitive pth root of unity doesn’t belong to F ) are revealed using the Artin–
Schreier–Witt–Parshin and Vostokov pairings, for details see [15], [2–5]. Simultaneously one
verifies that appropriately modified pairings are nondegenerate.

For example, if µpr ⊂ F ∗, then the Vostokov pairing Vr is very useful in the study of the structure
of K top

m (F )/pr in terms of topological generators and relations between them, see [2, sect. 3 and 4]
(the quotient filtration on Km(F )/p induced by the standard filtration on F ∗ as a discrete valuation
field can be also described in terms of differential forms over kn−1 by Bloch–Kato’s result [1]).

Using explicit calculations with the Vostokov pairing one shows that prK top
m (F ) coincides with

the intersection of open subgroups of K top
m (F ) containing prK

top
m (F ). One can also prove the

following lemma (the method of the proof is entirely similar to that of [2]).

Lemma. Let F be an n-dimensional local field containing a primitive pth root. Let L = F (µpr ) and
ps = |L : F |. Let σ be a generator of Gal(L/F ). Then the annihilator of iF/LK

top
n+1−m(F ) with

respect to the Vostokov pairing Vr is equal to (σ − 1)K top
m (L) + pr−siF/LK

top
m (F ) + prK top

m (L).

4.4. Definition. For topological spacesAi, 1 6 i 6 d, introduce the following ∗-product topology
on ⊕Ai: first, an element (x1, . . . , xd) ∈ ⊕Ai is a limit of a sequence (xv,1, . . . , xv,d) ∈ ⊕Ai if
xv,i → xi when v → +∞ for all 1 6 i 6 d. Now a subset Y ∈ ⊕Ai is called an open subset if for
every y ∈ Y and every sequence yv ∈ ⊕Ai having y as a limit almost all yv belong to Y .

The ∗-product topology is in general strictly finer than the topology of the product of topological
spaces; it is the sequential saturation of the product topology. For example, if n = 3, char(F ) = p,
then the set F ∗×F ∗ \ {(1 + t3ta2t

−c
1 , 1 + t3t−a2 tc1) : a, c > 1} is open in F ∗×F ∗ with respect to the

∗-product topology, but is not open in the product topology.

Compare this definition with the definitions in 2.2.

4.5. In subsections 4.5–4.7 we study relations between Λm(F ) ∩ V Km(F ) and
∩l>1lV Km(F ) in the general case of a perfect k0.

Remark. If k0 is algebraic over Fp then Λm(F ) ⊂ V Km(F ) and ∩l>1lKm(F ) = ∩l>1lV Km(F )
as follows from 4.1. In general ∩l>1lKm(F ) 6⊂ V Km(F ) (because the divisible part of R∗ can be
nontrivial; see also (1) in 4.1).

Theorem. If char(F ) = p then Λm(F ) ∩ V Km(F ) coincides with ∩l>1lV Km(F ); the group
Λm(F ) ∩ V Km(F ) is p-divisible.

Proof. According to Bloch–Kato–Gabber theorem [1] the differential symbol

dF :Km(F )/p→ Ω
m
F , dF {α1, . . . , αm} =

dα1

α1
∧ · · · ∧ dαm

αm

is injective.
Ωm
F is a finite-dimensional vector space over F/F p, so the intersection of all neighborhoods

of zero in Ωm
F with respect to the induced by λ topology is trivial. The differential symbol dF is

continuous. Therefore its injectivity implies Λm(F ) ⊂ pKm(F ).
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Let J consist of j1, . . . , jm−1 and run all (m−1)-elements subsets of {1, . . . , n},m 6 n+1. Let
EJ be the subgroup of VF generated by 1 +θtinn · · · t

i1
1 , θ ∈ O0, with restrictions that p doesn’t divide

gcd(i1, . . . , in) and the smallest index l for which il is prime to p doesn’t belong to J . Consider the
induced by λ topology on EJ . Applications of the Artin–Schreier–Witt–Parshin pairing provide a
proof of a corrected theorem of Parshin (the proof goes in the same way as in [15]) which claims
that there exists an isomorphism and homeomorphism ψ from the group

∏
J EJ (with the ∗-product

of the induced topology by Λ on EJ ) onto V K top
m (F ). This provides an explicit and satisfactory

description of the topology on K top
m (F ) in the positive characteristic case.

Therefore the group V Km(F )/Λm(F )∩V Km(F ) = ψ(
∏

EJ ) doesn’t have nontrivial p-torsion.
The groupKm(F )/V Km(F ) has no nontrivial p-torsion due to 3.3 (since TorspKi(k0) = {0}). Now
from Λm(F ) ⊂ pKm(F ) we deduce that Λm(F ) ∩ V Km(F ) = p(Λm(F ) ∩ V Km(F )).

Since VF is l-divisible for every l prime to p, we get

Λm(F ) ∩ V Km(F ) ⊂ ∩l>1lV Km(F ).

For the inverse inclusion see Remark in 4.2.

4.6. For m 6 n + 1, d =
(

n
m−1

)
define the homomorphism

g:V ⊕dF → V Km(F ), βJ 7→
∑
{βJ , tj1 , . . . , tjm−1},

where J = {j1, . . . , jm−1} runs over all m− 1 elements subsets of {1, . . . , n}.

Theorem.

(i) im(g) + Λm(F ) ∩ V Km(F ) = V Km(F ). The homomorphism

g0:V ⊕dF /g−1(Λm(F ))→ V K top
m (F )

is a homeomorphism between V ⊕dF /g−1(Λm(F )) endowed with the sequential saturation of the
quotient topology of the (∗-)product of VF with the the induced by λ topology and V K top

m (F )
with the topology λm.

(ii) Λm(F ) ∩ V Km(F ) is the intersection of all open subgroups of finite index in V Km(F ).

Proof. From the definitions and 4.2 it follows that for α1 ∈ VF , α2, . . . , αm ∈ F ∗ there exist
elements βJ ∈ VF , J = {j1, . . . , jm−1}, which sequentially continuously depend on α1, . . . , αm
such that the symbol {α1, . . . , αm} can be written as∑

{βJ , tj1 , . . . , tjm−1} mod Λm(F ).

So there is a sequentially continuous map f :VF × F ∗⊕m−1 → V ⊕dF such that its composition with
g coincides with the restriction of the map φ on VF ⊕ F ∗⊕m−1 modulo Λm(F ).

Let U be an open subset in V Km(F ). Then g−1(U ) is open in the ∗-product of the topology λ
on V ⊕dF . Indeed, otherwise for some J there were a sequence α(i)

J 6∈ g−1(U ) which converges to
αJ ∈ g−1(U ). Then the properties of the map φ imply that the sequence φ(α(i)

J ) 6∈ U converges
to φ(αJ ) ∈ U which contradicts the openness of U . Thus, g−1(Λm(F )) is the intersection of open
subsets of V ⊕dF .

The product of two convergent sequences xi, yi in V ⊕dF /g−1(Λm(F )) converges to the product
of their limits by 2.6. Hence using Remark 2 of 4.1 we deduce that the quotient topology of λm on
V Km(F )/Λm(F )∩V Km(F ) is > the sequential saturation of the quotient topology of the ∗-product
of λ on V ⊕dF via g.
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Thus,
g:V ⊕dF /g−1(Λm(F ))→ V Km(F )/Λm(F ) ∩ V Km(F )

is a homeomorphism of V ⊕dF /g−1(Λm(F )) with the quotient of the ∗-product topology of the λ
topologies on V ⊕dF and of V Km(F )/Λm(F ) ∩ V Km(F ) with the quotient topology of λm.

Note that Λm(F ) is closed: if xi ∈ Λm(F ) tends to x, then x = xi + yi where xi, yi converges
to 0, so x converges to 0 and hence belongs to Λm(F ). To deduce (ii) use the fact that every closed
subgroup in V ⊕dF is the intersection of certain open subgroups of finite index (see 2.6), hence every
closed subgroup in V Km(F ) is the intersection of certain open subgroups of finite index.

Remark 1. Using property (4) of 2.4 and the previous theorem we deduce that for sets of subgroups{
Zi
}

=
{
piV K

top
m (F )

}
or
{
Zi
}

=
{
〈{1 + Mi}K top

m−1(F )〉
}

where M = (tn, . . . , tl)OF then the
natural map

V K top
m (F )→ lim←−V K

top
m (F )/Zi

is surjective.

Remark 2. Introduce on V K top
m (F ) the topology νm induced by the topology ν on VF via the map

g. Due to the properties of ν in 2.6 the group V K top
m (F ) is a topological group with respect to

νm and by property (ii) of the preceding theorem the intersection of all neighbourhoods of zero in
V K

top
m (F ) with respect to λm is zero. Since ν and λ have the same sets of convergent sequences,

νm and λm have also the same sets of convergent sequences.

Remark 3. From the proof of the theorem we deduce that λm coincides with the finest topology
om on Km(F ) such that the map

(F ∗⊕m)⊕d → Km(F ), (βj,i) 7→
∑

16i6d

{β1,i, . . . , βm,i}

is sequentially continuous.

Remark 4. From the proof of the theorem we deduce that λm coincides with the finest topol-
ogy σm on Km(F ) such that for all αi ∈ F ∗, 1 6 i 6 m − 1, the map from F ∗ to Km(F ),
α → {α, α1, . . . , αm−1}, is sequentially continuous and the subtraction in Km(F ) is sequentially
continuous.

4.7. Theorem.

(i) Λm(F ) ∩ V Km(F ) coincides with ∩l>1lV Km(F ).
(ii) Let l be any prime number if k0 is algebraic over Fp and l = p otherwise. If F contains

a primitive lth root ζl of unity and lx = 0 for x ∈ K
top
m (F ), then x = {ζl} · y for some

y ∈ K top
m−1(F ).

(iii) The group ∩l>1lV Km(F ) is divisible. The sequence

0→ Λm(F ) ∩ V Km(F )→ V Km(F )→ V K top
m (F )→ 0

splits.

(iv) If k0 is algebraic over Fp then (i) and (iii) hold if Λm(F )∩V Km(F ) is replaced by Λm(F ) and
∩l>1lV Km(F ) by ∩l>1lKm(F ).

Proof. To deduce (i) we use Remark of 4.2 which implies that ∩l>1lV Km(F ) ⊂ Λm(F ). In view
of Theorem 4.5 it remains to treat the case of fields of characteristic 0; there it is sufficient to consider
the case of a field F of characteristic 0 with residue field kn−1 of characteristic p.
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In the course of the proof we use Bloch–Kato’s theorem which says that the norm residue
homomorphism for a henselian discrete valuation field is an isomorphism [1].

To complete the proof of (i) we show by induction on r that prV Km(F ) is equal to the intersection
of open subgroups of V Km(F ) which contain prV Km(F ); then certainly prV Km(F ) ⊃ Λm(F ) ∩
V Km(F ) (note that lV Km(F ) = V Km(F ) for l prime to p).

First of all, we can assume that µp is contained in F applying the standard argument by using
(p, |F (µp) : F |) = 1 and l-divisibility of V Km(F ) for l prime to p.

If r = 1, then we can use the description of V K top
m (F )/p provided by the Vostokov symbol of

3.2 and 4.3 and compare it with the description of the quotients

UiKm(F ) + pKm(F )/Ui+1Km(F ) + pKm(F )

(where UiKm(F ) is generated by 1 + tinOF ) provided by Bloch–Kato’s theorem [1]; one deduces
that V Km(F )/p = V K top

m (F )/p. From 4.3 we deduce then that the intersection of open subgroups
in V Km(F ) containing pV Km(F ) is equal to pV Km(F ).

It follows from the explicit description of the Vostokov symbol that

Kn+1(F )/p = K top
n+1(F )/p ' Hom(Gur,ab,p, µp).

If µpr ⊂ F , then one deduces by induction on r using Vostokov’s primary elements E(χ) that

Kn+1(F )/pr = K top
n+1(F )/pr ' Hom(Gur,ab,p, µpr ).

Induction Step.
For a field F consider the pairing

( , )r:Km(F )/pr ×Hn+1−m(F, µ⊗n−mpr )→ Hn+1(F, µ⊗npr )

given by the cup product and the map F ∗ → H1(F, µpr ). If µpr ⊂ F , then from Bloch–Kato’s
theorem one can deduce that ( , )r is up to identifications the same as the Vostokov pairing Vr( , ).

For χ ∈ Hn+1−m(F, µ⊗n−mpr ) put

Aχ = {α ∈ Km(F ) : (α, χ)r = 0}.

Let α belong to the intersection of all open subgroups of V Km(F ) which contain prV Km(F ).
Due to Lemma below α ∈ Aχ for every χ ∈ Hn+1−m(F, µ⊗n−mpr ).

SetL = F (µpr ) and ps = |L : F |. From the induction hypothesis we deduce thatα ∈ psV Km(F )
and hence α = NL/Fβ for some β ∈ V Km(L). Then

0 = (α, χ)r,F = (NL/Fβ, χ)r,F = (β, iF/Lχ)r,L

where iF/L is the natural map. Keeping in mind the identification between the Vostokov pairing Vr
and ( , )r for the field L we see that the element β is annihilated by iF/LKn+1−m(F ) with respect
to the Vostokov pairing. From Lemma of 4.3 using its notation we deduce that

β ∈ (σ − 1)Km(L) + pr−siF/LKm(F ) + prKm(L),

and therefore α ∈ prKm(F ). Since Km(F )/V Km(F ) has no nontrivial p-torsion (see 3.3), we
conclude α ∈ prV Km(F ) as required.

Thus, the intersection of open subgroups containing prV Km(F ) is equal to
prV Km(F ) and Λm(F ) ∩ V Km(F ) ⊂ prV Km(F ).

Lemma. Aχ is an open subgroup of Km(F ).
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Proof. Due to Remark 4 of 4.6 it suffices to show that for every b2, . . . , bm ∈ F ∗ the group

B = {a ∈ F ∗ : ({a, b2, . . . , bm}, χ)r = 1}

is open in F ∗, i.e. if ai → 1 then ai ∈ B for all sufficiently large i. Denote by β the image of
{b2, . . . , bm}, χ with respect to the pairing

Km−1(F )/pr ×Hn+1−m(F, µ⊗n−mpr )→ Hn(F, µ⊗n−1
pr );

thenB is the annihilator of β with respect to the pairing F ∗/pr ×Hn(F, µ⊗n−1
pr )→ Hn+1(F, µ⊗npr ).

We argue by induction on r.
If r = 1, then using the link between ( , )1 and V1( , ) and the explicit formula for V1 we deduce

that B is open.
Induction step. Let r > 1. Since api → 1, the induction hypothesis implies that api ∈ B for all

sufficiently large i. So (ai, β) ∈ TorspHn+1(F, µ⊗npr ) for all sufficiently large i.

The exact sequence 1→ µ⊗mp → µ⊗mpr → µ⊗m
pr−1 → 1 induces the exact sequence

Hn(F, µ⊗npr )→ Hn(F, µ⊗n
pr−1 )→ Hn+1(F, µ⊗np )→ Hn+1(F, µ⊗npr ).

Due to Bloch–Kato’s theorem the first map is surjective, hence the third one is injective. Therefore,
TorspHn+1(F, µ⊗npr ) is isomorphic to a quotient of Hn+1(F, µ⊗np ) which due to Bloch–Kato’s theo-
rem is isomorphic to a quotientS1 ofK top

n+1(F )/p. Similar to the previous argumentHn(F, µ⊗n−1
pr )/p

is isomorphic to a subquotient S2 of Kn(F )/p. It remains to show that the annihilator of the image
of β in S2 with respect to the pairing F ∗/p×S2 → S1 is open; identifying the latter with the induced
one by the Vostokov pairing one completes the induction step.

To prove (ii) assume that the field F contains a primitive lth root of unity ζl. If l 6= p, then from
Remark of 4.2 and property (3) in 4.1 we deduce the result.

Suppose that l = p.
The exact sequence 1→ µ⊗mps → µ⊗m

ps+1 → µ⊗mp → 1 induces the commutative diagram

µp ⊗Km−1(F )/p −−−−→ Km(F )/ps
p−−−−→ Km(F )/ps+1y y y

Hm−1(F, µ⊗mp ) −−−−→ Hm(F, µ⊗mps ) −−−−→ Hm(F, µ⊗m
ps+1 )

and the bottom horizontal sequence is exact, the left and the right vertical homomorphisms are
isomorphisms due to Bloch–Kato’s theorem. Hence if px ∈ prKm(F ), then x = {ζp} · ar−1 +
pr−1cr−1. Denote by Dr the preimage of the closed subgroup prK

top
m (F ) with respect to the

continuous homomorphism K
top
m−1(F ) h−→ V K

top
m (F ), z → {ζp} · z. The kernel of h is equal to

D = ∩Dr.
Let α ∈ K top

m−1(F ) \D. There is a positive integer r such that h(α) 6∈ prV K top
m (F ). Include α

in a topological basis ofK top
m−1(F ) modulo p (see 4.3 and Remark 3 of 4.1). Let Uα + pK top

m−1(F ) be
the subgroup of K top

m−1(F ) topologically generated by elements of the basis distinct from multiples
of α. Then ar−1 ∈ Dr ⊂ Uα. Since

{
Uα
}

is a basis of open neighbourhoods of 0 with respect to the
quotient topology of νm−1 extended naturally to K top

m−1(F )/D (see Remark 2 of 4.6 and Remark 3
of 4.1) we deduce that {ar mod D} is a Cauchy sequence in K top

m−1(F )/D. Since D ⊃ pK
top
m−1(F )
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there is a closed subgroup D′ of K top
m−1(F ) such that D/p⊕D′/p = K top

m−1(F )/p. Let y be a limit
of the image of {ar} in D′/p (which exists since D′ is complete) then z = {ζp} · y.

To prove (iii) note that for l′ prime to p Theorem 4.6 (i) shows that V K top
m (F ) has no nontrivial

l′-torsion; hence by part (i) ∩l>1lV Km(F ) is l′-divisible.
Let z ∈ ∩l>1lV Km(F ). Then z = px for some x ∈ V Km(F ). Suppose that a primitive

pth root of unity belongs to F . Then from the previous part we get x = {ζp} · y + w with
w ∈ Λm(F )∩ V Km(F ). Hence z = pw and Λm(F )∩ V Km(F ) is p-divisible. If F doesn’t contain
a primitive pth root, then pass to F (ζp) and use the norm map argument.

(iv) follows from Remark 1 of 4.5.

Remark to the proof. LetOF be the discrete valuation ring with respect to tn. Using Kurihara’s
exponential map [25]

Ω
m−1
OF

→ Km(F )/prKm(F ),

whose definition uses the syntomic complex, and the description by Bloch and Kato of UiKm(F ) +
prKm(F )/Ui+1Km(F ) + prKm(F ) for small i one can prove that prV Km(F ) is equal to the
intersection of open subgroups of V Km(F ) which contain prV Km(F ) in the same way as in the
case r = 1.

Corollary. If k0 is algebraic over Fp then for every integer l > 1

Km(F )/l ' K top
m (F )/l.

In general

V Km(F )/l ' V K top
m (F )/l.

Thus, one can use topological generators of K top
m (F )/l to describe the structure of Km(F )/l. In

particular, if F contains a primitive lth root of unity or l is prime or l is a power of char(F ), then
all relations between topological generators of V K top

m (F )/l are known (as an application of the
Artin–Schreir–Witt–Parshin or Vostokov pairing).

Remark 1. Let F be of characteristic zero. The l-adic symbol defined in [18]

Kn(F )→
∏
l

Hn(F,Zl(n))

induces the monomorphism

V K top
n (F )→

∏
l

Hn(F,Zl(n)).

Remark 2. Let ρm be the finest topology on Km(F ) for which the map from F ∗⊕m to Km(F )
is sequentially continuous and the intersection of all neighbourhoods of zero in Km(F ) contains
∩l>1lKm(F ) (the topology ρm was used in [2–3]). Then ρm is > λm and the intersection of all
neighbourhoods of zero in Km(F ) with respect to ρm coincides with ∩l>1lKm(F ). On the level of
subgroups λm and ρm coincide.

Remark 3. For another approach to describe the set of open subgroups of Km(F ) see [9].
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Remark 4. For char(F ) = 0 I. B. Zhukov found (applying higher class field theory) a complete
algebraic description of K top

n (F ) in several cases (see [21]). In particular, if TpK
top
n (F ) is the

topological closure of the p-torsion in K
top
n (F ) and F has a local parameter tn algebraic over

Qp, then V K top
n (F )/TpK

top
n (F ) possesses a topological basis of the form {ε, tn−1, . . . , t1} with ε

running free Zp-generators of the group of principal units of the algebraic closure of Qp in F modulo
its p-primary torsion.

Remark 5. Let k0 be finite (resp. infinite and not p-algebraically closed). From the point of view
of higher local class field theory Theorems 4.6 and 4.7 show that the kernel of the reciprocity map

Kn(F )→ Gal(F ab/F )

(resp.

V Kn(F )→ Hom(Gur,ab,p,Gal(E/F ))

whereE is a maximal abelian totally ramified p-extension ofF ), which due to existence theorem [9],
[2–3] coincides with the intersection of all open subgroups of finite index in Kn(F ) (resp. normic
subgroups of V Kn(F ) [4, sect.5]), is equal to Λn(F ) = ∩l>1lKn(F ) (resp. Λn(F ) ∩ V Kn(F ) =
∩l>1lV Kn(F )). Thus, the induced map from K

top
n (F ) (resp. from V K

top
n (F )) is a monomorphism

(with dense image).

Remark 6. It is an open problem to describe the torsion in Λm(F ). For n = 1 see [11] (finite k0),
[12] (perfect k0).

4.8. The norm map on topologicalK-groups. It follows easily from 4.1 that for a cyclic extension
L/F of a prime degree K top

m (L) is generated by L∗ and the image of K top
m−1(F ).

For an arbitrary multidimensional local field define the norm on K top(F ) as induced from the
norm on Milnor K-groups.

Using Theorems 4.6–4.7, Remark 4 of 4.6 and a description of NL/F :L∗ → F ∗ for a cyclic
extension of prime degree [2–3] one directly shows that for a finite extension M/F

(1) the image of an open subgroup in Kn(M ) with respect to the norm map is an open subgroup,
(2) the preimage of an open subgroup inKm(F ) with respect to the norm map is an open subgroup.

Remark. In characteristic p if k0 is finite there is a very simple way to define the norm map on
topological K-groups [15–16]:

(a) for a cyclic extension L/F of a prime degree introduce NL/F :K top
m (L)→ K

top
m (F ) as induced

by the norm on K1;
(b) for an arbitrary abelian extension L/F define the norm presenting L/F as a tower of cyclic

extensions of prime degree.

Correctness of this definition follows from an application of the Artin–Schreier–Witt–Parshin
and tame pairings [15].

Compatibility of the just defined norm with induced from the Milnor K-groups follows from
the results of 4.7: indeed, the norm map on Milnor K-groups factories through the topological
K-groups due to the algebraic description of Λm in Th. 4.7(i), and then it coincides with the norm
map defined above, since both agree for cyclic extensions of prime degree.

Note that [15] uses this compatibility, without proof, hence several proofs and results of [15] are
incomplete without the current work.
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Theorem. If L/F is a cyclic extensions of a prime degree l with a generator σ then the sequence

K
top
n (F )/l ⊕K top

n (L)/l
iF/L⊕(1−σ)
−−−−−−−→ K

top
n (L)/l

NL/F−−−−→ K
top
n (F )/l

is exact, where iF/L is induced by the field embedding.

This theorem is verified by explicit calculations in K top
n /l-groups whose structure is completely

known due to an application of the Artin–Schreier–Witt–Parshin, tame and Vostokov pairings (adjoin
if necessary a primitive lth root of unity ζ). Similar calculations show that the index of the norm
group NL/FK

top
n (L) in K top

n (F ) is finite of order |L : F | if the latter is prime and k0 is finite [2–3].

It is well known that a corollary of this theorem and the description of the torsion of K top
n (F ) of

4.7 is the exactness of the sequence

K
top
n (L) 1−σ−−−−→ K

top
n (L)

NL/F−−−−→ K
top
n (F )

for every cyclic extension L/F of prime degree if k0 is finite and of degree p in the case of perfect
k0.
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Appendix: On the group K2(F )/
⋂
l>1 lK2(F )

Oleg Izhboldin

Abstract. We construct a field F containing a primitive pth root and such that p-torsion of the
group Km(F )/ ∩l>1 lKm(F ) is not generated by p-torsion in F ∗. The method of proof is to work
with the field of rational functions of an infinite product of certain Severi–Brauer varieties using
Merkur’ev–Suslin’s theorem, Suslin’s theorem on the torsion in K2(F ) and Kahn’s theorem.

Mathematics Subject Classification (2000). 19C30, 19C99

Key words. Merkur’ev–Suslin theorem, Severi–Brauer variety, generic splitting field.

1. Introduction

Throughout the text we denote by µm the group of mth roots of unity. For an abelian group A we
denote m-torsion points of A by TorsmA.

Fix a prime integer p. In this appendix F is a field of characteristic different from p. In the case
p = 2 we will suppose that

√
−1 ∈ F . Let ζpi be a primitive pith root and Fi = F (ζpi ), F∞ = ∪Fi.

For a field F put s(F ) = sup{n : Fn = F}.

1.1. Definition. Set

DKn(F ) = ∩l>1lKn(F ), DpKn(F ) = ∩ipiKn(F ), Kt
n(F ) = Kn(F )/DKn(F ).

Clearly, Kt
∗(F ) = ⊕∞n=0K

t
n(F ) is a graded ring. There is a natural question, for which fields

the structure of the torsion subgroup in Kt
n(F ) is "standard". More precisely, for which fields the

condition ζpn ∈ F ∗ implies that Torspn Kt
n(F ) = {ζpn} ·Kt

n−1(F )?

Section 4 of the previous paper contains a description of Kt
m(F ) = K

top
m (F ) for a higher local

field F ; in particular it is shown that the answer to the question in the previous paragraph is positive
for higher local fields with finite residue field k0.

The main purpose of this note is to construct fields for which the answer is negative. We prove
the following

1.2. Theorem. Let p be a prime integer. Then there exists a field F such that ζp ∈ F and
TorspKt

2(F ) 6= {ζp, F ∗}.

The proof is given in 3.4; now we deduce some corollaries.

Corollary 1. Let p be a prime integer and m > 2. Then there exists a field F such that ζp ∈ F
and TorspKt

m(F ) 6= {ζp}Kt
m−1(F ).
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Proof. Let F0 be a field satisfying the conditions of the theorem. Let u0 ∈ TorspKt
2(F0) be such

that u0 /∈ {ζp, F ∗}. Setting F = F0(t1, . . . , tm−2) and u = u0 · {t1, . . . , tm−2} one can see that
u ∈ TorspKt

m(F ) and u /∈ {ζp} ·Kt
m−1(F ). Hence, TorspKt

m(F ) 6= {ζp}Kt
m−1(F ).

Corollary 2. For all m > 2 there exists a cyclic field extension L/F of degree p with Galois
group Gal(L/F ) = {1, σ, . . . , σp−1} such that the sequence

Kt
m(L) 1−σ−−−−→ Kt

m(L)
NL/F−−−−→ Kt

m(F )

is not exact.

Proof. Suppose that the sequence is exact for all cyclic extensions L/F . Then arguments of
[3, Lemma 10.4] show that TorspKt

m(F ) = {ζp}Kt
m−1(F ) for all fields F containing ζp. We get a

contradiction to Corollary 1.

First we consider the notion of splitting fields.

2. Generic splitting fields for elements of the group K2(F )/pn

2.1. Denote by hi the homomorphism

hi:K2(F )→ Torspi Br(Fi), {a, b} 7→ (a, b)ζpi .

In what follows we will use the following

Proposition. The kernel of hi is equal to piK2(F ).

Proof. Using Merkur’ev–Suslin’s theorem [3] the injectivity of

K2(F )/pi → Torspi Br(Fi)

is equivalent to the injectivity of H2(F, µ⊗2
pi ) → H2(F (µpi ), µ

⊗2
pi ). The latter follows from Kahn’s

theorem [2, Th.1(1)].

Lemma. Let u ∈ K2(F ) and let j > i > 1. Then (hi(u))Fj
= pj−ihj(u). Moreover, if j > i > s(F ),

then NFj/Fi
(hj(u)) = hi(u).

2.2. Definition. Let u ∈ K2(F ) and n be a positive integer. A variety X is said to be a
(u, n)-generic if the following conditions hold:

(1) X is a homogeneous variety,
(2) for a field extension E/F the following conditions are equivalent:

(a) uE ∈ pnK2(E),
(b) variety XE is rational.

Remark. Since X is a homogeneous variety, the property of XE to be rational is equivalent to the
existence of a rational point on the E-variety XE .
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Lemma. Let u ∈ K2(F ) and n be a positive integer. Then

(1) Suppose that X is a (u, n)-generic. Then uF (X) ∈ pnK2(F (X)).
(2) Suppose thatX is a (u, n)-generic. Let L/F be a field extension. ThenXL is a (uL, n)-generic.
(3) Suppose that theX1 andX2 are (u, n)-generic. Then the extensionF (X1)/F is stably equivalent

to extension F (X2)/F .

Proof. (1) XF (X) has a rational point and hence condition (b) in the definition holds for the field
E = F (X). Hence, condition (a) holds.

(2) Obvious.
(3) By the previous definition and (1), varieties (X2)F (X1) and (X1)F (X2) are rational. Therefore

the extensions F (X1 ×X2)/F (X1) and F (X1 ×X2)/F (X1) are purely transcendental. Hence, the
extension F (X1)/F is stably equivalent to extension F (X2)/F .

2.3. The following example proves the existence of (u, n)-genetic varieties (recall that in the case
p = 2 we suppose that i ∈ F ∗; if p = 2 and i /∈ F ∗ we do not know whether there exists a
(u, n)-generic variety).

Example. Let u ∈ K2(F ) and let A be a central simple Fn-algebra such that [A] = h(uFn ) ∈
Torspn Br(Fn). Let S be the Severi–Brauer variety of A [3]. Then the variety RFn/F (S) is a (u, n)-
generic.

Proof. Let E/F be an extension. Since Fn/F is a Galois extension, there exists an isomorphism
of F -algebras E ⊗F Fn '

∏
En. Properties of Weil restriction show that

morF (Spec(E), RFn/F (S)) = morFn (Spec(E ⊗F Fn), S)

= morFn
(
∐

Spec(En), S) =
∐

morFn
(Spec(En), S).

Therefore the variety (RFn/F (S))E has a rational point if and only if SEn has a rational point. Since
SEn

is the Severi–Brauer variety of AEn
, the variety SEn

has a rational point if and only if the
algebra AEn

splits. By Proposition 2.1 this is equivalent to uE ∈ pnK2(E).

2.4. Proposition. Let u ∈ K2(F ) and let X be a (u, n)-generic variety. Then Br(F (X)/F ) is
generated by hr(u) where r = min(n, s(F )).

Proof. Let A be an Fn-algebra corresponding to the element hn(u) ∈ Torspn Br(Fn). Taking into
account Lemma of 2.2 and Example of 2.3, we can assume that X = RFn/F (S) where S is the
Severi–Brauer variety ofA. It is well known that the group Br(F (X)/F ) is generated by the element
NFn/F ([A]) [3]. Hence Br(F (X)/F ) is generated byNFn/F (hn(u)). If n 6 s(F ), we haveFn = F ,
r = min(n, s(F )) = n and

NFn/F (hn(u)) = hn(u) = hr(u).

If n > s = s(F ), then r = min(n, s) = s and NFn/F (hn(u)) = NFn/Fr
(hn(u)) = hr(u).

Corollary 1. Let u ∈ K2(F ) and letX be a (u, n)-generic variety. Then for anym > n the kernel
of the homomorphism K2(F )/pm → K2(F (X))/pm is generated by the element pm−nu.

Proof. Obviously, the element pm−nu lies in the kernel. By the previous proposition the group
Br(Fm(X)/Fm) is generated by hr(u), where r = min(n, s(Fm)). Since m > n, we have r = n. So
hr(u) = hn(u) = hm(pn−mu). Since the homomorphism hm is injective, the proof is complete.
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Corollary 2. Let u ∈ K2(F ) and let X be a (u, n)-generic variety. Then for every m satisfying
the condition s(F ) 6 m 6 n, the kernel of the homomorphism K2(F )/pm → K2(F (X))/pm is
generated by the element u.

Proof. Obviously, the element u lies in the kernel. By the proposition the group Br(Fm(X)/Fm)
is generated by hr(u), where r = min(n, s(Fm)). Since s(F ) 6 m 6 n, we have r = m. Hence
hr(u) = hm(u). Since the homomorphism hm is injective, the proof is complete.

3. On the factorgroup K2(F )/ ∩l>1 lK2(F )

Now we return to the Theorem of 1.2. The following statement is easy.

3.1. Lemma. Let A be an abelian group such that the homomorphism

A/pnA→ pmA/pn+mA, a 7→ pma

is bijective for alln,m. Then the groupDp(A) = ∩npnA is p-divisible and the factor groupA/Dp(A)
is torsion free.

3.2. Lemma. Suppose that s(F ) =∞. Then

(1) the group Dp(F ) is p-divisible
(2) the factor group K2(F )/DpK2(F ) is torsion free.
(3) for any finitely generated extension L/F the homomorphism

α:K2(F )/DpK2(F )→ K2(L)/DpK2(L)

is injective.

Proof. (1), (2) follow from Lemma 3.1 and the following claim: LetE be a field such that ζpn ∈ E.
Then for any m 6 n the homomorphism

K2(E)/pmK2(E)→ pn−mK2(E)/pnK2(E), u 7→ pn−mu

is an isomorphism.
To show the claim, letu ∈ K2(E) be such that pn−mu is divisible by pn. We need to prove thatu is

divisible by pm. By assumption, there exists w ∈ K2(E) so that pn−mu = pnw. Hence, pn−m(u−
pmw) = 0. Therefore, u ∈ Torspn−m K2(E) + pmw. Since Torspn−m K2(E) = {ζpn−m , E∗} =
pm{ζpn , E∗} ⊂ pmK2(E) (the first equality is Suslin’s result of [4]) it follows that u ∈ pmK2(E).

(3) It suffices to consider only two cases: L = F (t) is the field of rational functions; L/F is finite
extension. The case L = F (t) is obvious (one can use specialization arguments). If L/F is finite
extension, the composite

K2(F )→ K2(L)
NL/F−−−−→ K2(F )

coincides with multiplication by |L : F |. Hence the kernel of α lies in the torsion subgroup of
K2(F )/Dp(F ). Since the group K2(F )/Dp(F ) is torsion free, the proof is completed.

Corollary. Let u ∈ K2(F ) be such that uF∞ /∈ DpK2(F∞) and let L/F be an arbitrary finitely
generated extension. Then uLF∞ /∈ DpK2(LF∞).
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3.3. Before we state our next assertion, we introduce the following notation.
Let Xi, (i = 1, 2, . . . ) be an infinite collection of smooth F -varieties. Let us denote by X6n the

variety X1 × · · · ×Xn. By X6∞ we denote the infinite product∏
i

Xi = X1 × · · · ×Xi × . . .

In other words, X6∞ is the inverse limit of varieties X6n (note thatX6∞ is not a variety except for
the case

∑
dimXi <∞).

Thus, F (X6∞) coincides with the direct limit of the fields F (X6n). By X>n we denote the
product ∏

i>n

Xi = Xn+1 ×Xn+2 × . . .

Obviously, we have X6∞ = X6n ×X>n.

Proposition. Let F be a field such that s = s(F ) 6= ∞. Let u ∈ K2(F ) be such that uF∞ /∈
DpK2(F∞). Then there exists a field extension E/F such that puE ∈ DpK2(E) and uE does not
belong to DpK2(E) + TorsK2(E).

Proof. Let Xi be a (pu, i)-generic variety (i > 1). We let E = F (X6∞). The definition of Xi and
Lemma 2.2 show that puF (Xi) ∈ piK2(F (Xi)). Hence puE ∈ piK2(E) for all i > 1. Therefore,
puE ∈ DpK2(E). Now we need to verify that uE /∈ DpK2(E) + TorsK2(E).

Suppose that uE ∈ DpK2(E) + TorsK2(E). Let uE = µ + γ be such that µ ∈ DpK2(E) and
γ ∈ TorsK2(E). Let r be the order of the element γ. By [1], r is prime to char(F ). Adding to all
fields the element ζr, we can assume that ζr ∈ F ∗. Then the element γ has the form {ζr, z} where
z ∈ E∗. Then, γE( r

√
z) = {ζr, z}E( r

√
z) = 0. Therefore, uE( r

√
z) = µE( r

√
z) ∈ DpK2(E( r

√
z)) .

Let n be such that z ∈ F (X6n) and let K = F (X6n)( r
√
z) . We have E( r

√
z) = F (X6n ×

X>n)( r
√
z) = K(X>n) . Hence, uK(X>n) ∈ DpK2(K(X>n)).

By Corollary 3.2 we have uKF∞ /∈ DpK2(KF∞). Letm be any integer satisfying two conditions
m > s(F ) and uKF∞ /∈ pmK2(KF∞). Adding the element ζpm to all fields, we can assume that
m = s(F ) and uK /∈ pmK2(K).

We have uK(X>n) ∈ DpK2(K(X>n)) ⊂ pmK2(K(X>n)). From uK /∈ pmK2(K) we deduce
that there exists k such that uK(Xn+1×···×Xk) is divisible by pm. However uK(Xn+1×···×Xk−1) is
not divisible by pm. Setting K̃ = K(Xn+1 × · · · × Xk−1), we have u

K̃
/∈ pmK2(K̃), u

K̃(Xk) ∈
pmK2(K̃(Xk)). Since (Xk)

K̃
is a (pu

K̃
, k)-generic, Corollaries 1 and 2 of 2.4 show that u

K̃
is

divisible by pu
K̃

in the group K2(K̃)/pm. Hence there exists an integer r such that (u− rpu)
K̃
∈

pmK2(K̃). Since 1− rp is invertible modulo pm, we have u
K̃
∈ pmK2(K̃). We get a contradiction.

3.4. Proof of Theorem 1.2.

Let F be a field and an element a ∈ F ∗ be such that
1 6 s(F ) <∞,
a /∈ F ∗p∞ ,
a ∈ F ∗m for all integer m prime to p.

It is not difficult to construct fields with the required properties. For example one can take

F = Q(ζp)(x)({ m
√
x : m runs over all integers prime to p }), a = x.
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Another example is F = Qp(ζp), a = 1 + p(1− ζp) (condition a /∈ F ∗p∞ holds because F ( p
√
a)/F is

unramified and Fn/F is totally ramified for all n).

Now, let F̃ = F (t) and u = {a, t} ∈ K2(F̃ ). Clearly u
F̃∞

/∈ pK2(F̃∞). Indeed, otherwise
a = ∂t({a, t}) ∈ F ∗p∞ , and we get a contradiction. Thus, allthe conditions of Proposition 3.3 hold
for the field F̃ and element u. Let E/F̃ be a field extension as in Proposition 3.3. Then puE ∈
DpK2(E). Hence puE ∈ mK2(E) for all m which are a power of p. If m is prime to p, we have
uE = {a, t} ∈ {F ∗m, t} ⊂ mK2(E). Therefore puE ∈ mK2(E) for allm. Hence puE ∈ DK2(E).
Therefore, uE ∈ TorspKt

2(E). Assume that in the group Kt
2(E), we had u = {ζp, z}. Then in the

group K2(E) we would have u ∈ {ζp, z} + DK2(E) ⊂ TorsK2(E) + DpK2(E). This contradicts
the conditions on E stated in Proposition 3.3.
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