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One-dimensional zeta function

Let k be a global field
(number field or function field of a curve over finite field)

The Euler product description of the zeta function

ζk(s) =
∏
p

(1− |k(p)|−s)−1 =
∑
n≥1

an
ns

The completed zeta function

ζ̂k(s) = ζk(s)Γk(s)

has an integral representation which in its adelic form is

∫
A×
k

f (x)|x |sdµA×
k

(x)

where f is a Bruhat-Schwarz function and | | is the module function on ideles
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Using adelic duality and Fourier transform (which descends to the Gauss–Cauchy–Poisson
summation formula) and rephrasing one of the Riemann computations, one gets

ζ̂k(s) = ξ(f , s) + ξ(f̂ , 1− s) + ω(f , s),

where f̂ is the transform of f , with the entire function ξ(f , s).

The last boundary term can be written as

ω(f , s) =

∫
N−

∫
A1
k
/k×

∫
∂k×

(
−f (nγβ)ns + f̂ (n−1γβ)ns−1)dµ(β)dµ(γ)dµ(n)

The weak boundary ∂k× = k \ k× is just one point 0 and

∫
∂k×

(
−f (nγβ)ns + f̂ (n−1γβ)ns−1)dµ(β) = −f (0)ns + f̂ (0)ns−1

whose integral over N− (= (0, 1) in characteristic 0) is a rational function of n symmetric
with respect to f → f̂ , s → 1− s

This 1d adelic method also proves the compactness of A1
k/k
×, i.e. the finiteness of the

class number, and easily implies Dirichlet’s unit theorem.
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Dimension two

The zeta function of a scheme X of finite type over Spec(Z)

ζX (s) =
∏
x∈X0

(1− |k(x)|−s)−1,

x runs through closed points of X , k(x) is the finite residue field of x .

The zeta function ζX (s) factorizes into the product of some auxiliary factors and several
L-factors or their inverses, which have an interpretation in terms of the action of the
Frobenius endomorphism on cohomology groups associated to X in positive characteristic
and as the product of such factors for all finite primes in characteristic zero.
Broadly speaking, the Langlands programme expects each of the L-factors to be equal to
an appropriate L-function of an automorphic representation and hence have a
meromorphic extension and satisfy a functional equation. The study of L-functions uses
generally noncommutative or local (p-adic methods).
When the function field of X is of characteristic zero and X is two- or higher
dimensional, very little is understood about ζX (s).
One can compare the zeta function to a molecule and its L-factors to atoms. Higher
dimensional adelic analysis studies molecules rather than atoms which are the object for
the Langlands programme.
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Dimension two

Here is a central open example in dimension two.
Let E be an elliptic curve over a global field k, and let E be a regular model, E → B
proper flat, where B is the spectrum of the ring of integers of k or a proper smooth curve
over a finite field with function field k.

Then

ζE(s) = nE(s)ζE (s), ζE (s) =
ζk(s)ζk(s − 1)

LE (s)

where
nE(s) =

∏
b∈B0,1≤i≤nb

(1− |k(b)|ni,b(1−s))−1

is the product of zeta functions of affine lines over finite fields, nb + 1 is the number of
irreducible componens of the fibre Eb,
ni,b are positive integers such that 1 +

∑
1≤i≤nb

ni,b equals the number mb of irreducible
components in the geometric fibre of E over b.
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Dimension two

The function ζE (s) was invented by Hasse and is sometimes called the Hasse–Weil zeta
function of E , it does not depend on the choice of a model E .

If the class number of k is 1 then ζE (s) is the zeta function of the minimal Weierstrass
model of E .

The numerator of ζE (s) is the product of the zeta functions in dimension one. Its
denominator is the L-function of E which was originally defined as the quotient
ζk(s)ζk(s − 1)/ζE (s) so one does not need to use/remember the bad reduction factors of
the L-function.

The previous work in arithmetic of elliptic curves studies the L-function of E and not the
zeta function of E ; and there is always some restriction on the algebraic number field k.
The famous Wiles theorem and its further extensions imply meromorphic continuation
and functional equation of the zeta function of E when k is a (imaginary quadratic
extension of a) totally real field, but this method cannot be extended to the general case
of k.

2d adelic analysis studies the zeta function ζE directly, using commutative
two-dimensional methods which universally work over any ground field k.
The Galois group at the background is Gal(K ab/K) where K is a 2d global field, the
field of function of E . If E is given by an irreducible polynomial y 2 − f (x) ∈ k[x , y ] then
K is the fraction field of k[x , y ]/(y 2 − f (x)), and its transcendence degree over k is 1.
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2d adelic analysis

Aims of 2d adelic analysis in the case of arithmetic surfaces E :
understand ζE (and hence LE ) via completing it to a zeta integral on two-dimensional
adelic spaces and working with the zeta integral using adelic dualities and geometric
analytic information, and then apply to the study of

meromorphic continuation and functional equation of ζE

the poles of the zeta function: the GRH for ζE

the behaviour at the central point: the BSDC for ζE

2d adelic analysis can be extended to the general case of regular proper models of
smooth projective geometrically irreducible curves of genus g over k. It also gives a new
approach to the Arakelov geometry.
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2d class field theory in k-delic form

There are three levels of adelic objects associates to the arithmetic surface E :

∏
′Kx,y complete, local-local∏
′Ky ,

∏
′Kx incomplete, local-global

K discrete

Here
∏ ′ is a 2d restricted product,

Ky is the fraction field of the completion of the local ring of E at a curve y ,
Kx is the ring generated by the completion of the local ring of E at a point x and K ,
Kx,y is two-dimensional field (product of finitely many fields if x is a singular point of y)
associated to x ∈ y ;
plus there are some archimedean data involved.

For example, in char 0 the local field associated to a nonsingular point on a fibre (over a
prime b of B) is a mixed characteristic 2d local field whose residue field is the local field
of positive characteristic associated to the point on the reduction of E modulo the prime
b. Two-dimensional local fields are endowed with some special topology which takes into
account the topology of the residue field.
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2d class field theory in k-delic form

2d local class field theory: for a 2d local field Kx,y there is a reciprocity homomorphism

K2(Kx,y )→ Gal(K ab
x,y/Kx,y )

whose kernel = ∩l≥1lK2(Kx,y ) = intersection of all neighbourhoods of zero in the
strongest topology on K2 which makes its addition continuous and for which the symbol
map K×x,y × K×x,y → K2(Kx,y ) is sequentially continuous.

It is convenient to work with the topologically separated quotient

K t
2 (Kx,y ) := K2(Kx,y )/ ∩l≥1 lK2(Kx,y ).

The injective reciprocity map K t
2 (Kx,y )→ Gal(K ab

x,y/Kx,y ) can be described explicitly.
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2d class field theory in k-delic form

In 2d global class field theory one uses K2-groups associated to the top and middle level

JE
PE

=

∏ ′K t
2 (Kx,y )

∆(
∏
′K2(Ky ) +

∏
′K2(Kx))

,

where ∆ is the map induced by the embeddings Kx → Kx,y , Ky → Kx,y . In characteristic
zero archimedean data are involved as well.

The 2d global reciprocity homomorphism

JE/PE → Gal(K ab/K)

induces an isomorphism between continuous characters of finite order of JE/PE and of
Gal(K ab/K).
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In 2d global class field theory one uses K2-groups associated to the top and middle level

JE
PE

=

∏ ′K t
2 (Kx,y )

∆(
∏
′K2(Ky ) +

∏
′K2(Kx))

,

where ∆ is the map induced by the embeddings Kx → Kx,y , Ky → Kx,y . In characteristic
zero archimedean data are involved as well.
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Some of the difficulties for 2d adelic theory and the ways to address them

Some of the difficulties from the point of view of 2d adelic analysis:

(1) 2d local fields Kx,y are not locally compact spaces, there is no nontrivial real valued
translation invariant measure on them,

(2) the structure of K t
2 (Kx,y ) is not known in general,

(3) the data associated to (x ∈ y) is too ample from the point of view of zeta function
purposes which uses every closed point once.

Solutions:

(1) compact and locally compact is not so important, and we can work with
R((X ))-valued translation invariant measure on Kx,y and K×x,y ;

(2) work with (K1 × K1)(Ox,y ) from which there is a natural in explicit higher class field
theory noncanonical surjective homomorphism to K t

2 (Kx,y );

(3) work with another adelic space associated to all fibres and finitely many horizontal
curves on E , with the restricted product taken wrt the integral structure of rank 2.
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Two integral structures in 2d local fields

Let F be a 2d local field whose residue field is a 1d nonarchimedean local field.
Denote by O the ring of integers of F with respect to its discrete valuation of rank 1 and
by t2 a local parameter.

Denote by O the ring of integers with respect to any of its discrete valuations of rank 2.
Then O is the preimage of the ring of integers of the residue field. This integral structure
O is important for analysis on 2d local fields and for the study of zeta integrals.
Denote by t1 a lift of a local parameter of the residue field. Then O = ∪j∈Zt

j
1O.

We have the following 2d picture of O-submodules of F :

∪j t2t
j
1O = t2O · · · ⊃ t2t

−1
1 O ⊃ t2O ⊃ t2t1O ⊃ · · ·

∪j t
j
1O = O · · · ⊃ t−1

1 O ⊃ O ⊃ t1O ⊃ · · ·

∪j t
−1
2 t j1O = t−1

2 O · · · ⊃ t−1
2 t−1

1 O ⊃ t−1
2 O ⊃ t−1

2 t1O ⊃ · · ·
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Measure and integration on 2d local fields

Let A be the ring of sets generated by distinguished sets a + t i2t
j
1O. Define a function

µ(a + t i2t
j
1O) = X iq−j , q = |O : t1O|.

Theorem

µ is extended to a well defined finitely additive function on A.

Moreover, for countably many disjoint An ∈ A such that ∪An ∈ A and such that µ(An)
absolutely converges in R((X )) we get µ(A) =

∑
µ(An).

For a reasonably large class of functions on F which include functions
∑

ancharAn with
distinguished disjoint An ∈ A, such that

∑
anµ(An) absolutely converges one can define

their integral
∫
fdµ.

This measure and integration theory are compatible with the measure and integration on
the residue field.
Extensions of these theory to algebraic groups: Morrow (GLn), Waller (any alg. group),
and a model theoretical work of Hrushovski-Kazhdan in some partial cases.
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Fourier transform on 2d local fields

Self-duality: fix a nontrivial continuous character ψ : F → C1, then every nontrivial
continuous character of F is of the form x → ψ(ax) for some a ∈ F .

For an integrable function f on F define its Fourier transform

F(f ) =

∫
f (α)ψ(αβ)dµ(α).

Then
F2(f )(α) = f (−α).
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Two adelic spaces on E

For a curve y on E and an integer r define an adelic space

Ar
y =

{∑
i≥r

ai t
i
y : where ai are nice lifts of ai ∈ Ak(y) to ai ∈

∏
x∈y

Ox,z

}
.

Put Ay = ∪rAr
y , A0

y = A0
y .

Define a large geometric adelic space AE associated to the integral structure of rank one
on E , it is a subspace of

∏
Kx,y and is the restricted product of Ay , where y runs through

all curves on E , with respect to A0
y in the following sense:

(ax,y )x∈y⊂E with ax,y ∈ Kx,y belongs to AE if

(a) for almost all y the element ax,y belongs to Ox,y for all x ∈ y and

(b) there is an integer r such that (ax,y )x∈y belongs to Ar
y for every y .

In characteristic zero some archimedean data involved in the definition of A on horizontal
curves.

Ivan Fesenko Adelic geometry and analysis on regular models of elliptic curves over global fields and their zeta functions16 / 52



Two adelic spaces on E

For a curve y on E and an integer r define an adelic space

Ar
y =

{∑
i≥r

ai t
i
y : where ai are nice lifts of ai ∈ Ak(y) to ai ∈

∏
x∈y

Ox,z

}
.

Put Ay = ∪rAr
y , A0

y = A0
y .

Define a large geometric adelic space AE associated to the integral structure of rank one
on E , it is a subspace of

∏
Kx,y and is the restricted product of Ay , where y runs through

all curves on E , with respect to A0
y in the following sense:

(ax,y )x∈y⊂E with ax,y ∈ Kx,y belongs to AE if

(a) for almost all y the element ax,y belongs to Ox,y for all x ∈ y and

(b) there is an integer r such that (ax,y )x∈y belongs to Ar
y for every y .

In characteristic zero some archimedean data involved in the definition of A on horizontal
curves.

Ivan Fesenko Adelic geometry and analysis on regular models of elliptic curves over global fields and their zeta functions16 / 52



Two adelic spaces on E

For a curve y on E and an integer r define an adelic space

Ar
y =

{∑
i≥r

ai t
i
y : where ai are nice lifts of ai ∈ Ak(y) to ai ∈

∏
x∈y

Ox,z

}
.

Put Ay = ∪rAr
y , A0

y = A0
y .

Define a large geometric adelic space AE associated to the integral structure of rank one
on E , it is a subspace of

∏
Kx,y and is the restricted product of Ay , where y runs through

all curves on E , with respect to A0
y in the following sense:

(ax,y )x∈y⊂E with ax,y ∈ Kx,y belongs to AE if

(a) for almost all y the element ax,y belongs to Ox,y for all x ∈ y and

(b) there is an integer r such that (ax,y )x∈y belongs to Ar
y for every y .

In characteristic zero some archimedean data involved in the definition of A on horizontal
curves.

Ivan Fesenko Adelic geometry and analysis on regular models of elliptic curves over global fields and their zeta functions16 / 52



Two adelic spaces on E

Using diagonal embeddings
∏

Ky →
∏

Kx,y ,
∏

Kx →
∏

Kx,y define BE ,CE as the
intersection of AE with their images.

We get

AE

BE CE

K
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Second type adelic spaces on E

The just defined adelic spaces are quite useful for some algebraic geometric studies.
Unfortunately, one cannot integrate on these large adelic spaces.
There are adelic spaces of the second type, on which one can integrate and which are
related to the study of the zeta function of the surface.

Put Ay = A0
y and denote OAy =

∏
x∈y Ox,y ∩ Ay , where Ox,y is the preimage in∏

z∈y(x) Ox,z with respect to the residue map of the completion of the local ring of y at

x ; y(x) is the set of local branches of y at x .

Introduce a two-dimensional analytic adelic space AE as the restricted product of Ay ,
y ∈ E , with respect to the integral structure of rank two OAy :

an element (ax,y ), ax,y ∈ Kx,y belongs to AE if

(a) for almost all x ∈ y the element ax,y belongs to Ox,y ;

(b) for every y the element (ax,y )x∈y belongs to Ay .

In characteristic zero there are also archimedean data involved in the definition of A.

AE a subset of AE , but the adelic structure of the former is not the induced from the
latter.
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Second type adelic spaces on E

Fix a subset S ′ of the set of curves on E which contains all vertical curves and finitely
many horizontal curves. Put

A := AS′ = AE ∩
∏
y∈S′

Ay .

AS′ = AE ∩
∏

x∈y∈S′
Kx,y .

For a curve y put By = Oy (so its residue field is k(y)); for a fibre y define By as the
product of the B-spaces for all components of y . Define B as the intersection of

∏
By in∏

Ay with A.
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Second type adelic spaces on E

We have the following diagramme

AE AS′

BE BS′

K

in which K = k(S).
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Duality and adelic measures

For each fibre and curve y choose a complex character ψy = ⊗ψx,y on Ay trivial on By .
Put

ψ = ⊗ψy

Choose self-dual measures µx,y on Kx,y with respect to ψx,y .

Define the measure
µ = ⊗µx,y

on A.

Define the measure on B as the product of the measures on By which are the lifts of the
discrete measure on k(y).

Define adelic Fourier transform F using the character ψ and measure µ. We get∫
B
f (αβ)dµ(β) =

1

|α|

∫
B
F(f )(α−1β)dµ(β)

Define the measure on A× using the local multiplicative measures
(1− |Ox,y : t1Ox,y |−1)−1µx,y .
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Local object T

In the explicit class field theory a major role is played by a surjective homomorphism

tx,y : Tx,y = (Ox,y ×Ox,y )× → K t
2 (Kx,y ) = K2(Kx,y )/ ∩ lK2(Kx,y ),

(t i1u, t
j
1v) 7→ (i + j){t1, t2}+ {t1, u}+ {v , t2}, u, v ∈ O×x,y .

Denote by UK t
2 (Kx,y ) the image of (Ox,y × Ox,y )×. We have a commutative diagramme

O×x,y ⊗ K×x,y/O×x,y

�� **
Tx,y

// O×x,y ×O×x,y/O×x,y // K t
2 (Kx,y )/UK t

2 (Kx,y ).

The surjective diagonal map is induced by the symbol map; the vertical map sends
(α, t2

m) to (αm, 1); the composition of the first and second horizontal maps is induced by
tx,y .
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Adelic object T

The exact sequence
K2(Kx)→ ⊕K2(Kx,z)→ K0(k(x))→ 0,

where z runs through branches of curves y at the point x , shows that for the purposes of
the unramified class field theory if x is a singular point on a fibre we can use for the
global reciprocity map just one copy of K2(Kx,z), z a local branch.

Assume from now on that all singular points of fibres are double ordinary. Then the local
fields associated to the two local branches at singular points are isomorphic.
Define

T = (A× A)× ∩
∏

Tx,y ,

where for every point x of a fibre only one copy of Tx,z participates, z a local branch. T
also includes information which comes from archimedean points on horizontal curves.

We get an adelic homomorphism

t : T →
∏
′K t

2 (Kx,y ).

Denote
J = t(T ), P = PE ∩ J.
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Adelic object T

We get the following adelic version of the commutative diagramme above

A× ⊗ A×S′/VA×S′

�� ((
T // A× × A×/VA× // J/VJ.

Here
VA× = A× ∩

∏
O×x,y , VA× = A× ∩

∏
O×x,y ,

and VJ is the subgroup built on units.

The diagramme glues together the adelic structures A× and A×.
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Adelic object T0

Denote T0 = T ∩ (B× B)×.

From the adelic diagramme for T we get a commutative diagramme

B× ⊗ B×S′/(B×S′ ∩ VA×S′)

�� **
T0

// B× × B×/(B× ∩ VA×) // P/(P ∩ VJ),
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Adelic object T1

Denote by T1 the subgroup of T of elements of module 1.
Denote by UT the intersection of T1 with the product of the nonarchimedean part of
T ∩

∏
T1x,z and of the archimedean part of T .

The group UT is open in T1.

The homomorphism t induces a surjective map T/(T0 + UT )→ J/(P + VJ). Note that
the unramified theory is described by JE/(PE + VJE) ' J/(P + VJ).
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Zeta integral

For vertical y define Ty = Ty = T ∩
∏

x∈y Tx,y .

For horizontal y choose a splitting Ty = T1,y × Ny , where T1,y is the kernel of the
module map | | on Ty . Define Ty = T1,y × N2

y .

Define T = T ∩
∏
Ty .
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Zeta integral

The general form of 2d zeta (unramified) integral is

ζ(f , | |s) =

∫
T
f || ||s dµ

where f is a 2d Bruhat–Schwartz function,
µ is the measure on K×x,y × K×x,y or (A× A)×,

|| || is the following rescaled module on T : it is the product of || ||y where || ||y = | |1/2y

on horizontal y and || ||y = | |y on vertical y .

Example: the local zeta integral on vertical fibres

ζ(char
(tc1Ox,y ,t

c′
1 Ox,y )

, | |s2, µx,y ) = q
dx,y−(c+c′)s
x,y

(
1

1− q−s
x,y

)2

where qx,y = |Ox,y : t1Ox,y |, and t
dx,y
1 Ox,y is the conductor of ψx,y .
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Zeta integral

If f = ⊗fy then

ζ(f , | |s) =
∏

ζy (fy , | |s).

Assume that every singular point of every fibre is a split ordinary double point and the
reduction in residual characteristic 2 and 3 is good or multiplicative.

Then for a centrally normalized function f and vertical fibre y = Eb over b ∈ B

ζy (f , | |s) = |k(b)|(fb+mb−1)(1−s)ζy (s)2

where fb is the conductor, mb is the number of irreducible geometric components.

For a horizontal curve y the zeta integral ζy (f , | |s) is a meromorphic function satisfying
FE with respect to s → 2− s, holomorphic outside its poles of multiplicity 2 at s = 0, 2,
qs = 1, q2.

In characteristic zero on horizontal curve ζy (f , | |s) = ζ̂k(y)(s/2)2.
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Zeta integral

Thus, on <(s) > 2 the zeta integral ζ(f , | |s) equals the product of ζE(s)2 times an
exponential factor which takes into account the conductor of the model E and times
finitely many horizontal zeta integrals. Hence the zeta integral is a holomorphic function
on that half plane.
Should we know the functional equation and meromorphic continuation (the RH) for the
zeta integral ζ(f , | |s), it would imply the same properties for the zeta function ζE(s).
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∫
T0

Denote by d
−1/2
y the cardinality of the multiplicative group of the maximal finite subfield

of k(y).

For a function g on A× A such that for almost every fibre y the integral

dy

∫
g dµ(By×By )× = 1

(for example g = ⊗charOx,y×Ox,y ), define∫
T0

g dµT0 = lim dSo
∏
y∈So

∫
g dµ(By×By )×

where dSo is the product of all dy attached to vertical fibres in finite So ⊂ S ′.

So the measure on T0 is the tensor product of the rescaled fibre measures, and is not the
lift of the discrete measure.
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∫
∂T0

The weak boundary of T0,y = (By × By )× is By × By \ (By × By )×.

Let ∂T0 be the weak boundary of T0, i.e. the union of the product of the weak
boundaries of T0,y with y in a finite subset of fibres and horizontal curves and the
product of T0,y at all other y .

Define the integral
∫
∂T0

similarly to the definition of
∫
T0

.
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2d theta formula

Theorem

For a centrally normalized f its transform can be written

F(f )(α) = f (ν−1α), |ν| = 1.

We get ∫
T0

(
f (αβ)− |α|−1 f (ν−1α−1β)

)
dµT0(β)

=

∫
∂T0

(
|α|−1 f (ν−1α−1β)− f (αβ)

)
dµ∂T0(β).

This formula glues together differently normalized structures on vertical and horizontal
curves.
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2nd calculation of the zeta integral

Put N = |T |.

Split N into the disjoint union of metrizable spaces N+ and N−, such that the involution
x → x−1 maps one of them onto the other.

Denote by T1 the kernel of || || on T .

In the proof of 2d T–I formula we will use the filtration T > T1 > T0 and 2d theta
formula.

For the zeta integral we have

ζ(f , | |s) =

∫
N

ζn(f , | |s) dµN(n)

where

ζn(f , | |s) = ns

∫
T1

f (mnα) dµ(α)

and {mn}n∈N is a subgroup of Ty0 , y0 is the image of the zero section, such that
||mn|| = n.
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2d IT

Theorem

(2d version of the Tate–Iwasawa unramified theory)
On the half plane <(s) > 2 the zeta integral is the sum of three terms

ζ(f , | |s2) = ξ(| |s2) + ξ(| |2−s
2 ) + ω(| |s2).

The term ξ((| |s2) =
∫
N+ ζn(f , | |s2) dµN+(n) is an entire function on the complex plane.

The boundary term ω(| |s2) =
∫
N− ωn(| |s2) dµN−(n) is given by

ωn(| |s2) = ns

∫
T1

(
f (mnα)− n−2 f (m−1

n α−1)
)
dµ(α)

= ns

∫
T1/T0

∫
T0

(
f (mnγβ)− n−2 f (m−1

n γ−1β)
)
dµT0(β) dµT1/T0

(γ)

= ns−2

∫
T1

(
|α|−1 − 1

)
f (m−1

n α−1) dµ(α)

+ ns

∫
T1/T0

∫
∂T0

(
n−2|γ|−1f (m−1

n ν−1γ−1β)− f (mnγβ)
)
dµ∂T0(β) dµT1/T0

(γ).
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Integral representation of the boundary term

Write

ω(| |s2) =

∫
N−

h(n) ns−2 dµN−(n),

where

h(n) =

∫
T1/T0

(∫
∂T0

(
n2 f (mnγβ)− f (m−1

n ν−1γ−1β)
)
dµ∂T0(β)

)
dµT1/T0

(γ).

Hence ω(| |s2) is the Laplace–Stieltjes transform
∫∞
0

e−st dj(t) of an appropriate function
j(t) which is a modification of h.

FE for the function h:
h(n−1) = −n−2h(n).
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Integral representation of the boundary term

For example, for an elliptic curve E be over Q write

c1−s
E ζE(s)2 =

∑
n∈cEN

d(n2)

ns
.

Then
h(x) = −

∑
n∈cEN

d(n2)Vn2(x)

where
Vm(x) = 4

∑
l≥1

σ0(l)
(
K0(2πlmx−2)− x2K0(2πlmx2)

)
and

K0(x) =
1

2

∫ ∞
0

e−x(t+ 1
t
)/2 dt

t
.
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Applications: 1. Meromorphic continuation and FE

The (conjectural in general) automorphic property of the L-function of E is lost when
one works with the zeta function.
Which analytic shape should take the function h so that its transform has meromorphic
continuation and FE?

Let X be a space of complex valued functions on the real line in which the Hahn-Banach
theorem holds.

Definition

A function g ∈ X is called X -mean-periodic if it satisfies one of the equivalent
conditions:

there exists a closed proper linear subspace of X which contains all translates of g ;

g is a solution of a homogeneous convolution equation g ∗ τ = 0 where τ is a non-zero
element in the dual space of X .
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Applications: 1. Meromorphic continuation and FE

For example, X can be the space of continuous functions C(R), the space of smooth
functions C∞(R), the space C∞exp(R) of smooth functions of exponential growth. Similarly
one can define mean-periodicity in spaces like the space Fexp(Z) of functions of
exponential growth on integers.

In all these spaces the property of harmonic synthesis holds: every mean-periodic
function g is approximated by exponential polynomials belonging to the subspace
generated by translations of g .

The theory of mean-periodic functions was developed in the second half of the 20th
century and so it is 100 years younger than the theory of modular functions.
It is expected that mean-periodicity is very important for the study of arithmetic zeta
functions.
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Applications: 1. Meromorphic continuation and FE

Let g be mean-periodic in one of those X , g ∗ τ = 0, and let g be of finite exponential
growth. Define

g+(t) = g(t) for t > 0, g+(0) = g(0)/2, g+(t) = 0 for t < 0.

Then g+ ∗ τ ∈ X ∗ and for sufficiently large <(s) the Laplace–Stieltjes transform of g
equals

G(s) =

∫∞
−∞ g+ ∗ τ(t) e−st dt∫∞
−∞ τ(t) e−st dt

.

This does not depend on the choice of τ 6= 0. Both the numerator and denominator
extend to entire functions on the plane, and hence G(s) has meromorphic extensions to
the plane.
It is called the Laplace–Stieltjes–Carleman transform of g .

If the original mean-periodic function is odd then its L-C transform is an even function.
So if h(exp(−t)) is mean-periodic then the boundary term extends to a meromorphic
function satisfying the functional equation wrt s → 2− s.
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Applications: 1. Meromorphic continuation and FE

In a recent work with G. Ricotta and M. Suzuki it is shown that if the zeta function
ζX (s) of a regular scheme X of dimension n extends to a meromorphic function on the
complex plane with the expected (conjectural in general) analytic shape, and satisfies a
functional equation with sign ε, then there exists an integer mX ≥ 1 such that for every
integer m ≥ mX the function hX ,m(exp(−t))) is mean-periodic in C∞exp(R). Here

hX ,m,ε(x) = fX ,m(x)− εx−1fX ,m(x−1)

where fX ,m(x) is the inverse Mellin transform of ζ̂X (s/n)ζ̂Q(s)m, where hat stands for the
appropriately completed zeta functions.

Conversely, if the function hX ,mX ,ε(exp(−t))) is mean-periodic then ζX (s) has a
meromorphic continuation and satisfies the expected functional equation with sign ε.
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Applications: 1. Meromorphic continuation and FE

In particular, as a consequence we get a correspondence

C : X 7→ hX ,mX ,ε(exp(−t))

from the set of arithmetic schemes whose Hasse zeta function ζX (s) has the expected
analytic properties to the space of mean-periodic functions in C∞exp(R).

This correspondence between mean-periodic functions in C∞exp(R) and the class of certain
Dirichlet series which admit a meromorphic continuation and functional equation and
which contains arithmetic zeta functions and their quotients extends the Hecke–Weil
correspondence between modular forms and L-functions.
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Applications: 1. Meromorphic continuation and FE of ζE

Now we state a hypothesis which naturally comes in the study of the zeta integrals in 2d
adelic analysis.

Hypothesis

The function

H(t) =

{
h(e−t), in characteristic zero,

h(q−t), t ∈ Z, in positive characteristic,

is a mean-periodic function in the space C∞exp(R) if K is of characteristic zero
and in the space Fexp(Z) if K is of positive characteristic.
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Applications: 1. Meromorphic continuation and FE of ζE

Theorem

If the Hypothesis is true then the boundary term and the zeta integral and hence the zeta
and L-functions have meromorphic continuation and satisfy the functional equation wrt
s → 2− s.

In the positive characteristic mean-periodicity of H(t) easily follows from the known
rationality and meromorphic continuation of the zeta function.

In characteristic zero mean-periodicity of H(t) for elliptic curves over totally real fields
follows from their potential automorphic property

(but we want to prove it independently)
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Applications: 2. GRH for the zeta integral

In this section assume that there is just one horizontal curve – the zero section – in the
set of curves S ′ in the definition of the zeta integral. Then the zeta integral has (first
from the right) pole of order 4 at s = 2.

Recall that in characteristic 0

H(t) =

∫
T1/T0

(∫
∂T0

(
e−2t f (e−tγβ)− f (etν−1γ−1β)

)
dµ∂T0(β)

)
dµT1/T0

(γ).

This involves an integral over the boundary ∂T0 which is very large, unlike d1 case. It is
natural to expect a smoothening effect for individual oscilations of the integrand function
which can be expressed in monotone properties of H and its derivatives.

It is easy to check that H(t) and its first derivatives H ′(t), H ′′(t), H ′′′(t) keep their sign
for all sufficiently large t.
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Applications: 2. GRH for the zeta integral

In the study of the zeta integral the following hypothesis comes naturally.

Hypothesis

The fourth derivative of H keeps its sign near infinity.

Theorem

If the hypothesis holds and if the zeta function does not have real poles in the strip
<(s) ∈ (1, 2) then the zeta function does not have complex poles in the same strip.
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Applications: 2. GRH for the zeta integral

For computational data see http://www.maths.nott.ac.uk/personal/ibf/tbl.html

To check the absence of real poles on (1, 2) for an individual elliptic curve is very easy
computationally and it is known for all elliptic curves over rationals of conductor smaller
20000.

We also have

Theorem

M. Suzuki: Assume that E is an elliptic curve over an algebraic number field and its
L-function satisfies a meromorphic continuation and functional equation, the GRH holds
for the L-function, all nonreal zeros of L on the critical line are of multiplicity not greater
than 1+ the multiplicity of the real zero of L at s = 1. Also assume some technical
estimate on the derivative of L holds. Then H ′′′′(t) is positive near infinity.
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Applications: 3. BSDC

To compute the local behaviour of ζE(s) at s = 1 we assume that the zeta function has a
meromorphic continuation and FE.

2d adelic analysis reduces the study of the pole of the zeta integral at s = 1 to the study
of the pole of the boundary term at s = 1.
The latter involves an integral over the boundary ∂T0 of a certain function related to f .

Thus, information about the boundary ∂T0 allows one to compute the order of the pole
of the zeta integral (and hence the zeta function) at s = 1.

The space T0 modulo units can be studied using the commutative diagramme for T0 and
the top object B× ⊗ BS′/(BS′ ∩ VA×S′) in it.

The quotient of BS′/(BS′ ∩ VA×S′) by the image of K× and by p∗Pic(B), where
p : E → B, is a finitely generated group (in positive characteristic the Neron–Severi group
of E modulo its subgroup generated by one nonsingular fibre).
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Applications: 3. BSDC

Through the boundary term and the two adelic objects structures one directly relates the
analytic and arithmetic ranks of E .

See section 58 of Analysis on arithmetic schemes.II and Analysis on arithmetic
schemes.III for more detail.

In positive characteristic things are already understood quite well.
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Applications: 4. Automorphic forms on surfaces

See the last section of Adelic approach to the zeta function of arithmetic schemes in
dimension two
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