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Introduction to the Second Edition

The class of discrete valuation fields appears to be next in significance and order
of complexity to the class of finite fields. Among discrete valuation fields a highly
important place, both for themselves and in connection with other theories, is occupied
by complete discrete valuation fields.

This book is devoted to local fields, i.e. complete discrete valuation fields with
perfect residue field.

The time distance between the second edition of “Local Fields and Their Extensions”
and its first edition is ten years. During this period, according to Math Reviews, almost
one thousand papers on local fields have been published. Some of them have further
developed and clarified various topics described in the first edition of this book. On the
other hand, the authors of this book have received a variety of useful suggestions and
remarks from several dozen readers of the first edition.

All these have naturally led to the second edition of the book.

This book is aimed to serve as an easy exposition of the arithmetical properties of
local fields by using explicit and constructive tools and methods. Almost everywhere it
does not require more prerequisites than a standard course in Galois theory and a first
course in number theory which includes p-adic numbers.

The book consists of nine chapters which form the following groups:
group 1: elementary properties of local fields (Chapter I–III)
group 2: class field theory for various types of local fields and generalizations

(Chapter IV-V)
group 3: explicit formulas for the Hilbert pairing (Chapter VI-VIII)
group 4: Milnor K -groups of local fields (Chapter IX).

Chapters of the third group were mainly written by S. V. Vostokov and the rest was
written by I. B. Fesenko.

The first page of each chapter provides a detailed description of its contents, so here
we just emphasize the most important issues and also indicate changes with respect to
the first edition.

Chapter I describes the most elementary properties of local fields when one does not
look at connections between them, but concentrates on a single field.

Chapter II deals with extensions of discrete valuation fields and already section 1 and
2 introduce a very important class of Henselian fields and describe relations between
Henselian and complete fields. We have included more information than in the first
edition on ramification subgroups in section 4.
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viii Introduction to the second edition

The main object of study in Chapter III is the norm map acting on the multiplicative
group and its arithmetical properties. In section 1 we describe its behaviour for cyclic
extensions of prime degree. Section 2 shows that almost all cyclic extensions of degree
equal to the characteristic of the perfect residue field are generated by roots of Artin–
Schreier polynomials. In section 3 we introduce a function which takes into account
certain properties of the norm map acting on higher principal units. Our approach to
the definition of the Hasse–Herbrand function is different from the approach in other
textbooks (where the definition involves ramification groups). Sections 3 and 4 in the
second edition now include more applications of our treatment of the Hasse–Herbrand
function. Section 5 is devoted to the Fontaine–Wintenberger theory of fields of norms
for arithmetically profinite extensions of local fields. This theory links certain infinite
extensions of local fields of characteristic zero or p with local fields of characteristic
p. Now the section contains more details on applications of this theory, some of which
have been published since 1993.

Chapter IV is on class field theory of local fields with finite residue fields. For
this edition we have chosen a slightly different approach from the first edition: for
totally ramified extensions we work simultaneously with both the Neukirch map and
Hazewinkel homomorphism (which are almost inverse to each other). We hope that
this method explains more fully on what is going on behind definitions, constructions
and calculations and therefore gives the reader more chances to appreciate the theory.
This method is also very useful for applications. Section 1 contains new subsections
(1.6)–(1.9) which are required for the study of the reciprocity maps. Sections 2–4
differs significantly from the corresponding parts of the first edition. After proving
the main results of local class field theory we review all other approaches to it in the
new section 7. The new section 8 presents to the reader a recent noncommutative
reciprocity map, which is not a homomorphism but a Galois 1-cycle. This theory is
based a generalization of the approach to (abelian) class field theory in this book. We
also review results on the absolute Galois group of a local field.

Chapter V studies abelian extensions of local fields with infinite residue field. In
the same way as in the first edition, the first three sections discuss in detail class field
theory of local fields with quasi-finite residue field. In the new section 4 we describe
recent theory of abelian totally ramified p-extensions of a local field with perfect residue
fields of characteristic p which can be viewed as the largest possible generalization of
class field theory of Chapter IV. If a complete discrete valuation field has imperfect
residue field, then its class field theory becomes much more difficult. Still, some results
on abelian totally ramified p-extensions of such fields and their norm groups can be
established in the framework of this book; we explain some features in the new section 5.
The latter also includes a class field theory interpretation of results on some abelian
varieties over local fields.

Chapter VI serves as a prerequisite for Chapters VII and VIII. For a finite extension
of the field of p-adic numbers it presents a very useful formal power series method
for the study of elements of the fields. The Artin–Hasse–Shafarevich exponential map
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is described in section 2 and the Shafarevich basis of the group of principal units in
section 5. This Chapter contains many technical results, especially in section 3 and 4,
which are of use in Chapter VI.

The aim of Chapter VII is to explain to the reader explicit formulas for the Hilbert
symbol. The method is to introduce at first an independent pairing on formal power series
and to show that it is well defined and satisfies the Steinberg property (subsection (2.1)).
Then a pairing on the multiplicative group of the field induced by the previous pairing
is defined. Its properties (independence of a power series presentation and invariance
with respect to the choice of a prime element) help one easily show its equality with the
Hilbert pairing. The second edition contains many simplifications of the first edition
and it also includes more material on interpretations of the explicit formulas and their
applications.

Chapter VIII is an exposition of a generalization of the method of Chapter VII
to formal groups. The simplest among the groups are Lubin–Tate groups which are
introduced in section 1; exercises let the reader see the well known applications of
them to local class field theory. Explicit formulas for the generalized Hilbert pairing
associated to a Lubin–Tate formal group are presented in section 2. The new section 3
describes a recent generalization to Honda formal groups.

Chapter IX describes the Milnor K -groups of fields. Calculations of the Milnor
K -groups of local fields in section 4 shed a new light on the Hilbert symbol of Chapter IV.

The bibliography includes comments on introductory texts on various applications
of local fields.

Numerous remarks and exercises often indicate further important results and theories
left outside this introductory book. The most challenging exercises are marked by (�) .

Those readers who prefer to start with class field theory of local fields with finite
residue fields are recommended to read sections 1–7 of Chapter IV and follow the
references to the previous Chapters if necessary.

One of more advanced theories closely related to the material of this book and its
presentation is higher local class field theory; for an introduction to higher local fields
see [FK].

A reference in Chapter n to an assertion in Chapter m does not state the number
m explicitly if and only if m = n. Briefly on notations: For a field F an algebraic
closure of F is denoted by F alg and the separable closure of F in F alg is denoted
by F sep . Separable and algebraic closures of fields are assumed suitably chosen where
it is necessary to make such conventions. GF = Gal(F sep/F ) stands for the absolute
Galois group of F , µn denotes the group of all n th roots of unity in F sep .

The text is typed using AMSTeX and a modified version of osudeG style (written by
W. Neumann and L. Siebenmann and available from the public domain of Department
of Mathematics of Ohio State University, pub/osutex).

March 2002 I. B. Fesenko S. V. Vostokov





Foreword to the First Edition

A. Weil was undoubtedly right when he asserted, in the preface to the Russian edition
of his book on number theory, that since class field theory pertains to the foundation of
mathematics, every mathematician should be as familiar with it as with Galois theory.
Moreover, just like Galois theory before it, class field theory was reputed to be very
complicated and accessible only to specialists.

Here, however, the parallels between these two theories come to an end. A mathe-
matician who has decided to become acquainted with Galois theory is not confronted
with the problem of choosing a suitable exposition: all expositions of it are essentially
equivalent, differing only in didactic details. For class field theory, on the other hand,
there is a wide range of essentially different expositions, so that it is not immediately
obvious even whether the subject is the same.

In the 1960s, it seemed that a universal Galois cohomology approach to class field
theory had been found. What is more, the role of homological algebra as a common
language unifying various branches of mathematics was becoming clear. Homological
algebra could be likened to medieval Latin that served as the means of communication
within educated circles. However, just as Latin could not effectively stand up against
the originality of individual national languages, so Galois cohomology theory no longer
offers the “only reasonable” understanding of class field theory. The goal of the
cohomological method was the formation of class fields in which both number and
local fields and their arithmetic properties disappear, the whole theory being formalized
as a system of axioms. But other expositions of class field theory reveal remarkable
properties of number and local fields, that are ignored in the cohomological approach.
It has become evident that class field theory is not just an application of cohomology
groups, but that it is also closely related with other profound theories such as the theory
of formal groups, K -theory, etc.

The exposition of this book does not use homological algebra. It presents specific
realities of local fields as clear as possible. Despite its limited volume, the book contains
a vast amount of information on local fields. It offers the reader the possibility to see
the beauty and diversity of this subject.

30 June 1992, Moscow I. R. Shafarevich
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CHAPTER 1

Complete Discrete Valuation Fields

This chapter introduces local fields as complete discrete valuation fields with perfect
residue field. The material of sections 1–4, 7–8 is standard. Section 5 describes
raising to the p th power on the group of principal units and section 6 treats the group
of principal units as a multiplicative Zp -module in terms of convergent power series.
Section 9 introduces various modifications of the logarithm map for local fields; those
are important for Chapters VI–VIII. The reader is supposed to have some preliminary
knowledge on p-adic numbers, e.g., to the extent supplied by the first chapters of [Gou]
or any other elementary book on p-adic numbers.

1. Ultrametric Absolute Values

We start with a classical characterization of absolute values on the field of rational
numbers which demonstrates that the p-adic norms and p-adic numbers are as important
as the better known absolute value and real numbers.

(1.1). The following notion was introduced by J. Kürschák in 1913 following works
of K. Hensel on p-adic numbers. A map ‖·‖:Q→ R is said to be an absolute value if
the following three properties are satisfied:

‖α‖ > 0 if α 6= 0, ‖0‖ = 0,
‖αβ‖ = ‖α‖ ‖β‖,
‖α + β‖ 6 ‖α‖ + ‖β‖ (triangle inequality).

Obviously, the usual absolute value | · | of Q induced from C satisfies these conditions,
and we will also denote it by ‖·‖∞ . The absolute value ‖·‖ on Q such that ‖Q∗‖ = 1
is called trivial.

For a prime p and a non-zero integer m let k = vp(m) be the maximal integer such
that pk divides m. Extend vp to rational numbers putting vp(m/n) = vp(m)− vp(n);
vp(0) = +∞.

Define the p-adic norm of a rational number α:

‖α‖p = p−vp(α).

A complete description of absolute values on Q is supplied by the following result.

1



2 I. Complete Discrete Valuation Fields

Theorem (Ostrowski). An absolute value ‖·‖ on Q either coincides with ‖·‖c∞
for some real c > 0, or with ‖·‖cp for some prime p and real c.

Proof. (E. Artin) For an integer a > 1 and an integer b > 0 write

b = bnan + bn−1a
n−1 + · · · + b0, 0 6 bi < a, an 6 b.

Then
‖b‖ 6 (‖bn‖ + ‖bn−1‖ + · · · + ‖b0‖) max(1, ‖a‖n)

and
‖b‖ 6 (loga b + 1)dmax(1, ‖a‖loga b),

with d = max(‖0‖, ‖1‖, . . . , ‖a− 1‖). Substituting bs instead of b in the last inequal-
ity, we get

‖b‖ 6 (s loga b + 1)1/sd1/s max(1, ‖a‖loga b).

When s→ +∞ we deduce

‖b‖ 6 max(1, ‖a‖loga b).

There are two cases to consider for the nontrivial absolute value ‖·‖.
(1) Suppose that ‖b‖ > 1 for some natural b. Then

1 < ‖b‖ 6 max(1, ‖a‖loga b),

and ‖a‖ > 1, ‖b‖ = ‖a‖loga b for any integer a > 1. It follows that ‖a‖ = ‖a‖c∞ ,
with real c > 0 satisfying the equation ‖b‖ = ‖b‖c∞ .

(2) Suppose that ‖a‖ 6 1 for each integer a. Let a0 be the minimal positive
integer, such that ‖a0‖ < 1. If a0 = a1a2 with positive integers a1 , a2 , then
‖a1‖ ‖a2‖ < 1 and either a1 = 1 or a2 = 1. This means that a0 = p is a
prime. If q /∈ pZ, then pp1 + qq1 = 1 with some integers p1 , q1 and hence
1 = ‖1‖ 6 ‖p‖ ‖p1‖ +‖q‖ ‖q1‖ 6 ‖p‖ + ‖q‖. Writing qs instead of q we get
‖q‖s > 1− ‖p‖ > 0. When s is sufficiently large we obtain ‖q‖ = 1. Therefore,
‖α‖ = ‖p‖vp(α) , which was to be proved.

We are naturally led to look more closely at absolute values of the type indicated in
case (2). As vp(α + β) > min(vp(α), vp(β)), for such absolute values we get that

‖α + β‖ 6 max(‖α‖, ‖β‖) (ultrametric inequality).

Such absolute values are said to be ultrametric.

(1.2). One can generalize the notions discussed above. Call a map ‖·‖:F → R for
a field F an absolute value if it satisfies the three conditions formulated in (1.1). An
absolute value is called trivial if ‖F ∗‖ = 1. Similarly one can introduce the notion of
an ultrametric absolute value on F .
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Note that for an ultrametric absolute value ‖·‖ on F , if ‖α‖ < ‖β‖, then

‖α + β‖ 6 max(‖α‖, ‖β‖) = ‖β‖ = ‖α + β − α‖ 6 max(‖α + β‖, ‖α‖).

Therefore, ‖α + β‖ = ‖β‖. This means that any triangle has two equal sides with
respect to the ultrametric absolute value ‖·‖.

Let F = K(X) and let ‖·‖ be a nontrivial absolute value on F such that ‖K∗‖ = 1.
If α, β ∈ F , then

‖(α + β)‖n 6 ‖α‖n + ‖α‖n−1‖β‖ + · · · + ‖β‖n 6 (n + 1) max(‖α‖n, ‖β‖n).

Taking the n th root of both sides in the last inequality, and letting n tend to +∞, we
obtain that ‖·‖ is ultrametric.

We consider two cases.
(1) ‖X‖ > 1. Put deg(f (X)/g(X)) = deg f (X) − deg g(X), if f (X), g(X) ∈

K[X]. Hence
‖α‖ = ‖X−1‖− degα.

Put v∞(α) = − degα, v∞(0) = +∞. Note that v∞( 1
X ) = 1.

(2) ‖X‖ 6 1. Then ‖α‖ 6 1 for α ∈ K[X]. Let p(X) ∈ K[X] be a monic
polynomial of minimal positive degree satisfying the condition ‖p(X)‖ < 1. One
shows similarly to case (2) in (1.1) that p(X) is irreducible and

‖α‖ = ‖p(X)‖vp(X)(α),

where vp(X)(f (X)) is the largest integer k such that p(X)k divides polynomial
f (X), and vp(X)(f/g) = vp(X)(f ) − vp(X)(g) for polynomials f, g, vp(X)(0) =
+∞.

Thus, nontrivial absolute values on F = K(X), which are trivial on K , are in one-
to-one correspondence (up to raising to a positive real power) with irreducible monic
polynomials of positive degree in K[X] and 1

X .

Exercises.

1. Show that
∣∣‖α‖− ‖β‖∣∣ 6 ‖α + β‖ 6 ‖α‖ + ‖β‖ for α, β ∈ F , where ‖·‖ is an absolute

value on F .
2. Show that every absolute value on a finite field is trivial.
3. Let A be a subring of F generated by 1 of F . Show that an absolute value ‖·‖ on F is

ultrametric if and only if there exists c > 0 such that ‖a‖ 6 c for all a ∈ A.
4. Show that every absolute value on a field of positive characteristic is ultrametric.
5. Show that an absolute value ‖·‖ on a field F is ultrametric if and only if ‖·‖c is an absolute

value on F for all real c > 0.
6. Find the set of real c > 0, such that ‖·‖c∞ is not an absolute value on Q.
7. Let S be the set of all positive primes in Z, S′ = S ∪ {∞}. Show that if α ∈ Q∗ , then

‖α‖i = 1 for almost all i ∈ S and ∏
i∈S′
‖α‖i = 1.
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8. Let 0 < d < 1, let I be the set of all irreducible monic polynomials of positive degree
over K , and I ′ = I ∪ {∞}. Let

‖α‖∞ = d− degα, ‖α‖p(X) = d deg p(X)vp(X)(α) for α ∈ K(X)∗.

Show that ‖α‖i = 1 for almost all i ∈ I and∏
i∈I′
‖α‖i = 1 for α ∈ K(X)∗.

2. Valuations and Valuation Fields

In this section we initiate the study of valuations.

(2.1). One can generalize the properties of vp of (1.1) and vp(X) of (1.2) and proceed
to the concept of valuation. Let Γ be an additively written totally ordered abelian
group. Add to Γ a formal element +∞ with the properties a 6 +∞, +∞ 6 +∞,
a + (+∞) = +∞, (+∞) + (+∞) = +∞, for each a ∈ Γ; denote Γ′ = Γ ∪ {+∞}.

A map v:F → Γ′ with the properties

v(α) = +∞⇔ α = 0
v(αβ) = v(α) + v(β)
v(α + β) > min(v(α), v(β))

is said to be a valuation on F ; in this case F is said to be a valuation field. The map
v induces a homomorphism of F ∗ to Γ and its value group v(F ∗) is a totally ordered
subgroup of Γ. If v(F ∗) = {0}, then v is called the trivial valuation. Similarly to
(1.2) it is easy to show that if v(α) 6= v(β), then v(α + β) = min(v(α), v(β)).

(2.2). Let Ov = {α ∈ F : v(α) > 0}, Mv = {α ∈ F : v(α) > 0}. Then Mv

coincides with the set of non-invertible elements of Ov . Therefore, Ov is a local ring
with the unique maximal ideal Mv ; Ov is called the ring of integers (with respect to
v ), and the field F v = Ov/Mv is called the residue field, or residue class field. The
image of an element α ∈ Ov in F v is denoted by α, it is called the residue of α in
F v . The set of invertible elements of Ov is a multiplicative group Uv = Ov −Mv , it
is called the group of units.

(2.3). Examples of valuations and valuation fields.

1. A valuation v on F is said to be discrete if the totally ordered group v(F ∗) is
isomorphic to the naturally ordered group Z.

The map vp of (1.1) is a discrete valuation with the ring of integers

Ovp =
{m
n

: m,n ∈ Z, n is relatively prime to p
}
.



2. Valuations and Valuation Fields 5

The residue field Qvp is a finite field of order p. The map v∞ of (1.2) is a discrete
valuation with the residue field K . The map vp(X) of (1.2) is a discrete valuation with
the ring of integers

Ovp(X) =
{
f (X)
g(X)

: f (X), g(X) ∈ K[X], g(X) is relatively prime to p(X)
}

and the residue field is K[X]/p(X)K[X].
2. Let Γ1, . . . Γn be totally ordered abelian groups. One can order the group

Γ1 × · · · × Γn lexicographically, namely setting (a1, . . . , an) < (b1, . . . , bn) if and
only if a1 = b1, . . . , ai−1 = bi−1 , ai < bi for some 1 6 i 6 n. A valuation v
on F is said to be discrete of rank n if the value group v(F ∗) is isomorphic to the
lexicographically ordered group (Z)n = Z× · · · × Z︸ ︷︷ ︸

n times

. Note that the first component v1

of a discrete valuation v = (v1, . . . , vn) of rank n is a discrete valuation (of rank 1) on
the field F .

3. Let F be a field with a valuation v. For f (X) =
∑
αiX

i ∈ F [X] put

v∗(f (X)) = min (m, v(αm)) ∈ Z× v(F ∗).

One can naturally extend v∗ to F (X). If we order the group Z× v(F ∗) lexicograph-
ically, we obtain the valuation v∗ on F (X) with the residue field F v . Similarly, it
is easy to define a valuation on F (X1) . . . (Xn) with the value group (Z)n−1 × v(F ∗)
ordered lexicographically. In particular, for F = Q, v = vp we get a discrete valuation
of rank n on Q (X1) . . . (Xn−1) and for F = K(X), v = vp(X) we get a discrete
valuation of rank n on K(X)(X1) . . . (Xn−1).

4. Let F, be a field with a discrete valuation v. Fix an integer c. For f (X) =∑
αiX

i ∈ F [X] put

wc(f (X)) = min {v(αi) + ic}.

Extending wc to F (X) we obtain the discrete valuation wc with residue field F v(X)
(make substitution X = Y β with v(β) = c to reduce to the case c = 0 ).

5. Let F, v be as in Example 3. For f (X) =
∑
αiX

i ∈ F [X] put

v∗(f (X)) = min (v(αi), i) ∈ v(F ∗)× Z, v∗(0) = (+∞,+∞)

for v(F ∗) × Z ordered lexicographically. Extending v∗ to F (X), we obtain the
valuation v∗ . The residue field of v∗ is F v .

For a general valuation theory see [Bou], [Rib], [E].

Exercises.

1. Find the ring of integers, the group of units and the maximal ideal of the ring of integers for
the preceding examples.

2. Show that ∩
p∈S

Ovp = Z for S = S′−{∞} (see Exercise 7 section 1) and ∩
p(X)∈I

Ovp(X) =

K[X] for I = I ′ − {∞} (see Exercise 8 section 1).
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3. Let F = K(X), Fm = F (X
1
m ) for a natural m > 1 and L = ∪Fm . For f =∑

a∈Q αaX
a ∈ L, αa ∈ K , put v(f ) = min{a ∈ Q : αa 6= 0}. Show that v is a

valuation on L with the residue field K and the value group Q.
4. A subring O of a field F is said to be a valuation ring if α ∈ O or α−1 ∈ O for every

nonzero element α ∈ F . Show that the ring of integers of a valuation on F is a valuation
ring. Conversely, for a valuation ring O in F one can order the group F ∗/O∗ as follows:
αO∗ 6 βO∗ if and only if βα−1 ∈ O. Show that the canonical map F → (F ∗/O∗)′ (see
(2.1)) is a valuation with the ring of integers O.

5. Let O be a valuation ring of F and O1 a subring of F containing O. Show that O1 is a
valuation ring of F with the maximal ideal M1 , which is a prime ideal of O. Conversely,

show that for a prime ideal P of O the ring of fractions OP =
{α
β

: α, β ∈ O, β /∈ P
}

is a valuation ring of F .
6. A valuation v on F is said to be a p-valuation of rank d for a prime integer p if

char(F ) = 0, char(F v) = p, and Ov/pOv is of order pd . Show that

min{v(α) > 0 : α ∈ F ∗} =
v(p)
e

and d = ef , where pf = |F v|, for some natural e.
A field F is said to be a formally p-adic field if it admits at least one nontrivial p-valuation.
(For the theory of formally p-adic fields see [PR], [Po]).

3. Discrete Valuation Fields

Now we concentrate on discrete valuations.

(3.1). A field F is said to be a discrete valuation field if it admits a nontrivial discrete
valuation v (see Example 1 in (2.3)). An element π ∈ Ov is said to be a prime element
(uniformizing element) if v(π) generates the group v(F ∗). Without loss of generality
we shall often assume that the homomorphism

v:F ∗ → Z

is surjective.

(3.2). Lemma. Assume that char(F ) 6= char(F v). Then char(F ) = 0 and char(F v) =
p > 0.

Proof. Suppose that char(F ) = p 6= 0. Then p = 0 in F and therefore in F v . Hence
p = char(F v).

(3.3). Lemma. Let F be a discrete valuation field, and π be a prime element. Then
the ring of integers Ov is a principal ideal ring, and every proper ideal of Ov can be
written as πnOv for some n > 0. In particular, Mv = πOv . The intersection of all
proper ideals of Ov is the zero ideal.
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Proof. Let I be a proper ideal of Ov . Then there exists n = min{v(α) : α ∈ I} and
hence πnε ∈ I for some unit ε. It follows that πnOv ⊂ I ⊂ πnOv and I = πnOv . If
α belongs to the intersection of all proper ideals πnOv in Ov , then v(α) = +∞, i.e.,
α = 0.

Further characterization of discrete valuation fields via commutative algebra can be
found in [Se3] and [Bou].

(3.4). Lemma. Any element α ∈ F ∗ can be uniquely written as πnε for some n ∈ Z
and ε ∈ Uv .

Proof. Let n = v(α). Then απ−n ∈ Uv and α = πnε for ε ∈ Uv . If πnε1 = πmε2 ,
then n + v(ε1) = m + v(ε2). As ε1, ε2 ∈ Uv , we deduce n = m, ε1 = ε2 .

(3.5). Let v be a discrete valuation on F , 0 < d < 1. The mapping dv:F ×F → R
defined by dv(α, β) = dv(α−β) is a metric on F . Therefore, it induces a Hausdorff
topology on F . For every α ∈ F the sets α + πnOv , n ∈ Z, form a basis of open
neighborhoods of α. This topology on F and the induced topology on Uv and 1 +Mv

is called the discrete valuation topology.

Lemma. The field F with the above-defined topology is a topological field.

Proof. As

v((α− β)− (α0 − β0)) > min(v(α− α0), v(β − β0)),
v(αβ − α0β0) > min(v(α− α0) + v(β), v(β − β0) + v(α0)),

v(α−1 − α−1
0 ) = v(α− α0)− v(α)− v(α0),

we obtain the continuity of subtraction, multiplication and division.

(3.6). Lemma. The topologies on F defined by two discrete valuations v1 , v2 coin-
cide if and only if v1 = v2 ( recall that v1(F ∗) = v2(F ∗) = Z ).

Proof. Let the topologies induced by v1, v2 coincide. Observe that αn tends to 0
when n tends to +∞ in the topology defined by a discrete valuation v if and only
if v(α) > 0. Therefore, v1(α) > 0 if and only if v2(α) > 0. Let π1, π2 be prime
elements with respect to v1 and v2 . Then we conclude that v2(π1) > 1 and v1(π2) > 1.
If v2(π1) > 1 then v2(π1π

−1
2 ) > 0. Consequently, v1(π1π

−1
2 ) > 0, i.e., v1(π2) < 1.

Thus, v2(π1) = 1 and this equality holds for all prime elements π1 with respect to v1 .
This shows the equality v1 = v2 .

(3.7). Proposition (Approximation Theorem). Let v1, . . . , vn be distinct dis-
crete valuations on F . Then for every α1, . . . , αn ∈ F , c ∈ Z, there exists α ∈ F
such that vi(αi − α) > c for 1 6 i 6 n.
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Proof. It is easy to show that if v(α) > 0 then v(αm (1 + αm)−1) → +∞ as
m → +∞, and if v(α) < 0 then v(αm(1 + αm)−1 − 1) → +∞ as m → +∞.
We proceed by induction to deduce that there exists an element β1 ∈ F such that
v1(β1) < 0, vi(β1) > 0 for 2 6 i 6 n. Indeed, one can first verify that there is an
element γ1 ∈ F such that v1(γ1) > 0, v2(γ1) < 0. Using the proof of Lemma (3.6),
take elements π1, π2 ∈ F with v2(π1) 6= 1 = v1(π1), v1(π2) 6= 1 = v2(π2). If
v2(π1) < 0 put γ1 = π1 . If v2(π1) > 0, then v2(ρ) 6= 0 = v1(ρ) for ρ = π2π

−v1(π2)
1 .

Put γ1 = ρ or γ1 = ρ−1 . Now let γ2 ∈ F be such that v2(γ2) > 0, v1(γ2) < 0. Then
β1 = γ−1

1 γ2 is the desired element for n = 2.
Let n > 2. Then, by the induction assumption, there exists δ1 ∈ F with v1(δ1) < 0,

vi(δ1) > 0 for 2 6 i 6 n − 1 and δ2 ∈ F with v1(δ2) < 0, vn(δ2) > 0. One can
put β1 = δ1 if vn(δ1) > 0, β1 = δm1 δ2 if vn(δ1) = 0, and β1 = δ1δ

m
2 (1 + δm2 )−1 if

vn(δ1) < 0 for a sufficiently large m.
To complete the proof we take β1, . . . , βn ∈ F with vi(βi) < 0, vi(βj) > 0 for

i 6= j . Put α =
∑n
i=1 αiβ

m
i (1 +βmi )−1 . Then α is the desired element for a sufficiently

large m.

Exercises.

1. Show that every interior point of an open ball in the topology induced by a discrete valuation
is a center of the ball.

2. Do Lemmas (3.3) and (3.4) hold for a discrete valuation of rank n ?
3. Let v be a discrete valuation on F . Show that the map ‖·‖:F ∗ → R∗ defined as

‖α‖ = dv(α) for some real d, 0 < d < 1, is an absolute value on F and ‖F ∗‖ is a
discrete subgroup of R∗ .

4. Let ‖·‖ be an absolute value on F . As a basis of neighborhoods of α ∈ F one can take
the sets Uε(α) = {β ∈ F : ‖α− β‖ < ε}. The topology defined in this way is said to be
induced by ‖·‖.
a) Show that for the ultrametric absolute value related to a discrete valuation, this topology

coincides with the above-defined topology induced by the valuation.
b) Two absolute values are said to be equivalent if the induced topologies coincide. Show

that ‖·‖1 and ‖·‖2 are equivalent if and only if ‖·‖2 = ‖·‖c1 for some real c > 0.

4. Completion

Completion of a discrete valuation field is an object which is easier to understand than
the original field. The central object of this book, local fields, is defined in (4.6).
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(4.1). Let F be a field with a discrete valuation v (as usual, v(F ∗) = Z ). As F
is a metric topological space one can introduce the notion of a Cauchy sequence. A
sequence (αn)n>0 of elements of F is called a Cauchy sequence if for every real c
there is n0 > 0 such that v(αn − αm) > c for m,n > n0 .

If (αn) is a fundamental sequence then for every integer r there is nr such that for
all n,m > nr we have v(αn−αm) > r. We can assume n1 6 n2 6 . . . . If for every
r there is n′r > nr such that v(αn′r ) 6= v(αn′r+1), then v(αn′r ) > r and v(αn) > r for
n > n′r , and hence lim v(αn) =∞. In view of the properties of valuations, for such a
sequence there exists lim v(αn) ∈ Γ′ .

Lemma. The set A of all Cauchy sequences forms a ring with respect to componentwise
addition and multiplication. The set of all Cauchy sequences (αn)n>0 with αn → 0 as
n→ +∞ forms a maximal ideal M of A. The field A/M is a discrete valuation field
with its discrete valuation v̂ defined by v̂((αn)) = lim v(αn) for a Cauchy sequence
(αn)n>0 .

Proof. A sketch of the proof is as follows. It suffices to show that M is a maximal
ideal of A. Let (αn)n>0 be a Cauchy sequence with αn 9 0 as n → +∞. Hence,
there is an n0 > 0 such that αn 6= 0 for n > n0 . Put βn = 0 for n < n0 and
βn = α−1

n for n > n0 . Then (βn)n>0 is a Cauchy sequence and (αn)(βn) ∈ (1) +M .
Therefore, M is maximal.

(4.2). A discrete valuation field F is called a complete discrete valuation field if
every Cauchy sequence (αn)n>0 is convergent, i.e., there exists α = limαn ∈ F with
respect to v. A field F̂ with a discrete valuation v̂ is called a completion of F if it is
complete, v̂|F = v, and F is a dense subfield in F̂ with respect to v̂.

Proposition. Every discrete valuation field has a completion which is unique up to
an isomorphism over F .

Proof. We verify that the field A/M with the valuation v̂ is a completion of F .
F is embedded in A/M by the formula α → (α) mod M . For a Cauchy sequence
(αn)n>0 and real c, let n0 > 0 be such that v(αn − αm) > c for all m,n > n0 .
Hence, for αn0 ∈ F we have v̂((αn0 ) − (αn)n>0) > c, which shows that F is dense
in A/M . Let ((α(m)

n )n)m be a Cauchy sequence in A/M with respect to v̂. Let n(0),
n(1), . . . be an increasing sequence of integers such that v(α(m)

n2
− α(m)

n1
) > m for n1 ,

n2 > n(m). Then (α(m)
n(m))m is a Cauchy sequence in F and the limit of ((α(m)

n )n)m
with respect to v̂ in A/M . Thus, we obtain the existence of the completion A/M , v̂.

If there are two completions F̂1 , v̂1 and F̂2 , v̂2 , then we put f (α) = α for α ∈ F
and extend this homomorphism by continuity from F , as a dense subfield in F̂1 , to F̂1 .
It is easy to verify that the extension f̂ : F̂1 → F̂2 is an isomorphism and v̂2 ◦ f̂ = v̂1 .
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We shall denote the completion of the field F with respect to v by F̂v or F̂ .

(4.3). Lemma. Let F be a field with a discrete valuation v and F̂ its completion with
the discrete valuation v̂. Then the ring of integers Ov is dense in Ov̂ , the maximal
ideal Mv is dense in Mv̂ , and the residue field F v coincides with the residue field of
F̂ with respect to v̂.

Proof. It follows immediately from the construction of A/M in (4.1) and Proposi-
tion (4.2).

(4.4). Although we have considered the completion of discrete valuation fields, such
a construction can be realized for any valuation field using the notion of filter. As a
basis of neighborhoods of 0 one uses the sets {α ∈ F : v(α) > c} where c ∈ v(F ∗).
Assertions, similar to (4.2) and (4.3), hold in general (see [Bou, sect. 5 Ch. VI]).

(4.5). Examples of complete valuation fields.

1. The completion of Q with respect to vp of (1.1) is denoted by Qp and is called
the p-adic field. Certainly, the completion of Q with respect to the absolute value
‖·‖∞ of (1.1) is R. Embeddings of Q in Qp for all prime p and in R is a tool to
solve various problems over Q. An example is the Minkowski–Hasse Theorem (c.f.
[BSh, Ch. 1]): an equation

∑
aijXiXj = 0 for aij ∈ Q has a nontrivial solution

in Q if and only if it admits a nontrivial solution in R and in Qp for all prime p.
A generalization of this result is the so-called Hasse local-global principle which is of
great importance in algebraic number theory. It is interesting that, from the standpoint
of model theory, the complex field C is locally equivalent to the algebraic closure of
Qp for each prime p (see [Roq2]).

The ring of integers of Qp is denoted by Zp and is called the ring of p-adic integers.
The residue field of Qp is the finite field Fp consisting of p elements.

2. The completion of K(X) with respect to vX is the formal power series field
K((X)) of all formal series

∑+∞
−∞ αnX

n with αn ∈ K and αn = 0 for almost all
negative n. The ring of integers with respect to vX is K[[X]], that is, the set of all
formal series

∑+∞
0 αnX

n , αn ∈ K . Its residue field may be identified with K .
3. Let F be a field with a discrete valuation v, and F̂ its completion. Then the

valuation v∗ on F (X) defined in Example 3 of (2.3) can be naturally extended to
F̂ ((X)). For f (X) =

∑
n>m αnX

n , αn ∈ F̂ , αm 6= 0, put v∗(f (X)) = (m, v̂(αm)).

The ring of integers of v∗ on F̂ ((X)) is Ov̂ +XF̂ [[X]].
4. Let F be the same as in Example 3. Then the valuation v∗ on F (X) defined in

Example 5 of (2.3) can be naturally extended to the field

F̂{{X}} =
{+∞∑
−∞

αnX
n : αn ∈ F̂ , inf

n
{v̂(αn)} > −∞, v̂(αn)→ +∞ as n→ −∞

}
.
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For f (X) =
∑+∞
−∞ αnX

n ∈ F̂{{X}} put

v∗(f (X)) = min
n

(v̂(αn), n).

The ring of integers of v∗ is Mv̂{{X}}+Ov̂[[X]] and the maximal ideal is Mv̂{{X}}+
XOv̂[[X]], where Mv̂{{X}} = Mv̂Ov̂{{X}},
Ov̂{{X}} =

{∑+∞
−∞ αnX

n : αn ∈ Ov̂, v̂(αn) → +∞ as n→ −∞
}

, and the residue
field is F v .

(4.6). Definitions.

1. A complete discrete valuation field with perfect residue field is called a local field.
For example, Qp and F ((X)) are local fields where F is a perfect field (of positive
or zero characteristic). Local fields with finite residue field are sometimes called local
number fields if they are of characteristic zero and local functional fields if they are of
positive characteristic.

2. Local fields are sometimes called 1-dimensional local fields. An n-dimensional
local field (n > 2 ) is a complete discrete valuation fields whose residue field is an
(n−1)-dimensional local field. For example, Qp((X2)) . . . ((Xn)), F ((X1)) . . . ((Xn))
(F is a perfect field), K{{X1}} . . . {{Xn−1}} (K is a 1-dimensional local field of
characteristic zero) are n-dimensional local fields. See [FK] for an introduction to
n-dimensional local fields.

Exercises.

1. Let F be a complete discrete valuation field.
a) Show that a series

∑
n>0 αn converges in F if and only if v(αn) → +∞ as

n→ +∞.
b) Prove that F is an uncountable set.

2. Show that if the residue field is finite then the ring of integers Ov of a complete discrete
valuation field is isomorphic and homeomorphic with the projective limit lim←−Ov/π

nOv ,
where the topology of Ov/π

nOv is discrete.
3. Let f :Qp → Qq be an isomorphism and homeomorphism. Show that p = q (see also

Exercise 5e in section 1 Ch. 2).
4. Let L be a field with a valuation v and let M = Mv be the maximal ideal; M -adic topology

on L is defined as follows: the sets α + Mn , n > 0, are taken as open neighbourhoods of
α ∈ L. Show that for the case of a discrete valuation v the completion of L with respect
to the M -adic topology coincides with L̂. Does the completion of L = F (X), where
F is as in Examples 3 and 4, with respect to the M -adic topology coincide with F̂ ((X)),
F̂{{X}}? Does the completion of L = F (X) with respect to the filter (see (4.4)) coincide
with F̂ ((X)), F̂{{X}}?

5. Find the maximal ideal and the group of units in the examples in (4.5).
6. Show that the fields F̂ ((X)), F̂{{X}} in (4.5) are complete discrete valuation fields with

respect to the first component of v∗ , v∗ (see Example 2 in (2.3)), and find their residue
fields .

7. Find the completion of F (X) with respect to wc (see Example 4 in (2.3)).
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8. Define a completion of a field with respect to an absolute value. Then
a) Using (1.1) show that if ‖·‖ is a nontrivial non-ultrametric absolute value on R then

‖·‖ coincides, up to an automorphism of R, with ‖·‖c∞ for some real c > 0.
b) Prove that if ‖·‖ is a nontrivial non-ultrametric absolute value on C, then ‖·‖ coin-

cides, up to an automorphism of C, with ‖·‖c∞ for some real c > 0, where ‖·‖∞ is
the usual absolute value.

A Theorem of A. Ostrowski asserts that every complete field F with respect to a nontrivial
non-ultrametric absolute value is isomorphic to (R, ‖·‖∞ ) or (C, ‖·‖∞ ) (see [Cas, Ch. 3],
[Wes], [Bah]).

5. Filtrations of Discrete Valuation Fields

In this section we study natural filtrations on the multiplicative group of a discrete
valuation field F ; in particular, its behaviour with respect to raising to the p th power.
For simplicity, we will often omit the index v in notations Uv , Ov , Mv , F v . We fix
a prime element π of F .

(5.1). A set R is said to be a set of representatives for a valuation field F if R ⊂ O,
0 ∈ R and R is mapped bijectively on F under the canonical map O → O/M = F .
Denote by rep:F → R the inverse bijective map. For a set S denote by (S)+∞

n the
set of all sequences (ai)i>n , ai ∈ S . Let (S)+∞

−∞ denote the union of increasing sets
(S)+∞

n where n→ −∞.

(5.2). The additive group F has a natural filtration

· · · ⊃ πiO ⊃ πi+1O ⊃ . . . .

The factor filtration of this filtration is easy to calculate: πiO/πi+1O →̃F .

Proposition. Let F be a complete field with respect to a discrete valuation v. Let
πi ∈ F for each i ∈ Z be an element of F with v(πi) = i. Then the map

Rep: (F )+∞
−∞ → F, (ai)i∈Z 7→

+∞∑
−∞

rep(ai)πi

is a bijection. Moreover, if (ai)i∈Z 6= (0)i∈Z then v(Rep(ai)) = min{i : ai 6= 0}.

Proof. The map Rep is well defined, because for almost all i < 0 we get rep(ai) = 0
and the series

∑
rep(ai)πi converges in F . If (ai)i∈Z 6= (bi)i∈Z and

n = min{i ∈ Z : ai 6= bi},

then v(anπn − bnπn) = n. Since v(aiπi − biπi) > n for i > n, we deduce that

v(Rep(ai)− Rep(bi)) = n.
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Therefore Rep is injective.
In particular, v(Rep(ai)) = min{i : ai 6= 0}. Further, let α ∈ F . Then α = πnε

with n ∈ Z, ε ∈ U . We also get α = πnε′ for some ε′ ∈ U . Let an be the image of
ε′ in F ; then an 6= 0 and α1 = α − rep(an)πn ∈ πn+1O. Continuing in this way for
α1 , we obtain a convergent series α =

∑
rep(ai)πi . Therefore, Rep is surjective.

Corollary. We often take πn = πn . Therefore, by the preceding Proposition, every
element α ∈ F can be uniquely expanded as

α =
+∞∑
−∞

θiπ
i, θi ∈ R and θi = 0 for almost all i < 0.

We shall discuss the choice of the set of representatives in section 7.

Definition. If α− β ∈ πnO, we write α ≡ β mod πn .

(5.3). Definition. The group 1 + πO is called the group of principal units U1 and
its elements are called principal units. Introduce also higher groups of units as follows:
Ui = 1 + πiO for i > 1.

(5.4). The multiplicative group F ∗ has a natural filtration F ∗ ⊃ U ⊃ U1 ⊃ U2 ⊃
. . . . We describe the factor filtration of the introduced filtration on F ∗ .

Proposition. Let F be a discrete valuation field. Then
(1) The choice of a prime element π ( 1 ∈ Z → π ∈ F ∗ ) splits the exact sequence

1→ U → F ∗
v→ Z→ 0. The group F ∗ is isomorphic to U × Z.

(2) The canonical map O→ O/M = F induces the surjective homomorphism

λ0:U → F
∗
, ε 7→ ε;

λ0 maps U/U1 isomorphically onto F
∗
.

(3) The map

λi:Ui → F , 1 + απi 7→ α

for α ∈ O induces the isomorphism λi of Ui/Ui+1 onto F for i > 1.

Proof. The statement (1) follows for example from Lemma (3.4).
(2) The kernel of λ0 coincides with U1 and λ0 is surjective.
(3) The induced map Ui/Ui+1 → F is a homomorphism, since

(1 + α1π
i)(1 + α2π

i) = 1 + (α1 + α2)πi + α1α2π
2i.

This homomorphism is bijective, since λi(1 + rep(α)πi) = α.

(5.5). Corollary. Let l be not divisible by char(F ). Raising to the l th power induces
an automorphism of Ui/Ui+1 for i > 1.

If F is complete, then the group Ui for i > 1 is uniquely l-divisible.
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Proof. If ε = 1 + απi with α ∈ O, then εl ≡ 1 + lαπi mod πi+1 . Absence of
nontrivial l-torsion in the additive group F implies the first property. It also shows that
Ui has no nontrivial l-torsion.

For an element η = 1 + βπi with β ∈ O∗ we have η = (1 + l−1βπi)lη1 with
η1 ∈ Ui+1 . Applying the same argument to η1 and so on, we get an l th root of η in F
in the case of complete F .

(5.6). Let char(F ) = p > 0. Lemma (3.2) implies that either char(F ) = p or
char(F ) = 0. We shall study the operation of raising to the p th power. Denote this
homomorphism by xp:α→ αp.

The first and simplest case is char(F ) = p.

Proposition. Let char(F ) = char(F ) = p > 0. Then the homomorphism
xp maps

Ui injectively into Upi for i > 1. For i > 1 it induces the commutative diagram

Ui/Ui+1
↑p−−−−→ Upi/Upi+1

λi

y λpi

y
F

↑p−−−−→ F

Proof. Since (1 + επi)p = 1 + εpπpi and there is no nontrivial p-torsion in F
∗

and
F ∗ , the assertion follows.

Corollary. Let F be a field of characteristic p > 0 and let F be perfect, i.e
F = F

p
. Then

xp maps the quotient group Ui/Ui+1 isomorphically onto the quotient
group Upi/Upi+1 for i > 1.

(5.7). We now consider the case of char(F ) = 0, char(F ) = p > 0. As p = 0 in
the residue field F , we conclude that p ∈M and, therefore, for the surjective discrete
valuation v of F we get v(p) = e > 1.

Definition. The number e = e(F ) = v(p) is called the absolute ramification index
of F .

Let π be a prime element in F . Let R be a set of representatives, and let θ0 ∈ F
be the element of F uniquely determined by the relation p− rep(θ0)πe ∈ πe+1O (see
Corollary (5.2)).

Proposition. Let F be a discrete valuation field of characteristic zero with residue
field of positive characteristic p. Then the homomorphism

xp maps Ui to Upi for
i 6 e/(p − 1), and Ui to Ui+e for i > e/(p − 1). This homomorphism induces the
following commutative diagrams
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(1) if i < e/(p− 1),

Ui/Ui+1
↑p−−−−→ Upi/Upi+1

λi

y λpi

y
F

α7→αp−−−−→ F

(2) if i = e/(p− 1) is an integer,

Ui/Ui+1
↑p−−−−→ Upi/Upi+1

λi

y λpi

y
F

α7→αp+θ0α−−−−−−−→ F

(3) if i > e/(p− 1),

Ui/Ui+1
↑p−−−−→ Ui+e/Ui+e+1

λi

y λi+e

y
F

α7→θ0α−−−−→ F

The horizontal homomorphisms are injective in cases (1), (3) and surjective in case
(3).

If a primitive p th root ζp of unity is contained in F , then v(1 − ζp) = e/(p − 1)
and the kernel of the horizontal homomorphisms in case (2) is of order p.

If e/(p− 1) ∈ Z, Upe/(p−1)+1 ⊂ Upe/(p−1)+1 and there is no nontrivial p-torsion in
F ∗ , then the homomorphism is injective in case (2).

Proof. Let 1 + α ∈ Ui . Writing

(1 + α)p = 1 + pα +
p(p− 1)

2
α2 + · · · + pαp−1 + αp

and calculating v(pα) = e+ i, v
(
p(p− 1)

2
α2
)

= e+ 2i, . . . , v(pαp−1) = e+ (p−1)i,

v(αp) = pi, we get

v((1 + α)p − 1) = v(αp + pα), if v(αp) 6= v(pα),
v((1 + α)p − 1) > v(αp + pα), otherwise.

These formulas reveal the behavior of
xp acting on the filtration in U1 , because

v(αp) 6 v(pα) if and only if i 6 e/(p− 1). Moreover, for a unit α we obtain

(1 + απi)p ≡ 1 + αpπpi mod πpi+1, if i < e/(p− 1),

(1 + απi)p ≡ 1 + rep(θ0)απi+e mod πi+e+1, if i > e/(p− 1),

(1 + απi)p ≡ 1 + (αp + rep(θ0)α)πpi mod πpi+1, if i = e/(p− 1) ∈ Z.
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Thus, we conclude that the diagrams in the Proposition are commutative. Further, the
homomorphism

xp is an isomorphism in case (3) and injective in case (1).
Assume that ζp ∈ F . The assertions obtained above imply that v(1−ζp) = e/(p−1)

and e/(p− 1) ∈ Z. Therefore, the homomorphism α 7→ αp + θ0α is not injective. Its
kernel p−1

√
−θ0 Fp in this case is of order p.

Now let e/(p − 1) be an integer and let Upe/(p−1)+1 ⊂ Upe/(p−1)+1 . Assume
that the horizontal homomorphism in case (2) is not injective. Let α0 ∈ F satisfy
the equation αp0 + θ0α0 = 0. Then (1 + rep(α0)πe/(p−1))p ∈ Uj for some j >

pe/(p − 1). Therefore (1 + rep(α0)πe/(p−1))p = εp1 for some ε1 ∈ Ue/(p−1)+1 . Thus,
(1 + rep(α0)πe/(p−1))ε−1

1 ∈ Ue/(p−1) is a primitive p th root of unity.

(5.8). Corollary 1. Let char(F ) = 0 and let F be a perfect field of characteristic
p > 0. Then

xp maps the quotient group Ui/Ui+1 isomorphically onto Upi/Upi+1 for
1 6 i < e/(p− 1) and isomorphically onto Ui+e/Ui+e+1 for i > e/(p− 1).

Corollary 2. Let F be a complete field. Let i > pe/(p − 1). Then Ui ⊂ Upi−e .
Therefore, if F ∗ has no nontrivial p-torsion then the homomorphism is injective in
case (2).

In addition, if the residue field of F is finite and F contains no nontrivial p th roots
of unity, then Ui ⊂ Upi−e for i > pe/(p− 1)

Proof. Use the completeness of F . Due to surjectivity of the homomorphisms in
case (3) we get Ui ⊂ Ui+1U

p
i−e ⊂ Ui+2U

p
i−e ⊂ · · · ⊂ U

p
i−e .

If the residue field of F is finite, then the injectivity of the homomorphism in
case (2) implies its surjectivity.

(5.9). Proposition. Let F be a complete discrete valuation field.
If char(F ) = 0, then F ∗n is an open subgroup in F ∗ for n > 1. If char(F ) = p > 0,

then F ∗n is an open subgroup in F ∗ if and only if n is relatively prime to p.

Proof. If char(F ) = 0, then by Corollary (5.5) we get U1 ⊂ F ∗n for n > 1. It means
that F ∗n is open. If char(F ) = p, then by Corollary (5.5) U1 ⊂ F ∗n for (n, p) = 1
and F ∗n is open. In this case, if char(F ) = p, then by Proposition (5.6) 1 + πi /∈ F ∗p
for (i, p) = 1. Then F ∗p is not open. If char(F ) = 0, then using Corollary 2 of (5.8)
we obtain Ui ⊂ F ∗p

m

when i > pe/(p − 1) + (m − 1)e. Therefore F ∗n is open for
n > 1.

This Proposition demonstrates that topological properties are closely connected with
the algebraic ones for complete discrete valuation fields of characteristic 0 with residue
field of characteristic p. This is not the case when char(F ) = p.
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(5.10). Finally, we deduce a multiplicative analog of the expansion in Proposition (5.2).

Proposition (Hensel). Let F be a complete discrete valuation field. Let R be a
set of representatives and let πi be as in (5.2). Then for α ∈ F ∗ there exist uniquely
determined n ∈ Z , θi ∈ R, θ0 ∈ R∗ for i > 0, such that α can be expanded in the
convergent product

α = πnθ0
∏
i>1

(1 + θiπi).

Proof. The existence and uniqueness of n and θ0 immediately follow from Proposi-
tion (5.4). Assume that ε ∈ Um , then, using Proposition (5.2), one can find θm ∈ R
with ε(1 + θmπm)−1 ∈ Um+1 . Proceeding by induction, we obtain an expansion of α
in a convergent product. If there are two such expansions

∏
(1 + θiπi) =

∏
(1 + θ′iπi),

then the residues θi , θ′i coincide in F . Thus, θi = θ′i .

Exercise.
1. Keeping the hypotheses and notations of (5.7), assume that a primitive p th root ζp of unity

is contained in F ∗ and ζp = 1 + rep(θ1)πe/(p−1) + . . . for some θ1 ∈ F . Show that

θ0 = −θp−1
1 .

6. The Group of Principal Units as a Zp-module

We study Zp-structure of the group of principal units of a complete discrete valuation
field F with residue field F of characteristic p > 0 by using convergent series and
results of the previous section. Everywhere in this section F is a complete discrete
valuation field with residue field of positive characteristic p.

(6.1). Propositions (5.6), (5.7) imply that εp
n → 1 as n → +∞ for ε ∈ U1 . This

enables us to write

εa = lim
n→∞

εan if lim
n→∞

an = a ∈ Zp, an ∈ Z.

Lemma. Let ε ∈ U1 , a ∈ Zp . Then εa ∈ U1 is well defined and εa+b = εaεb ,
εab = (εa)b , (εη)a = εaηa for ε, η ∈ U1 , a, b ∈ Zp . The multiplicative group U1 is
a Zp-module under the operation of raising to a power. Moreover, the structure of the
Zp-module U1 is compatible with the topologies of Zp and U1 .

Proof. Assume that lim an = lim bn; hence an − bn → 0 as n → +∞ and
lim εan−bn = 1. Propositions (5.6), (5.7) show that a map Zp×U1 → U1 ( (a, ε)→ εa )
is continuous with respect to the p-adic topology on Zp and the discrete valuation
topology on U1 . This argument can be applied to verify the other assertions of the
Lemma.
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(6.2). Proposition. Let F be of characteristic p with perfect residue field. Let R be
a set of representatives, and let R0 be a subset of it such that the residues of its elements
in F form a basis of F as a vector space over Fp . Let an index-set J numerate the
elements of R0 . Assume that πi are as in (5.2). Let vp be the p-adic valuation.

Then every element α ∈ U1 can be uniquely represented as a convergent product

α =
∏

(i,p)=1
i>0

∏
j∈J

(1 + θjπi)aij

where θj ∈ R0 , aij ∈ Zp and the sets Ji,c = {j ∈ J : vp(aij) 6 c} are finite for all
c > 0 , (i, p) = 1.

Proof. We first show that the element α can be written modulo Un for n > 1 in
the desired form with aij ∈ Z. Proceeding by induction, it will suffice to consider
an element ε ∈ Un modulo Un+1 . Let ε ≡ 1 + θπn mod Un+1 , θ ∈ R. If
(n, p) = 1, then one can find θ1, . . . , θm ∈ R0 and b1, . . . , bm ∈ Z such that
1 + θπn ≡

∏m
k=1(1 + θkπn)bk mod Un+1 for some m. If n = psn′ with an integer

n′ , (n′, p) = 1, then using the Corollary of (5.6), one can find θ1, . . . , θm ∈ R0 and
b1, . . . , bm ∈ Z such that 1 + θπn ≡

∏m
k=1(1 + θkπn′ )p

sbk mod Un+1 for some m.
Now due to the continuity we get the desired expression for α ∈ U1 with the above
conditions on the sets Ji,c .

Assume that there is a convergent product for 1 with θj , aij . Let (i0, p) = 1 and
j0 ∈ J be such that n = pvp(ai0j0 )i0 6 pvp(aij )i for all (i, p) = 1, j ∈ J . Then the
choice of R0 and (5.5), (5.6) imply

∏
(1+θjπi)aij /∈ Un+1 , which concludes the proof.

Corollary. The Zp-module U1 has a topological basis 1 + θjπi where where
θj ∈ R0 , (i, p) = 1 (for the definition of a topological basis see Exercise 2).

(6.3). For subsequent consideration, we return to the horizontal homomorphism

ψ:F → F , α 7→ αp + θ0α

of case (2) in Proposition (5.7). Suppose that a primitive p th root of unity ζp belongs
to F and ζp ≡ 1 + rep(θ1)πe/(p−1) mod πe/(p−1)+1 (v(ζp− 1) = e/(p− 1) according
to Proposition (5.7)). As θ1 ∈ kerψ, we conclude that ψ(α) = θ

p

1(ηp − η) where

η = αθ
−1
1 . The homomorphism η 7→ ηp − η is usually denoted by ℘. In this

terminology we get ψ(F ) = θ
p

1℘(F ). Note that the theory of Artin–Schreier extensions
sets a correspondence between abelian extensions of exponent p and subgroups of
F/℘(F ) (see Exercise 6 section 5 Ch. V and [La1, Ch. VIII]). In particular, if F is
finite, then the cardinalities of the kernel of ψ and of the cokernel of ψ coincide. In
this simple case ψ(F ) = F if and only if there is no nontrivial p-torsion in F ∗ , and
ψ(F ) is of index p if and only if ζp ∈ F ∗ (see (5.7)). The homomorphism ℘ will play
an important role in class field theory.
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More generally, if instead of πn we use πn as in (5.2), then we can describe raising to
the p th power in a similar way. Suppose that e/(p−1) ∈ Z. Let πpe/(p−1) = η1πpe/(p−1)

with η1 ∈ O. Then raising to the p th power in case (2) is described by

ψ:α 7→ η1θ
p

1℘(αθ
−1
1 ).

(6.4). Proposition. Let F be of characteristic 0 with perfect residue field of char-
acteristic p. Let πi be as in (5.2). If e = v(p) is divisible by p− 1, let ψ:F → F be
the map introduced in (6.3).

Let R be a set of representatives and let R0 (resp. R′0 ) be a subset of it such that
the residues of its elements in F form a basis of F as a vector space over Fp (resp.
form a basis of F/ψ(F ) as a Fp-module). Let the index-set J (resp. J ′ ) numerate
the elements of R0 (resp. R′0 ). Let

I = {i : i ∈ Z, 1 6 i < pe/(p− 1), (i, p) = 1}.

Let vp be the p-adic valuation.
Then every element α ∈ U1 can be represented as a convergent product

α =
∏
i∈I

∏
j∈J

(1 + θjπi)aij
∏
j∈J′

(1 + ηjπpe/(p−1))aj

where θj ∈ R0 , ηj ∈ R′0 , aij , aj ∈ Zp (the second product occurs when e/(p− 1) is
an integer) and the sets

Ji,c = {j ∈ J : vp(aij) 6 c}, J ′c = {j ∈ J ′ : vp(aj) 6 c}

are finite for all c > 0, i ∈ I .

Proof. We shall show how to obtain the required form for ε ∈ Un modulo Un+1 . Put
πn = πn for n = pe/(p − 1). Let ε = 1 + θπn mod Un+1 , θ ∈ R. There are four
cases to consider:

(1) n ∈ I . One can find θ1, . . . , θm ∈ R0 and b1, . . . , bm ∈ Z satisfying the
congruence 1 + θπn ≡

∏m
k=1(1 + θkπn)bk mod Un+1 for some m.

(2) n < pe/(p − 1), n = psn′ with n′ ∈ I . Corollary 1 in (5.8) and (5.5) show
that there exist θ1, . . . , θm ∈ R0 , b1, . . . , bm ∈ Z such that

1 + θπn ≡
m∏
k=1

(1 + θkπn′ )p
sbk mod Un+1 for some m.

(3) e/(p − 1) ∈ Z, n = pe/(p − 1). Proposition (5.7) and (5.5) and the definition
of R′0 imply that if n = psn′ with n′ ∈ I , then there exist θ1, . . . , θm ∈ R0 ,
η1, . . . , ηr ∈ R′0 , b1, . . . , bm , c1, . . . , cr ∈ Z such that

1 + θπn ≡
m∏
k=1

(1 + θkπn′ )p
sbk

r∏
l=1

(1 + ηlπn)cl mod Un+1 for some m, r .
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(4) n > pe/(p − 1). Proposition (5.7) and Corollary 1 in (5.8) imply that if
d = min{d : n− de 6 pe/(p− 1)} and n′ = n− de, then

1 + θπn ≡ (1 + θ′πn′ )p
d

mod Un+1 for some θ′ ∈ R.

Now applying the arguments of the preceding cases to 1 + θ′πn′ , we can write 1 + θπn
mod Un+1 in the required form.

(6.5). From Proposition (5.7) we deduce that F contains finitely many roots of unity
of order a power of p.

Corollary. Let F be of characteristic 0 with perfect residue field of characteristic p.
(1) If F does not contain nontrivial p th roots of unity then the representation in

Proposition (6.4) is unique. Therefore the elements 1 + θjπi, 1 + ηjπpe/(p−1) of
Proposition (6.4) form a topological basis of the Zp-module U1,F .

(2) If F contains a nontrivial p th root of unity let r be the maximal integer such
that F contains a primitive pr th root of unity. Then the numbers aij , aj of
Proposition (6.4) are determined uniquely modulo pr . Therefore the images of the
elements 1 + θjπi, 1 + ηjπpe/(p−1) of Proposition (6.4) form a topological basis of
the Z/prZ-module U1,F /U

pr

1,F .
(3) If the residue field of F is finite then U1 is isomorphic to the direct sum of a

free Zp-module of rank ef and the torsion part, where f is the dimension of the
residue field of F over Fp .

Proof. (1) All horizontal homomorphisms of the diagrams in Proposition (5.7) are
injective when ζp /∈ F . Repeating the arguments for uniqueness from the proof of
Proposition (6.2), we get the first assertion of the Corollary.

(2) We can argue by induction on r and explain the induction step. Write a primitive
pr th root ζpr in the form of Proposition (6.4)

ζpr =
∏
i∈I

∏
j∈J

(1 + θjπi)cij
∏
j∈J′

(1 + ηjπpe/(p−1))cj

and raise the expression to the pr th power which demonstrates the non-uniqueness of
the expansion in Proposition (6.4).

Now if

1 =
∏
i∈I

∏
j∈J

(1 + θjπi)aij
∏
j∈J′

(1 + ηjπpe/(p−1))aj

then by the same argument as in the proof of Proposition (6.2) we deduce that aij =
pbij , aj = pbj with p-adic integers bij , bj . Then∏

i∈I

∏
j∈J

(1 + θjπi)bij
∏
j∈J′

(1 + ηjπpe/(p−1))bj
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is a p th root of unity, and so is equal to(∏
i∈I

∏
j∈J

(1 + θjπi)cij
∏
j∈J′

(1 + ηjπpe/(p−1))cj
)pr−1c

for some integer c. Now by the induction assumption all bij − pr−1ccij , bj − pr−1ccj
are divisible by pr−1 . Thus, all aij , aj are divisible by pr .

(3) If the residue field of F is finite then U1 is a module of finite type over the
principal ideal domain Zp . Note that the group ℘

(
F
)

is of index p in F because F
is finite (see (6.3)).

Finally the cardinality of I is equal to e = [pe/(p− 1)]− [[pe/(p− 1)]/p].

Exercises.

1. Let B be a set of elements of U1 such that the subset B ∩ (Un \ Un+1) is finite for every
n. Show that the product

∏
α∈B α converges.

2. Let A be a Zp -module endowed with a topology compatible with the structure of the
module and the p-adic topology of Zp . A set {ai}i∈I of elements of A is called a set of
topological generators of A if every element of A is a limit of a convergent sequence of
elements of the submodule of A generated by this set. A set of topological generators is
called a topological basis if for every j ∈ I and every non-zero c ∈ Zp the element caj
is not a limit of a convergent sequence of elements of the submodule of A generated by
{ai : i 6= j}.
Show that the elements indicated in Proposition (6.2) and (6.4) form a set of topological
generators of U1 with respect to the topology induced by the discrete valuation. Show that
if the p-torsion of F ∗ consists of one element then those elements form a topological basis
of U1 .

3. Assume that a primitive pr th root ζpr of unity belongs to a set of topological generators
ai of U1 as in Proposition (6.4) by replacing one of appropriate elements of the set of
generators indicated there, if necessary. By studying the unit (1 +θπi)p

ml with l relatively
prime to p show that U1 is a direct sum of its torsion part and the submodule topologically
generated by {ai : ai 6= ζpr} and these elements form a topological basis of the latter
submodule.

7. Set of Multiplicative Representatives

We maintain the notations and hypotheses of section 5; F is a complete discrete
valuation field. We shall introduce a special set R of multiplicative representatives
which is closed with respect to multiplication. We will describe coefficients of the sum
and product of convergent power series with multiplicative representatives.
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(7.1). Assume that char(F ) = p > 0.
Let a ∈ F . An element α ∈ O is said to be a multiplicative representative

(Teichmüller representative) of a if α = a and α ∈ ∩
m>0

F p
m

. This definition is

justified by the following Proposition.

Proposition. An element a ∈ F has a multiplicative representative if and only if
a ∈ ∩

m>0
F
pm

. A multiplicative representative for such a is unique. If a and b have the

multiplicative representatives α and β , then αβ is the multiplicative representative of
ab.

Proof. We need the following Lemma.

(7.2). Lemma. Let α, β ∈ O and v(α−β) > m, m > 0. Then v(αp
n−βpn ) > n+m.

Proof. Put α = β+πmγ ; then αp = βp+pβp−1πmγ+ · · ·+pβ(πmγ)p−1+πpmγp , and
as v(p) > 1 (recall char(F ) = p ), we have v(pβp−1πmγ) > m + 1, . . . , v(πpmγp) >
m + 1, and αp − βp ∈ πm+1O. Now the required assertion follows by induction.

To prove the first assertion of the Proposition, suppose that a ∈ ∩
m>0

F
pm

. Since

F has no nontrivial p-torsion, there exist unique elements am ∈ F satisfying the
equations ap

m

m = a. Let βm ∈ O be such that βm = am . Then βpm+1 = βm and

v(βpm+1−βm) > 1. Lemma (7.2) implies v(βp
n+1

m+1−β
pn

m ) > n + 1. Hence, the sequence
(βp

m−n

m )m>n is Cauchy. It has the limit αn = limβp
m−n

m ∈ O. We see that αp
n

n = α0
for n > 0 and α0 = a, i.e., α0 is a multiplicative representative of a. Conversely, if
a ∈ F has a multiplicative representative α, then α ∈ ∩

m>0
F
pm

.

Furthermore, if α and β are multiplicative representatives of a ∈ F , then writing
α = αp

m

m , β = βp
m

m for some αm, βm ∈ O, we have αp
m

m = β
pm

m and αm = βm
because of the injectivity of

xpm in F . Now Lemma (7.2) implies v(α−β) > m+ 1,
hence α = β .

Finally, if α and β are the multiplicative representatives of a and b, then αβ = ab
and αβ ∈ ∩

m>0
F p

m

. Therefore, αβ is the multiplicative representative of ab.

(7.3). Denote the set of multiplicative representatives in O by R.

Corollary 1. If F is perfect (i.e. F is a local field) then every element of F has
its multiplicative representative in R. The map r:F → R induces an isomorphism
F
∗ →̃R \ {0}. The correspondence r:F → R is called the Teichmüller map.

If F is finite then R \ {0} is a cyclic group of order equal to |F | − 1.
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Corollary 2. Let char(F ) = p. If α, β are the multiplicative representatives of
a, b ∈ F , then α + β is the multiplicative representative of a + b.

Proof. Let α = αp
m

m , β = βp
m

m . Then α+β = (αm + βm)p
m

, hence α+β ∈ ∩
m>0

F p
m

and α + β = a + b.

(7.4). Now we focus our attention exclusively on the case where char(F ) = 0 and
char(F ) = p. Suppose that we have two elements α, β ∈ O, and (π is a prime element)

α =
∑
i>0

θiπ
i, β =

∑
i>0

ηiπ
i,

with θi, ηi ∈ R. Suppose also that α + β and αβ are written in the form

α + β =
∑
i>0

ρ(+)
i πi, αβ =

∑
i>0

ρ(×)
i πi,

and ρi
(+), ρi

(×) ∈ R.
Corollary (5.2) implies that ρ(+)

i , ρ(×)
i are uniquely determined by θi, ηi . Our

intention is to reveal the dependence of ρ(+)
n , ρ(×)

n on θi, ηi , i 6 n. In order to obtain
a polynomial relation we introduce elements θi = εp

n−i

i , ηi = ξp
n−i

i , ρ(∗)
i = λ(∗)pn−i

i

for εi , ξi , λ
(∗)
i ∈ R and ∗ = + or ∗ = ×, i > 0.

Then we deduce that

(
n∑
i=0

πiεp
n−i

i

)
∗ (

n∑
i=0

πiξp
n−i

i

)
≡ (

n∑
i=0

πiλ(∗)pn−i
i

)
mod πn+1, (∗)

for ∗ = + or ∗ = ×. We see that if the residues εi, ξi for 0 6 i 6 n and λ(∗)
i for

0 6 i 6 n − 1 are known, then by using Lemma (7.2) we can calculate πiεp
n−i

i ,

πiξp
n−i

i , πiλp
n−i

i mod πn+1 . Hence, λ(∗)
n are uniquely determined from (∗).

(7.5). Let A = Z[X0, X1, . . . , Y0, Y1, . . . ] be the ring of polynomials in variables
X0, X1, . . . , Y0, Y1, . . . with coefficients from Z. Introduce polynomials

Wn(X0, . . . , Xn) =
n∑
i=0

piXpn−i

i , n > 0.

In particular, W0(X0) = X0 , W1(X0, X1) = Xp
0 + pX1 .

Proposition. There exist unique polynomials

ω(∗)
n (X0, . . . , Xn, Y0, . . . , Yn) ∈ A, n > 0

satisfying the equations

Wn(X0, . . . , Xn) ∗Wn(Y0, . . . , Yn) = Wn(ω(∗)
0 , . . . , ω(∗)

n )
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for n > 0, where ∗ = + or ∗ = ×.
Moreover, the polynomial

ω(∗)
n (X0, . . . , Xn, Y0, . . . , Yn)p − ω(∗)

n (Xp
0 , . . . , X

p
n, Y

p
0 , . . . , Y

p
n )

belongs to pA.

Proof. We get

ω(+)
0 = X0 + Y0, ω(+)

1 = X1 + Y1 + (Xp
0 + Y p0 − (X0 + Y0)p)/p,

ω(×)
0 = X0Y0, ω(×)

1 = X1Y
p

0 + Y1X
p
0 + pX1Y1,

. . . .

Assume now that ω(∗)
i ∈ A and the second assertion of the Proposition holds for

0 6 i 6 n− 1, and proceed by induction.
For a suitable polynomial f∗n ∈ A we get

pnω(∗)
n = Wn−1(Xp

0 , . . . , X
p
n−1) ∗Wn−1(Y p0 , . . . , Y

p
n−1)

−Wn−1(ω(∗)
0
p
, . . . , ω (∗)

n−1
p
) + pnf∗n

(∗∗)

For example, f+
n = Xn + Yn .

For any g ∈ A we get

g(X0, Y0, . . . )p − g(Xp
0 , Y

p
0 , . . . ) ∈ pA

and

g(X0, Y0, . . . )p
m

− g(Xp
0 , Y

p
0 , . . . )

pm−1
∈ pmA

for m > 0.
Using the second assertion of the Proposition for i < n and Lemma (7.2) we now

deduce that

Wn−1(ω(∗)p
0 , . . . , ω (∗)p

n−1 )−Wn−1(ω(∗)
0 (Xp

0 , Y
p

0 ), . . . , ω (∗)
n−1(Xp

0 , . . . , Y
p

0 , . . . )) ∈ p
nA.

From it and from

Wn−1(Xp
0 , . . . , X

p
n) ∗Wn−1(Y p0 , . . . , Y

p
n−1)

= Wn−1(ω(∗)
0 (Xp

0 , Y
p

0 ), . . . , ω (∗)
n−1(Xp

0 , . . . , Y
p

0 ))

using (∗∗) we conclude that ω(∗)
n ∈ A.

The last assertion of the Proposition now follows from the first congruence for g
above.



7. Set of Multiplicative Representatives 25

(7.6). We now return to the original problem to find an expression for ρ(∗)
i in the

partial case of π = p (the general case can be handled in a similar way).

Proposition. Let
(∑

θip
i
)
∗
(∑

ηip
i
)

=
∑
ρ(∗)
i pi with θi, ηi, ρ

(∗)
i ∈ R and ∗ = +

or ∗ = ×. Then

ρ(∗)
i ≡ ω

(∗)
i (θp

−i

0 , θp
−i+1

1 , . . . , θi, η
p−i

0 , ηp
−i+1

1 , . . . , ηi) mod p, i > 0,

where ω(∗)
i are defined in (7.5).

Proof. Assume that the assertion of the Proposition holds for i 6 n − 1. Using
notations of (7.4) this means that

λ(∗)
i

pn−i

≡ ω(∗)
i (εp

n−i

0 , . . . , εp
n−i

i , ξp
n−i

0 , . . . , ξp
n−i

i ) mod p, i 6 n− 1.

From Proposition (7.5) we obtain that for i 6 n− 1

ω(∗)
i (εp

n−i

0 , . . . , εp
n−i

i , ξp
n−i

0 , . . . , ξp
n−i

i ) ≡ ω(∗)
i (ε0, . . . , εi, ξ0, . . . , ξi)p

n−i
mod p.

Hence
λ(∗)
i ≡ ω

(∗)
i (ε0, . . . , εi, ξ0, . . . , ξi) mod p, i 6 n− 1.

From (*) in (7.4) we know

Wn(λ(∗)
0 , . . . , λ(∗)

n ) ≡Wn(ε0, . . . , εn) ∗Wn(ξ0, . . . , ξn) mod pn+1.

By Lemma (7.2) we have

piλ(∗)
i

pn−i

≡ piω(∗)
i (ε0, . . . , εi, ξ0, . . . , ξi)

pn−i

mod pn+1, i 6 n− 1.

Therefore
pnλ(∗)

n ≡ pnω(∗)
n (ε0, . . . , εn, ξ0, . . . , ξn) mod pn+1

which implies the assertion.

Corollary 1. Let
(∑

θp
−i

i pi
)
∗
(∑

ηp
−i

i pi
)

=
∑
ρ(∗)p−i
i pi with θi, ηi, ρ

(∗)
i ∈ R,

∗ = + or ∗ = ×. Then

ρ(∗)
i ≡ ω

(∗)
i (θ0, . . . , θi, η0, . . . , ηi) mod p.

Proof. In fact, this has already been shown in the proof of the Proposition.

Corollary 2. If
(∑

θip
i
)
∗
(∑

ηip
i
)

=
∑
ρ(∗)
i pi then

(∑
θpi p

i
)
∗
(∑

ηpi p
i
)

=∑
ρ(∗)p
i pi .

Proof. This follows immediately from the Proposition and the last assertion of Propo-
sition (7.5).
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Exercises.

1. Let Wn(X1, . . . , Xn) =
∑
m|nmX

n/m
m . Show that the polynomials

Ω
(∗)
n ∈ Q [X1, . . . , Xn, Y1, . . . , Yn],

which are defined via Wn in the same manner as the ω(∗)
n are defined via the Wn in the

text above, have integer coefficients.
2. Let F be a complete discrete valuation field with perfect residue field, char(F ) = 0,

char(F ) = p. Let π be a prime element in F . In the notation of (6.4) show that
a) If e < i < pe/(p− 1), then θ ∈ R there exists θ′ ∈ R for satisfying the congruence

1 + θπi ≡ 1 + θ′πp(i−e) mod Ui+1U
p
1

b) Proposition (6.4) holds if the set I is replaced by the set I ′ = {i : i ∈ Z, 1 6 i 6 e},
R = R and πi by πi .

c) Proposition (6.4) does not hold in general if I is replaced by I ′ but πi are not replaced
by πi .

8. The Witt Ring

Closely related to the constructions of the previous section is the notion of Witt vectors.
Witt vectors over a perfect field K of positive characteristic p form the ring of integers
of a local field with prime element p and residue field K .

(8.1). Let B be an arbitrary commutative ring with unity. Let the polynomials

Wn(X0, . . . , Xn) =
n∑
i=0

piXpn−i

i , n > 0

over B be the images of the polynomials Wn ∈ Z[X0, . . . , Xn] defined in (7.5) under
the natural homomorphism Z→ B .

For (ai)i>0 , put

(a(i)) = (W0(a0),W1(a0, a1), . . . ) ∈ (B)+∞
0 ;

see (5.1). The sequences (ai) ∈ (B)+∞
0 are called Witt vectors (or, more generally,

p-Witt vectors), and the a(i) for i > 0 are called the ghost components of the Witt
vector (ai).

The map (ai) 7→ (a(i)) is a bijection of (B)+∞
0 onto (B)+∞

0 if p is invertible in B .
Transfer the ring structure of (a(i)) ∈ (B)+∞

0 under the natural componentwise
addition and multiplication on (ai) ∈ (B)+∞

0 . Then for (ai), (bi) ∈ (B)+∞
0 we get

(ai) ∗ (bi) = (ω(∗)
0 (a0, b0), ω(∗)

1 (a0, a1, b0, b1), . . . )
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for ∗ = + or ∗ = ×, where the polynomial ω(∗)
i is the image of the polynomial

ω(∗)
i ∈ Z[X0, X1, . . . , Y0, Y1, . . . ] under the canonical homomorphism Z→ B .

If p is invertible in B , then the set of Witt vectors is clearly a commutative ring
under the operations defined above. In the general case, when p is not invertible in
B , the property of the set (B)+∞

0 of being a commutative ring under the operations
+,× defined above can be expressed via certain equations for the coefficients of the
polynomials ω(∗)

i ∈ B[X0, X1, . . . , Y0, Y1, . . . ]. This implies that if a ring B satisfies
these conditions, then the same is true for a subring, quotient ring and the polynominal
ring. Since every ring can be obtained in this way from a ring B in which p is invertible,
one deduces that under the image in B of the above defined operations for B the set
(B)+∞

0 is a commutative ring with the unity (1, 0, 0, . . . ). This ring is called the Witt
ring of B and is denoted by W (B). It is easy to verify that if B is an integer domain,
then W (B) is an integer domain as well.

(8.2). Assume from now on that p = 0 in B .

Lemma. Define the maps r0:B → W (B),V:W (B) → W (B) (the “Verschiebung”
map), F:W (B)→W (B) (the “Frobenius” map) by the formulas

r0(a) = (a, 0, 0, . . . ) ∈W (B),
V(a0, a1, . . . ) = (0, a0, a1, . . . ),
F(a0, a1, . . . ) = (ap0, a

p
1, . . . ).

Then
r0(ab) = r0(a)r0(b),
F(α + β) = F(α) + F(β),F(αβ) = F(α)F(β),
V(α + β) = V(α) + V(β), VF(α) = FV(α) = pα

for α, β ∈W (B).

Proof. All these properties can be deduced from properties of ω(∗)
i .

The map F− id is often denoted by ℘:W (B)→W (B).
Put Wn(B) = W (B)/VnW (B). This is a ring consisting of finite sequences

(a0, . . . , an−1).

(8.3). The following assertion is of great importance, since it provides a construction
of a local field of characteristic zero with prime element p and given perfect residue
field K .

Proposition. Let K be a perfect field of characteristic p. For a Witt vector α =
(a0, a1, . . . ) ∈W (K) put

v(α) = min{i : ai 6= 0} if α 6= 0, v(0) = +∞.
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Let F0 be the field of fractions of W (K) and v:F ∗0 → Z the extension of v from
W (K) ( v(αβ−1) = v(α)− v(β) ).

Then v is a discrete valuation on F0 and F0 is a complete discrete valuation field
of characteristic 0 with ring of integers W (K), prime element p, and residue field
isomorphic to K . The set of multiplicative representatives in F0 coincides with r0(K)
and the map r0 with the Teichmüller map K →W (K).

Proof. If α = (0, . . . , 0︸ ︷︷ ︸
m times

, . . . ), β = (0, . . . , 0︸ ︷︷ ︸
n times

, . . . ), then using the properties of the

polynomials ω(∗)
i , we get

α + β = (0, . . . , 0︸ ︷︷ ︸
l times

, . . . ), αβ = ( 0, . . . , 0︸ ︷︷ ︸
n+m times

, . . . )

with l > min(m,n). Hence, the extension of v to F0 is a discrete valuation.
Note that p = (0, 1, 0, . . . ) ∈ W (K) and pn → 0 as n → +∞ with respect to v.

Since K is perfect, by Lemma (8.2) one can write an element α = (a0, a1, . . . ) ∈W (K)
as the convergent sum

α = (a0, 0, 0, . . . ) + (0, a1, 0, . . . ) + · · · =
∞∑
i=0

r0(ap
−i

i )pi (∗)

Moreover, such expressions for Witt vectors are compatible with addition and multipli-
cation in W (K).

We also obtain that W (K) is complete with respect to v, and if v(α) = 0 for
α ∈ W (K), then α−1 ∈ W (K). Consequently, v(α) > v(β) for α, β ∈ W (K)
implies αβ−1 ∈ W (K), i.e., the ring of integers coincides with W (K) and F0 is
complete. The maximal ideal of W (K) is VW (K) and the residue field is isomorphic
to K .

Finally, r0(K) = ∩
n>0

F p
n

0 , and hence, using Proposition (7.1), we complete the

proof.

Remark. The notion of Witt vectors and Proposition (8.3) can be generalized to
ramified Witt vectors by replacing p with π (see [Dr2], [Haz4]).

Exercises.

1. Can the maps V,F, r0 (with properties similar to (8.2)) be defined for a ring with p 6= 0?
2. Show that V and F are injective in W (K) if K is a field of characteristic p.
3. Show that F is an automorphism of W (K) if K is a perfect field of characteristic p.
4. Show that W (Fp) ' Zp , Wn(Fp) ' Z/pnZ.
5. Show that r0(a)(b0, b1, . . . ) = (ab0, a

pb1, . . . ).
6. Let K be a field of characteristic p. Show that ℘:W (K) → W (K) is a ring homomor-

phism and ker(℘) = W (Fp).
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7. a) Let Ω
(∗)
n be the polynomials defined in Exercise 1 of section 7. Show that one can

introduce a big Witt ring Wb(B) by these polynomials.
b) Show that the canonical map

(a1, a2, . . . ) ∈Wb(B)→ (a1, ap, ap2 , . . . ) ∈W (B)

is a surjective ring homomorphism.

9. Artin–Hasse Maps

This section introduces several Artin–Hasse maps which can be viewed as a generaliza-
tion of the exponential map; for a more advanced generalization see section 2 Ch. VI. In
section (9.1) we define an Artin–Hasse function which is not additive; in section (9.2)
we introduce its modification which is a group homomorphism from Witt vectors over
B to formal power series in 1 + XB[[X]]; for a local field F section (9.3) presents
another modification which is a group homomorphism from W (F ) to 1 +XO[[X]].

(9.1). The exponential map relates the additive and multiplicative structures. In the
case of a complete discrete valuation field of characteristic zero exp:Mn → 1 + Mn is
an isomorphism for large n (see (1.4) of Ch. VI). We are interested in modifications of
exp so that the new map is defined on the whole M.

Introduce the formal power series

E(X) = exp
(∑
i>0

Xpi

pi

)
,

called the Artin–Hasse function (in fact, E. Artin and H. Hasse worked with 1/E(X),
see [AH2]). Considering Z as a subring of Zp , we use the notation

Z(p) = Q∩Zp =
{
m

n
: m,n ∈ Z, (n, p) = 1

}
.

Lemma. E(X) =
∏

(i,p)=1(1−Xi)−µ(i)/i ∈ Z(p)[[X]], and E(X) ≡ 1+X mod X2 ,
where µ is the Möbius function (−µ(i)/i is viewed as an element of Zp , see (6.1) ).

Proof. Put λ(X) =
∑
i>0 X

pi/pi ∈ 1 +XQ[[X]]. Then it is easy to verify that

log (1−X) = −
∑

(i,p)=1

1
i
λ(Xi).

The properties of the function µ imply

λ(X) = −
∑

(i,p)=1

µ(i)
i

log(1−Xi)
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and thereby

E(X) = exp(λ(X)) =
∏

(i,p)=1

(1−Xi)−µ(i)/i.

Remark. For a generalization of E(X) using formal groups see Exercise 4 in
section 1 Ch. VIII.

(9.2). Let B be an arbitrary commutative ring in which all integers relatively prime
to p are invertible. We shall denote also by E(X) the image of E(X) in 1 +XB[[X]]
under the canonical homomorphism Z(p) → B .

The ring B[[X]] of formal power series over a commutative ring B has the natural
X -adic topology with XnB[[X]] as a basis of open neighborhoods of 0.

For α = (a0, a1, . . . ) ∈W (B) and u(X) ∈ XB[[X]], define

E(α, u(X)) =
∏
i>0

E(aiu(X)p
i

)

(the product converges in 1 +XB[[X]], since u(X)n → 0 as n→ +∞ ).

Lemma. Let p be invertible in B . Then

E(α, u(X)) = exp
(∑
i>0

a(i)u(X)p
i

pi

)
,

where a(i) =
∑j=i
j=0 p

jap
i−j

j ∈ B are the ghost components of α defined in (8.1).

Proof. This follows directly from

E(aiu(X)p
i

) = exp
(∑
j>0

ap
j

i u(X)p
i+j

pj

)
.

Proposition. Let B be a commutative ring in which all integers relatively prime to
p are invertible. Then
(1) E(α− β, u(X)) = E(α, u(X))E(β, u(X))−1 for every α, β ∈W (B).
(2) E(Vα, u(X)) = E(α, u(X)p).
(3) E(α, u(X)) ≡ 1 + a0u(X) mod X2n if u(X) ∈ XnB[[X]].

The map E
(
· , u(X)

)
:W (B) → 1 + XB[[X]] is a continuous homomorphism of

the additive group of W (B) (with the topology given by ViW (B) ) to the multiplicative
group 1 +XB[[X]].
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Proof. If p is invertible in B then (1) follows from the previous Lemma and the
definition of the Witt ring. In the general case property (1) can be reformulated as
certain conditions imposed on the coefficients of the polynominals ω(+)

i . Repeating
now the arguments of (8.1), we deduce that property (1) holds.

Further,

E(Vα, u(X)) =
∏
i>0

E(aiu(X)p
i+1

) = E(α, u(X)p).

The congruence E(X) ≡ 1 + X mod X2 implies property (3). Finally, one can
deduce by induction that

E(ViW (B), u(X)) ⊂ 1 +XmB[[X]] for m 6 pin,

provided u(X) ∈ XnB[[X]]. This shows the continuity of E
(
· , u(X)

)
and completes

the proof.

Corollary. The map E
(
· , u(X)

)
:W (B)→ 1 +XB[[X]] is a continuous injective

homomorphism for u(X) ∈ XB[[X]].

Proof. These assertions can be verified by induction, starting with the following: if
E(α, u(X)) = 1, then, by property (3) of Proposition, a0 = 0; hence α = Vβ and
E(β, u(X)p) = 1 by property (2).

(9.3). Now we assume that B is the residue field F of a complete discrete valuation
field F and that F is a perfect field of characteristic p. Let O be the ring of integers
of F .

We endow the group 1 + O[[X]] with the topology having a basis 1 + πmO[[X]] +
XnO[[X]] of open neighborhoods of 1, where π is a prime element in F .

Let α ∈W (F ); then the relation (∗) in (8.3) allows us to write

α =
∑
i>0

r0(ci)pi with ci ∈ F ,

where r0 is the Teichmüller map F → W (F ) (see Proposition (8.3)). Note that ci
are uniquely determined by α. We also have the Teichmüller map r:F → O (see
Corollary 1 in (7.3)). Put

E(α, u(X)) =
∏
i>0

E(r(ci)u(X))p
i

with u(X) ∈ XO[[X]]

(the product converges, since u(X)n → 0 as n→ +∞ ). The map

E(·, X):W (F )→ 1 +XO[[X]]

is called the Artin–Hasse map (H. Hasse employed it for a field F of characteristic 0,
see [Has9], [Sha2]).
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Proposition.

(1) E(α− β, u(X)) = E(α, u(X))E(β, u(X))−1 for α, β ∈W (F ).
(2) E(Vα, u(X)) = E(α, u(X))p .
(3) E(α, u(X)) ≡ 1 + r(c0)u(X) mod pu(X)O[[X]] + u(X)2O[[X]] if

α =
∑
i>0 r0(ci)pi .

The map E(·, u(X)):W (F ) → 1 + XO[[X]] for u(X) 6= 0 is an injective con-
tinuous homomorphism of the additive group of W (F ) into the multiplicative group
1 +XO[[X]].

Proof. Assume first that char(F ) = 0. Then

E(α, u(X)) = exp
(∑
j>0

(∑
i>0

r(ci)p
j

pi
)
u(X)p

j

p−j
)
.

Let β =
∑
i>0 r0(di)pi and α + β =

∑
i>0 r0(ei)pi . In this case property (1) will

follow if we show that∑
i>0

r(ei)p
j

pi =
∑
i>0

r(ci)p
j

pi +
∑
i>0

r(di)p
j

pi for j > 0.

By Corollary 2 in (7.6) and section 8 it suffices to verify the last relation for j = 0.
Applying Proposition (7.6) for θi = r(ci), ηi = r(di), ρi = r(ei), we deduce that it

should be shown that

ei = ω(+)
i (cp

−i

0 , cp
−i+1

1 , . . . , ci, d
p−i

0 , dp
−i+1

1 , . . . , di).

But by the same Proposition, these relations are equivalent to∑
i>0

r0(ci)pi +
∑
i>0

r0(di)pi =
∑
i>0

r0(ei)pi;

thus we have proved property (1) in the case of char(F ) = 0.
Since property (1) can be reformulated as certain conditions on the coefficients of

the polynomials ω(+)
i we obtain this property in the general case.

Properties (2) and (3) follow from the definition of E.

Exercises.

1. Let E(X) =
∑
n>0 dnX

n, dn ∈ Q. Show that d0 = 1, and

dn =
1
n

∑
06i6vp(n)

dn−pi .

2. Show that

1−X =
∏
i>1

(i,p)=1

E(−i−1, Xi) =
∏
i>1

(i,p)=1

E(Xi)−1/i.
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3. B. Dwork introduced a function F (α,X) for α ∈W (B) by the formula

F (α,X) = exp
(∑
i>0

∑
m>1

(m,p)=1

αp
i

mpi
Xmpi

)
.

Show that

F (α,X) =
∏

(m,p)=1
m>1

E(αXm)1/m, E(αX) =
∏

(m,p)=1
m>1

F (α,Xm)µ(m)/m.

4. Let K be a field of characteristic p and let the map P :K[[X]]→ K[[X]] be defined as
follows:

P
(∑
i>0

aiX
i
)

=
∑
i>0

apiX
i.

Show that
a) E(d0α, u(X)) = E(α, u(X))d0 for d0 ∈ W (Fp) ' Zp (see Exercise 4 of section 8),

α ∈W (K), u(X) ∈ XK[[X]],
b) E(r0(a)α, u(X)) = E(α, au(X)) for a ∈ K,α ∈W (K), u(X) ∈ XK[[X]],
c) E(Fα, Pu(X)) = PE(α, u(X)) for α ∈W (K), u(X) ∈ XK[[X]].
d) E(Fα, Pu(X)) = PE(α, u(X)) for α ∈W (K) and u(X) ∈ 1 +XO[[X]].

5. Let K be as in Exercise 4. Show that

1 +XK[[X]] =
∏

(i,p)=1

E(W (K), Xi).

6. (�) (K. Kanesaka and K. Sekiguchi)
a) Let K be as above and for m > 2, let Bm(K) denote the set

{B ∈Mm(K) : B =



1 b1 b2 · · · bm−1
. . .

...
. . . b2

0
. . . b1

1

 = [1, b1, . . . , bm−1]}

Show that Bm(K) is a subgroup of GLm(K).
b) Let h:Bm(K)→ 1 +XK[[X]]/(1 +XmK[[X]]) be defined as

h([1, b1, . . . , bm−1]) = 1 + b1X + · · · + bm−1X
m−1 mod 1 +XmK[[X]].

Show that h is an isomorphism.
c) Let gm: 1+XK[[X]]→ Bm(K) be the surjective homomorphism induced by h and

let fn:W (K)→Wn(K) be canonical projection. Show that if pn−1 +1 6 m 6 pn ,
then there exists an injective homomorphism En:Wn(K) → Bm(K) such that
En ◦ fn = gm ◦ E(·, X). (This homomorphism allows one to connect Witt theory of
abelian extensions of K of exponent pn and Inaba’s theory of finite extensions of
K , see[KnS]).
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7. Let Wb(B) be the big Witt ring (see Exercise 7 of section 8). Show that the map

(a1, a2, . . . )→
∏
i>1

(1− aiXi) ∈ 1 +XB[[X]]

is an isomorphism of the additive group of Wb(B) onto the multiplicative group of 1 +
XB[[X]].

8. (�) Let K be a perfect field of characteristic p and O = W (K). Using Exercise 7 of
section 8, Exercise 7 and Proposition (9.3) define the composition

E:W (K)
E(·,X)−−−−→ 1 +XW (K)[[X]] →̃Wb(W (K))→W (W (K)),

which is called the Artin–Hasse exponential.
Define

ϕn:W (W (K))→W (K), (α0, α1, . . . ) 7→ αp
n

0 + pαp
n−1

1 + · · · + pnαn ∈W (K).

Show that ϕn ◦ E = Fn for n > 1 (the Artin–Hasse exponential E can be generalized to
arbitrary rings and ramified Witt vectors, see [Haz4]).



CHAPTER 2

Extensions of Discrete Valuation Fields

This chapter studies discrete valuation fields in relation to each other. The first section
introduces the class of Henselian fields which are quite similar to complete fields; the
key property of the former is given by the Hensel Lemma. The long section 2 deals with
the problem of extensions of valuations from a field to its algebraic extension. Section 3
describes first properties of unramified and totally ramified extensions. In the case of
Galois extensions ramification subgroups are introduced in section 4. Structural results
on complete discrete valuation fields are proved in section 5.

1. The Hensel Lemma and Henselian Fields

Complete fields are not countable (see Exercise 1 section 4 Ch. I) and therefore are
relatively huge; algebraic extensions of complete fields are not necessarily complete
with respect to any natural extension of the valuation. One of the most important
features of complete fields is the Hensel Lemma (1.2). Fields satisfying this lemma are
called Henselian. They can be relatively small; and, as we shall see later, an algebraic
extension of a Henselian field is a Henselian field.

Let F be a valuation field with the ring of integers O, the maximal ideal M , and
the residue field F . For a polynomial f(X) = anXn + · · ·+a0 ∈ O[X] we will denote
the polynomial anXn + · · · + a0 by f (X) ∈ F [X]. We will write

f(X) ≡ g(X) mod Mm

if f(X)− g(X) ∈Mm[X].

(1.1). We assume that the reader is familiar with the notion of resultant R(f, g) of
two polynomials f, g (see, e.g., [La1, Ch. V]). Let A be a commutative ring. For two
polynomials f (X) = anX

n + . . . a0 , g(X) = bmX
m + · · · + b0 their resultant is the

determinant of a matrix of order (n + m) × (n + m) formed by m rows of ai and n
rows of bj , appropriately inserted. This determinant R(f, g) is zero iff f and g have
a common root; in general R(f, g) = ff1 + gg1 for some polynomials f1, g1 ∈ O[X].
If f (X) = an

∏n
i=1(X − αi), g(X) = bm

∏m
j=1(X − βj), then their resultant R(f, g)

is amn b
n
m

∏
i,j(αi − βj). In particular, R(X − a, g(X)) = g(a).

35
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If f, g ∈ O[X] then R(f, g) ∈ O. We shall use the following properties of the
resultant: if f ≡ f1 mod M[X] then R(f, g) ≡ R(f1, g) mod M; if R(f, g) ∈
Ms \Ms+1 then Ms[X] ⊂ fO[X] + gO[X].

Proposition. Let F be a complete discrete valuation field with the ring of integers O

and the maximal ideal M . Let g0(X), h0(X), f(X) be polynomials over O such that
deg f(X) = deg g0(X) + degh0(X) and the leading coefficient of f(X) coincides with
that of g0(X)h0(X). Let R(g0, h0) /∈ Ms+1 and f(X) ≡ g0(X)h0(X) mod M2s+1

for an integer s > 0.
Then there exist polynomials g(X), h(X) such that

f(X) = g(X)h(X),

deg g(X) = deg g0(X), g(X) ≡ g0(X) mod Ms+1,

degh(X) = degh0(X), h(X) ≡ h0(X) mod Ms+1.

Proof. We first construct polynomials gi(X), hi(X) ∈ O[X] with the following
properties: deg(gi − g0) < deg g0 , deg(hi − h0) < degh0

gi ≡ gi−1 mod Mi+s, hi ≡ hi−1 mod Mi+s, f ≡ gihi mod Mi+2s+1.

Proceeding by induction, we can assume that the polynomials gj(X), hj(X), for j 6
i− 1, have been constructed. For a prime element π put

gi(X) = gi−1(X) + πi+sGi(X), hi(X) = hi−1(X) + πi+sHi(X)

with Gi(X), Hi(X) ∈ O[X], degGi(X) < deg g0(X), degHi(X) < degh0(X).
Then

gihi − gi−1hi−1 ≡ πi+s
(
gi−1Hi + hi−1Gi

)
mod Mi+2s+1.

Since by the induction assumption f(X) − gi−1(X)hi−1(X) = πi+2sf1(X) for a
suitable f1(X) ∈ O[X] of degree smaller than that of f , we deduce that it suffices for
Gi(X), Hi(X) to satisfy the congruence πsf1(X) ≡ gi−1(X)Hi(X) +hi−1(X)Gi(X)
mod Ms+1 .

We get R(gi−1(X), hi−1(X)) ≡ R(g0(X), h0(X)) 6≡ 0 mod Ms+1 . Then the prop-
erties of the resultant imply the existence of polynomials Hi , Gi satisfying the con-
gruence. Now put g(X) = lim gi(X), h(X) = limhi(X) and get f(X) = g(X)h(X).

The following statement is often called Hensel Lemma; it was proved by K. Hensel
for p-adic numbers and by K. Rychlík for complete discrete valuation fields.

(1.2). Corollary 1. Let F be as in the Proposition and F the residue field of F .
Let f(X), g0(X), h0(X) be monic polynomials with coefficients in O and f (X) =
g0(X)h0(X). Suppose that g0(X), h0(X) are relatively prime in F [X]. Then there
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exist monic polynomials g(X), h(X) with coefficients in O, such that

f(X) = g(X)h(X), g(X) = g0(X), h(X) = h0(X).

Proof. We have R(f0(X), g0(X)) /∈ M and we can apply the previous Proposition
for s = 0. The polynomials g(X) and h(X) may be assumed to be monic, as it follows
from the proof of the Proposition.

Valuation fields satisfying the assertion of Corollary 1 are said to be Henselian.
Corollary 1 demonstrates that complete discrete valuation fields are Henselian.

Corollary 2. Let F be a Henselian field and f(X) a monic polynomial with coef-
ficients in O. Let f (X) ∈ F [X] have a simple root β in F . Then f(X) has a simple
root α ∈ O such that α = β .

Proof. Let γ ∈ O be such that γ = β . Put g0(X) = X − γ in Corollary 1.

(1.3). Corollary 3. Let F be a complete discrete valuation field. Let f(X) be a
monic polynomial with coefficients in O. Let f (α0) ∈M2s+1, f ′(α0) /∈Ms+1 for some
α0 ∈ O and integer s > 0. Then there exists α ∈ O such that α − α0 ∈ Ms+1 and
f (α) = 0.

Proof. Put g0(X) = X − α0 and write f(X) = f1(X)(X − α0) + δ with δ ∈ O.
Then δ ∈ M2s+1 . Put h0(X) = f1(X) ∈ O[X]. Hence f(X) ≡ g0(X)h0(X)
mod M2s+1 and f ′(α0) = h0(α0) /∈Ms+1 . This means that R(g0(X), h0(X)) /∈Ms+1 ,
and the Proposition implies the existence of polynomials g(X), h(X) ∈ O[X] such
that g(X) = X − α, α ≡ α0 mod Ms+1 , and f(X) = g(X)h(X).

A direct proof of Corollary 3 can be found in Exercises.

Corollary 4. Let F be a complete discrete valuation field of characteristic zero.
For every positive integer m whose image in F is not zero there is n such that
1 + Mn ⊂ F ∗m .

Proof. Put fa(X) = Xm − a with a ∈ 1 + Mn . Let m ∈ Ms \Ms+1 . Then
f ′a(1) ∈ Ms \ Ms+1 . Therefore for every a ∈ 1 + M

2s+1
due to Corollary 3 the

polynomial fa(X) has a root α ≡ 1 mod Ms+1 .

(1.4). The following assertion will be used in the next section.

Lemma. Let F be a complete discrete valuation field and let

f(X) = Xn + αn−1X
n−1 + · · · + α0

be an irreducible polynomial with coefficients in F . Then the condition v(α0) > 0
implies v(αi) > 0 for 0 6 i 6 n− 1.
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Proof. Assume that α0 ∈ O and that j is the maximal integer such that v(αj) =
min06i6n−1 v(αi). If αj /∈ O, then put

f1(X) = α−1
j f(X),

g0(X) = Xj + α−1
j αj−1X

j−1 + · · · + α−1
j α0,

h0(X) = α−1
j Xn−j + 1

We have f1(X) = g0(X)h0(X), and g0(X), h0(X) are relatively prime. Therefore, by
Proposition (1.1), f1(X) and f(X) are not irreducible.

Remark. Later in (2.9) we show that all the assertions of this section hold for
Henselian discrete valuation fields.

Exercises.

1. Let F be a complete discrete valuation field, and f(X) a monic polynomial with coefficients
in O. Let α0 ∈ O be such that f (α0) ∈ M2s+1 and f ′(α0) /∈ Ms+1 . Show that the

sequence {αm}, αm = αm−1 −
f (αm−1)
f ′(αm−1)

, is convergent and α = limαm is a root of

f(X).
2. Let F be a complete discrete valuation field and f(X) = Xn +αn−1X

n−1 + · · · +α0 an
irreducible polynomial over F .
a) Show that v(α0) > 0 implies v(αi) > 0 for 1 6 i 6 n− 1.
b) Show that if v(α0) 6 0, then v(α0) = min

06i6n−1
v(αi).

3. a) Let F be a field with a valuation v and the maximal ideal Mv . Assume that F is
complete with respect to the Mv -adic topology (see Exercise 4 in section 4 Ch. 1).
Show that F is Henselian, by modifying the proof of Proposition (1.1) for s = 0 and
using appropriate πk ∈Mk

v instead of πk .
b) Show that the fields of Examples 3, 4 in section 4 Ch. I are Henselian.

4. Let F be a Henselian field and f(X) ∈ O[X] an irreducible monic polynomial. Show that
f (X) is a power of some irreducible polynomial in F [X].

5. Let F be a Henselian field with the residue field F .
a) Show that the group µ of all the roots in F (of order relatively prime with char(F ),

if char(F ) 6= 0 ), is isomorphic with the group of all roots of unity in F .
b) Let n be any integer (relatively prime to char(F ), if char(F ) 6= 0 ). Show that raising

to the n th power is an automorphism of 1 + M .
c) Let F be a Henselian discrete valuation field, and σ an isomorphism of F onto a

subfield of F . Show that σ(M) ⊂ O, σ(U ) ⊂ U .
d) Let F = Qp . Show that every isomorphism of F onto a subfield of F is continuous.
e) Show that if p 6= q, then Qp is not isomorphic to Qq .
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2. Extensions of Valuation Fields

In this rather lengthy section we study extensions of discrete valuations. In Theo-
rem (2.5) we show that if a field F is complete with respect to a discrete valuation,
then there is exactly one extension of the valuation to a finite extension of F . The
non-complete case will be described in Theorem (2.6). In Theorem (2.8) we give three
new equivalent definitions of a Henselian discrete valuation field.

(2.1). Let F be a field and L an extension of F with a valuation w:L→ Γ′ . Then
w induces the valuation w0 = w|F :F → Γ′ on F . In this context L/F is said to be
an extension of valuation fields. The group w0(F ∗) is a totally ordered subgroup of
w(L∗) and the index of w0(F ∗) in w(L∗) is called the ramification index e(L/F,w).
The ring of integers Ow0 is a subring of the ring of integers Ow and the maximal ideal
Mw0

coincides with Mw ∩ Ow0 . Hence, the residue field Fw0 can be considered as a
subfield of the residue field Lw . Therefore, if α is an element of Ow0 , then its residue
in the field Fw0 can be identified with the image of α as an element of Ow in the field
Lw . We shall denote this image of α by α. The degree of the extension Lw/Fw0 is
called the inertia degree or residue degree f (L/F,w). An immediate consequence is
the following Lemma.

Lemma. Let L be an extension of F and let w be a valuation on L. Let L ⊃M ⊃ F
and let w0 be the induced valuation on M . Then

e(L/F,w) = e(L/M,w)e(M/F,w0),
f (L/F,w) = f (L/M,w)f (M/F,w0).

(2.2). Assume that L/F is a finite extension and w0 is a discrete valuation. Let
elements α1, . . . , αe ∈ L∗ e 6 e(L/F,w) be such that w(α1) + w(F ∗), . . . , w(αe) +
w(F ∗) are distinct in w(L∗)/w(F ∗). If

∑e
i=1 ciαi = 0 holds with ci ∈ F , then, as

w(ciαi) are all distinct, by (2.1) Ch. I we get

w
( e∑
i=1

ciαi
)

= min
16i6e

w(ciαi) and ci = 0 for 1 6 i 6 e.

This shows that α1, . . . , αe are linearly independent over F and hence e(L/F,w) is
finite. Let π be a prime element with respect to w0 . Then we deduce that there are
only a finite number of positive elements in w(L∗) which are 6 w(π). Consider the
smallest positive element in w(L∗). It generates the group w(L∗), and we conclude
that w is a discrete valuation. Thus, we have proved the following result.

Lemma. Let L/F be a finite extension and w0 discrete for a valuation w on L. Then
w is discrete.
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(2.3). Hereafter we shall consider discrete valuations. Let F and L be fields with
discrete valuations v and w respectively and F ⊂ L. The valuation w is said to
be an extension of the valuation v, if the topology defined by w0 is equivalent to
the topology defined by v. We shall write w|v and use the notations e(w|v), f (w|v)
instead of e(L/F,w), f (L/F,w). If α ∈ F then w(α) = e(w|v)v(α).

Lemma. Let L be a finite extension of F of degree n; then

e(w|v)f (w|v) 6 n.

Proof. Let e = e(w|v) and let f be a positive integer such that f 6 f (w|v). Let
θ1, . . . , θf be elements of Ow such that their residues in Lw are linearly independent
over F v . It suffices to show that {θiπjw} are linearly independent over F for 1 6 i 6
f, 0 6 j 6 e− 1. Assume that ∑

i,j

cijθiπ
j
w = 0

for cij ∈ F and not all cij = 0.
Multiplying the coefficients cij by a suitable power of πv , we may assume that

cij ∈ Ov and not all cij ∈ Mv . Note that if
∑
i cijθi ∈ Mw , then

∑
i cijθi = 0 and

cij ∈Mv . Therefore, there exists an index j such that
∑
i cijθi /∈Mw . Let j0 be the

minimal such index. Then j0 = w(
∑
cijθiπ

j
w), which is impossible. We conclude that

all cij = 0. Hence, ef 6 n and e(w|v)f (w|v) 6 n.

For instance, let F̂ be the completion of a discrete valuation fields F with the
discrete valuation v̂ (see section 4 Ch. 1). Then e(v̂|v) = 1, f (v̂|v) = 1. Note that if F
is not complete, then |F̂ : F | 6= e(v̂|v)f (v̂|v). On the contrary, in the case of complete
discrete valuation fields we have

(2.4). Proposition. Let L be an extension of F and let F,L be complete with
respect to discrete valuations v, w. Let w|v, f = f (w|v) and e = e(w|v) < ∞. Let
πw ∈ L be a prime element with respect to w and θ1, . . . , θf elements of Ow such
that their residues form a basis of Lw over F v . Then {θiπjw} is a basis of the F -space
L and of the Ov -module Ow , with 1 6 i 6 f, 0 6 j 6 e− 1. If f < ∞, then L/F
is a finite extension of degree n = ef .

Proof. Let R be a set of representatives for F (see (5.1) Chapter I). Then the set

R′ =
{ f∑
i=1

aiθi : ai ∈ R and almost all ai = 0
}

is the set of representatives for L. For a prime element πv with respect to v put
πm = πkvπ

j
w , where m = ek + j, 0 6 j < e. Using Proposition (5.2) Ch. I we obtain
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that an element α ∈ L can be expressed as a convergent series

α =
∑
m

ηmπm with ηm ∈ R′.

Writing

ηm =
f∑
i=1

ηm,iθi with ηm,i ∈ R,

we get

α =
∑
i,j

(∑
k

ηek+j,iπ
k
v

)
θiπ

j
w.

Thus, α can be expressed as
∑
ρi,jθiπ

j
w with

ρi,j =
∑
k

ηek+j,iπ
k
v ∈ F, 1 6 i 6 f, 0 6 j 6 e− 1.

By the proof of the previous Lemma this expression for α is unique. We conclude that{
θiπ

j
w

}
form a basis of L over F and of Ow over Ov .

(2.5). Further we shall assume that v(F ∗) = Z for a discrete valuation v. Then
e(w|v) = |Z : w(F ∗)| for an extension w of v.

Theorem. Let F be a complete field with respect to a discrete valuation v and L a
finite extension of F . Then there is precisely one extension w on L of the valuation v

and w =
1
f
v ◦NL/F with f = f (w|v). The field L is complete with respect to w.

Proof. Let w′ = v ◦ NL/F . First we verify that w′ is a valuation on L. It is clear
that w′(α) = +∞ if and only if α = 0 and w′(αβ) = w′(α) + w′(β). Assume that
w′(α) > w′(β) for α, β ∈ L∗ , then

w′(α + β) = w′(β) + w′
(
1 +

α

β

)
and it suffices to show that if w′(γ) > 0, then w′(1 + γ) > 0. Let

f(X) = Xm + am−1X
m−1 + · · · + a0

be the monic irreducible polynomial of γ over F . Then we get (−1)ma0 = NF (γ)/F (γ)
and if s = |L : F (γ)|, then ((−1)ma0)s = NL/F (γ). We deduce that v(a0) > 0, and
making use of (1.4), we get v(ai) > 0 for 0 6 i 6 m− 1. However,

(−1)mNF (γ)/F (1 + γ) = f (−1) = (−1)m + am−1(−1)m−1 + · · · + a0,

hence
v
(
NF (γ)/F (1 + γ)

)
> 0 and v

(
NL/F (1 + γ)

)
> 0,
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i.e., w′(1 + γ) > 0. Thus, we have shown that w′ is a valuation on L.
Let n = |L : F |; then w′(α) = nv(α) for α ∈ F ∗ . Hence, the valuation

(1/n)w′ is an extension of v to L (note that (1/n)w′(L∗) 6= Z in general). Let
e = e(L/F, (1/n)w′). By Lemma (2.3) e is finite. Put w = (e/n)w′:L∗ → Q,
hence w(L∗) = w(πw)Z = Z with a prime element πw with respect to w. Therefore,
w = (e/n)v ◦NL/F is at once a discrete valuation on L and an extension of v.

Let γ1, . . . , γn be a basis of the F -vector space L. By induction on r, 1 6 r 6 n,
we shall show that

r∑
i=1

a(m)
i γi → 0, m→∞⇐⇒ a(m)

i → 0 m→∞ for i = 1, . . . , r

where a(m)
i ∈ F .

The left arrow and the case r = 1 are clear. For the induction step we can assume
that a(m)

1 6→ 0. Therefore we can assume that v(a(m)
1 ) is bounded. Hence

γ1 +
r∑
i=2

b(m)
i γi =

(
a(m)

1
)−1

r∑
i=1

a(m)
i γi → 0,

where b(m)
i = (a(m)

1
)−1

a(m)
i . Then

∑r
i=2(b(m)

i − b(m+1)
i )γi → 0, and the induction

hypothesis shows that b(m)
i − b(m+1)

i → 0 for i = 2, . . . , r. Thus, each (b(m)
i )m

converges to, say, bi ∈ F . So the sequence γ1 +
∑r
i=2 b

(m)
i γi converges both to 0 and

to γ1 +
∑r
i=2 biγi , so

0 = γ1 +
r∑
i=2

biγi

which contradicts the choice of γi .
Similarly one shows that a sequence

∑r
i=1 a

(m)
i γi is fundamental if and only if a(m)

i

is fundamental for each i = 1, . . . , r.
Thus, the completeness of F implies the completeness of its finite extension L with

respect to any extension of v. We also have the uniqueness of the extension.

(2.6). Now we treat extensions of discrete valuations in the general case.

Theorem. Let F be a field with a discrete valuation v. Let F̂ be the completion of
F , and v̂ the discrete valuation of F̂ . Suppose that L = F (α) is a finite extension of
F and f(X) the monic irreducible polynomial of α over F . Let f(X) =

∏k
i=1 gi(X)ei

be the decomposition of the polynomial f(X) into irreducible monic factors in F̂ [X].
For a root αi of the polynomial gi(X) (α1 = α) put Li = F̂ (αi). Let ŵi be the
discrete valuation on Li , the unique extension of v̂.
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Then L is embedded as a dense subfield in the complete discrete valuation field Li
under F ↪→ F̂ , α→ αi , and the restriction wi of ŵi on L is a discrete valuation on
L which extends v. The valuations wi are distinct and every discrete valuation which
is an extension of v to L coincides with some wi for 1 6 i 6 k.

Proof. First let w be a discrete valuation on L which extends v. Let L̂w be
the completion of L with respect to w. By Proposition (4.2) Ch. I there exists an
embedding σ: F̂ → L̂w over F . As α ∈ L̂w , we get σ(F̂ )(α) ⊂ L̂w . Since
σ(F̂ )(α) is a finite extension of σ(F̂ ), Theorem (2.5) shows that σ(F̂ )(α) is complete.
Therefore, L̂w ⊂ σ(F̂ )(α) and so L̂w = σ(F̂ )(α). Let g(X) be the monic irreducible
polynomial of α over σF̂ . Then σ−1g(X) divides f(X) and σ−1g(X) = gi(X) for
some 1 6 i 6 k, and then w = wi .

Conversely, assume that g(X) = gi(X) and ŵi is the unique discrete valuation on
Li = F̂ (αi) which extends v̂. Since F is dense in F̂ , we deduce that the image of L
is dense in Li and wi extends v.

If wi = wj for i 6= j then there is an isomorphism between F̂ (αi) and F̂ (αj) over
F̂ which sends αi to αj , but this is impossible.

Corollary. Let L/F be a purely inseparable finite extension. Then there is precisely
one extension to L of the discrete valuation v of F .

Proof. Assume L = F (α). Then f(X) is decomposed as (X − α)p
m

in the fixed
algebraic closure F alg of F . Therefore, k = 1 and there is precisely one extension of
v to L. If there were two distinct extensions w1, w2 of v to L in the general case of
a purely inseparable extension L/F , we would find α ∈ L such that w1(α) 6= w2(α),
and hence the restriction of w1 and w2 on F (α) would be distinct. This leads to
contradiction.

(2.7). Remarks.

1. More precisely, Theorem (2.6) should be formulated as follows.
The tensor product L⊗F F̂ may be treated as an L-module and F̂ -algebra. Then

the quotient of L ⊗F F̂ by its radical decomposes into the direct sum of complete
fields which correspond to the discrete valuations on L that are extensions of v. Under
the conditions of Theorem L ⊗F F̂ = F̂ [X]/(f(X)), and we have the surjective
homomorphism

L⊗F F̂ = F̂ [X]/(f(X)) −→
k⊕
i=1

F̂ [X]/(gi(X)) →̃
k⊕
i=1

F̂ (αi) =
⊕
wi|v

L̂wi

with the kernel
(∏k

i=1 gi(X)
)
F̂ [X]/f(X)F̂ [X], where L̂wi = F̂ (αi). Note that this

kernel coincides with the radical of L ⊗F F̂ . Under the conditions of the previous
Theorem, if L/F is separable, then all ei are equal to 1.
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2. Assume that L/F is as in the Theorem and, in addition, L/F is Galois. Then
F̂ (αi)/F̂ is Galois. Let G = Gal(L/F ). Note that if w is a valuation on L, then w◦σ
is a valuation on L for σ ∈ G. Put

Hi = {σ ∈ G : w1 ◦ σ = wi} for 1 6 i 6 k.

Then it is easy to show that G is a disjoint union of the Hi and Hi = H1σi for σi ∈ Hi .
Theorem (2.6) implies that Hi coincides with {σ ∈ G : σgi(X) = g1(X)}, whence
{σ ∈ G : σgi(X) = gi(X)} = σ−1

i H1σi . Then deg gi(X) = deg g1(X), ei = 1. The
subgroup H1 is said to be the decomposition group of w1 over F . The fixed field
M = LH1 is said to be the decomposition field of w1 over F . Note that the field
M is obtained from F by adjoining coefficients of the polynomial g1(X). We get
L = M (α1), and g1(X) ∈ M [X] is irreducible over F̂ = M̂ . Theorem (2.6) shows
that w1 is the unique extension to L of w1|M ; there are k distinct discrete valuations
on M which extend v.

Example. Let E = F (X). Recall that the discrete valuations on E which are trivial
on F are in one-to-one correspondence with irreducible monic polynomials p(X) over
F : p(X) → vp(X) , v → pv(X) and there is the valuation v∞ with a prime element
1
X (see (1.2) Ch. I). If an is the leading coefficient of f(X), then

f(X) = an
∏
v 6=v∞

pv(X)v(f(X)).

Let F1 be an extension of F . Then a discrete valuation on E1 = F1(X), trivial
on F1 , is an extension of some discrete valuation on E = F (X), trivial on F . Let
p(X) = pv(X) be an irreducible monic polynomial over F . Let p(X) be decomposed
into irreducible monic factors over F1 : p(X) =

∏k
i=1 pi(X)ei . Then one immediately

deduces that the wi = wpi(X) , 1 6 i 6 k, are all discrete valuations, trivial on F1 ,
which extend the valuation vp(X) . We also have e

(
wpi(X)|vp(X)

)
= ei . There is

precisely one extension w∞ of v∞ . Thus, for every v

pv(X) =
∏
wi|v

pwi (X)e(wi|v)

and we have the surjective homomorphism F (α) ⊗F F1 →
⊕
F1(αi), where α is a

root of p(X) and αi is a root of pi(X). Here the kernel of this homomorphism also
coincides with the radical of F (α)⊗F F1 .

(2.8). Finally we treat extensions of Henselian discrete valuation fields.

Lemma (Gauss). Let F be a discrete valuation field, O its ring of integers. Then if
a polynomial f(X) ∈ O[X] is not irreducible in F [X], it is not irreducible in O[X].
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Proof. Assume that f(X) = g(X)h(X) with g(X), h(X) ∈ F [X]. Let

g(X) =
n∑
i=0

biX
i, h(X) =

m∑
i=0

ciX
i, f(X) =

n+m∑
i=0

aiX
i.

Let

j1 = min
{
i : v(bi) = min

06k6n
v(bk)

}
, j2 = min

{
i : v(ci) = min

06k6m
v(ck)

}
.

Then v
(
bicj1+j2−i

)
> v

(
bj1cj2

)
for i 6= j1; hence v

(
aj1+j2

)
= v

(
bj1

)
+ v
(
cj2

)
.

If c = v
(
bj1

)
< 0, then we obtain v

(
cj2

)
> −v

(
bj1

)
, and one can write f(X) =(

π−cg(X)
)

(πch(X)), as desired.

Theorem. Let v be a discrete valuation on F . The following conditions are equiva-
lent:

(1) F is a Henselian field with respect to v.
(2) The discrete valuation v has a unique extension to every finite algebraic extension

L of F .
(3) If L is a finite separable extension of F of degree n, then

n = e(w|v)f (w|v),

where w is an extension of v on L.
(4) F is separably closed in F̂ .

Proof.
(1)⇒ (2). Using Corollary (2.6), we can assume that L/F is separable. Moreover,

it suffices to verify (2) for the case of a Galois extension. Let L = F (α) be Galois,
f(X) be the irreducible polynomial of α over F . Let f(X) = g1(X) . . . gk(X) be
the decomposition of f(X) over F̂ as in (2.6). Let H1 and M = LH1 be as therein.
Put w′i = wi|M for 1 6 i 6 k and suppose that k > 2. Since w1 is the discrete
valuation on L, which is the unique extension of w′1 , we conclude that the topology
induced by w′1 is not equivalent to the topology induced by w′i for 2 6 i 6 k. We
get w′i = w1 ◦ σi|M for σ1, . . . , σl ∈ G, σ1 = 1. Taking into account the proof of
Proposition (2.8), one can find an element β ∈M such that

−c = w′1(β) < 0, w′2(β) > c, . . . , w′k(β) > c.

Let τ1, . . . , τr (τ1 = 1) be the maximal set of elements of G = Gal(L/F ) for which the
elements β, τ2(β), . . . , τr(β) are distinct. Then τ2, . . . , τr /∈ H1 , and w1(β) = −c,
w1
(
τi(β)

)
> c for 2 6 i 6 r.
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Let h(X) = Xr + br−1X
r−1 + · · · + b0 be the irreducible monic polynomial of β

over F . Then

w1(b0) =
r∑
i=1

w1
(
τi(β)

)
> 0.

Similarly one checks that w1(bi) > 0 for i < r − 1. We also obtain that

w1(br−1) = min
16i6r

w1 (τi(β)) = −c < 0.

Hence, v(bi) > 0 for 0 6 i < r − 1 and v(br−1) < 0. Put h1(X) = b−rr−1h(br−1X).
Then h1(X) is a monic polynomial with integer coefficients. Since h1(X) = (X +
1)Xr−1 , by the Hensel Lemma (1.2), we obtain that h1(X) is not irreducible, implying
the same for h(X), and we arrive at a contradiction. Thus, k = 1, and the discrete
valuation v is uniquely extended on L.

(2)⇒ (3). Let L = F (α) be a finite separable extension of F and let L/F be of
degree n. Since v has the unique extension w to L, we deduce from Theorem (2.6)
that f(X) = g1(X) is the decomposition of the irreducible monic polynomial f(X) of
α over F in F̂ [X]. Therefore, the extension F̂ (α)/F̂ is of degree n. We have also
e(w|v) = e(ŵ|v̂), f (w|v) = f (ŵ|v̂), because e(ŵ|w) = 1, f (ŵ|w) = 1, e(v̂|v) = 1,
f (v̂|v) = 1; see (2.3). Now Proposition (2.4) shows that n = e(ŵ|v̂)f (ŵ|v̂) and hence
n = e(w|v)f (w|v).

(3)⇒ (4). Let α ∈ F̂ be separable over F . Put L = F (α) and n = |L : F |. Let
w be the discrete valuation on L which induces the same topology on L as v̂|L . Then
e(w|v) = f (w|v) = 1, and hence n = 1, α ∈ F .

(4)⇒ (1). Let f(X), g0(X), h0(X) be monic polynomials with coefficients in O.
Let f (X) = g0(X)h0(X) and g0(X), h0(X) be relatively prime in F v[X]; F̂ is
Henselian according to (1.1). Then there exist monic polynomials g(X), h(X) over
the ring of integers Ô in F̂ , such that f(X) = g(X)h(X) and g(X) = g0(X), h(X) =
h0(X). The polynomials g0(X), h0(X) are relatively prime in O[X] because their
residues possess this property. Consequently, they are relatively prime in F [X] by
the previous Lemma. The roots of the polynomial f(X) are algebraic over F , hence
the roots of the polynomials g(X), h(X) are algebraic over F and the coefficients of
g(X), h(X) are algebraic over F . Since F is separably closed in F̂ , we obtain that
g(X)p

m

, h(X)p
m

∈ F [X] for some m > 0. Then f(X)p
m

is the product of two
relatively prime polynomials in F [X]. We conclude that g(X)p

m

= g1(X)p
m

and
h(X)p

m

= h1(X)p
m

for some polynomials g1(X), h1(X) ∈ F [X] and, finally, the
polynomial g(X) coincides with g1(X) ∈ O[X], the polynomial h(X) coincides with
h1(X) ∈ O[X].
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Remark. The equality e(w|v)f (w|v) = n does not hold in general for algebraic
extensions of Henselian fields; see Exercise 3.

(2.9). Corollary 1. Let F be a Henselian discrete valuation field and L an alge-
braic extension of F . Then there is precisely one valuation w:L∗ → Q (not necessarily
discrete), such that the restriction w|F coincides with the discrete valuation v on F .
Moreover, L is Henselian with respect to w.

Proof. Let M/F be a finite subextension of L/F , and let, in accordance with
the previous Theorem, wM :M∗ → Q be the unique valuation on M for which
wM |F = v. For α ∈ L∗ we put w(α) = wM (α) with M = F (α). It is a straightforward
Exercise to verify that w is a valuation on L and that w|F = v. If there were
another valuation w′ on L with the property w′|F = v, we would find α ∈ L

with w(α) 6= w′(α), and hence w|F (α) and w′|F (α) would be two distinct valuations

on F (α) with the property w|F = w′|F = v. Therefore, there exists exactly one
valuation w on L for which w|F = v. To show that L is Henselian we note that
polynomials f(X) ∈ Ow[X], g0(X) ∈ Ow[X], h0(X) ∈ Ow[X] belong in fact to
O1[X], where O1 is the ring of integers for some finite subextension M/F in L/F .
Clearly, the polynomials g0(X), h0(X) are relatively prime in MwM [X], hence there
exist polynomials g(X), h(X) ∈ O1[X], such that f(X) = g(X)h(X), g(X) = g0(X)
and h(X) = h0(X).

Corollary 2. Let F be a Henselian discrete valuation field, and let L/F be a finite
separable extension. Let v be the valuation on F and w the extension of v to L. Let
e, f, πw, θ1, . . . , θf be as in Proposition (2.4). Then θiπ

j
w is a basis of the F -space L

and of the Ov -module Ow , with 1 6 i 6 f, 0 6 j 6 e − 1. In particular, if e = 1,
then

Ow = Ov
[
{θi}

]
, L = F

(
{θi}

)
,

and if f = 1, then

Ow = Ov [πw] , L = F (πw) .

Proof. One can show, similarly to the proof of Lemma (2.3), that the elements θiπjw
for 1 6 i 6 f, 0 6 j 6 e − 1 are linearly independent over F . As n = ef , these
elements form a basis of Ow over Ov and of L over F .

Corollary 3. Let F be a Henselian discrete valuation field, and L/F a finite
separable extension. Let w be the discrete valuation on L and σ:L → F alg an
embedding over F . Then w ◦ σ−1 is the discrete valuation on σL and MσL =
σML,OσL = σOL .

Corollary 4. If F is a Henselian discrete valuation field, then Proposition (1.1),
Corollary 3 and 4 of (1.3), and Lemma (1.4) hold for F .
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Proof. In terms of Proposition (1.1) we obtain that there exist polynomials g, h ∈
Ô[X] (where Ô is the ring of integers of F̂ ), such that f = gh, g ≡ g0 mod M̂s+1 ,
h ≡ h0 mod M̂s+1 , deg g = deg g0 , degh = degh0 (where M̂ is the maximal ideal
of Ô ). Proceeding now analogously to the part (4)⇒ (1) of the proof of Theorem (2.8),
we conclude that gp

m

and hp
m

belong to O[X] for some m > 0. As g0(X), h0(X)
are relatively prime in F [X] because R (g0(X), h0(X)) 6= 0, we obtain that g(X) =
g0(X), h(X) = h0(X) and Proposition (1.1) holds for F . Corollary 3 of (1.3) and
Lemma (1.4) for F are formally deduced from the latter.

Remark. Corollary 1 does not hold if the word “Henselian” is replaced by “complete”.
For instance, if the maximal unramified extension of a complete discrete valuation field
is of infinite degree over the field, then it is not complete (see Exercise 1 in the next
section). However, it is always Henselian. The assertions in (2.8) show that many
properties of complete discrete valuation fields are retained for Henselian valuation
fields. For the valuation theory with more commutative algebra flavour see [Bou],
[Rib], [E], [Ra].

The separable closure of F in F̂ is called the Henselization of F (this is a least
Henselian field containing F ). For example, the separable closure of Q in Qp is a
Henselian countable field with respect to the p-adic valuation.

Exercises.
1. a) In terms of Theorem (2.6) and remark 2 show that if F̂ is separable over F or L is

separable over F then L⊗F F̂ ' ⊕wi|vL̂wi with L̂wi = F̂ (αi).

b) Let L be separable over F . Show that |L : F | =
∑k
i=1 e(wi|v)f (wi|v).

c) Show that |L : F | = pme(w|v)f (w|v) for some m > 0 if L is a finite extension of
a Henselian discrete valuation field F .

2. (E. Artin) Let αi be elements of Qalg
2 such that α2

1 = 2, α2
i+1 = αi for i > 1. Put

F = Q2(α1, α2, . . . ). Then the discrete 2-adic valuation is uniquely extended to F . Let
F̂ be its completion. Show that F̂ (

√
−1)/F̂ is of degree 2 and if w is the valuation on

F̂ (
√
−1), then w

(√
−1−1−2(α−1

1 + · · ·+α−1
m )
)

=
(
1−2−m−1)w(2). Then the index

of ramification and the residue degree of F̂ (
√
−1)/F̂ are equal to 1.

3. a) Using Exercise 1 section 4 Ch. I show that there exists an element α =
∑
i>0 aiX

i ∈
Fp((X)) which is not algebraic over Fp(X).

b) Let β = αp and let F be the separable algebraic closure of Fp(X)(β) in Fp((X)).
Show that F is dense in Fp((X)) and Henselian. Let L = F (α). Show that L/F
is of degree p, and that the index of ramification and the residue degree of L/F are
equal to 1.

4. Let F be a field with a discrete valuation v. Show that the following conditions are
equivalent:

(1) F is a Henselian discrete valuation field.
(2) If f(X) = Xn+αn−1X

n−1+ · · ·+α0 is an irreducible polynomial over F and α0 ∈ O,
then αi ∈ O for 0 6 i 6 n− 1.
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(3) If f(X) = Xn + αn−1X
n−1 + · · · + α0 is an irreducible polynomial over F, n >

1, αn−2, . . . , α0 ∈ O, then αn−1 ∈ O.
(4) If f(X) = Xn + αn−1X

n−1 + · · · + α0 is an irreducible polynomial over F, n >
1, αn−2, . . . , α0 ∈M, αn−1 ∈ O, then αn−1 ∈M .

(5) If f(X) is a monic polynomial with coefficients in O and f (X) ∈ F [X] has a simple
root θ ∈ F , then there exists α ∈ O such that f (α) = 0 and α = θ.

5. Let M be a complete field with respect to a surjective discrete valuation w:M∗ → Z. Let
F be a subfield of M such that M/F is a finite Galois extension. For an element α ∈M
denote by µ(α) the maximum w(α− σα) 6=∞ over all σ ∈ Gal(M/F ).
a) Prove Ostrowski’s Lemma: if L/F is a subextension of M/F and if an α ∈ M

satisfies maxβ∈L w(α− β) > µ(α), then α ∈ L.
b) Prove that the algebraic closure of M is complete with respect to the extended valuation

if and only if its degree over M is finite.
6. Let v be a discrete valuation on F . Let wc = wc(v) be the discrete valuation on F (X)

defined in Example 4 (2.3) Ch. I. Suppose that F is Henselian with respect to v. Show
that for an irreducible separable polynomial f(X) ∈ F [X] there exists an integer d, such
that if g(X) ∈ F [X], deg g(X) = deg f(X) and wc

(
f(X) − g(X)

)
> d, then g(X)

is irreducible. In this case for every root α of f(X) there is a root β of g(X) with
F (α) = F (β).

7. (F.K. Schmidt) Let F be a Henselian field with respect to nontrivial valuations v, v′:F → Q.
Assume the topologies induced by v and v′ are not equivalent (see (4.4) Ch. I).
a) Show that if v is discrete, then v′ is not.
b) ([Rim]) By using an analogue of approximation Theorem (3.7) Ch. I show that if

f(X) is an irreducible separable polynomial in F [X] of degree n > 1, then for
positive integers c1, c2 there exists a polynomial g(X) ∈ F [X] with the property
w0(f(X)− g(X)) > c1 , w′0

(
Xn−1(X − 1)− g(X)

)
> c2 , where w0 = w0(v) and

w′0 = w0(v′) as in Exercise 6.
c) Deduce that F is separably closed.

3. Unramified and Ramified Extensions

In this section we look at two types of finite extensions of a Henselian discrete valuation
field F : unramified and totally ramified.

In view of Exercise 7 in the previous section the field F has the unique surjective
discrete valuation F ∗ → Z with respect to which it is Henselian; we shall denote it
from now on by vF .

Let L/F be an algebraic extension. If vL is the unique discrete valuation on L
which extends the valuation v = vF on F , then we shall write e(L|F ), f (L|F ) instead
of e(vL|vF ), f (vF |vF ). We shall write O or OF ,M or MF , U or UF , π or πF , F
for the ring of integers Ov , the maximal ideal Mv , the group of units Uv , a prime
element πv with respect to v, and the residue field F v , respectively.
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(3.1). Lemma. Let L/F be a finite extension. Let α ∈ OL and let f(X) be the monic
irreducible polynomial of α over F . Then f(X) ∈ OF [X]. Conversely, let f(X) be
a monic polynomial with coefficients in OF . If α ∈ L is a root of f(X), then α ∈ OL .

Proof. It is well known that β = αp
m

is separable over F for some m > 0 (see
[La1, sect. 4 Ch. VII]). Let M be a finite Galois extension of F with β ∈M . Then,
in fact, β ∈ OM and the monic irreducible polynomial g(X) of β over F can be
written as

g(X) =
r∏
i=1

(X − σiβ), σi ∈ Gal(M/F ), σ1 = 1.

Since β ∈ OM we get σiβ ∈ OM using Corollary 3 of (2.9). Hence we obtain
g(X) ∈ OF [X] and f(X) = g

(
Xpm

)
∈ OF [X]. If α ∈ L is a root of the polynomial

f(X) = Xn + an−1X
n−1 + · · · + a0 ∈ OF [X] and α /∈ OL , then 1 = −an−1α

−1 −
· · · − a0α

−n ∈ML , contradiction. Thus, α ∈ OL .

A finite extension L of a Henselian discrete valuation field F is called unramified
if L/F is a separable extension of the same degree as L/F . We deduce from (2.4)
that if L/F is unramified then e(L|F ) = 1, f (L|F ) = |L : F |.

A finite extension L/F is called totally ramified if f (L|F ) = 1.
A finite extension L/F is called tamely ramified if L/F is a separable extension

and p - e(L|F ) when p = char(F ) > 0.

(3.2). First we treat the case of unramified extensions.

Proposition.

(1) Let L/F be an unramified extension, and L = F (θ) for some θ ∈ L. Let α ∈ OL
be such that α = θ. Then L = F (α), and L is separable over F , OL = OF [α];
θ is a simple root of the polynomial f (X) irreducible over F , where f(X) is the
monic irreducible polynomial of α over F .

(2) Let f(X) be a monic polynomial over OF , such that its residue is a monic
separable polynomial over F . Let α be a root of f(X) in F alg , and let L = F (α).
Then the extension L/F is unramified and L = F (θ) for θ = α.

Proof. (1) By the preceding Lemma f(X) ∈ OF [X]. We have f (α) = 0 and
f (α) = 0, deg f(X) = deg f (X). Furthermore,

|L : F | > |F (α) : F | = deg f(X) = deg f (X) > |F (θ) : F | = |L : F |.

It follows that L = F (α) and θ is a simple root of the irreducible polynomial f (X).
Therefore, f

′
(θ) 6= 0 and f ′(α) 6= 0, i.e., α is separable over F . It remains to use

Corollary 2 of (2.9) to obtain OL = OF [α].
(2) Let f(X) =

∏n
i=1 fi(X) be the decomposition of f(X) into irreducible monic

factors in F [X]. Lemma (2.8) shows that fi(X) ∈ OF [X]. Suppose that α is a
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root of f1(X). Then g1(X) = f1(X) is a monic separable polynomial over F . The
Henselian property of F implies that g1(X) is irreducible over F . We get α ∈ OL
by Lemma (3.1). Since θ = α ∈ L, we obtain L ⊃ F (θ) and

deg f1(X) = |L : F | > |L : F | > |F (θ) : F | = deg g1(X) = deg f1(X).

Thus, L = F (θ), and L/F is unramified.

Corollary.

(1) If L/F,M/L are unramified, then M/F is unramified.
(2) If L/F is unramified, M is an algebraic extension of F and M is the discrete

valuation field with respect to the extension of the valuation of F , then ML/M
is unramified.

(3) If L1/F, L2/F are unramified, then L1L2/F is unramified.

Proof. (1) follows from Lemma (2.1).
To verify (2) let L = F (α) with α ∈ OL , f(X) ∈ OF [X] as in the first part of

the Proposition. Then α /∈ML because L = F (α). Observing that ML = M (α), we
denote the irreducible monic polynomial of α over M by f1(X). By the Henselian
property of M we obtain that f1(X) is a power of an irreducible polynomial over
M .However, f1(X) divides f (X), hence f1(X) is irreducible separable over M .
Applying the second part of the Proposition, we conclude that ML/M is unramified.

(3) follows from (1) and (2).

An algebraic extension L of a Henselian discrete valuation field F is called unram-
ified if L/F,L/F are separable extensions and e(w|v) = 1, where v is the discrete
valuation on F , and w is the unique extension of v on L.

The third assertion of the Corollary shows that the compositum of all finite unramified
extensions of F in a fixed algebraic closure F alg of F is unramified. This extension is a
Henselian discrete valuation field (it is not complete in the general case, see Exercise 1).
It is called the maximal unramified extension F ur of F . Its maximality implies
σF ur = F ur for any automorphism of the separable closure F sep over F . Thus,
F ur/F is Galois.

(3.3). Proposition.

(1) Let L/F be an unramified extension and let L/F be a Galois extension. Then
L/F is Galois.

(2) Let L/F be an unramified Galois extension. Then L/F is Galois. For an au-
tomorphism σ ∈ Gal(L/F ) let σ be the automorphism in Gal(L/F ) satisfying
the relation σ̄ᾱ = σα for every α ∈ OL . Then the map σ → σ induces an
isomorphism of Gal(L/F ) onto Gal(L/F ).
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Proof. (1) It suffices to verify the first assertion for a finite unramified extension L/F .
Let L = F (θ) and let g(X) be the irreducible monic polynomial of θ over F . Then

g(X) =
n∏
i=1

(X − θi),

with θi ∈ L, θ1 = θ. Let f(X) be a monic polynomial over OF of the same degree as
g(X) and f (X) = g(X). The Henselian property

(
Corollary 2 in (1.2)

)
implies

f(X) =
n∏
i=1

(X − αi),

with αi ∈ OL, αi = θi . Proposition (3.2) shows that L = F (α1), and we deduce that
L/F is Galois.

(2) Note that the automorphism σ is well defined. Indeed, if β ∈ OL with β = α,
then σ(α − β) ∈ ML by Corollary 3 in (2.9) and σα = σβ . It suffices to verify
the second assertion for a finite unramified Galois extension L/F . Let α, θ, f(X)
be as in the first part of Proposition (3.2). Since all roots of f(X) belong to L, we
obtain that all roots of f (X) belong to L and L/F is Galois. The homomorphism
Gal(L/F )→ Gal(L/F ) defined by σ → σ is surjective because the condition σθ = θi
implies σα = αi for the root αi of f(X) with αi = θi . Since Gal(L/F ), Gal(L/F )
are of the same order, we conclude that Gal(L/F ) is isomorphic to Gal(L/F ).

Corollary. The residue field of F ur coincides with the separable closure F
sep

of
F and Gal(F ur/F ) ' Gal(F

sep
/F ).

Proof. Let θ ∈ F sep
, let g(X) be the monic irreducible polynomial of θ over F , and

f(X) as in the second part of Proposition (3.2). Let {αi} be all the roots of f(X) and
L = F ({αi}). Then L ⊂ F ur and θ = αi ∈ F ur for a suitable i. Hence, F ur = F

sep
.

(3.4). Let L be an algebraic extension of F , and let L be a discrete valuation field.
We will assume that F alg = Lalg in this case.

Proposition. Let L be an algebraic extension of F and let L be a discrete valuation
field. Then Lur = LF ur , and L0 = L ∩ F ur is the maximal unramified subextension of
F which is contained in L. Moreover, L/L0 is a purely inseparable extension.

Proof. The second part of Corollary (3.2) implies Lur ⊃ LF ur . Since the residue field
of LF ur contains the compositum of the fields L and F

sep
, which coincides with L

sep

because L/F is algebraic, we deduce Lur = LF ur . An unramified subextension of F
in L is contained in L0 , and L0/F is unramified. Let θ ∈ L be separable over F ,
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and let g(X) be the monic irreducible polynomial of θ over F . Let f(X) be a monic
polynomial with coefficients in OF of the same degree as g(X), and f (X) = g(X).
Then there exists a root α ∈ OL of the polynomial f(X) with α = θ because of the
Henselian property. Proposition (3.2) shows that F (α)/F is unramified, and hence
θ ∈ L0 .

Corollary. Let L be a finite separable (resp. finite) extension of a Henselian (resp.
complete) discrete valuation field F , and let L/F be separable. Then L is a totally
ramified extension of L0, L

ur is a totally ramified extension of F ur , and |L : L0| =
|Lur : F ur|.

Proof. Theorem (2.8) and Proposition (2.4) show that f (L|L0) = 1, and e(L|L0) =
|L : L0|. Lemma (2.1) implies e(Lur|F ur) = e(Lur|F ) = e(L|L0). Since |L : L0| >
|Lur : F ur|, we obtain that |L : L0| = |Lur : F ur|, e(Lur|F ur) = |Lur : F ur|, and
f (Lur|F ur) = 1.

(3.5). We treat the case of tamely ramified extensions.

Proposition.

(1) Let L be a finite separable (resp. finite) tamely ramified extension of a Henselian
(resp. complete) discrete valuation field and let L0/F be the maximal unramified
subextension in L/F . Then L = L0(π) and OL = OL0 [π] with a prime element
π in L satisfying the equation Xe − π0 = 0 for some prime element π0 in L0 ,
where e = e(L|F ).

(2) Let L0/F be a finite unramified extension, L = L0(α) with αe = β ∈ L0 . Let
p - e if p = char(F ) > 0. Then L/F is separable tamely ramified.

Proof. (1) The Corollary of Proposition (3.4) shows that L/L0 is totally ramified.
Let π1 be a prime element in L0 , then π1 = πeLε for a prime element πL in L and
ε ∈ UL according to (2.3). Since L = L0 , there exists η ∈ OL0 such that η = ε.
Hence π1η

−1 = πeLρ for the principal unit ρ = εη−1 ∈ OL . For the polynomial
f(X) = Xe − ρ we have f (1) ∈ ML , f ′(1) = e. Now Corollary 2 of (1.2) shows
the existence of an element ν ∈ OL with νe = ρ, ν = 1. Therefore, π0 = π1η

−1 ,
π = πLν are the elements desired for the first part of the Proposition. It remains to use
Corollary 2 of (2.9).

(2) Let β = πa1ε for a prime element π1 in L0 and a unit ε ∈ UL0 . The
polynomial g(X) = Xe − ε is separable in L0[X] and we can apply Proposition (3.2)
to f(X) = Xe − ε and a root η ∈ F sep of f(X). We deduce that L0(η)/L0 is
unramified and hence it suffices to verify that M/M0 for M = L(η),M0 = L0(η), is
tamely ramified. We get M = M0(α1) with α1 = αη−1 , αe1 = πa1 . Put d = g.c.d.(e, a).
Then M ⊂ M0(α2, ζ) with α

e/d
2 = π

a/d
1 and a primitive e th root ζ of unity. Since
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the extension M0 (ζ) /M0 is unramified (this can be verified by the same arguments
as above), π1 is a prime element in M0 (ζ). Let v be the discrete valuation on
M0 (α2, ζ). Then (a/d)v(π1) ∈ (e/d)Z and v(π1) ∈ (e/d)Z, because a/d and
e/d are relatively prime. This shows that e

(
M0(α2, ζ) | M0(ζ)

)
> e/d. However,

|M0(ζ, α2) : M0(ζ)| 6 e/d, and we conclude that M0(ζ, α2)/M0(ζ) is tamely and
totally ramified. Thus, M0 (ζ, α2) /M0 and M/M0 are tamely ramified extensions.

Corollary.

(1) If L/F,M/L are separable tamely ramified, then M/F is separable tamely
ramified.

(2) If L/F is separable tamely ramified, M/F is an algebraic extension, and M is
discrete, then ML/M is separable tamely ramified.

(3) If L1/F, L2/F are separable tamely ramified, then L1L2/F is separable tamely
ramified.

If F is complete, then all the assertions hold without the assumption of separability.

Proof. It is carried out similarly to the proof of Corollary (3.2). To verify (2) one
can find the maximal unramified subextension L0/F in L/F . Then it remains to
show that ML/ML0 is tamely ramified. Put L = L0(π) with πe = π0 . Then we get
ML = ML0(π), and the second part of the Proposition yields the required assertion.

(3.6). Finally we treat the case of totally ramified extensions. Let F be a Henselian
discrete valuation field. A polynomial

f(X) = Xn + an−1X
n−1 + · · · + a0 over O

is called an Eisenstein polynomial if

a0, . . . , an−1 ∈M, a0 /∈M2.

Proposition.

(1) The Eisenstein polynomial f(X) is irreducible over F . If α is a root of f(X),
then F (α)/F is a totally ramified extension of degree n, and α is a prime element
in F (α), OF (α) = OF [α].

(2) Let L/F be a separable totally ramified extension of degree n, and let π be a
prime element in L. Then π is a root of an Eisenstein polynomial over F of
degree n.

Proof. (1) Let α be a root of f (X), L = F (α), e = e(L|F ). Then

nvL(α) = vL

(n−1∑
i=0

aiα
i

)
> min

06i6n−1
(evF (ai) + ivL(α)) ,
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where vF and vL are the discrete valuations on F and L. It follows that vL(α) > 0.
Since evF (a0) < evF (ai) + ivL(α) for i > 0, one has nvL(α) = evF (a0) = e.
Lemma (2.3) implies vL(α) = 1, n = e, f = 1, and OL = OF [α] similarly to Corollary 2
of (2.9).
(2) Let π be a prime element in L. Then L = F (π) by Corollary 2 of (2.9). Let

f(X) = Xn + an−1X
n−1 + · · · + a0

be the irreducible polynomial of π over F . Then

n = e, nvL(π) = min
06i6n−1

(
nvF (ai) + i

)
,

hence vF (ai) > 0, and n = nvF (a0), vF (a0) = 1.

Exercises.

1. a) Let π be a prime element in F , and let F
sep

be of infinite degree over F (e.g.
F = Fp, F = Qp ). Let Fi be finite unramified extensions of F , Fi ⊂ Fj , Fi 6= Fj
for i < j . Put

αn =
n∑
i=1

θiπ
i,

where θi ∈ OFi+1 , /∈ OFi . Show that the sequence {αn}n>0 is a Cauchy sequence
in F ur , but limαn /∈ F ur .

b) Show that F sep is not complete, but the completion C of F sep is separably closed
(use Exercise 5b section 2).

2. a) Let L1, L2 be finite extensions of F and let L1/F , L2/F be separable. Show that
L1 ∩ L2 = L1 ∩ L2 .

b) Does L1 ∩ L2 = L1 ∩ L2 hold without the assumption of the residue fields?
c) Prove or refute: if L1, L2 are finite extensions of F and L1 , L2 are separable

extensions of F , then L1L2 = L1L2 .
3. Show that in general the compositum of two totally (totally tamely) ramified extensions is

not a totally (totally tamely) ramified extension.
4. Let L be a finite extension of F .

a) Show that if OL = OF [α] with α ∈ OL , then L = F (α).
b) Find an example: L = F (α) with α ∈ OL and L 6= F (α).

5. Let L be a finite separable extension of F and let L/F be separable. Let L = F (θ), let
g(X) ∈ F [X] be the monic irreducible polynomial of θ over F and let f(X) ∈ OF [X]
be the monic polynomial of the same degree such that f (X) = g(X). Let α ∈ OL be such
that α = θ. Show that OL = OF [α] if f (α) is a prime element in L, and OL = OF [α+π]
otherwise, where π is a prime element in L.

6. Let L be a separable totally ramified extension of F , and π a prime element in L. Show
that f(X) = NL/F (X − π) =

∏
(X − σiπ) is the Eisenstein polynomial of π over F .
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4. Galois Extensions

We study Galois extensions of Henselian discrete valuation fields and introduce a
ramification filtration on the Galois group. Ramification theory was first studied by
R. Dedekind and D. Hilbert. In this section F is a Henselian discrete valuation field.

(4.1). Lemma. Let L be a finite Galois extension of F . Then v◦σ = v for the discrete
valuation v on L and σ ∈ Gal(L/F ). If π is a prime element in L, then σπ is a
prime element and σOL = OL , σML = ML .

Proof. It follows from Corollary 3 of (2.9).

Proposition. Let L be a finite Galois extension of F and let L0/F be the maximal
unramified subextension in L/F . Then L0/F and L0/F are Galois, and the map
σ → σ defined in Proposition (3.3) induces the surjective homomorphism Gal(L/F )→
Gal(L0/F ) → Gal(L0/F ). If, in addition, L/F is separable, then L = L0 and L/F
is Galois, and L/L0 is totally ramified.

The extension Lur/F is Galois and the group Gal(Lur/L0) is isomorphic with
Gal(Lur/L)× Gal(Lur/F ur), and

Gal(Lur/F ur) ' Gal(L/L0), Gal(Lur/L) ' Gal(F ur/L0).

Proof. Recall that in (3.4) we got an agreement F alg = Lalg . Let σ ∈ Gal(L/F ).
Corollary 3 of (2.9) implies that σL0 is unramified over F , hence L0 = σL0 and L0/F
is Galois. The surjectivity of the homomorphism Gal(L/F ) → Gal(L0/F ) follows
from Proposition (3.3). Since L/F and F ur/F are Galois extensions, we obtain that
LF ur/F is a Galois extension. Then Lur = LF ur by Proposition (3.4). The remaining
assertions are easily deduced by Galois theory.

Thus, a Galois extension L/F induces the Galois extension Lur/F ur . The converse
statement can be formulated as follows.

(4.2). Proposition. Let M be a finite extension of F ur of degree n. Then there
exist a finite unramified extension L0 of F and an extension L/L0 of degree n such
that L ∩ F ur = L0, LF

ur = M . If M/F ur is separable (Galois) then one can find L0
and L, such that L/L0 is separable (Galois).

Proof. Assume that L0 is a finite unramified extension of F, L is a finite extension
of L0 of the same degree as M/F ur and M = LF ur . Then for a finite unramified
extension N0 of L0 and N = N0L we get |M : F ur| 6 |N : N0| 6 |L : L0|, hence
|N : N0| = |L : L0| and |N : L| = |N0 : L0|. This shows L ∩ F ur = L0 and L0, L
are such as desired. Moreover, N0 , N are also valid for the Proposition. Therefore, it
suffices to consider a case of M = F ur(α).
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Let f(X) ∈ F ur[X] be the irreducible monic polynomial of α over F ur . In fact,
its coefficients belong to some finite subextension L0/F in F ur/F . Put L = L0(α).
Then f(X) is irreducible over L0 , L is the finite extension of L0 of the same degree
as M/F ur and M = LF ur . This proves the first assertion of the Proposition. If α is
separable over F ur , then it is separable over L0 . If M/F ur is a Galois extension, then
M = F ur(α) for a suitable α and σi(α) for σi ∈ Gal(M/F ur) can be expressed as
polynomials in α with coefficients in F ur . All these coefficients belong to some finite
extension L′0 of L0 in F ur . The pair L′0 , L′ = L′0(α) is the desired one.

Corollary. If M = F ur , then L/L0 and M/F ur are totally ramified.

Proof. It follows from Proposition (3.4).

(4.3). Let L be a finite Galois extension of F , G = Gal(L/F ). Put

Gi =
{
σ ∈ G : σα− α ∈Mi+1

L for all α ∈ OL
}
, i > −1.

Then G−1 = G by Lemma (4.1) and Gi+1 is a subset of Gi .
Let vL be the discrete valuation of L. For a real number x define

Gx =
{
σ ∈ G : vL(σα− α) > x + 1 for all α ∈ OL

}
.

Certainly each of Gx is equal to Gi with the least integer i > x.

Lemma. Gi are normal subgroups of G.

Proof. Let σ ∈ Gi, α ∈ OL . Then σα − α ∈ Mi+1
L . Hence α − σ−1(α) ∈

σ−1(Mi+1
L ) = Mi+1

L by Lemma (4.1), i.e., σ−1 ∈ Gi . Let σ, τ ∈ Gi . Then

στ (α)− α = σ(τ (α)− α) + σ(α)− α ∈Mi+1
L ,

i.e., στ ∈ Gi . Furthermore, let σ ∈ Gi, τ ∈ G. Then τ (α) ∈ OL for α ∈ OL and
σ(τα)− τα ∈Mi+1

L , τ−1στ (α)− α ∈Mi+1
L , τ−1στ ∈ Gi .

The groups Gx are called (lower) ramification groups of G = Gal(L/F ).

Proposition. Let L be a finite Galois extension of F , and let L be a separable
extension of F . Then G0 = Gal(L/L0) and the i th ramification groups of G0 and G
coincide for i > 0. Moreover,

Gi =
{
σ ∈ G0 : σπ − π ∈Mi+1

L

}
for a prime element π in L, and Gi = {1} for sufficiently large i.
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Proof. Note that σ ∈ G0 if and only if σ ∈ Gal(L/F ) is trivial. Then G0 coincides
with the kernel of the homomorphism Gal(L/F ) → Gal(L/F ). Proposition (4.1) and
Proposition (3.3) imply that this kernel is equal to Gal(L/L0). Since Gi is a subgroup
of G0 for i > 0, we get the assertion on the i th ramification group of G0 . Finally,
using Corollary 2 of (2.9) we obtain OL = OL0 [π]. Let

α =
n∑
m=0

aiπ
m

be an expansion of α ∈ OL with coefficients in OL0 . As σam = am for σ ∈ G0 it
follows that

σα− α =
n∑
m=0

am (σ(πm)− πm) .

Now we deduce the description of Gi , since σ(πm)−πm ∈Mi+1
L . If i > max{vL(σπ−

π) : σ ∈ G}, then Gi = {1}.

The group G0 is called the inertia group of G, and the field L0 is called the
inertia subfield of L/F .

(4.4). Proposition. Let L be a finite Galois extension of F , L a separable extension
of F , and π a prime element in L. Introduce the maps

ψ0:G0 −→ L
∗
, ψi:Gi −→ L (i > 0)

by the formulas ψi(σ) = λi(σπ/π), where the maps

λ0:UL −→ L
∗
, λi: 1 + Mi

L −→ L

were defined in Proposition (5.4) Ch. I. Then ψi is a homomorphism with the kernel
Gi+1 for i > 0.

Proof. The proof follows from the congruence

στ (π)
π

= σ
(τπ
π

)
· σπ
π
≡ τπ

π
· σπ
π

mod Ui+1

for σ, τ ∈ Gi and Proposition (5.4) Ch. I. The kernel of ψi consists of those automor-
phisms σ ∈ Gi , for which σπ/π ∈ 1 + Mi+1

L , i.e., σπ − π ∈Mi+2
L .

Corollary 1. Let L be a finite Galois extension of F , and L a separable extension
of F . If char(F ) = 0, then G1 = {1} and G0 is cyclic. If char(F ) = p > 0, then the
group G0/G1 is cyclic of order relatively prime to p, Gi/Gi+1 are abelian p-groups
if i > 0, and G1 is the maximal p-subgroup of G0 .
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Proof. The previous Proposition permits us to transform the assertions of this Corollary
into the following: a finite subgroup in L

∗
is cyclic (of order relatively prime to char(L)

when char(L) 6= 0 ); there are no nontrivial finite subgroups in the additive group of L
if char(L) = 0; if char(L) = p > 0 then a finite subgroup in L is a p-group.

Corollary 2. Let L be a finite Galois extension of F and L a separable extension
of F . Then the group G1 coincides with Gal(L/L1), where L1/F is the maximal
tamely ramified subextension in L/F .

Proof. The extension L1/L0 is totally ramified by Proposition (4.1) and is the maximal
subextension in L/L0 of degree relatively prime with char(F ). Now Corollary 1
implies G1 = Gal(L/L1).

Corollary 3. Let L be a finite Galois extension of F and L a separable extension
of F . Then G0 is a solvable group. If, in addition, L/F is a solvable extension, then
L/F is solvable.

Proof. It follows from Corollary 1.

Remark. G0 is solvable in the case of an inseparable extension L/F ; see Exercise 2.

(4.5). Definition. Let L/F be a finite Galois extension with separable residue field
extension; let G = Gal(L/F ). Integers i such that Gi 6= Gi+1 are called ramification
numbers of L/F or lower ramification jumps of L/F .

One of the first properties of ramification numbers if supplied by the following

Proposition. Let L/F be a finite Galois extension with separable residue field
extension. Let σ ∈ Gi \ Gi+1 and τ ∈ Gj \ Gj+1 with i, j > 1. Then στσ−1τ−1 ∈
Gi+j+1 and i ≡ j mod p.

Proof. Let πL be a prime element of L. Then
σπL
πL

= 1 + απiL,
τπL
πL

= 1 + βπjL with α, β ∈ O∗L .

Therefore

στπL = σπL + (σβ)(σπL)j+1

≡ πL + απi+1
L + βπj+1

L + (j + 1)αβπi+j+1
L mod M

i+j+2
L .

Hence (στ − τσ)πL ≡ (j − i)αβπi+j+1
L mod M

i+j+2
L . Substituting instead of πL the

other prime element σ−1τ−1πL of L we deduce that

στσ−1τ−1πL
πL

≡ 1 + (j − i)αβπi+jL mod M
i+j+1
L .
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Now if j is the maximal ramification number of L/F , then Gj+1 = {1}. Therefore
the last formula in the previous paragraph shows that every positive ramification number
i of L/F is congruent to j modulo p. Therefore every two positive ramification
number of L/F are congruent to each other modulo p. Finally, from the same formula
we deduce that στσ−1τ−1 ∈ Gi+j+1 .

Remark. For more properties of ramification groups see sections 3–5 Chapter III and
sections 3 and 6 Chapter IV.

Exercises.
1. Let F be a complete discrete valuation field and let L/F be a finite totally ramified

Galois extension. For integers i, j > 0 define the (i, j)-th ramification group Gi,j of
G = Gal(L/F ) as

Gi,j = {σ ∈ G : vL(σα− α) > i + j for all α ∈M
j
L }.

Show that
a) Gi,j consists of those automorphisms which act trivially on M

j
L/M

i+j
L .

b) Gi = Gi+1,0 .
c) Gi+1,1 6 Gi 6 Gi,1 .
d) Gi = Gi,1 if L/F is separable.
e) Gi = Gi+1,1 if |L : F | = |L : F |.
For more properties of this double filtration see [dSm1].

2. (I.B. Zhukov) Let L/F be a finite Galois extension, G = Gal(L/F ). Let π be a prime
element in L. Put

G(0) = G0, G(i) = {σ ∈ G(0):σπ − π ∈M
i+1
L }.

a) Show that G(i)/G(i+1) is abelian and that ∩G(i) is a subgroup of Gal(L/L0(π)).
b) Show that L = L0(π)(π′) for a suitable prime element π′ in L, and that the group

Gal(L/L0(π)) is solvable.
Thus, G0 is solvable by a) and b).

3. Find an example of a finite separable extension L/F such that L/F is separable, and for
every nontrivial finite extension M/L with M/F being a Galois extension, the extension
M/F is not separable.

4. (�) Prove that for every finite extension of complete discrete valuation fieds L/F there
is a finite extension K′ of a maximal complete discrete valuation subfield K of F with
perfect residue field such that e(K′L|K′F ) = 1 following the steps below (this statement
is called elimination of wild ramification, see [Ep], [KZ]).
a) Prove the assertion for an inseparable extension L/F of degree p.
b) Reduce the problem to the case of Galois extensions.
c) Reduce the problem using solvability of G0 (see Exercise 2) to the case e(L|F ) =

|L : F | = l with prime l.
d) Prove the assertion in the latter case.
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5. Structure Theorems for Complete Fields

In this section we shall describe classical structural results on complete discrete valuation
fields [HSch], [Te], [Wit2], [McL], [Coh].

Lemma (3.2) Ch. I shows that there are three cases: two equal-characteristic cases,
when char(F ) = char(F ) = 0 or char(F ) = char(F ) = p > 0, and one unequal-
characteristic case, when char(F ) = 0, char(F ) = p > 0.

(5.1). Lemma. The ring of integers OF contains a nontrivial field M if and only if
char(F ) = char(F ).

Proof. Since M ∩MF = (0), M is mapped isomorphically onto the field M ⊂ F ,
therefore char(F ) = char(F ). Conversely, let A be the subring in OF generated by
1. Then A is a field if char(F ) = p, and A ∩MF = (0) if char(F ) = 0. Hence, the
quotient field of A is the desired one.

A field M ⊂ OF , that is mapped isomorphically onto the residue field F = M is
called a coefficient field in OF . Such a field, if it exists, is a set of representatives
of F in OF (see (5.1) Ch. I). Proposition (5.2) Ch. I implies immediately that in this
case F is isomorphic (algebraically and topologically) with the field M ((X)): a prime
element π in F corresponds to X . Note that this isomorphism depends on the choice
of a coefficient field (which is sometimes unique, see Proposition (5.4)) and the choice
of a prime element of F .

We shall show below that a coefficient field exists in an equal-characteristic case.

(5.2). The simplest case is that of char(F ) = char(F ) = 0.

Proposition. Let char(F ) = 0. Then there exists a coefficient field in OF . A coeffi-
cient field can be selected in infinitely many ways if and only if F is not algebraic over
Q.

Proof. Let M be a maximal subfield in OF , in other words, M be not properly
contained in any other larger subfield of OF . We assert that M = F , i.e., M is a
coefficient field. Indeed, if θ ∈ F is algebraic over M , then θ is separable over M
and we can apply the arguments of the proof of Proposition (3.4) to show that there
exists an element α ∈ OF which is algebraic over M and such that α = θ. Since
M (α) = M , by the maximality of M , we get α ∈ M, θ ∈ M . Furthermore, let
θ ∈ F be transcendental over M . Let α ∈ OF be such that α = θ. Then α is
not algebraic over M , because if

∑n
i=0 aiα

i = 0 with ai ∈ M , then
∑n
i=0 aiθ

i = 0.
Hence, ai = 0 and ai = 0 (M is mapped isomorphically onto M ). By the same
reason M [α] ∩M = (0). Hence, the quotient field M (α) is contained in OF and
M 6= M (α), contradiction. Thus, we have been convinced ourselves in the existence of
a coefficient field.
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If F is not algebraic over Q, let α ∈ OF be an element transcendental over the
prime subfield Q in OF . Then the maximal subfield in OF , which contains Q(α+aε)
with ε ∈ MF , a ∈ Q, is a coefficient field. If F is algebraic over Q, then M is
algebraic over Q and is uniquely determined by our previous constructions.

(5.3). To treat the case char(F ) = p we consider the following notion: elements θi
of F are called a p-basis of F if

F = F
p
[{θi}] and |F p[θ1, . . . , θn] : F

p| = pn

for every distinct elements θ1, . . . , θn . The empty set is a p-basis if and only if F is
perfect. For an imperfect F , a p-basis Θ = {θi} exists by Zorn’s Lemma, because
every maximal set of elements θi satisfying the second condition possesses the first
property. The definition of a p-basis implies that F = F

pn

[{θi}] for n > 1.

Lemma. Let F be a complete discrete valuation field with the residue field F of
characteristic p, and Θ = {θi} be a p-basis of F . Let αi ∈ OF be such that αi = θi .
Then there exists an extension L/F with e(L|F ) = 1, such that L is a complete

discrete valuation field, L =
⋃
n>0

F
p−n

and αi are the multiplicative representatives

of θi in L (see section 7 Ch. I).

Proof. Let I be an index-set for Θ. One can put Fn = Fn−1({αi,n}) with αpi,n =
αi,n−1 , i ∈ I , and F0 = F , αi,0 = αi . Then the completion of L′ =

⋃
n>0 Fn is the

desired field. Since αi ∈
⋂
n>0

Lp
n

, we obtain that αi is the multiplicative representative

of θi .

(5.4). Now we treat the case char(F ) = char(F ) = p. If F is perfect, then Corollaries
1 and 2 of (7.3) Ch. I show that the set of the multiplicative representatives of F in
OF forms a coefficient field. Moreover, this is the unique coefficient field in OF
because if M is such a field and α ∈ M , then, as M is perfect, α ∈

⋂
n>0

Mpn is

the multiplicative representative of α. (Note that in general there are infinitely many
maximal fields as well as in the case of char(F ) = 0, therefore in general a maximal
field is not a coefficient field).

Proposition. Let char(F ) = p. If F is perfect then a coefficient field exists and is
unique; it coincides with the set of multiplicative representatives of F in OF . If F is
imperfect then there are infinitely many coefficient fields.

Proof. If F is imperfect we apply the construction of the previous Lemma. Then
L is perfect and there is the unique coefficient field N of L in OL . Let M be the
subfield of N corresponding to F .
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Let Θ = {θi} be a p-basis of F . Let αi ∈ OF be such that αi = θi . Let

αi,n be as in the proof of the previous Lemma. If γ ∈ M then γ ∈ F
pn

[Θ] and

there exists an element βn ∈ OF [{αi,n}] such that βn = γ
p−n

. It follows that
βn ≡ γp

−n
mod ML , and by Lemma (7.2) Ch. I we deduce γ ≡ βp

n

n mod Mn+1
L .

Since βp
n

n ∈ O
pn

F [{αi}] ⊂ OF , we obtain γ = limβp
n

n ∈ OF . This proves the
existence of a coefficient field of F in OF .

If we apply this construction for another set of elements α′i ∈ OF with α′i = αi ,
then we get a coefficient field M ′ containing α′i . Since MF ∩M = MF ∩M ′ = (0)
we deduce M 6= M ′ .

(5.5). We conclude with the case of unequal characteristic: char(F ) = 0, char(F ) = p.
For the discrete valuation vF such that vF (F ∗) = Z recall that e(F ) = vF (p) is called
the absolute index of ramification of F , see (5.7) Ch. I. The preceding assertions show
that in equal-characteristic case for an arbitrary field K there exists a complete discrete
valuation field F with the residue field F isomorphic to K . Here is an analog:

Proposition. Let F be a complete discrete valuation field of characteristic 0 with
residue field K of characteristic p. Let K1 be any extension of K . Then there exists a
complete discrete valuation field F1 which is an extension of F , such that e(F1|F ) = 1
and F 1 = K1 .

Proof. It is suffices to consider two cases: K1 = K(a) is an algebraic extension
over K and K1 = K(y) is a transcendental extension over K . If, in addition, in the
first case K1/K is separable, then let g(X) be the monic irreducible polynomial of a
over K , and let f(X) be a monic polynomial over the ring of integers of K such that
f (X) = g(X). By the Hensel Lemma (1.2) there exists a root α of f(X) such that
α = a. Then F1 = F (α) is the desired extension of F . Next, if ap = b ∈ K and β is
an element in the ring of integers of F such that β = b, then F1 = F (α) is the desired
extension of F for αp = β . Finally, in the second case let w be the discrete valuation
on F (y) defined in Example 4 in (2.3) Ch. I. Then F1 which is the completion of F (y)
is the desired extension of F .

Corollary. There exists a complete discrete valuation field of characteristic 0 with
any given residue field of characteristic p and the absolute index of ramification is
equal to 1.

Proof. One can set F = Qp and apply the Proposition.

(5.6). Proposition. Let L be a complete discrete valuation field of characteristic 0
with the residue field L of characteristic p. Let F be a complete discrete valuation
field of characteristic 0 with p as a prime element. Suppose that there is an isomorphism
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ω:F → L. Then there exists a field embedding ω:F → L, such that vL ◦ ω = e(L)vF
and the image of ω(α) ∈ OL for α ∈ OF in the residue field L coincides with ω(α).

Proof. Assume first that F is perfect. By Corollary 1 of (7.3) Chapter I any element
θ ∈ F has the unique multiplicative representative rF (θ) in F and rL(ω(θ)) in L.
Put

ω
(∑

rF (θi)pi
)

=
∑

rL(ω(θi))pi.

Proposition (5.2) Ch. I shows that the map ω is defined on F , Proposition (7.6)
Ch. I shows that ω is a homomorphism of fields. Evidently vL ◦ ω = e(L)vF and
ω(α) = ω(α) for α ∈ OF .

Further, assume that F is imperfect. Let Θ = {θi}i∈I be a p-basis of F . Let
A = {αi}i∈I be a set of elements αi ∈ OF with αi = θi , and let B = {βi}i∈I be a set
of elements βi ∈ OL with βi = θi . For a map

ν: I −→ {0, 1, . . . , pn − 1}

such that ν(i) = 0 for almost all i ∈ I , put

Θ
ν =

∏
i∈I

θν(i)
i .

The same meaning will be used for Aν ,Bν . By Lemma (5.3) there exist complete
discrete valuation fields F ′, L′ for F,L, such that e(F ′|F ) = e(L′|L) = 1, and F ′ is
perfect and isomorphic to L′ , and αi (resp. βi ) are multiplicative representatives of
θi in OF ′ (resp. of ω(θi) in OL′ ). The previous arguments show the existence of a
homomorphism ω′:F ′ → L′ with vL′ ◦ω′ = e(L)vF ′ and ω′(α) = ω(α) for α ∈ OF ′ .
Moreover, ω′ maps αi to βi , since they are the multiplicative representatives of θi
and ω(θi). Let γ ∈ OF and γ =

∑
ap

n

ν Θν with aν ∈ F . Let bν be an element of OF
with the property bν = aν , and cν an element of OL with the property cν = ω′(bν).
Then γ ≡

∑
bp
n

ν Aν mod pOF , i.e.,

γ =
∑

bp
n

ν Aν + pγ1

with γ1 ∈ OF . We get ω′(Aν) = Bν and using Lemma (7.2) Ch. I, we have

ω′(bp
n

ν ) ≡ cp
n

ν mod Mn+1
L′ .

Therefore,

ω′(γ) ≡
∑

cp
n

ν Bν + pω′(γ1) mod Mn+1
L′ .

Repeating this reasoning for γ1 , we conclude that ω′(γ) ≡ δn mod Mn+1
L′ for some

δn ∈ OL . Then ω′(γ) = lim δn and since OL is complete, we deduce ω′(γ) ∈
OL . Thus, ω′ maps OF in OL , and we finally put ω = ω′|F to obtain the desired
homomorphism.
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Corollary 1. Let F1, F2 be complete discrete valuation fields of characteristic 0
with p as a prime element. Let there be an isomorphism ω of the residue field F1
to F2 . Then there exists a field embedding ω:F1 → F2 such that ω(α) = ω(α) for
α ∈ OF1 .

Proof. Apply the Proposition for F = F1, L = F2 and F = F2, L = F1 .

Corollary 2. The image ω(F ) is uniquely determined in the field L if and only if
F is perfect or e(L) = 1.

Proof. Let F be imperfect and e(L) > 1. Let ω(F ) be uniquely determined in L.
Then, in the proof of the Proposition we can replace βi by βi + πL and obtain that
βi ∈ ω(OF ), βi + πL ∈ ω(OF ). Hence, πL ∈ ω(OF ) which is impossible because
vL ◦ ω = e(L)vF .

Remark. If F is perfect then we can identify ω(F ) with the field of fractions of Witt
vectors W (F ) (see (8.3) Ch. I and Exercise 6 below).

Exercises.

1. Let F be a complete discrete valuation field of characteristic p with a residue field F . Let
Θ = {θi} be a p-basis of F . Let A = {αi} be a set of elements in OF such that αi = θi .
Put Rn = O

pn

F [A] and let Sn be the completion of Rn in OF . Show that ∩
n>0

Sn is a

coefficient field.
2. Let F be as in Exercise 1 and let F be imperfect. Show that a maximal subfield in OF

contains the largest perfect subfield in OF , but is not necessarily a coefficient field. Show
that a coefficient field contains the largest perfect subfield in OF as well.

3. Let K = Fp(X), and let F be the completion of K(Y ) with respect to the discrete
valuation corresponding to the irreducible polynomial Y p−X . Show that F = K(X1/p),
but K is not contained in any coefficient field of F in OF .

4. (�) Let F be a complete discrete valuation field, and let L be a finite extension of F .
Show that if F is perfect, then coefficient fields MF of F in OF and ML of L in OL
can be chosen so that MF ⊂ ML . Show that if F is imperfect, this assertion does not
hold in general.

5. Find another proof of Corollary (5.5) using Witt vectors.
6. (�) Let F be a complete discrete valuation field with a prime element p and char(F ) = p.

Show that for a subfield K ⊂ F there exists a subfield F ′ in F which is a complete
discrete valuation field with respect to the induced valuation and is such that F ′ = K .
Show that if K is perfect, then such a field is unique.





CHAPTER 3

The Norm Map

In this chapter we study the norm map acting on Henselian discrete valuation fields.
Section 1 studies the behaviour of the norm map on the factor filtration introduced
in section 5 Chapter I for cyclic extensions of prime degree. Section 2 demonstrates
that almost all cyclic extensions of degree p can be described by explicit equations of
Artin–Schreier type. Section 3 associates to the norm map a real function called the
Hasse–Herbrand function; properties of this function and applications to ramification
groups are studied in sections 3 and 4. The long section 5 presents a relatively recent
theory of a class of infinite Galois extensions of local fields: arithmetically profinite
extensions and their fields of norms. The latter establishes a relation between the fields
of characteristic 0 and characteristic p.

We will work with complete discrete valuation fields leaving the Henselian case to
Exercises.

1. Cyclic Extensions of Prime Degree

In this section we describe the norm map on the factor filtration of the multiplicative
group in a cyclic extension of prime degree. The most difficult and interesting case is
of totally ramified p-extensions which is treated in subsections (1.4) and (1.5). Using
these results we will be able to simplify expositions of theories presented in several
other sections of this book.

Let F be a complete discrete valuation field and L its Galois extension of prime
degree n. Then there are four possible cases:

L/F is unramified;
L/F is tamely and totally ramified;
L/F is totally ramified of degree p = char(F ) > 0;
L/F is inseparable of degree p = char(F ) > 0.

Since the fourth case is outside the subject of this book, we restrict our attention to
the first three cases (still, see Exercise 2).

The following results are classical and essentially due to H. Hasse.

67
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(1.1). Lemma. Let L/F be a Galois extension of prime degree n, γ ∈ML . Then

NL/F (1 + γ) = 1 +NL/F (γ) + TrL/F (γ) + TrL/F (δ)

with some δ ∈ OL such that vL(δ) > 2vL(γ) (NL/F and TrL/F are the norm and the
trace maps, respectively).

Proof. Recall that for distinct embeddings σi of L over F into the algebraic closure
of F , 1 6 i 6 n, one has (see [La1, Ch. VIII])

NL/Fα =
n∏
i=1

σi(α), TrL/F α =
n∑
i=1

σi(α), α ∈ L.

Hence

NL/F (1 + γ) =
n∏
i=1

(1 + σi(γ))

= 1 +
n∑
i=1

σi(γ) +
( n∑
i=1

σi

)( ∑
16j6n

γσj(γ) + · · ·
)

+
n∏
i=1

σi(γ).

For δ =
∑

16j6n γσj(γ) + · · · we get vL(δ) > 2vL(γ).

Our nearest purpose is to describe the action of the norm map NL/F with respect
to the filtration discussed in section 5 Ch. I.

(1.2). Proposition. Let L/F be a Galois unramified extension of degree n. Then a
prime element πF in F is a prime element in L. Let Ui,L = 1+πiFOL , Ui,F = 1+πiFOF
and let λi,L , λi,F (i > 0), be identical to those of Proposition (5.4) Ch. I, for π = πF .
Then the following diagrams are commutative:

L∗
vL−−−−→ Z

NL/F

y y×n
F ∗

vF−−−−→ Z

UL
λ0,L−−−−→ L

∗

NL/F

y yNL/F
UF

λ0,F−−−−→ F
∗

Ui,L
λi,L−−−−→ L

NL/F

y yTr
L/F

Ui,F
λi,F−−−−→ F

Proof. The first commutativity follows from (2.3) Ch. II. Proposition (3.3) Ch. II
implies that NL/F (α) = NL/F (α) for α ∈ OL , i.e., the second diagram is commutative.
The preceding Lemma shows that

NL/F (1 + θπiF ) = 1 + (TrL/F θ)πiF + (NL/F θ)πniF + TrL/F (δ)

with vL(δ) > 2i and, consequently, vF TrL/F (δ) > 2i. Thus, we get

NL/F (1 + θπiF ) ≡ 1 + (TrL/F θ)πiF mod πi+1
F

and the commutativity of the third diagram.
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Corollary. In the case under consideration NL/FU1,L = U1,F .

(1.3). Proposition. Let L/F be a totally and tamely ramified cyclic extension of
degree n. Then for some prime element πL in L, the element πF = πnL is prime in F

(Proposition (3.5) Ch. II) and F = L. Let Ui,L = 1 + πiLOL , Ui,F = 1 + πiFOF , and
let λi,L , λi,F be identical to those of Proposition (5.4) Ch. I, for π = πL and π = πF .
Then the following diagrams

L∗
vL−−−−→ Z

NL/F

y yid

F ∗
vF−−−−→ Z

UL
λ0,L−−−−→ L

∗

NL/F

y yxn
UF

λ0,F−−−−→ F
∗

Uni,L
λni,L−−−−→ L = F

NL/F

y y×n
Ui,F

λi,F−−−−→ F

are commutative, where id is the identity map,
xn takes an element to its n th power,

×n is the multiplication by n ∈ F , i > 1. Moreover, NL/FUi,L = NL/FUi+1,L if
n - i.

Proof. Since πnL = πF and L/F is Galois, then Gal(L/F ) is cyclic of order n
and σ(πL) = ζπL for a generator σ of Gal(L/F ), where ζ is a primitive n th root
of unity, ζ ∈ F . The first diagram is commutative in view of Theorem (2.5) Ch. II.
Proposition (4.1) Ch. II shows that σ(α) = α for σ ∈ Gal(L/F ), α ∈ OL , and we get
the commutativity of the second diagram. If j = ni, then 1 + θπjL ∈ F for θ ∈ OF ,
and

NL/F (1 + θπjL) = (1 + θπiF )n ≡ 1 + nθπiF mod πi+1
F

by Proposition (5.4) Ch. I. Applying Corollary (5.5) Ch. I, we deduce

Ui,F = Uni,F = NL/FUni,L.

Finally,
σ(1 + θπiL)

1 + θπiL
= 1 + θ(ζi − 1)πiL mod πi+1

L .

If n - i then the residue of ζi − 1 is non-zero and Ui,L ⊂ Ui+1,L kerNL/F .

Corollary. In the case under consideration NL/FU1,L = U1,F .
If F is algebraically closed then NL/FL

∗ = F ∗ .
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(1.4). Now we treat the most complicated case when L/F is a totally ramified Galois
extension of degree p = char(F ) > 0. Then Corollary 2 of (2.9) Ch. II shows that
OL = OF [πL], L = F (πL) for a prime element πL in L, and L = F . Let σ be a
generator of Gal(L/F ), then σ(πL)/πL ∈ UL . One can write σ(πL)/πL = θε with
θ ∈ UF , ε ∈ 1 + ML . Then

σ2(πL)/πL = σ(θε) · θε = θ2ε · σ(ε),

and

1 = σp(πL)/πL = θpε · σ(ε) · · · · · σp−1(ε).

This shows that θp ∈ 1 + ML and θ ∈ 1 + MF , because raising to the p th power is an
injective homomorphism of F . Thus, we obtain σ(πL)/πL ∈ 1 + ML . Put

σ(πL)
πL

= 1 + ηπsL with η ∈ UL, s = s(L|F ) > 1. (∗)

Note that s does not depend on the choice of the prime element πL and of the generator
σ of G = Gal(L/F ). Indeed, we have

σi(πL)
πL

≡ 1 + iηπsL mod πs+1
L and

σ(ρ)
ρ
≡ 1 mod πs+1

L

for an element ρ ∈ UL . We also deduce that

σ(α)
α
∈ Us,L

for every element α ∈ L∗ . This means that G = Gs , Gs+1 = {1} (see (4.3) Ch. II).

Lemma. Let f(X) = Xp + ap−1X
p−1 + · · · + a0 be the irreducible polynomial of πL

over F . Then

TrL/F

(
πjL

f ′(πL)

)
=
{

0 if 0 6 j 6 p− 2,
1 if j = p− 1.

Proof. Since σi(πL) for 0 6 i 6 p− 1 are all the roots of the polynomial f(X), we
get

1
f(X)

=
p−1∑
i=0

1
f ′
(
σi(πL)

) (
X − σi(πL)

) .
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Putting Y = X−1 and performing the calculations in the field L((Y )), we consequently
deduce

f(X) = Y −p(1 + ap−1Y + · · · + a0Y
p),

1
f(X)

=
Y p

1 + ap−1Y + · · · + a0Y p
≡ Y p mod Y p+1,

1
X − σi(πL)

=
Y

1− σi(πL)Y
=
∑
j>0

σi(πjL)Y j+1

(because 1/(1− Y ) =
∑
i>0 Y

i in F ((Y )) ). Hence

∑
j>0

p−1∑
i=0

σi(πjL)Y j+1

f ′
(
σi(πL)

) ≡ Y p mod Y p+1,

or

TrL/F

(
πjL

f ′(πL)

)
=
p−1∑
i=0

σi(πjL)
f ′
(
σi(πL)

) =
{

0 if 0 6 j 6 p− 2,
1 if j = p− 1,

as desired.

Proposition. Let [a] denote the maximal integer 6 a. For an integer i > 0 put
j(i) = s + 1 +

[
(i− 1− s)/p

]
. Then

TrL/F (πiLOL) = πj(i)
F OF .

Proof. One has f ′(πL) =
∏p−1
i=1

(
πL − σi(πL)

)
and σi(πL)/πL ≡ 1 + iηπsL

mod πs+1
L . Then

f ′(πL) = (p− 1)!(−η)p−1π(p−1)(s+1)
L ε

with some ε ∈ 1 +M
(p−1)(s+1)+1
L . Since F = L, for a prime element πF in F one has

the representation πF = πpLε
′ with ε′ ∈ UL . The previous Lemma implies

TrL/F
(
πj+s+1
L εj+s+1

)
=
{

0 if 0 6 j < p− 1,
πs+1
F if j = p− 1

for εj+s+1 = (ε′)s+1/
(
(p−1)!(−η)p−1ε

)
. Taking into consideration the evident equality

TrL/F (πiFα) = πiF TrL/F (α) we can choose the units εj+s+1 , for every integer j , such
that TrL/F (πj+s+1

L εj+s+1) = 0 if p - (j +1) and = πs+(j+1)/p
F if p|(j +1). Thus, since the

OF -module πiLOL is generated by πjLεj , j > i, we conclude that TrL/F (πiLOL) =
πj(i)
F OF .



72 III. The Norm Map

(1.5). Proposition. Let L/F be a totally ramified Galois extension of degree p =
char(F ) > 0. Let πL be a prime element in L. Then πF = NL/FπL is a prime element
in F . Let Ui,L = 1 + πiLOL, Ui,F = 1 + πiFOF and let λi,L, λi,F be identical to those
in Proposition (5.4) Ch. I, for π = πL and π = πF . Then the following diagrams are
commutative:

L∗
vL−−−−→ Z

NL/F

y yid

F ∗
vF−−−−→ Z

UL
λ0,L−−−−→ L

∗

NL/F

y y↑p
UF

λ0,F−−−−→ F
∗

Ui,L
λi,L−−−−→ L = F

NL/F

y y↑p
Ui,F

λi,F−−−−→ F

if 1 6 i < s,

Us,L
λs,L−−−−→ L = F

NL/F

y yθ 7→θp−ηp−1θ

Us,F
λs,F−−−−→ F

Us+pi,L
λs+pi,L−−−−→ L = F

NL/F

y y×(−ηp−1)

Us+i,F
λs+i,F−−−−→ F

if i > 0.

Moreover, NL/F (Us+i,L) = NL/F (Us+i+1,L) for i > 0, p - i.

Proof. The commutativity of the first and the second diagrams can be verified similarly
to the proof of Proposition (1.3). In order to look at the remaining diagrams, put
ε = 1 + θπiL with θ ∈ UL . Then, by Lemma (1.1), we get

NL/F ε = 1 +NL/F (θ)πiF + TrL/F (θπiL) + TrL/F (θδ)

with vL(δ) > 2i. The previous Proposition implies that

vF
(
TrL/F (πiL)

)
> s + 1 +

[
i− 1− s

p

]
, vF

(
TrL/F (δ)

)
> s + 1 +

[
2i− 1− s

p

]
and for i < s

vF
(
TrL/F (πiL)

)
> i + 1, vF

(
TrL/F (δ)

)
> i + 1.
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Therefore, the third diagram is commutative. Further, using (∗) of (1.4), one can write

1 = NL/F

(
σ(πL)
πL

)
≡ 1 +NL/F (η)πsF + TrL/F (ηπsL) mod πs+1

F .

We deduce that TrL/F (ηπsL) ≡ −NL/F (η)πsF mod πs+1
F . Since NL/F (η) ≡ ηp

mod πL in view of UL ⊂ UFU1,L , we conclude that

NL/F (1 + θηπsL)− 1− ηpπsF (θp − θ) ∈ πps+1
L θOL

for θ ∈ OF . This implies the commutativity of the fourth (putting θ ∈ OF ) and the
fifth (when θ ∈ πiFOF ) diagrams. Finally, if p - i, θ ∈ OF , then

σ(1 + θπiL)
1 + θπiL

≡ 1 + iθηπi+sL mod πi+s+1
L .

This means that NL/F (1 + iθηπi+sL ) ∈ NL/FUs+i+1,L and
NL/F (Us+i,L) = NL/F (Us+i+1,L).

Remark. Compare the behaviour of the norm map with the behaviour of raising to
the p th power in Proposition (5.7) in Ch. I.

Corollary. Us+1,F = NL/FUs+1,L .
If F is algebraically closed then NL/FL

∗ = F ∗ .

Proof. It follows immediately from the last diagram of the Proposition, since the
multiplication by (−η)p−1 is an isomorphism of the additive group F .

Exercises.
1. a) Let F be a Henselian discrete valuation field, and L/F a cyclic extension of prime

degree. Show that Ui,F ⊂ NL/FUL for sufficiently large i.
b) Show that all assertions of this section hold for a Henselian discrete valuation field.

2. Let L/F be a Galois extension of degree p = char(F ), and let L/F be an inseparable
extension of degree p. Let θ ∈ UL be such that L = F (θ). Let σ be a generator of
Gal(L/F ).
a) Show that vL (σ(θ)− θ) > 0. Put

σ(θ)
θ

= 1 + ηπsF

for a prime element πF in F and some η ∈ UL, s > 1.
b) Show that TrL/F (πiFOL) = πj(i)

F OF with j(i) = (p− 1)s + i.

c) Show that NL/F (1 + ηπiF ) ≡ 1 + (NL/F η)πpiF mod πpi+1
F if i < s.

d) Show that mod πps+1
F

NL/F (1 + cθiηπsF ) ≡
{

1 + cpπpsF NL/F (θiη), 0 < i 6 p− 1,

1 + (cp − c)πpsF NL/F (η), i = 0,
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where c ∈ OF .
e) Show that Ups+1,F ⊂ NL/FUs+1,L .

3. Let L/F be a Galois extension of degree p = char(F ) > 0, that is not unramified. Show
that

vL

(
γ

TrL/F (γ)

)
= max
α∈OL

{vL(α) : TrL/F (α) = 1},

where γ = α−1σ(α) − 1 for a generator σ of Gal(L/F ) and an element α ∈ OL , such
that p - vL(α) when e(L|F ) = p and ᾱ 6∈ F̄ when e(L|F ) is equal to 1.

2. Artin–Schreier Extensions

A theorem of E. Artin and O. Schreier asserts that every cyclic extension of degree p
over a field K of characteristic p is generated by a root of the polynomial Xp−X−α,
α ∈ K (see Exercise 6 section 5 Ch. V or [La1, Ch. VIII]). In this section we show in
Proposition (2.4) and (2.5), following R. MacKenzie and G. Whaples ([MW]), how to
extend this result to complete discrete valuation fields of characteristic 0 with residue
field of characteristic p. An alternative proof of the main results of this section can be
obtained by using formal groups, see for example [FVZ].

(2.1). First we treat the case of unramified extensions. The polynomial Xp − X is
denoted by ℘ (X) (see (6.3) Ch. I).

Lemma. Let L/F be an unramified Galois extension of degree p = char(F ). Then
L = F (λ), where λ is a root of the polynomial Xp −X − α for some α ∈ UF with
α /∈ ℘

(
F
)
.

Proof. Let L = F (θ), where θ is a root of the polynomial Xp − X − η for some
η /∈ ℘

(
F
)
. Then the polynomial Xp −X − α = 0, with α ∈ UF , such that α = η,

has a root λ in L, by Hensel Lemma (1.2) Ch. II. Thus, L = F (λ).

(2.2). Now we study the case of totally ramified extensions.
Let L/F be a totally ramified Galois extension of degree p = char(F ). Let σ be a

generator of Gal(L/F ), πL a prime element in L and s = vL(π−1
L σ(πL)− 1).

Lemma. For β ∈ L there exists an element b ∈ F such that vL(σβ−β) = vL(β−b)+s.

Proof. Let β = a0 + a1πL + · · · + ap−1π
p−1
L with ai ∈ F (see Proposition (3.6)

Ch. II). Then

σ(β)− β = a1πLγ + · · · + ap−1π
p−1
L

(
(1 + γ)p−1 − 1

)
,
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where γ = π−1
L σ(πL)− 1. Since vL(γ) = s > 0, we get

(1 + γ)i − 1 ≡ iγ mod πs+1
L for i > 0.

Hence, vL
(
aiπ

i
L

(
(1 + γ)i − 1

))
are distinct for 1 6 i 6 p− 1. Put b = a0 . Then

vL(σ(β)− β) = vL((β − b)γ) = vL(β − b) + s, as desired.

(2.3). Proposition. Let F be a complete discrete valuation field with residue field of
characteristic p > 0. Let L be a totally ramified Galois extension of degree p of F .
If char(F ) = p then p - s. If char(F ) = 0, then s 6 pe/(p− 1), where e = e(F ) is the
absolute index of ramification of F . In this case, if p|s, then a primitive p th root of
unity belongs to F , and s = pe/(p− 1), L = F ( p

√
α) with some α ∈ F ∗, α /∈ UFF ∗p .

Proof. First assume that char(F ) = p and s = pi. Then (1 + θπiF )p = 1 + θpπpiF
for θ ∈ UF . One can take πF = NL/FπL for a prime element πL in L. Then it
follows from (1.4) that πF ≡ πpL mod πp+1

L . Since NL/FUpi+1,L ⊂ Upi+1,F , we get
the congruence 1 + θpπpiF ≡ NL/F (1 + θπpiL ) mod πpi+1

F , which contradicts the fourth
diagram of Proposition (1.5). Hence, p - s.

Assume now that char(F ) = 0 and s > pe/(p− 1). Let ε = 1 + θπsF ∈ Us,F with
θ ∈ UF . Corollary 2 of (5.8) Ch. I shows that ε = εp1 for some ε1 = 1 + θ1π

s−e
F ∈ UF

with θ1 ∈ UF . Then NL/FUp(s−e),L 6⊂ Us+1,F , but p(s − e) > s + 1, which is
impossible because of Corollary (1.5). Hence, s 6 pe/(p − 1). By the same reasons
as in the case of char(F ) = p, it is easy to verify that if s = pi < pe/(p − 1), then
1+θpπpiF ≡ NL/F (1+θπpiL ) mod πpi+1

F , which is impossible. Therefore, in this case we
get s = pe/(p−1). One can write σ(πL)π−1

L ≡ 1+θπe/(p−1)
F mod πpe/(p−1)+1

L . Then,
acting by NL/F , we get 1 ≡ (1 + θπe/(p−1)

F )p mod πpe/(p−1)+1
F . But Upe/(p−1)+1,F ⊂

Upe/(p−1)+1,F (see Corollary 2 of (5.8) Ch. I), that permits us to find an element ζ ≡
1 + θπe/(p−1)

F mod πe/(p−1)+1
F , such that ζp = 1; ζ is a primitive p th root of unity in

F , hence L = F ( p
√
α) for some α ∈ F ∗ , by the Kummer theory. Writing α = πaF ε1

with ε1 ∈ UF and assuming p|a, we can replace α with ε1 . Since L = F we obtain
ε1 ∈ F

p
(otherwise L/F would not be totally ramified) and ε1 ≡ εp2 mod πL for

some ε2 ∈ UF . Replacing ε1 with ε3 = ε1ε
−p
2 , we get ε3 ∈ U1,F , L = F (η3),

ηp3 = ε3 . Note that

σ(1 + ρπiL)
1 + ρπiL

≡ 1 + ρiηπi+pe/(p−1)
L mod π1+i+pe/(p−1)

L

for ρ ∈ UF . Hence η−1
3 σ(η3) ≡ 1 mod π1+pe/(p−1)

L , but η−1
3 σ(η3) is a primitive p th

root of unity. This contradiction proves that α /∈ UFF×
p .
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(2.4). Proposition. Let F be a complete discrete valuation field with residue field
of characteristic p > 0. Let L be a Galois totally ramified extension of degree p,
s = s(L|F ). Suppose that s 6= pe/(p − 1) if char(F ) = 0, where e = e(F ). Then
L = F (λ), where λ is a root of some polynomial Xp−X−α with α ∈ F , vF (α) = −s.

Proof. The previous Proposition shows that p -s. First consider the case of char(F ) =
p. Then, by the Artin–Schreier theory, L = F (λ), where λ is a root of a suitable
polynomial Xp − X − α with α ∈ F . Let σ be a generator of Gal(L/F ). Then
(σ(λ)− λ)p = σλ− λ. Since λ /∈ F , we get σ(λ)− λ = a with a ∈ {1, . . . , p− 1}.
Then λ−1σ(λ) = 1 + aλ−1 , and hence Proposition (1.5) implies 1 + aλ−1 ∈ Us,L .
This shows vL(λ) 6 −s and vF (α) 6 −s. Put t = vF (α). Write λ ≡ πtLθ

mod πt+1
L with θ ∈ UF and a prime element πL in L. If t = pt′ , then α ≡ πptL θ

p ≡
πpt
′

F θp mod πpt+1
L , where πF = NL/FπL ≡ πpL mod πp+1

L is a prime element in F .

Replacing λ by λ′ = λ−πt′F θ and α by α′ = α−πpt
′

F θp +πt
′

F θ, we get λ′p−λ′ = α′

and L = F (λ′), vF (α′) > vF (α). Proceeding in this way we can assume p - t because
vF (α′) 6 −s. Then it follows from (1.4) that vL(λ−1σ(λ)− 1) = s and vF (α) = −s.

Now we consider the case of char(F ) = 0.
First, we will show that there is an element λ1 ∈ L, such that vL(λ1) = −s and

vL(σ(λ1)− λ1 − 1) > 0. Indeed, put β = −π−sL ρs−1 with ρ ∈ UF . Then

σ(β)− β = −π−sL ρs−1((1 + ηπsL)−s − 1
)
≡ ρη mod πL.

Hence, if we choose ρ = η−1 , then vL(σ(β)− β − 1) > 0. Put λ1 = β .
Since s < pe/(p− 1) = e(L)/(p− 1), we get pλp−1

1 ≡ 0 mod πL ,

vL(σ(λp1)− λp1 − 1) > 0 and vL(σ℘ (λ1)− ℘ (λ1)) > 0.

Second, we will construct a sequence {λn}, n > 0, of elements in L satisfying
the conditions for n > 0:

vL(λn) = −s, vL(λn+1 − λn) > vL(λn − λn−1) + 1,

vL(σ℘ (λn+1)− ℘ (λn+1)) > vL
(
σ℘ (λn)− ℘ (λn)

)
+ 1.

Then for λ = limλn we obtain σ℘ (λ) = ℘ (λ), or in other words λp−λ = α ∈ F and
vF (α) = −s.

Put λ0 = 0. Denote δn = σ℘ (λn) − ℘ (λn). Then vL(δn) > 0. If δn = 0, then
put λm = λn for m > n. Otherwise, by Lemma (2.2), there exists an element cn ∈ F
such that

vL(σ℘ (λn)− ℘ (λn)) = vL(℘ (λn)− cn) + s.

Put µn = ℘ (λn)−cn , λn+1 = λn+µn . Then σµn = µn+δn , vL(σ(λn+1)−λn+1−1) >
0 and vL(µn) > −s, vL(λn+1) = −s. So

vL(λn+1 − λn) = vL(µn) = −s + vL(σ℘ (λn)− ℘ (λn))

> −s + 1 + vL(σ℘
(
λn−1

)
− ℘

(
λn−1

)
) = vL(λn − λn−1) + 1
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for n > 1.
For n = 1 from the previous arguments we get

vL(λ2 − λ1) = −s + vL(σ℘ (λ1)− ℘ (λ1)) > vL(λ1 − λ0) + 1 = 1− s.

Furthermore, σµn − µn = δn and

σ℘ (µn)− ℘ (µn) = ℘ (µn + δn)− ℘ (µn) = −δn +
p∑
i=1

(
p

i

)
µp−in δin.

Since vL(µn) = vL(λn+1 − λn) > vL(λ1 − λ0) = −s and vL(pµp−1
n ) = pe− (p−

1)s > 0, we get

vL(σ℘ (µn)− ℘ (µn) + δn) > vL(δn) + 1.

Moreover,

σ℘ (λn+1)− ℘ (λn+1) = σ℘ (λn)− ℘ (λn)

+ σ℘ (µn)− ℘ (µn) +
p−1∑
i=1

(
p

i

)(
σ(λp−in µin)− λp−in µin

)
and

σ(λp−in µin)− λp−in µin = λp−in µin
(
εp−in (1 + δnµ−1

n )i − 1
)
,

where λ−1
n σλn = εn ∈ Us,L since p6 |s, and we also have vL(δnµ−1

n ) = vL(δn) + s−
vL(δn) = s. Hence, for 1 6 i 6 p− 1 we get

vL
(
σ(λp−in µin)− λp−in µin

)
> −(p− i)s + i(vL(δn)− s) + s

> −(p− 1)s + vL(δn) > −pe + vL(δn) + 1.

Thus,

vL
(
σ℘ (λn+1)− ℘ (λn+1)

)
> vL(δn) + 1,

which completes the proof.

(2.5). The assertions converse to Propositions (2.1) and (2.4) can be formulated as
follows.

Proposition. Let F be a complete discrete valuation field with a residue field of
characteristic p > 0. Then every polynomial Xp − X − α with α ∈ F , vF (α) >
−pe/(p − 1) if char(F ) = 0 and e = e(F ), either splits completely or has a root λ
which generates a cyclic extension L = F (λ) over F of degree p. In the last case
vL(σ(λ) − λ − 1) > 0 for some generator σ of Gal(L/F ). If α ∈ UF , α /∈ ℘

(
F
)
,

then L/F is unramified; if α ∈ MF , then λ ∈ F ; if α /∈ OF and p - vF (α), then
L/F is totally ramified with s = −vF (α).
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Proof. Let α ∈ MF , f(X) = Xp −X − α. Then f (0) ∈ MF , f ′(0) /∈ MF , and,
by Hensel Lemma (1.2) Ch. II, for every integer a there is λ ∈ MF with f (λ) = 0,
λ − a ∈ MF . This means that f(X) splits completely in F . If α ∈ UF , α /∈
℘
(
F
)
, then Proposition (3.2) Ch. II shows that F (λ)/F is an unramified extension

and Proposition (3.3) Ch. II shows that F (λ)/F is Galois of degree p. The generator
σ ∈ Gal(L/F ), for which σ̄ᾱ = α + 1, is the required one.

If α /∈ OF , then let λ be a root of the polynomial Xp − X − α in F alg and
L = F (λ). Put

g(Y ) = (λ + Y )p − (λ + Y )− α = Y p +
(
p

1

)
λY p−1 + · · · +

(
p

p− 1

)
λp−1Y − Y.

If char(F ) = p, then L/F is evidently cyclic of degree p when α /∈ ℘ (F ). If
char(F ) = 0, then vL

((
p
i

)
λi
)
> e(L|F )(e − ei/(p − 1)) > 0 for i 6 p − 1 and

g(Y ) = Y p − Y over L. Hence by Hensel Lemma g(Y ) splits completely in L.
Therefore, L/F is cyclic of degree p if f(X) does not split over F . Let σ be a
generator of Gal(L/F ), such that σ(λ) − λ is a root of g(Y ) and is congruent to 1
mod πL . Then vL(σ(λ)− λ− 1) > 0. If p - vF (α), then the equality pvL(λ) = vL(α)
implies e(L|F ) = p, and L/F is totally ramified. It follows from the definition of s
in (1.4) that s = vL(σ(λ) · λ−1 − 1), and consequently s = vL(σ(λ) − λ) − vL(λ) =
−vL(λ) = −vF (α).

Corollary. Let λ be a root of the polynomial Xp − X + θpα with θ ∈ UF ,
vF (α) = −s > −pe/(p − 1), p - s. Let L = F (λ). Then α ∈ NL/FL

∗ and 1 +
θ−p℘ (OF )α−1 + πs+1

F OF ⊂ NL/FL∗ , where ℘ (OF ) = {℘ (β) : β ∈ OF }.

Proof. The preceding Proposition shows that L/F is a totally ramified extension of
degree p and that vL(σ(πL)π−1

L − 1) = s for a generator σ of Gal(L/F ) and a prime
element πL in L. Put f(X) = Xp −X + θpα. Then we get NL/F (−λ) = f (0) = θpα
and α = NL/F (−λθ−1). For β ∈ OF put

g(Y ) = f (β − Y ) = (β − Y )p − (β − Y ) + θpα.

Then

NL/F (β − λ) = g(0) = ℘ (β) + θpα.

Therefore, 1 + ℘ (β) θ−pα−1 ⊂ NL/FL∗ . It remains to use Corollary (1.5).

(2.6). Remark. Another description of totally ramified extensions of degree p can
be found in [Am]. For a treatment of Artin–Schreier extensions by using Lubin–Tate
formal groups and a generalization to n-dimensional local fields see [FVZ].
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Exercises.

1. Let L/F be a Galois extension of degree p = char(F ), and let L/F be an inseparable
extension of degree p. Let θ, σ, s be as in Exercise 2 section 1. Let char(F ) = 0 and
e = e(F ) the absolute index of ramification of F .
a) Prove an analog of Lemma (2.2) (with θ instead of πL ).
b) Show that s 6 e/(p− 1).
c) Show that s < e/(p − 1) if and only if there exists an element λ1 ∈ L, such that

vL(σ(λ1)− λ1 − 1) > 0, vL(λ1) = −ps.
d) Show that if s < e/(p − 1), then L = F (λ), where the element λ is a root of the

polynomial Xp −X − α with α ∈ F , vF (α) = −ps, vL(σ(λ)− λ− 1) > 0.
e) Maintaining the conditions in d) show that α = β1β

p
2 with β1 ∈ UF , β1 /∈ F

p
,

vF (β2) = −s.
f) Show that if L = F (λ), where λp − λ = α and α is as in e), then L/F is Galois of

degree p and L/F is inseparable of degree p.
2. (R. MacKenzie and G. Whaples [MW])

a) Let F = Q, and let L be the unique cyclic subextension of prime degree p in
F (ζp2 )/F ( ζp2 is a primitive p2 th root of unity). Show that the equation Xp −
X − α = 0 for α ∈ F can have at most three real roots. However, for p > 3 any
defining equation of L over F splits into real linear factors in C. Hence, L/F is
not generated by a root of any Artin–Schreier equation for p > 3.

b) Let F = Q, and let L be the splitting field of the polynomial Xp −X − 1. Show
that L/F is not a cyclic extension when p > 3.

3. Let L = F (γ), γp − γ = α ∈ F , be a cyclic extension of degree p over F . Assume that
F itself is a cyclic extension of K with a generator σ. Describe what condition should
satisfy σα so that L/K is a Galois (abelian) extension?

4. (V.A. Abrashkin [Ab1]) Let F be a complete discrete valuation field of characteristic 0 with
residue field F of characteristic p. Let Fpn ⊂ F for some integer n > 1. Let λ be a
root of the polynomial Xpn −X − α with α ∈ F, vF (α) > −pne(F )/(pn − 1). Then
the extension F (λ)/F is said to be elementary.
a) Show that F (λ)/F is Galois.
b) Show that if p-vF (α), vF (α) < 0, then F (λ)/F is a totally ramified Galois extension

of degree pn , and if G = Gal(F (λ)/F ), then G = G0 = · · · = Gs, Gs+1 = · · · = {1}
for the ramification groups of G, where s = −vF (α).

c) Show that if α1 − α2 ∈MF , then F (λ1) = F (λ2).
d) Show that if α3 − α1 − α2 ∈ MF , then F (λ3) is contained in the compositum of

F (λ1) and F (λ2).
e) Show that if F is algebraically closed, then MF can be replaced with OF in c), d).
For additional properties of elementary extensions see [Ab]. The theory of such extensions
is used to show that there are no abelian schemes over Z.

5. Generalize the results of this section to Henselian discrete valuation fields.
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3. The Hasse–Herbrand Function

In this section we associate to a finite separable extension L/F a certain real function
hL/F which partially describes the behaviour of the norm map from arithmetical point
of view. In subsections (3.1), (3.2) we study the case of Galois extensions and in
subsection (3.3) the case of separable extensions. In (3.4) we derive first applications.
Then we relate the function hL/F which was originally introduced in a different way by
H. Hasse and J. Herbrand to properties of ramification subgroups and prove in section
(3.5) a theorem of J. Herbrand on the behaviour of ramification groups in extensions;
further properties of ramification subgroups are studied in (3.6) and (3.7).

We maintain the hypothesis of the preceding sections concerning F , and assume in
addition that all residue field extensions are separable.

(3.1). Proposition. Let the residue field F be infinite. Let L/F be a finite Galois
extension, N = NL/F . Then there exists a unique function

h = hL/F :N→ N

such that h(0) = 0 and

NUh(i),L ⊂ Ui,F , NUh(i),L 6⊂ Ui+1,F , NUh(i)+1,L ⊂ Ui+1,F .

Proof. The uniqueness of h follows immediately. Indeed, for j > h(i) NUj,L ⊂
Ui+1,F , hence if h̃ is another function with the required properties, then h̃(i) 6

h(i), h(i) 6 h̃(i), i.e., h = h̃.
As for the existence of h, we first consider the case of an unramified extension

L/F . Then Proposition (1.2) shows that in this case h(i) = i (because NL/F (L
∗
) 6= 1

and TrL/F L = F ). The next case to consider is a totally ramified cyclic extension
L/F of prime degree. In this case Proposition (1.3) and Proposition (1.5) describe
the behavior of NL/F . By means of the homomorphisms λi,L , the map NL/F is
determined by some nonzero polynomials over L. The image of L under the action of
such a polynomial is not zero since L is infinite. Hence, we obtain

h(i) = |L : F |i,

if L/F is totally tamely ramified, and

h(i) =
{
i, i 6 s,

s(1− p) + pi, i > s,

if L/F is totally ramified of degree p = char(F ) > 0.
Now we consider the general case. Note that if we have the functions hL/M and

hM/F for the Galois extensions L/M,M/F , then for the extension L/F one can put
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hL/F = hL/M ◦ hM/F . Indeed,

NL/FUhL/F (i),L ⊂ NM/FUhM/F (i),M ⊂ Ui,F .

Furthermore, the behavior of NL/F is determined by some nonzero polynomials (the
composition of the polynomials for NL/M and NM/F , the existence of which can be
assumed by induction). Hence

NL/FUhL/F (i),L 6⊂ Ui+1,F .

Since

NL/FUhL/F (i)+1,L ⊂ NM/FUhM/F (i)+1,M ⊂ Ui+1,M ,

we deduce that h = hL/F is the desired function.
In the general case we put hL/F = hL/L0 for L0 = L ∩ F ur and determine hL/L0

by induction using Corollary 3 of (4.4) Ch. II, which shows that L/L0 is solvable.

(3.2). To treat the case of finite residue fields we need

Lemma. Let L/F be a finite separable totally ramified extension. Then for an element
α ∈ L we get

NL/F (α) = N
L̂ur/F̂ ur (α)

where F̂ ur is the completion of F ur , L̂ur = LF̂ ur .

Proof. Let L = F (πL) with a prime element πL in L, and let α ∈ L. Let

απiL =
n−1∑
j=0

cijπ
j
L with cij ∈ F, 0 6 i 6 n− 1, n = |L : F |.

Then NL/F (α) = det(cij) (see [La1, Ch. VIII]). Since Lur = F ur(πL) and

|Lur : F ur| = e(Lur|F ur) = e(Lur|F ) = e(L|F ) = |L : F |,

we get

NLur/F ur (α) = det(cij) = NL/F (α).

Finally, let E/F ur be a finite totally ramified Galois extension with E ⊃ Lur . Let
G = Gal(E/F ur), H = Gal(E/Lur), and let G be the disjoint union of σiH with
σi ∈ G, 1 6 i 6 |Lur : F ur|. Then

NLur/F ur (α) =
∏

σi(α) = N
L̂ur/F̂ ur (α),

because G and H are isomorphic to Gal(Ê/F̂ ur) and Gal(Ê/L̂ur) by (4) in Theo-
rem (2.8) Ch. II.
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This Lemma shows that for a finite totally ramified Galois extension L/F the
functions hL/F and h

L̂ur/F̂ ur coincide. Now, if L/F is a finite Galois extension, we
get

hL/F = hL/L0 = h
L̂ur/F̂ ur .

So, if F is finite we put hL/F = h
L̂ur/F̂ ur (the residue field of F̂ ur is infinite as the

separable closure of a finite field).
It is useful to extend this function to real numbers. For an unramified extension, a

tamely totally ramified extension of prime degree, a totally ramified extension of degree
p = char(F ) > 0 put

hL/F (x) = x, hL/F (x) = |L : F |x, hL/F (x) =
{
x, x 6 s,

s(1− p) + px, x > s

for real x > 0 respectively. Using the solvability of L/L0 (Corollary 3 of (4.4) Ch. II)
and the equality hL/F = hL/M ◦ hM/F define now hL/F (x) as the composite of the
functions for a tower of cyclic subextensions in L/L0 .

Proposition. Thus defined function hL/F : [0,+∞) → [0,+∞) is independent on
the choice of a tower of subfields. The function hL/F is called the Hasse–Herbrand
function of L/F . It is piecewise linear, continuous and increasing.

Proof. By induction on the degree of L/F it suffices to show that if M1/M , M2/M
are linearly disjoint cyclic extensions of prime degree, then

(*) hE/M1 ◦ hM1/M = hE/M2 ◦ hM2/M

where E = M1M2 .
Note that each of hM1/M (x), hM2/M (x) has at most one point at which its derivate

is not continuous. Therefore there are at most two points at which the function of the
left (resp. right) hand side of (∗) has discontinuous derivative. By looking at graphs of
the functions it is obvious that at such points the derivative strictly increases and there
is at most one such noninteger point for at most one of the composed functions of the
left hand side and the right hand side of (∗). At this point (if it exists) the derivative
jumps from p to p2 .

From the uniqueness in the preceding Proposition we deduce that the left and right
hand sides of (∗) are equal at all nonnegative integers. Thus, elementary calculus shows
that the left and right hand sides of (∗) are equal at all nonnegative real numbers.

(3.3). Let the residue field of F be perfect. For a finite separable extension L/F put

hL/F = h−1
E/L ◦ hE/F ,
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where E/F is a finite Galois extension with E ⊃ L. Then hL/F is well defined,
since if E′/F is a Galois extension with E′ ⊃ L and E′′ = E′E , then

h−1
E′′/L ◦ hE′′/F =

(
hE′′/E′ ◦ hE′/L

)−1 ◦
(
hE′′/E′ ◦ hE′/F

)
= h−1

E′/L ◦ hE′/F

and, similarly, h−1
E′′/L ◦ hE′′/F = h−1

E/L ◦ hE/F . We can easily deduce from this that
the equality

hL/F = hL/M ◦ hM/F (∗)

holds for separable extensions.

Proposition. Let L/F be a finite separable extension, and let F be perfect. Then
hL/F (N) ⊂ N and the left and right derivatives of hL/F at any point are positive
integers.

Proof. Let E/F be a finite Galois extension with E ⊃ L. Then from Lemma (3.2)
we get

hL/F = h−1
E/L ◦ hE/F = h−1

Êur/L̂ur
◦ h

Êur/F̂ ur = h
L̂ur/F̂ ur .

Put G = Gal(Êur/F̂ ur), H = Gal(Êur/L̂ur). Since G is a solvable group, there exists
a chain of normal subgroups

G . G(1) . · · · . G(m) = {1},

such that G(i)/G(i+1) is a cyclic group of prime order. Then we obtain the chain of
subgroups

G > G(1)H > . . . > G(m)H = H,

for which G(i+1)H is of prime index or index 1 in G(i)H . This shows the existence of
a tower of fields

F̂ ur −M1 − · · · −Mn−1 −Mn = L̂ur,

such that Mi+1/Mi is a separable extension of prime degree. Therefore, it suffices to
prove the statements of the Proposition for such an extension.

If Mi+1/Mi is a totally tamely ramified extension of degree l, then π = πl1 is a
prime element in Mi for some prime element π1 in Mi+1 . Since l is relatively prime
with char(F ), we obtain, using the Henselian property of Mi and the fact that the
residue field of M̂ur

i is separably closed, that a primitive l th root of unity belongs to
M̂ur
i . This means that M̂ur

i+1/M̂
ur
i is a Galois extension and

hMi+1/Mi
(x) = lx.

If Mi+1/Mi is an extension of degree p = char(F ) > 0, then let K/Mi be the
smallest Galois extension, for which K ⊃ Mi+1 . Let K1 be the maximal tamely
ramified extension of Mi in K ; then l = e(K1|Mi) = e(K|Mi+1) is relatively prime
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to p. Choose prime elements π and π1 in Mi+1 and K such that π = πl1 . Let
f(X) ∈Mi[X] be the monic irreducible polynomial of π over Mi . Then

f ′(π) =
p−1∏
i=1

(
π − σi(π)

)
=
p−1∏
i=1

(
πl1 − σi(πl1)

)
,

where σ is a generator of Gal(K/K1). Let s be defined for K/K1 as in (1.4). Then
vK
(
πl1−σi(πl1)

)
= l + s for 1 6 i 6 p− 1, and (p− 1)(l + s) = vK

(
f ′(π)

)
is divisible

by l. We deduce that l|(p− 1)s and

hMi+1/Mi
(x) =

1
l
hK/K1 (lx) =

{
x, x 6 sl−1,

s(1− p)l−1 + px, x > sl−1.

These considerations complete the proof.

Corollary. The function hL/F is piecewise linear, continuous and increasing.

(3.4). The following assertion clarifies relation between the Hasse–Herbrand function
and the norm map.

Proposition. Let L/F be a finite separable extension.
Then for ε ∈ OL

hL/F

(
vF
(
NL/F (ε)− 1

))
> vL(ε− 1).

If, in addition, L/F is totally ramified and if vL(α− β) > 0 for α, β ∈ OL , then
vF (NL/F (α)−NL/F (β)) > 0 and

hL/F

(
vF
(
NL/F (α)−NL/F (β)

))
> vL(α− β).

Proof. Let’s show that the second inequality is a consequence of the first one.
If vL(β) > vL(α−β), then vL(α) > vL(α−β), and applying Theorem (2.5) Ch. II

we get

vF
(
NL/F (α)−NL/F (β)

)
> min{vF

(
NL/F (α)), vF

(
NL/F (β))}

= min{vL(α), vL(β)} > vL(α− β).

Since hL/F (x) > x, we obtain the second inequality.
If vL(β) < vL(α−β), then put ε = αβ−1 . Using the property of the derivatives of

h in Proposition (3.3) and the first inequality we obtain

hL/F

(
vF
(
NL/F (α)−NL/F (β)

))
= hL/F

(
vF
(
NL/F (ε)− 1

)
+ vL(β)

)
> vL(ε− 1) + vL(β) = vL(α− β).
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We now verify the first inequality of the Proposition. By the proof of the previous
Proposition, we may assume that L/F is totally ramified and F is algebraically closed.
It is easy to show that if the first inequality holds for L/M and M/F , then it holds
for L/F . The arguments from the proof of the previous Proposition imply now that
it suffices to verify the first inequality for a separable extension L/F of prime degree.
If L/F is tamely ramified, then L/F is Galois, and the inequality follows from
Proposition (1.3). If |L : F | = p = char(F ) > 0, then we may assume that ε is a
principal unit. Proposition (1.5) implies the required inequality for the Galois case. In
general, assume that E/F is the minimal Galois extension such that E ⊃ L, and let E1
is the maximal tamely ramified subextension of F in E . Let l = |E : L| = |E1 : F |.
Then NL/F (Ui,L) = NE/F (Uli,E) ⊂ NE1/F (Uj,E1 ) with j > h−1

E/E1
(li). Hence,

NL/F (Ui,L) ⊂ Uk,F with lk > h−1
E/E1

(li), i.e., k > h−1
L/F (i), as desired.

(3.5). We will relate the Hasse–Herbrand function to ramification groups which are
defined in (4.3) Ch. II.

If H is a subgroup of the Galois group G, then Hx = H∩Gx . As for the quotients,
the description is provided by the following

Theorem (Herbrand). Let L/F be a finite Galois extension and let M/F be a
Galois subextension. Let x, y be nonnegative real numbers related by y = hL/M (x).

Then the image of Gal(L/F )y in Gal(M/F ) coincides with Gal(M/F )x .

Proof. The cases x 6 1 or e(L|M ) = 1 are easy and left to the reader. Due to
solvability of Galois groups of totally ramified extensions it is sufficient to prove the
assertion in the case of a ramified cyclic extension L/M of prime degree l.

If l 6= p, then using Proposition (3.5) Ch. II choose a prime element π of L such
that πM = πl is a prime element of M . Then for every τ ∈ Gal(L/F )1 we have
π−1
M τπM = (π−1τπ)l and therefore

vL(π−1τπ − 1) = vL
(
(π−1τπ)l − 1

)
= lvM (π−1

M τπM − 1).

Consider now the most interesting case l = p, x > 1. Let πL be a prime element
of L. Put s = s(L|M ), see (1.4).

The element πM = NL/MπL is a prime element of M . Let τ ∈ Gal(L/F )y . We
have π−1

M τπM = NL/M (π−1
L τπL).

From Proposition (3.4) we get

hL/M (vM (π−1
M τπM − 1)) = hL/M (vM (NL/M (π−1

L τπL)− 1)) > y,

so τ |M belongs to Gal(M/F )x .
Conversely, if τ |M ∈ Gal(M/F )x , then i = vM (π−1

M τπM − 1) > x. If i 6 s =
s(L|M ) then applying (1.5) we deduce that τ ∈ Gal(L/F )i = Gal(L/F )y . If i > s

then Proposition (4.5) Ch. II and (1.5) show that j = vL(π−1
L τπL − 1) = s + pr for

some nonnegative integer r.
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If r > 0 then Proposition (1.5) implies that i = s + r and τ ∈ Gal(L/F )j =
Gal(L/F )y . If j = s then since i > s from the same Proposition we deduce that

τπL
πL
≡ σπL

πL
mod Ms+1

L

for an appropriate generator σ of Gal(L/M ). Then τσ−1 belongs to Gal(L/F )k for
k > s. Due to the previous discussions (view k as j > s above) k = hL/M (i) and τ
belongs to Gal(L/F )y Gal(L/M ), as required.

Corollary. Define the upper ramification filtration of G = Gal(L/F ) as

G(x) = Gal(L/F )hL/F (x).

Then for a normal subgroup H of G the previous theorem shows that

(G/H)(x) = G(x)H/H.

Definition. For an infinite Galois extension L/F define upper ramification sub-
groups of G = Gal(L/F ) as

G(x) = lim←− Gal(M/F )(x)

where M/F runs through all finite Galois subextensions of L/F . Real numbers x
such that G(x) 6= G(x + δ) for every δ > 0 are called upper ramification jumps of
L/F .

(3.6). The following Proposition is a generalization of results of section 1.
Suppose that L/F is a finite totally ramified Galois extension and that |L : F | is

a power of p = char(F ). Put G = Gal(L/F ). For the chain of normal ramification
groups

G = G1 > G2 > . . . > Gn > Gn+1 = {1}
let Lm be the fixed field of Gm; then we get the tower of fields

F = L1 − L2 − · · · − Ln − Ln+1 = L.

Proposition. Let 1 6 m 6 n. Then Gal(Lm+1/Lm) coincides with the ramification
group Gal(Lm+1/Lm)m , Gal(Lm+1/Lm)m+1 = {1}, and hLm+1/Lm (m) = m.

Moreover , if i < m, then hLm+1/Lm (i) = i and the homomorphism

Ui,Lm+1/Ui+1,Lm+1 −→ Ui,Lm/Ui+1,Lm

induced by NLm+1/Lm is injective;
if i > m, then the homomorphism

Uh(i),Lm+1/Uh(i)+1,Lm+1 −→ Ui,Lm/Ui+1,Lm

induced by NLm+1/Lm for h = hLm+1/Lm is bijective.
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Furthermore, the homomorphism

Uh(i),L/Uh(i)+1,L −→ Ui,F /Ui+1,F

induced by NL/F for h = hL/F , is bijective if h(i) > n.

Proof. Induction on m. Base of induction m = n. Since Gal(L/Ln)x is equal to
the group Gal(L/F )x ∩ Gal(L/Ln), we deduce that Gal(L/Ln)n = Gal(L/Ln) and
Gal(L/Ln)n+1 = {1}, and hL/Ln (x) = x for x 6 n. All the other assertions for
m = n follow from Proposition (1.5).

Induction step m + 1 → m. The transitivity property of the Hasse–Herbrand
function implies that hL/Lm+1 (x) = x for x 6 m+ 1. Now from the previous Theorem

Gal(Lm+1/Lm)x = Gal(L/Lm)hL/Lm+1
(x) Gal(Lm+1/Lm)/Gal(Lm+1/Lm).

We deduce that Gal(Lm+1/Lm)m = Gal(Lm+1/Lm) and Gal(Lm+1/Lm)m+1 = {1}.
The rest follows from Proposition (1.5).

To deduce the last assertion note that k = hL/F (i) > n implies j = hLm/F (i) > m.

Corollary. The word “injective” in the Proposition can be replaced by “bijective”
if F is perfect.

(3.7). Proposition. Let L/F be a finite Galois extension, and let G = Gal(L/F ),
h = hL/F . Let h′l and h′r be the left and right derivatives of h. Then h′l(x) = |G0 :
Gh(x)|, and

h′r(x) =
{ |G0 : Gh(x)| if h(x) is not integer,

|G0 : Gh(x)+1| if h(x) is integer.

Therefore

hL/F (x) =
∫ x

0
|G0 : Gh(t)|dt.

Proof. Using the equality (∗) of (3.3), we may assume that L/F is a totally ramified
extension the degree of which is a power of p = char(F ) > 0. Then G = G0 = G1 .
We proceed by induction on the degree |L : F |. Let Ln be identical to that of (3.6);
then |Ln : F | < |L : F |. Since (G/Gn)m = Gm/Gn for m 6 n due to (3.6), we
deduce the following series of claims.

If hLn/F (x) 6 n, then, by Proposition (3.6), hL/F (x) = hLn/F (x) and

h′l(x) = |(G/Gn) : (G/Gn)h(x)| = |G : Gh(x)|.

If hLn/F (x) < n and hL/F (x) = hLn/F (x) is not integer, then h′r(x) = |G : Gh(x)|.
If hLn/F (x) is an integer < n, then

h′r(x) = |(G/Gn) : (G/Gn)h(x)+1| = |G : Gh(x)+1|.
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Since the derivative (right derivative) of hL/Ln (x) for x > n (resp. x > n ) is
equal to |Gn : (Gn)n+1| = |Gn|, we deduce that if hLn/F (x) > n, then

h′l(x) = |Gn| · |G : Gn| = |G| = |G : Gh(x)|.

So if hLn/F (x) > n, then h′r(x) = |Gn| · |G : Gn| = |G|. This completes the proof.

Remarks.

1. The function hL/F often appears under the notation ψL/F ; in which case it is
defined in quite a different way by using ramification groups, not the norm map. This
function is inverse to the function ϕL/F =

∫ x
0

dt
|G0:Gt| .

2. Information encoded in the Hasse–Herbrand function can be extended using some
additional ramification invariants introduced by V. Heiermann [Hei]. These arise when
one investigates more closely Eisenstein polynomials corresponding to prime elements
(see also Exercise 6 in section 4).

Exercises.

1. Show that the three properties of the Hasse–Herbrand function obtained in Proposition (3.1)
hold for a finite separable extension L/F with a separable residue extension.

2. In terms of the proof of Proposition (3.2) show that hM1M2/M1
◦ hM1/M

= hM1M2/M2
◦

hM2/M
by calculating the functions in accordance with the steps below.

a) Suppose that |M1 : M | = l is prime to p and |M2 : M | = p. Choose a prime element
π of E such that πl is a prime element of M2 and calculate all the functions.

b) Suppose that M1/M and M2/M are totally ramified extensions of prime degree
p and M1 ∩M2 = M , E = M1M2 . Using Proposition (4.5) Ch. II deduce that
s1 = s(E|M2) is congruent to s2 = s(E|M1) modulo p. Show that if s(M2|M ) >
s(M1|M ), then s(M1|M ) = s1 and s2 = ps(M2|M ) − (p − 1)s1 . Show that if
s = s(M2|M ) = s(M1|M ), then s1 = s2 6 s.

3. (Y. Kawada [Kaw1]) Let L be an infinite Galois extension of a local field F .
a) Let M1/F , M2/F be finite Galois subextensions of L/F . Show that the set

of upper ramification jumps of M1/F is a subset of upper ramification jumps of
M2/F . Denote by B(L/F ) the union of all upper ramification jumps of finite Galois
subextensions of L/F .

b) For a real x define L(x) = ∪MM (x) where M runs over all finite Galois extensions
of F in L and M (x) is the fixed field of Gal(M/F )(x) inside M . Show that if
x1 < x2 , then L(x1) 6= L(x2) if and only if [x1, x2) ∩B(L/F ) 6= ∅.

c) Show that if x is the limit of a monotone increasing sequence xn , then L(x) =
∪L(xn).

d) Show that if x is the limit of a monotone decreasing sequence xn and x 6∈ B(L/F ),
then L(x) = ∩L(xn).

e) Let x be the limit of a strictly monotone decreasing sequence xn . Define L[x] =
∪M (∩nM (xn)) where M runs over all finite Galois extensions of F in L. Show
that L[x] = ∩nL(xn). Show that L[x] = L(x) is and only if x 6∈ B(L/F ).

f) A subfield E of L, F ⊂ E is called a ramification subfield if for every finite Galois
subextension M/F of L/F there is y such that E ∩M = M (y). Show that every
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ramifications subfield of L over F coincides either with some L(x) or with some
L[x].

g) Deduce that the set of all upper ramification jumps of L/F is the union of B(L/F )
and the limits of strictly monotone decreasing sequences of elements of B(L/F ).

4. The Norm and Ramification Groups

We continue the study of ramification groups and the norm map. After recalling Satz 90
in (4.1) we further generalize results of section 1 as Theorem (4.2). In subsection (4.3)
we study ramification numbers of abelian extensions.

In this section F is a complete discrete valuation field.

(4.1). The following assertion is of general interest.

Proposition (Hilbert “Satz 90”). Let L/F be a cyclic Galois extension, and
let NL/F (α) = 1 for some α ∈ L. Then there exists an element β ∈ L such that
α = βσ−1 , where σ is a generator of Gal(L/F ).

Proof. Let β(γ) denote

γ + α−1σ(γ) + α−1σ(α−1)σ2(γ) + · · · + α−1σ(α−1) · . . . · σn−2(α−1)σn−1(γ)

for γ ∈ L, n = |L : F |. If β(γ) were equal to 0 for all γ , then we would have a
nontrivial solution 1, α−1, α−1σ(α−1), . . . for the n × n system of linear equations
with the matrix

(
σi(γj)

)
06i,j6n−1 , where (γj)06j6n−1 is a basis of L over F . This

is impossible because L/F is separable (see [La1, sect. 5 Ch. VIII]). Hence β(γ) 6= 0
for some γ ∈ L. Then β = β(γ) is the desired element.

Corollary. If L is a cyclic unramified extension of F and NL/F (α) = 1 for α ∈ L,
then α = γσ−1 for some element γ ∈ UL .

Proof. In this case a prime element π in F is also a prime one in L. By the
Proposition, α = β−1σ(β) with β = πiε, ε ∈ UL . Then α = ε−1σ(ε).

Recall that in section 4 Ch. II we employed the homomorphisms

ψi:Gi → Ui,L/Ui+1,L

(we put U0,L = UL ), where G = Gal(L/F ), πL is a prime element in L, i > 0.
Obviously these homomorphisms do not depend on the choice of πL if L/F is totally
ramified. The induced homomorphisms Gi/Gi+1 → Ui,L/Ui+1,L will be also denoted
by ψi .
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(4.2). Theorem. Let L/F be a finite totally ramified Galois extension with group G.
Let h = hL/F . Then for every integer i > 0 the sequence

1→ Gh(i)/Gh(i)+1
ψh(i)−−−−→ Uh(i),L/Uh(i)+1,L

Ni−−−−→ Ui,F /Ui+1,F

is exact (the right homomorphism Ni is induced by the norm map).

Proof. The injectivity of ψh(i) follows from the definitions. It remains to show that
if NL/Fα ∈ Ui+1,F for α ∈ Uh(i),L , then

α ≡ σ(πL)
πL

mod Uh(i)+1,L

for some σ ∈ Gh(i) .
If L/F is a tamely ramified extension of degree l, then the fourth commutative

diagram of Proposition (1.3) shows that Ni is injective for i > 1, and the kernel of N0
coincides with the group of l th roots of unity which is contained in F . Since πL = l

√
πF

is a prime element in L for some prime element πF in F , we get ker(N0) ⊂ im(ψ0),
and in this case the sequence of the Theorem is commutative.

If L/F is a cyclic extension of degree p = char(F ) > 0, then the fourth commuta-
tive diagram of Proposition (1.5) shows that ker(Ns) ⊂ im(ψs) for s = vL(π−1

L σ(πL))
and a generator σ of Gal(L/F ). Other diagrams of Proposition (1.5) show that Ni is
injective for i 6= s.

We proceed by induction on the degree |L : F |. Since we have already considered
the tamely ramified case, we may assume that the maximal tamely ramified extension
L1 of F in L does not coincide with L. Since |L : L1| is a power of p, the
homomorphism induced by NL/L1

U0,L/U1,L −→ U0,L1/U1,L1

is the raising to this power of p, and ker(N0) is equal to the preimage under this
homomorphism of the kernel of U0,L1/U1,L1 −→ U0,F /U1,F . In other words ker(N0)
coincides with the group of all l th roots of unity for l = |L1 : F | which is contained in
F . Hence the kernel of N0 is contained in the image of ψ0 , since ψ0 is injective and
|G0 : G1| = l.

Now suppose i > 1. In this case we may assume L1 = F because the homomor-
phism Ni induced by NL1/F is injective for i > 1. Let Ln be as in Proposition (3.6).
Then one can express Ni as the composition

Uh(i),L/Uh(i)+1,L
N ′−→ Uh1(i),Ln/Uh1(i)+1,Ln

N ′′−→ Ui,F /Ui+1,F ,

where N ′ and N ′′ are induced by NL/Ln and NLn/F respectively, and h1(i) =
hLn/F (i). If h1(i) > n, then by Proposition (3.6) Gal(Ln/F )h1(i) = {1}, and
we may assume that N ′′ is injective. Then by the induction assumption kerNi =
kerN ′ coincides with the set of elements π−1

L σ(πL) mod Uh(i)+1,L , where σ runs
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over Gal(L/Ln)n = Gn . If h1(i) < n and NL/F (α) ∈ Ui+1,F for some α ∈ Uh(i),L ,
then h(i) = h1(i), and by the induction assumption,

N ′(α) ≡ σ(πLn )
πLn

mod Uh1(i)+1,Ln

for a prime element πLn in Ln and some σ ∈ Gal(L/F ). We can take πLn =
NL/LnπL . Hence

N ′(α) ≡ N ′
(
σ(πL)
πL

)
mod Uh1(i)+1,Ln .

The homomorphisms

Uj,L/Uj+1,L −→ Uj,Ln/Uj+1,Ln

induced by NL/Ln , are injective for j < n by Proposition (3.6). Therefore, the element
π−1
L σ(πL) belongs to Uh(i),L and so σ ∈ Gh(i) ,

α ≡ σ(πL)
πL

mod Uh(i)+1,L.

(4.3). Now we study ramification numbers of abelian extensions. We shall see that
these satisfy much stronger congruences than those of Proposition (4.5) Ch. II.

Theorem (Hasse–Arf). Let L/F be a finite abelian extension, and let the residue
extension L/F be separable. Let G = Gal(L/F ). Then Gj 6= Gj+1 for an integer
j > 0 implies j = hL/F (j′) for an integer j′ > 0. In other words, upper ramification
jumps of abelian extensions are integers.

Proof. We may assume that j > 0 and that L/F is totally ramified. Let E/F be
the maximal p-subextension in L/F , and m = |L : E|. Let πL be a suitable prime
element in L such that πmL ∈ E . For σ ∈ Gj , σ 6∈ Gj+1 we get π−mL σπmL = 1+mθπjL
for some θ ∈ UL; therefore j = mj1 , and σ|E ∈ Gal(E/F )j1 , σ 6∈ Gal(E/F )j1+1 . If
we verify that j1 = hE/F (j′) for some integer j′ , then j = hL/F (j′). Thus, we may
also assume G = G1 .

If L/F is cyclic of degree p = char(F ), then the required assertion follows from
Proposition (1.5). In the general case we proceed by induction on the degree of
L/F . In terms of Proposition (3.6) it suffices to show that n ∈ hLn/F (N) where
Gn 6= {1} = Gn+1 . Let σ ∈ Gn, σ 6= 1. Assume that there is a cyclic subgroup H of
order p such that σ /∈ H . Then denote the fixed field of H by M . For a prime element
πL in L the element πM = NL/M (πL) is prime in M , and M = F (πM ) by Corollary 2
of (2.9) Ch. II. Then ε = NL/M (π−1

L σ(πL)) = NL/M (π−1
L )σ(NL/M (πL)) 6= 1, since

σ(πM ) 6= πM . Put n′ = vM (ε − 1); then σ|M ∈ (G/H)n′ , σ|M /∈ (G/H)n′+1 .
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By the induction hypothesis, n′ = hM/F (n′′) for some n′′ ∈ N. Proposition (1.5)
implies n 6 hL/M (n′), and we obtain n 6 hL/F (n′′). If n < hL/F (n′′), then, by
Proposition (3.7) the left derivative of hL/F at n′′ is equal to |L : F |, and the left
derivative of hL/M at n′ is equal to |L : M |. Therefore, the left derivative of hM/F

at n′′ , which is equal to |(G/H) : (G/H)n′ | by Proposition (3.7), coincides with
|M : F |. This contradiction shows that n = hL/F (n′′).

It remains to consider the case when there are no cyclic subgroups H of order p,
such that σ /∈ H . This means that G is itself cyclic. Let τ be a generator of G.
The choice of n and Theorem (4.2) imply that σ = τ ip

m−1
, where p - i, pm = |G|.

We can assume m > 2 because the case of m = 1 has been considered above. Let
n1 = vL(π−1

L τp
m−2

(πL) − 1). Since |G : Gn| = pm−1 , Proposition (3.7) shows now
that it suffices to prove that pm−1|(n−n1). This is, in fact, a part of the third statement
of the following Proposition.

Proposition. Let L/F be a totally ramified cyclic extension of degree pm . Let πL
be a prime element in L. For σ ∈ Gal(L/F ) and integer k put

ck = ck(σ) = vL

(
σk(πL)
πL

− 1
)
.

Then
(1) ck depends only on vp(k), where vp is the p-adic valuation (see section 1 Ch. I);
(2) there exists an element αk ∈ L∗ such that

vL(αk) = k, vL

(
σ(αk)
αk

− 1
)

= ck;

(3) if vp(k1 − k2) > a, then vp(ck1 − ck2 ) > a + 1.

Proof. (After Sh. Sen [Sen1])
(1) Note that ck does not depend on the choice of a prime element in L by the same

reasons as s in (1.4). Let k = ipj with p - i, j > 0. Then σk − 1 = (ρ − 1)µ for
ρ = σp

j

, µ = ρi−1 + ρi−2 + · · · + 1. Since ck does not depend on the choice of a prime
element in L and i is prime to p, we deduce ck = cpj .

(2) Put αk =
∏k−1
i=0 σi(πL) for k > 0, αk = α−1

−k for k < 0, α0 = 1. The
elements αk satisfy condition (2) of the Proposition.

(3) Assume, by induction, that if vp(k1− k2) > a for a 6 n− 2, then vp(ck1 (σ)−
ck2 (σ)) > a + 1 for σ ∈ Gal(L/F ).

First we show that all the integers cpn−1 , k + ck for vp(k) 6 n − 1 are distinct. If
vp(k1) = vp(k2), k1 6= k2 , then ck1 = ck2 and k1 + ck1 6= k2 + ck2 . Let vp(k1), vp(k2)
be distinct and 6 n − 1, then vp(k1 − k2) 6 n − 2. So if k1 + ck1 = k2 + ck2 then
vp(k1−k2) = vp(ck2 − ck1 ) > vp(k1−k2) + 1, and thus k1 = k2 . If vp(k) = n−1 then
cpn−1 6= ck + k. If vp(k) < n − 1 then vp(cpn−1 − ck) > vp(pn−1 − k) + 1 > vp(k)
and so cpn−1 6= ck + k.
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Assume that vp(cpn−1 (τ ) − cpn (τ )) < n for a generator τ of Gal(L/F ). Our
purpose is to show that this leads to a contradiction. Then, obviously, vp(ck1 (σ) −
ck2 (σ)) > a + 1 for vp(k1 − k2) > a, a 6 n− 1.

Put d = cpn−1 (τ )− cpn (τ ). Since vp(d) = vp(cpn−2 (τp)− cpn−1 (τp)) > n− 1, we
get vp(d) = n− 1. By (2), there exists an element α ∈ L such that vL(α) = d,

vL(τp(α)− α) = d + cd(τp) = d + cpn (τ ) = cpn−1 (τ ).

Put β = (τp−1 + τp−2 + · · · + 1)α. Since vL(τp(α) − α) = cpn−1 (τ ) > 0, we get
vL(τ (α)−α) > vL(α) and hence vL(β) > vL(α) = d. We also obtain vL(τ (β)− β) =
vL(τp(α)− α) = cpn−1 (τ ).

Note that any element αk as in (2) can be changed to θαk satisfying the same
property (2), with a unit θ ∈ UF that has a given residue. Hence we deduce that β can
be expanded as

β =
∑

k>vL(β)

βk,

with βk ∈ L possessing the same properties with respect to τ as αk of (2). Then

τ (β)− β =
∑

k>vL(β)
vp(k)<n

(τ (βk)− βk) +
∑

k>vL(β)
vp(k)>n

(τ (βk)− βk) .

The valuations of the elements of the first sum on the right-hand side are all distinct
because vL(τ (βk) − βk) = k + ck(τ ) are all distinct and none of them coincides with
cpn−1 (τ ) = vL(τ (β)− β). Therefore,

cpn−1 (τ ) = vL(
∑

k>vL(β)
vp(k)>n

(τ (βk)− βk)).

In this sum

vL(τ (βk)− βk) = k + ck(τ ) > vL(β) + cpn (τ ) > d + cpn (τ ) = cpn−1 (τ ),

a contradiction.

Remarks.

1. This Theorem can be naturally proved using local class field theory (see (3.5)
Ch. IV and (4.7) Ch. V). In addition, one can show that a finite Galois totally ramified
extension L/F is abelian if and only if for every finite abelian totally ramified extension
M/F the extension LM/F has integer upper ramification jumps [Fe8]. For several
other proofs of the Hasse–Arf Theorem see [Se3], [N2].

2. The arguments of the previous Proposition are valid for the more general situation
of so called wildly ramified automorphisms, see Remark 3 in (5.7) and [Sen1].
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3. In the study of properties of ramification subgroup of finite Galois extensions
of local fields one can use a theorem of F. Laubie [Lau1] which claims that for every
finite Galois totally ramified extension of a local field there exists a Galois totally
ramified extension of a local field with finite residue field such that the Galois groups
are isomorphic and the ramification groups of the extensions are mapped to each other
under this isomorphism.

Exercises.

1. Prove Proposition (4.1) for a complete discrete valuation field and a cyclic extension L/F
of prime degree using explicit calculations in section 1.

2. Show that if L/F is a finite totally ramified Galois extension, then∑
i>0

| kerNi| 6 |G|.

3. In terms of (4.3) show that

ck = max
{
vL

(
σ(α)
α
− 1
)

: vL(α) = k
}
,

k = max {vL(α) : vL(σ(α)− α) = k + ck} .

4. (�) (Sh. Sen) Let L/F be a cyclic totally ramified extension of degree pn , p = char(F ) >
0. Let σ be a generator of Gal(L/F ), and let π be a prime element in F . Let ck be
identical to those of Proposition (4.3). Let A = {α ∈ OL : TrL/F (α) = 0},B = (1−σ)OL .

a) Show that A/B is isomorphic
k=pn−1
⊕
k=1

OF /π
gkOF , where gk = [p−nk + p−nck].

b) Show that pA ⊂ B.
This assertion can be generalized to the case of arbitrary Galois extensions. It implies J.
Tate’s Theorem on “invariants”: let char(F ) = 0, char(F ) = p, and let L = F̂ sep be the
completion of F sep . The Galois group GF = Gal(F sep/F ) operates on L by continuity.
Then LGF = F ([T2], [Sen1], [Ax]).

5. (�) (B.F. Wyman [Wy]) Let L/F be a cyclic totally ramified extension of complete discrete
valuation fields, |L : F | = pn . Let char(F ) = 0, char(F ) = p, and let F be perfect.
a) Show that L/F has n ramification numbers x1 < x2 < · · · < xn .
b) Show that if xi are divisible by p, then xi = x1 + (i − 1)e for 1 6 i 6 n, where

e = e(F ).
c) For the rest of this Exercise assume that a primitive p th root of unity ζ belongs to

F . Let NL/F (α) = ζ and vL(α − 1) = i. Show that if x1 < e/(p − 1), then
x1 6 i 6 hL/F (e/(p− 1)) and if x1 > e/(p− 1), then i = e/(p− 1).

d) Assume that M/F is cyclic of degree pn−1 and L = M ( p
√
α) with α ∈ M∗ . Let

α−1σ(α) = βp for a generator σ of Gal(L/F ). Show that NM/F (β) is a primitive
p th root of unity.

e) Show that if x1 > e/(p− 1), then xi = x1 + (i− 1)e for 1 6 i 6 n.
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f) Let n > 2. Show that if xn−1 > pn−2e/(p− 1), then xn = xn−1 + pn−1e, and if
xn−1 6 pn−2e/(p− 1), then

(1 + p(p− 1))xn−1 6 xn 6 pne/(p− 1)− (p− 1)xn−1.

6. (�) Let L/F be a Galois totally ramified p-extension. Let πL be a prime element of L
and put πF = NL/FπL . Investigating the Eisenstein polynomial of πL over F show that
a) For every i > 0 there exists j = j(i) and gi ∈ OF [X] such that gi 6= 0 and

NL/F (1− απiL) = 1 + gi(α)πjF for every α ∈ OF .

Show that j(hL/F (k)) = k for every integer k > 0.
b) Show that the sequence

1→ Gal(L/F )i/Gal(L/F )i+1 → Ui,L/Ui+1,L → Uj,F /Uj+1,F

is exact where the left arrow is induced by the norm map and is described by the
polynomial gi .

c) Put ai = deg gi . Show that
∏
i ai = |L : F |.

d) Let i1 < · · · < im be the indices of all ai1 , . . . aim which are > 1. Show that
j(i1) < · · · < j(im).

e) Assume in addition that char(F ) = p. Put bk = logp(aik+1 ) + · · · + logp(aim ) for
0 6 k 6 m− 1 and bm = 0. Prove that for all α ∈ OF

NL/F (1− απL) = 1 + αp
n

πF + f1(α)πj1
F + · · · + fm(α)πjmF

with fk(X) = hk(Xpbk ) where hk(X) ∈ OF [X] is such that

hk(X) =
bk−1−bk∑
l=1

∑
16r6dk,l

cr,lX
pl−1r

where all dk,l are prime to p and cdk,l,l 6= 0. The n numbers dk,l , 1 6 k 6 m,
1 6 l 6 bk1 − bk correspond to Heiermann’s ramification numbers [Hei].

7. Let L/F be a finite separable extension, and let F be perfect. Let M/L be a finite
extension such that M/F is Galois. For an embedding σ:L→M over F put

SL/F (σ) = min
α∈OL

vM (α− σα)
vM (πL)

∈ Q ∪ {+∞},

where πL is a prime element in L. Let L0 be the inertia subfield in L/F .
a) Show that SL/F does not depend on the choice of M .

b) Show that if σ|L0
6= id, then SL/F (σ) = 0.

c) Show that if σ|L0
= id, then SL/F (σ) = vM (πL−σπL)

vM (πL) > 1.
d) Let f(X) be the Eisenstein polynomial of πL over L0 . Show that

vL(f ′(πL)) =
∑

SL/F (σ),

where σ runs over all distinct nontrivial embeddings of L into M over F .
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e) Let N/F be a subextension of L/F . Show that for an embedding σ:N →M over
F

SN/F (σ) =

∑
SL/F (τ )
e(L|N )

,

where τ runs over all the embeddings of L into M , the restriction of which on N
coincides with σ.

5. The Field of Norms

The theory of a field of norms (“corps des normes”) was started by J.-M. Fontaine and
J.-P. Wintenberger [FW], [Win3]. Below we follow [Win3].

In this section F is a local field with perfect residue field of characteristic p > 0.
In subsection (5.1) we introduce arithmetically profinite extensions. In subsection (5.2)
we introduce a useful invariant of an arithmetically profinite extension which indicates
the point from which “ramification starts”. In subsection (5.3) we look at the inverse
limit of multiplicative groups with respect to norm maps. To introduce addition on that
limit (with zero added) we study the norm map of the sum of two elements in (5.4). The
main theorem on the field of norms N (L|F ) is proved in (5.5). Sections (5.6) and (5.7)
aim to prove that separable extensions of the field of norms N (L|F ) (which is a local
field of characteristic p ) are in one-to-one correspondence with separable extensions of
L; the latter correspondence is compatible with ramification filtrations.

(5.1). Definition. Let L be a separable extension of F with finite residue field
extension L/F . We can view L as the union of an increasing directed family of
subfields Li , which are finite extensions of F , i > 0. The extension L/F is said to
be arithmetically profinite if the composite · · · ◦ hLi/Li−1 ◦ · · · ◦ hL0/F (a) is a real
number for every real a > 0.

In other words, taking into consideration Proposition (3.3), L/F is arithmetically
profinite if and only if it has finite residue field extension and for every real a > 0
there exists an integer j , such that the derivative (left or right) of hLi/Lj (x) for
x < hLj/F (a), i > j , is equal to 1. Equivalently, for every real a > 0 the derivative
(left or right) of hLi/F (x) is bounded for x < a and all i.

Define the Hasse–Herbrand function of L/F as

hL/F = · · · ◦ hLi/Li−1 ◦ · · · ◦ hL0/F .

Proposition. The function hL/F is well defined. It is a piecewise linear, continuous
and increasing function. If E/L is a finite separable extension, then E/F is arith-
metically profinite. If M/F is a subextension of L/F , then M/F is arithmetically
profinite. If, in addition, M/F is finite, then L/M is arithmetically profinite and

hL/F = hL/M ◦ hM/F .
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Proof. Let L′i be another increasing directed family of subfields in L such that
L = ∪L′i . Let a be a real number > 0. There exist integers j and k such that

hLi/Lj (x) = x for x < hLj/F (a), i > j

and
hL′

i
/L′

k
(x) = x for x < hL′

k
/F (a), i > k.

Since there exists an integer m > j such that LjL′k ⊂ Lm , we obtain by (3.3) that

hLjL′k/Lj (x) = x for x < hLj/F (a).

Then
hLj/F (x) = hLjL′k/F (x) for x < a

and similarly,
hL′

k
/F (x) = hLjL′k/F (x) for x < a.

Therefore,

hLi/F (x) = hL′
i
/F (x) for x < a and sufficiently large i,

and the function hL/F is well defined.
Let E = L(β), and let P = L(α) be a finite Galois extension of L with P ⊃ E .

Using the same arguments as in the proof of Proposition (4.2) Ch. II, one can show that
Li(α) ∩ L = Li and Li(α)/Li is a Galois extension of the same degree as P/L for a
sufficiently large i. Then Gal(Li(α)/Li) and Gal(Li(α)/Li(β)) are isomorphic with
Gal(P/L) and Gal(P/E) for i > m, respectively.

Put Ei = Li for i 6 m and Ei = Li(β) for i > m. Then E = ∪Ei . If the
left derivative of hLi/F (x) is bounded by d for x < a and c = |E : L|, then the left
derivative of hEi/F (x) is bounded by cd for x < a, i > m. This means that E/F is
arithmetically profinite.

If M/F is a finite subextension of L/F , then we can take L0 = M . Therefore
L/M is arithmetically profinite and

hL/F = hL/M ◦ hM/F .

If M/F is a separable subextension of L/F , then there exists an increasing directed
family of subfields Mi, i > 0, which are finite extensions of F and such that M = ∪Mi .
If L = ∪Li , then also L = ∪LiMi , and the left derivative of hLiMi/F (x) for x < a
is bounded. Hence, the left derivative of hMi/F (x) for x < a is bounded, i.e., M/F
is arithmetically profinite.

Remarks.

1. Translating to the language of ramification groups by using the two previous sec-
tions, we deduce that a Galois extension L/F with finite residue field extension is arith-
metically profinite extension if and only if its upper ramification jumps form a discrete



98 III. The Norm Map

unbounded set and for every upper ramification jump x the index of Gal(L/F )(x+δ) in
Gal(L/F )(x) is finite. Alternatively, a Galois extension L/F is arithmetically profinite
if and only if for every x the upper ramification group Gal(L/F )(x) is open (i.e. of fi-
nite index) in Gal(L/F ). More generally, a separable extension L/F is arithmetically
profinite if and only if for every x the group Gal(F sep/F )(x) Gal(F sep/L) is open in
Gal(F sep/F ).

Since the Hasse–Herbrand function relates upper and lower ramification filtrations,
we can define lower ramification groups of an infinite Galois arithmetically profinite
extension L/F as Gal(L/F )x = Gal(L/F )(h−1

L/F (x)).

2. By Corollary of (6.2) Ch. IV every abelian extension of a local field with finite
residue field and finite residue field extension is arithmetically profinite.

An important property of a totally ramified Zp-extension L/F in characteristic
zero is that its upper ramification jumps form an arithmetic progression with difference
e = e(F ) for sufficiently large jumps, see Exercises 1 and 2 below.

3. E. Maus and Sh. Sen’s theorem on ramification filtration of p-adic Lie extensions
L/F in characteristic zero with finite residue field extension states that the p-adic Lie
filtration is equivalent to the upper ramification filtration of the Galois group of such
extensions (see [Mau4], [Sen2], and for a leisure exposition [dSF]). This theorem
implies that every such extension is an arithmetically profinite extension. In positive
characteristic the analogous result was proved by J.-P. Wintenberger [Win1].

There are arithmetically profinite extensions in characteristic zero which are very
far from being related to p-adic Lie extensions [Fe12], see Remark 3 in (5.7).

4. An extension L/F of local fields is called deeply ramified if the set of its
upper ramification jumps is unbounded. This class of these extensions was studied by
J. Coates and R. Greenberg [CG] from the point of view of a generalization of J. Tate’s
results [T2] (which hold for Zp-extensions) and applications to Kummer theory for
abelian varieties. For a discussion of links between arithmetically profinite and deeply
ramified extensions see [Fe11].

(5.2). Let L/F be arithmetically profinite. Put

q(L|F ) = sup{x > 0 : hL/F (x) = x}.

Lemma.

(1) if M/F is a subextension in L/F , then q(L|F ) 6 q(M |F ).
(2) if M/F is a finite subextension in L/F , then q(L|M ) > q(L|F ).
(3) if L = ∪Li as in (5.1), then q(Lj |Li)→ +∞ as j > i, i, j → +∞.
(4) q(L|F ) = +∞ if and only if L/F is unramified; q(L|F ) = 0 if and only if L/F

has a non-trivial totally tamely ramified subextension; q(L|F ) 6 pvF (p)/(p − 1)
if L/F is totally ramified.

Proof. (1) Let L = ∪Li,M = ∪Mi and L′i = LiMi . As hL′
i
/F (x) 6 hL/F (x) by

(3.3), we get hL′
i
/F (x) = x for x 6 q(L|F ) and hMi/F (x) = x for x 6 q(L|F ).
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Therefore, q(L|F ) 6 q(M |F ). (2) The previous Proposition shows that

hL/M (x) = x for x 6 hM/F (q(L|F )).

This means that q(L|M ) > hM/F (q(L|F )). But by Proposition (3.3), hM/F (x) > x,
hence q(L|M ) > q(L|F ). (3) It follows from the definition. (4) The first two assertions
follow from Proposition (3.3). Proceeding as in the proof of Proposition (3.3) and using
(1), it suffices to verify the last assertion for a separable totally ramified extension of
degree p. Now the computations in the proof of Proposition (3.3) and Proposition (2.3)
lead to the required inequality.

(5.3). Let L be an infinite arithmetically profinite extension of F , and let Li , i > 0,
be an increasing directed family of subfields, which are finite extensions of F , L = ∪Li .
Let

N (L|F )∗ = lim←−L
∗
i

be the inverse limit of the multiplicative groups with respect to the norm homomorphisms
NLi/Lj , i > j . Put N (L|F ) = N (L|F )∗ ∪ {0}.

Lemma. The group N (L|F )∗ does not depend on the choice of Li .

Proof. Let L′i be another increasing directed family of finite extensions of F and
L = ∪L′i . For every i there exists an index j , such that L′i ⊂ Lj and NLj/F =
NL′

i
/F ◦NLj/L′i . This immediately implies the desired assertion.

Therefore
N (L|F )∗ = lim←−M∈SL/FM

∗,

where SL/F is the partially ordered family of all finite subextensions in L/F and the
inverse limit is taken with respect to the norm maps. If A = (αM ) ∈ N (L|F ) with
αM ∈M , then NM1/M2αM1 = αM2 for M2 ⊂M1 .

We will show that N (L|F ) is in fact a field (the field of norms). Moreover, one can
define a natural discrete valuation on N (L|F ), which makes N (L|F ) a complete field
with residue field L.

(5.4). The following statement plays a central role.

Proposition. Let M ′/M be totally ramified of degree a power of p. Then

vM
(
NM ′/M (α + β)−NM ′/M (α)−NM ′/M (β)

)
>

(p− 1)q(M ′|M )
p

for α, β ∈ OM ′ . For α ∈ OM there exists an element β ∈ OM ′ such that

vM
(
NM ′/M (β)− α

)
>

(p− 1)q(M ′|M )
p

.
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Proof. To prove the first inequality, assume first that M ′/M is a cyclic extension of
degree p. Then we get q(M ′|M ) = s(M ′|M ) (see (1.4) and (3.1)) and, by Proposi-
tion (1.4),

TrM ′/M (OM ′) = πrMOM

with r = s + 1 + [(−1− s)/p] > (p− 1)s(M ′|M )/p. Then Lemma (1.1) shows that

vM
(
NM ′/M (1 + γ)− 1−NM ′/M (γ)

)
>

(p− 1)q(M ′|M )
p

for γ ∈ OM ′ . Substituting γ = αβ−1 if vM ′ (α) > vM ′ (β) and β 6= 0, we obtain the
desired inequality.

In the general case we proceed by induction on the degree of M ′/M . Let E/M
be a finite Galois extension with E ⊃M ′ , and let E1 be the maximal tamely ramified
extension of M in E . Then E1 and M ′ are linearly disjoint over M , and

NM ′/M (α + β)−NM ′/M (α)−NM ′/M (β)

= NE1M
′/E1 (α + β)−NE1M

′/E1 (α)−NE1M
′/E1 (β).

The group G = Gal(E/E1) is a p-group, and hence for H = Gal(E/E1M
′) there

exists a chain of subgroups

G′ = G(0) > G(1) > . . . > G(m) = H,

such that G(i+1) is a normal subgroup of index p in G(i) . For the fields we obtain the
tower E1 = E(0) − E(1) − · · · − E(m) = E1M

′ , in which E(i+1) is a cyclic extension
of degree p over E(i) . Let E2 be some E(i) for 1 6 i < m. By the induction
assumption,

NE1M
′/E2 (α + β) = NE1M

′/E2 (α) +NE1M
′/E2 (β) + δ

with vE2 (δ) > (p− 1)q(E1M
′|E2)/p. We deduce also that

NE1M
′/E1 (α + β) = NE1M

′/E1 (α) +NE1M
′/E1 (β) +NE2/E1 (δ) + δ′

with vE1 (δ′) > (p− 1)q(E2|E1)/p. Then

vE1

(
NE2/E1 (δ)

)
>

(p− 1)q(E1M
′|E2)

p
>

(p− 1)q(E1M
′|E1)

p

and

vE1 (δ′) >
(p− 1)q(E1M

′|E1)
p

by Lemma (5.2). These two inequalities imply that

vM
(
NM ′/M (α + β)−NM ′/M (α)−NM ′/M (β)

)
>

(p− 1)q(M ′|M )
p

,

as required.
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To prove the second inequality of the Proposition, we choose a prime element π′ in
M ′ and put π = NM ′/Mπ′ . Then π is a prime element in M . Let n = |M ′ : M | (a
power of p ). Writing the element α of M as

α =
∑
i>a

θiπ
i

with multiplicative representatives θi , put

β =
∑
i>a

θ
1/n
i π′

i ∈M ′.

Then NM ′/M

(
θ

1/n
i π′

)
= θiπ. By the first inequality of the Proposition and passing

to the limit, we obtain

vM (NM ′/M (β)− α) >
(p− 1)q(M ′|M )

p
,

as required.

(5.5). Let L/F be an arithmetically profinite extension. Let L0 be the maximal
unramified extension of F in L, and let L1 be the maximal tamely ramified extension
of F in L. Then L0/F is finite by the definition, and L1/F is finite because of the
relation hL1/L0 (x) = |L1 : L0|x. So one can choose Li for i > 2 as finite extensions
of L1 in L with Li ⊂ Li+1 and L = ∪Li .

For an element A ∈ N (L|F ) put

v(A) = vL0 (αL0 ).

Then v(A) = vLi (αLi ) for i > 0.
Let a be an element of the residue field L = L0 , and θ = r(a) the multiplicative

representative of a in L0 (see section 7 Ch. I). Put θLi = θ1/ni , where ni = |Li : L1|
for i > 1 and θL0 = NL1/L0θ. Then Θ = (θLi ) is an element of N (L|F ). Denote the
map a 7→ Θ by R.

Theorem. Let L/F be an infinite arithmetically profinite extension. Let A = (αM )
and B = (βM ) be elements of N (L|F ), M ∈ SL/F . Then the sequence NM ′/M (αM ′+
βM ′ ) is convergent in M when M ⊂M ′ ⊂ L, |M ′:M | → +∞. Let γM be the limit
of this sequence. Then Γ = (γM ) is an element of N (L|F ). Put Γ = A + B.

Then N (L|F ) is a field with respect to the multiplication and addition defined
above. The map v is a discrete valuation of N (L|F ) and N (L|F ) is a complete field
of characteristic p. The map R is an isomorphism of L onto a subfield in N (L|F )
which maps isomorphically onto the residue field of N (L|F ).

Proof. Let Li be as above of (5.5) in the context of Lemma (5.3).
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Let a be a positive integer and let k be an integer such that (p− 1)q(Lj |Li)/p > a
for j > i > k, see Lemma (17.2). Let A = (αLi ),B = (βLi ) be elements of N (L|F )
and αL0 , βL0 ∈ OL0 . Then Proposition (5.4) shows that

NLi/Lk (αLi + βLi ) ≡ αLk + βLk mod Ma
Lk
. (∗)

Let ak > 0 be a sequence of integers such that

ak 6 ak+1, ak 6 (p− 1)q(L|Lk)/p, lim ak = +∞

(the existence of the sequence follows from Lemma (5.2)). Let an index k > 1
be in addition such that ak > 1. Suppose that βLk is a prime element in Lk .
Proposition (5.4) and Lemma (5.2) show that one can construct a sequence βLi ∈
Li, i > k, such that

vLi (NLi+1/LiβLi+1 − βLi ) > ai.

Then βLi is prime in Li , and applying (∗), we get

vLi (NLj/LiβLj − βLi ) > ai for j > i > k.

Now Proposition (3.4) and Proposition (5.1) imply that

vLs (NLj/LsβLj −NLi/LsβLi ) > h−1
Li/Ls

(ai) > h−1
L/Ls

(ai)

for j > i > s > k. Since h−1
L/Ls

(ai) → +∞ as i → +∞, we obtain that there exists
γLs = limi→+∞NLi/LsβLi and γLs is prime in Ls . Putting γLj = NLk/LjγLk for
j < k, we get the element Γ = (γLi ) ∈ N (L|F ) with v(Γ) = 1.

Furthermore, by Proposition (3.4) and (∗) we obtain:

vLj
(
NLi/Lj (αLi + βLi )−NLk/Lj (αLk + βLk )

)
> h−1

Lk/Lj
(a) > h−1

L/Lj
(a).

This means that the sequence NLi/Lj (αLi + βLi ) is convergent. In the general case let
c = vL0 (αL0 ), d = vL0 (βL0 ). Taking prime elements πLi in Li such that Π = (πLi ) ∈
N (L|F ) with v(Π) = 1 and replacing A = (αLi ) by A′ = (αLiπ

−g
Li

) and B = (βLi ) by
B′ = (βLiπ

−g
Li

), where g = min(c, d), we deduce that NLi/Lj (αLi +βLi ) is convergent.
Put γLj = limi→+∞NLi/Lj (αLi+βLi ). Obviously, (γLi ) = Γ ∈ N (L|F ) and N (L|F )
is a field. As

v(Γ) = vLk (γLk ) = lim
i→+∞

vLk (NLi/Lk (αLi + βLi )),

we get v(Γ) > min(v(A), v(B), a). Choosing a > max(v(A), v(B)), we obtain v(Γ) >
min(v(A), v(B)). Since 1 = (1Li ), for p = (αLi ) we get that

αLj = lim
i→+∞

NLi/Lj (p) = lim
i→+∞

p|Li:Lj | = 0.

Therefore, N (L|F ) is a discrete valuation field of characteristic p.
To verify the completeness of N (L|F ) with respect to v, take a Cauchy sequence

A(n) = (α(n)
Li

) ∈ N (L|F ). We may assume v(A(n)) > 0. For any i there exists an
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integer ni such that v(A(n) − A(m)) > ai for n,m > ni (ai as above). One may
assume that (ni)i is an increasing sequence. Applying (∗), we get

vLi (α
(n)
Li
− α(m)

Li
) > ai for n,m > ni.

Let αLi be an element in Li such that

vLi (αLi − α
(ni)
Li

) > ai.

Then, by (∗),
vLi (NLj/LiαLj − αLi ) > ai.

Proposition (3.4) and Proposition (5.1) imply now that

vLs (NLi/LsαLi −NLj/LsαLj ) > h−1
L/Ls

(aj)→ +∞

when i > j → +∞. Putting α′Ls = limi→+∞NLi/LsαLi , we obtain an element
A′ = (α′Li ) ∈ N (L|F ) with A′ = lim A(n) . Therefore, N (L|F ) is complete with
respect to the discrete valuation v.

Finally, R is multiplicative. If R(a) = Θ, R(b) = Λ, R(a + b) = Ω, then it follows
immediately from (7.3) Ch. I, that ωLi ≡ θLi + λLi mod p. By Lemma (5.2) and the
definition of ai we get vLi (p) > ai . Then by (∗) and Proposition (3.4) we obtain

vLi (ωLi −NLj/Li (θLj + λLj ))→ +∞

as j → +∞. This means that Ω = Θ + Λ and R is an isomorphism of L onto a
subfield in N (L|F ). The latter subfield is mapped onto the residue field of N (L|F ),
hence it is isomorphic to the residue field N (L|F ).

Corollary. Let A = (αLi ),B = (βLi ) belong to the ring of integers of N (L|F ). Let
Γ = A + B. Then γLi ≡ αLi + βLi mod Mai

Li
, where ai are those defined in the proof

of the Theorem. Moreover, for any α ∈ OLj there exists an element A = (αLi ) in the
ring of integers of N (L|F ) such that α ≡ αLj mod M

aj
Lj

.

Proof. The first assertion follows from (∗) and the second from Proposition (5.4).

(5.6). An immediate consequence of the definitions is that if M/F is a finite subex-
tension of an arithmetically profinite extension L/F , then N (L|F ) = N (L|M ). On the
other hand, if E/L is a finite separable extension, then, as shown in Proposition (5.1),
E/F is an arithmetically profinite extension. Let M be a finite extension of F such
that ML = E . Since NLjM/LiM (α) = NLj/Li (α) for α ∈ Lj , j > i > m, and
sufficiently large m, we deduce that N (L|F ) can be identified with a subfield of
N (E|F ): A = (αLi ) 7→ A′ ∈ N (E|F ) with A′ = (α′LiM ), α′LiM = αLi for i > m,
α′LiM = NLmM/LiM (αLm ) for i < m. In fact the discrete valuation topology of
N (L|F ) coincides with the induced topology from N (E|F ), and N (E|F )/N (L|F )
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is an extension of complete discrete valuation fields. For an arbitrary separable ex-
tension E/L denote by N (E,L|F ) the direct limit of N (E′|F ) for finite separable
subextensions E′/L in E/L. Obviously, N (E,L|F ) = N (E|F ) if E/L is finite.

Let L/F be infinite arithmetically profinite, and let L′/L be a finite separable
extension. Let τ be an automorphism in GF = Gal(F sep/F ) with τ (L) ⊂ L′ . There
exists a tower of increasing subfields L′i in L′ such that L′i/F is finite, τ (L)L′i =
L′, L′ = ∪L′i , and NL′

j
/L′

i
(τα) = τNτ−1L′

j
/τ−1L′

i
(α) for j > i, α ∈ τ−1L′j ; see the

proof of Proposition (5.1). Let T:N (L|F ) → N (L′|F ) denote the homomorphism
of fields, which is defined for A = (αLi ) ∈ N (L|F ) as T(A) = A′ = (α′L′

i
) with

α′L′
i

= τ (ατ−1L′
i
). Then A′ ∈ N (L′|F ). This notion is naturally generalized for

N (E,L|F ) and N (E′, L|F ) with τ (E) ⊂ E′ .

Proposition. Let E1 and E2 be separable extensions of L. Then the set of all
automorphisms τ ∈ GL with τ (E1) ⊂ E2 is identified (by τ → T ) with the set of
all automorphisms T ∈ GN(L|F ) with T(N (E1, L|F )) ⊂ N (E2, L|F ). In particular, if
E/L is a Galois extension, then Gal(E/L) is isomorphic to Gal(N (E,L|F )/N (L|F )).

Proof. First we verify the second assertion for a finite Galois extension E/L. Let
T acts trivially on N (E|F ). Then T acts trivially on the residue field of N (E|F ),
which coincides with the residue field of E , so τ belongs to the inertia subgroup
Gal(E/F )0 . Let E = L(β). Let Li form a standard tower of subfields of L over F ,
as in (5.5). Since the coefficients of the irreducible polynomial of β over L belong
to some Lm , we deduce that Li(β)/Li is Galois and Gal(Li(β)/Li) is isomorphic to
Gal(E/L) for i > m. Let Π = (πLi(β))i>m be a prime element of N (E|F ). Then
T(Π) = Π and τπLi(β) = πLi(β) for i > m. We obtain now that τ = 1 because τ acts
trivially on the residue field Li(β) = E . We conclude that Gal(E/L) can be identified
with a subgroup of N (L|F )-automorphisms of N (E|F ). Since the subfield of the
fixed elements of N (E|F ) under the action of the image of Gal(E/L) is contained
in N (L|F ), we conclude that N (E|F )/N (L|F ) is a Galois extension whose Galois
group is isomorphic to Gal(E/L).

From this we easily deduce the second assertion of the Proposition for an arbitrary
Galois extension E/L.

Finally, if E/L is a Galois extension such that E1, E2 ⊂ E , denote the Galois
groups of E/E1 and E/E2 by H1 and H2 . These two groups H1 and H2 can
be identified with Gal(N (E,L|F )/N (E1, L|F )), and Gal(N (E,L|F )/N (E2, L|F ))
respectively. Since the set of τ ∈ GL with τ (E1) ⊂ E2 coincides with {τ ∈ GL :
τH1τ

−1 ⊃ H2}, the proof is completed.
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(5.7). The preceding Proposition shows that the group Gal(F sep/L) can be considered
as a quotient group of Gal(N (L|F )sep/N (L|F )). We will show in what follows that
the former group coincides with the latter.

Theorem. Let Q be a separable extension of N (L|F ). Then there exists a separable
extension E/L and an N (L|F )-isomorphism of N (E,L|F ) onto Q.

Thus, the absolute Galois group of L is naturally isomorphic to the absolute Galois
group of N (L|F ).

Proof. One can assume that Q/N (L|F ) is a finite Galois extension. Using the
description of Galois extensions of (4.4) Ch. II we must consider the following three
cases: Q/N (L|F ) is unramified, cyclic tamely totally ramified, and cyclic totally
ramified of degree p = char(F ).

Let OQ = ON(L|F )[Γ]. Let f(X) be the monic irreducible polynomial of Γ over
N (L|F ). It suffices to find a separable extension E′/L such that f(X) has a root in
N (E′, L|F ). Let Li and ai be identical to those in the proof of Theorem (5.5). By
Lemma (3.1) Ch. II, we can write

f(X) = Xn + A(n−1)Xn−1 + · · · + A(0)

with A(m) = (α(m)
Li

) ∈ ON(L|F ), n = |Q : N (L|F )|. Denote by fi(X) ∈ OLi [X]
the polynomial Xn + α(n−1)

Li
Xn−1 + · · · + α(0)

Li
. Let αi be a root of fi(X) and

Mi = Li(αi), Ei = L(αi).
The following assertion will be useful in our considerations.

Lemma. Let ∆ =
∏
m<l(Γm−Γl)2 be the discriminant of f(X) ( Γm for 1 6 m 6 n

are all roots of f(X). Then ∆ = (−1)
n(n−1)

2
∏n
m=1 σmf

′(Γ) where σ1, . . . , σn are
elements of Gal(Q/N (L|F )), ∆ ∈ N (L|F ) ). Let di ∈ Li be the discriminants of
fi(X). Then there exists an index i1 such that vLi (di) = v(∆) for i > i1 .

Proof. Let ∆ = (δLi ), and let i1 be such that ai > v(∆) for i > i1 . Then
v(∆) = vLi (δLi ), and Corollary (5.5) shows that vLi (δLi − di) > ai . Hence, vLi (di) =
vLi (δLi ) = v(∆) for i > i1 .

This Lemma implies that Mi/Li is separable for i > i1 . Now we shall verify that
in the three cases under consideration, there exists an index i2 , such that Mi/Li and
L/Li are linearly disjoint and q(Ei|Mi) > q(L|Li) for i > i2 .

If Q/N (L|F ) is unramified, then the residue polynomial f i ∈ L[X] is irreducible
of degree n and Mi/Li is an unramified extension of the same degree. Hence, Mi/Li
and L/Li are linearly disjoint and hEi/Mi

(x) = hL/Li (x), so q(Ei|Mi) = q(L|Li).
If Q/N (L|F ) is totally and tamely ramified, then one can take f(X) = Xn − Π,

where Π is a prime element in N (L|F ) (see (3.5) Ch. II). Hence, Mi/Li is tamely
and totally ramified of degree n for i > 1. We deduce that L ∩ Mi = Li and
hEi/Mi

(nx) = nhL/Li (x), and hence q(Ei|Mi) > nq(L|Li) for i > 1.
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If Q/N (L|F ) is totally ramified of degree n = p = char(F ), then one may assume
that f(X) is an Eisenstein polynomial (see (3.6) Ch. II). Then fi(X) is a separable
Eisenstein polynomial in Li[X], and αi is prime in Mi . Let Ni be the minimal finite
extension of Mi such that Ni/Li is Galois, and M ′i the maximal tamely unramified
extension of Li in Ni . Then |Ni : Li| 6 p!. One has Ni = M ′i (αi) and si =
s(Ni|M ′i ) = vNi (σαi−αi)− vNi (αi) for a generator σ of Gal(Ni/M ′i ) (see (1.4) and
the proof of Proposition (3.3)). Note that

vNi (σαi − αi) =
1

p(p− 1)
vNi (di) 6

p!
p(p− 1)

vLi (di) = (p− 2)!v(∆)

for i > i1 . Furthermore, in the same way as in the proof of Proposition (3.3), we get
hMi/Li (x) = l−1hNi/M ′i (lx), where l = e(M ′i |Li). Consequently,

q(Mi|Li) = sil−1 < (p− 2)!v(∆).

Since hLj (αi)/Mi
◦ hMi/Li = hLj (αi)/Lj ◦ hLj/Li for j > i, we deduce that

q(Ei|Mi) = hMi/Li (q(L|Li)) > q(L|Li).
Now we construct the desired field E′ . Let v:N (L|F )sep∗ → Q be the extension

of the discrete valuation v:N (L|F )∗ → Z (see Corollary 1 of (2.9) Ch. II). According
to Corollary (5.5) there is an element B(j) = (β(j)

Li(αj ))i>j ∈ N (Ej |F ) such that

vMj
(αj − β(j)

Mj
) > bj , where bj is the maximal integer 6 (p − 1)q(Ej |Mj)/p. Note

that bj > aj . We claim that v(f (B(j)))→ +∞ as j → +∞.
Indeed, Ej/Mj is totally ramified. Therefore, if f (B(j)) = (ρLi(αj ))i>j then

v(f (B(j))) > vMj
(ρMj

)/n.
By using Corollary (5.5) we deduce

vMj
(ρMj

− fj(β(j)
Mj

)) > (p− 1)q(Ej |Mj)/p > aj .

This means that

v(f (B(j))) >
aj
n

for j > i2.

Since aj → +∞ when j → +∞, we conclude that v(f (B(j)))→ +∞.
By the same arguments we obtain that for f ′(B(j)) = (µLi(αj ))i>j

v(f ′(B(j))) 6 vMj
(µMj

), vMj
(µMj

− f ′j(αj)) > aj , vMj
(f ′j(αj)) 6 nv(∆)

for j > i2 . This implies that for a sufficiently large j

v(f ′(B(j))) 6 nv(∆) <
1
2
v(f (B(j))).

Corollary 3 of (1.3) Ch. II shows the existence of a root of f(X) in N (Ej |F ). Putting
E′ = Ej we complete the proof of the Theorem.
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Definition. The functor of fields of norms associates to every arithmetically profinite
extension L over F its field of norms N (L|F ), to every separable extension E of
L the field N (E,L|F ) and to every element of GF the corresponding element of the
group of automorphisms of the field N (L|F )sep (so that elements of GL 6 GF are
mapped isomorphically to elements of GN(L|F ) ).

Remarks.

1. The isomorphism between the absolute Galois groups is compatible with their
upper ramification filtrations (see Exercises 4 and 5).

2. Fields of norms are related to various rings introduced by J.-M. Fontaine in his
study of Galois representations over local fields, some of which are briefly introduced
in Exercises 6 and 8. For more details see [A] and [Colm].

3. A local field F with finite residue field Fq has infinitely many wild automor-
phisms, i.e., continuous homomorphisms σ:F → F such that π−1

F σ(πF ) ∈ U1 , if and
only if F is of positive characteristic. The group R of wild automorphisms of F has
a natural filtration Ri = {σ ∈ R : π−1

F σπF ∈ Ui} and R is isomorphic to lim←−R/Ri .
Therefore the wild group R is a pro-p-group. It has finitely many generators. One can
check that every nontrivial closed normal subgroup of an open subgroup of R is open;
so R is a so-called hereditarily just infinite pro-p-group. Those are of importance for
the theory of infinite pro-p-groups [dSSS].

Every Galois totally ramified and arithmetically profinite p-extension of a local
field with residue field Fq is mapped under the functor of fields of norms to a closed
subgroup of R. Using this functor and realizability of pro-p-groups as Galois groups
of arithmetically profinite extensions in positive characteristic one can easily show that
every finitely generated pro-p-group is isomorphic to a closed subgroup of R ([Fe12],
for the first, different proof see [Cam]).

For integer r > 1 define a closed subgroup T = T [r] of R

T [r] = {σ ∈ R:π−1
F σπF = f (πF ) with f (X) ∈ Fq[[Xpr ]] }.

For p > 2, r > 1 the group T is hereditarily just infinite (i.e. every nontrivial normal
closed subgroup of every open subgroup is open), T does not have infinite subquotients
isomorphic to p-adic Lie groups, and the group T [r] for r > 1 can be realised as
the Galois group of an arithmetically profinite extension of a finite extension of Qp ,
[Fe12].

4. One can ask what is the image with respect to the functor of fields of norms of
p-adic Lie extensions in R? J.–P. Wintenberger proved [Win2, 4,5] that every closed
subgroup of R isomorphic to Zp is the image of an appropriate Zp-extension either in
characteristic 0 or characteristic p. For the study of the image of p-adic Lie extensions
see F. Laubie’s works [Lau2–4].

5. General ramification theory of infinite extensions is far from being complete,
despite many deep investigations including [Mau1–5]; see references in Bibliography.
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Exercises.

1.
a) Let Ln be a cyclic totally ramified extension of F of degree pn, p = char(F )

and Ln ⊂ Ln+1 . Let L = ∪Ln . Show that i(Ln+1|Ln) > i(Ln|Ln−1) + 1.
[Hint: show that for a prime π ∈ Ln+1 and a generator σ of Gal(Ln+1/Ln−1),
vLn+1 (π−1σp(π)−1) > 1+vLn+1 (π−1σ(π)−1). ] Deduce that L/F is arithmetically
profinite.

b) Let π0 = π be a prime element of F and let πpi = πi−1 for i > 1. Show that the
extension L = F ({πi}) is an arithmetically profinite extension of F . This extension
L/F plays an important role in V. Abrashkin’s approach to explicit formulas for the
Hilbert pairing, see Remark 2 (3.5) Ch. VIII and [Ab5–6].

2. (�) Let L/F be as in Exercise 1 and char(F ) = 0, F perfect. Using Exercise 5 of
section 4 show that there exists an index j depending only on F (not on L ), such that the
upper ramification jumps x1 < x2 < . . . of L/F satisfy relations xi = xj + (i− j)e(F )
for i > j . This assertion was employed by J. Tate in [T2].

3. Let Li and ai be such as in (5.5). Show that the norm map NLj/Li for j > i induces
the surjective ring homomorphism

OLj/M
aj
Lj
−→ OLi/M

ai
Li
.

Put OF (L) = lim←−OLi/M
ai
Li

. For A = (αLi mod Mai
Li

) 6= 0 one can find an index i > 1

such that αLi /∈Mai
Li

. Then we put w(A) = vLi (αLi ). For a ∈ L let θ ∈ Li, i > 1, be

its multiplicative representative and θLi = θ1/ni , where ni = |Li : L1|. Put

R′(a) = (θLi mod M
ai
Li

)i>1.

Show that OF (L) is a ring of characteristic p. The extension of the map w on the quotient
field NF (L) of OF (L) is a discrete valuation, and NF (L) is complete with respect to it.
The map R′ is an isomorphism of L onto a subfield of NF (L), which is isomorphic to
the residue fiel d of NF (L). Show that the map

ON(L|F ) → OF (L) (αLi ) 7→ (αLi mod M
ai
Li

)

is an isomorphism, preserving the discrete valuation topology.
4. (�) [Win3] Let L/F be infinite arithmetically profinite and let τ :L→ L be an F -auto-

morphism.
a) Show that there exists an increasing tower of finite extensions Li/F with τ (Li) ⊂ Li

and L = ∪Li . Show that for T:N (L|F ) → N (L|F ) there exists an index i0 such
that for i > i0

vLi

(
τπLi
πLi

− 1
)

= v
(

TΠ

Π
− 1
)

for a prime element Π ∈ N (L|F ) and a prime element πLi in Li .
b) Deduce that if L/F is Galois, then the image of Gal(L/F ) under the homomorphism

τ → T is a subgroup in the group of continuous with respect to the discrete valuation
v automorphisms AutN (L|F ) of N (L|F ).
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c) Show that the image of the upper ramification group Gal(L/F )(x) in AutN (L|F ) is
equal to the intersection of the image of Gal(L/F ) and the subgroup

{T ∈ AutN (L|F ) : Π
−1TΠ ∈ hL/F (x)}.

5. (�) [Win3] Let L/F be an infinite arithmetically profinite extension, and let E/L be a
finite separable extension.
a) Show that for a tower of fields Li such as in (5.5), there exists a tower of finite

extensions Ei of F such that Ei ⊂ Ei+1, E = ∪Ei, Li ⊂ Ei , and an index i0 such
that

hN(E|F )/N(L|F ) = hEi/Li for i > i0.

b) Show that if E/L is a separable extension (not necessarily finite), then E/F is
an arithmetically profinite extension if and only if N (E,L|F )/N (L|F ) is arithmeti-
cally profinite. Show that in this case the field N (E|F ) can be identified with
N (N (E,L|F )|N (L|F )) and

hE/F = hN(E,L|F )/N(L|F ) ◦ hL/F .

c) Assume in addition that E/F and E/L are Galois extensions. Show that

Gal(N (E,L|F )/N (L|F ))(hL/F (x)) = Gal(E/F )(x) ∩ Gal(N (E,L|F )/N (L|F ))

where we identified Gal(N (E,L|F )/N (L|F )) with Gal(E/L).
6. (�) [Win3] Let F be a complete field with respect to some nontrivial valuation v:F ∗ → Q

(in particular, if v(F ∗) = Z, then v is discrete). Let the perfect residue field F be of
characteristic p > 0. Put F (n) = F , and let R∗(F ) = lim←−F

(n)∗ with respect to

the homomorphism of the raising to the p th power F (n+1) ↑p−→ F (n) . Put R(F ) =
R∗(F ) ∪ {0}.
a) Show that if A = (α(n)),B = (β(n)) ∈ R(F ), then the sequence (α(n+m)+β(n+m))p

m

converges as m → +∞. Put γ(n) = limm→+∞(α(n+m) + β(n+m))p
m

and define
A + B = Γ = (γ(n)); put δ(n) = α(n)β(n) and define A · B = ∆ = (δ(n)). Show that
R(F ) is a perfect field of characteristic p.

b) For A = (α(n)) put v(A) = v(α(0)). Show that v possesses the properties of a
valuation. Let θ ∈ F be the multiplicative representative of a ∈ F and Θ = (θ(n))
with θ(n) = θ1/pn . Show that R: a→ Θ is an isomorphism of F onto a subfield in
R(F ) which is isomorphic to the residue field of R(F ).

c) Show that if v:F ∗ → Z is discrete, then R(F ) can be identified with F .
d) Show that if F is of characteristic p, then the homomorphism A = (α(n)) 7→ α(0) is

an isomorphism of R(F ) with the maximal perfect subfield in F .
7. (�) [Win3] Let L be an infinite arithmetically profinite extension of a local field F with

residue field of characteristic p. Assume that the Hasse–Herbrand function hL/F grows
relatively fast, i.e., there exists a positive c such that hL/F (x0)/h′L/F (x0) > c for all x0
where the derivative is defined. Let C be the completion of the separable closure of F .
a) For (αE) ∈ N (L/F ) show that there exists β(n) = limE α

|E:L1|/pn
E ∈ C where

L1/F is the maximal tamely ramified subextension of L/F and E runs over all finite
extensions of L1 in L. Show that (β(n)) belongs to R(C).
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b) Show that the homomorphism N (L|F ) −→ R(C) is a continuous (with respect to the
discrete valuation topology on N (L|F ) and the topology associated with the valuation
v defined in the previous exercise) field homomorphism.

c) Let E be a separable extension of L. Let S be the completion of the ( p-)radical
closure of N (E,L|F ), i.e., the completion (with respect to the extension of the
valuation) of the subfield of N (E,L|F )alg generated by pn

√
α for all n and α ∈

N (E,L|F ). Show that there is a field isomorphism from S to R(Ê) where Ê is the
completion of E . Deduce that if F is of positive characteristic, then Ê is a perfect
field.

8. (�) [Win3] Let K be a discrete valuation field of characteristic 0 with residue field of
characteristic p, and let C be the completion of the separable closure of K . Define the
map

g:W (OR(C))→ OC

by the formula g(A0,A1, . . . ) =
∑
n>0 p

nα(n)
n , where Am = (α(n)

m ) ∈ OR(C) .
a) Show that g is a surjective homomorphism. Show that its kernel is a principal ideal

in W (OR(C)), generated by some element (A0,A1, . . . ) for which, in particular,

v(α(0)
0 ) = v(p).

b) Let WK (R) = W (OR(C)) ⊗W (K) K . Then g can be uniquely extended to a
surjective homomorphism of K -algebras g:WK (R) → C . Show that the kernel I
of this homomorphism is a principal ideal. Let B+ be the completion of WK (R)
with respect to I -adic topology and let B be its quotient field. Show that B does
not depend on the choice of K and is a complete discrete valuation field with residue
field C .

The ring B plays a role in the theory of p-adic representations and p-adic periods [A].



CHAPTER 4

Local Class Field Theory I

In this chapter we develop the theory of abelian extensions of a local field with finite
residue field. The main theorem establishes a correspondence between abelian exten-
sions of such a local field F and subgroups in its multiplicative group F ∗; moreover
we construct the so called local reciprocity homomorphism from F ∗ to the maximal
abelian quotient of the absolute Galois group of F which has the property that for every
finite Galois extension L/F it induces an isomorphism between F ∗/NL/FL

∗ and the
maximal abelian quotient of Gal(L/F ). This theory is called local class field theory, it
first appeared in works by H. Hasse in 1930.

In our approach we use simultaneously two explicit constructions of the reciprocity
maps and its inverse, one suggested by M. Hazewinkel (we use it only for totally ramified
extensions) and another suggested by J. Neukirch. The origin of the former approach is
a Theorem of B. Dwork [Dw, p.185] with a proof by J. Tate, see Exercise 4 in section 3.
In our exposition it will be an interplay between the two constructions which provides
an easy proof of all main results of local class field theory. Our approach can also be
extended to other generalized local class field theories, like those described in section 8
of this Chapter and in Chapter V.

Section 1 lists properties of the local fields as a corollary of results of the previous
chapters; it also provides an important for the subsequent sections information on some
properties of the maximal unramified extension of the field and its completion. Section 2
presents the Neukirch map which is at first defined as a map from the set of Frobenius
automorphisms in the Galois group of the maximal unramified extension of L over F
to the factor group F ∗/NL/FL

∗ . To show that this map factorizes through the Galois
group and that it is a homomorphism is not entirely easy. We choose a route which
involves the second reciprocity map by Hazewinkel which is defined in section 3 as
a homomorphism from F ∗/NL/FL

∗ to the maximal abelian quotient of the Galois
group of L/F in the case where the latter is a totally ramified extension. We show in
section 3 that the two maps are inverse to each other and then prove that for a finite
Galois extension L/F the Neukirch map induces an isomorphism

ϒ
ab
L/F : Gal(L/F )ab −→ F ∗/NL/FL

∗.

In section 4 we extend the reciprocity maps from finite extensions to infinite Galois
extensions and derive first properties of the norm groups. Section 5 presents two

111
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important pairings of the multiplicative group of a local field with finite residue field: the
Hilbert symbol and Artin–Schreier pairing; the latter is defined in positive characteristic.
We apply them to the proof of the Existence Theorem in section 6. There we clarify
properties of the correspondence between abelian extensions and their norm groups. In
section 7 we review other approaches to local class field theory. Finally, in section 8
we introduce as a generalization of the reciprocity maps in the previous sections a
non-abelian reciprocity map and review results on absolute Galois groups.

For the case of Henselian discrete valuation fields with finite residue field see
Exercises.

1. Useful Results on Local Fields

This section focuses on local fields with finite residue field in (1.1)–(1.5). Many of
results are just partial cases of more general assertions of the previous chapters.

Keeping in mind applications to reciprocity maps we describe several properties of
the maximal unramified extension of the field under consideration and its completion
in more the general context of a Henselian or complete discrete valuation field with
algebraically closed residue field in subsections (1.6)–(1.9).

(1.1). Let F be a local field with finite residue field F = Fq , q = pf elements. The
number f is called the absolute residue degree of F . Since char(Fq) = p, Lemma (3.2)
Ch. I shows that F is of characteristic 0 or of characteristic p.

In the first case v(p) > 0 for the discrete valuation v in F , hence the restriction of
v on Q is equivalent to the p-adic valuation by Ostrowski’s Theorem of (1.1) Ch. I.
Then we can view the field Qp of p-adic numbers as a subfield of F (another way to
show this is to use the quotient field of the Witt ring of a finite field and Proposition (5.6)
Ch. II). Let e = v(p) = e(F ) be the absolute ramification index of F as defined in (5.7)
Ch. I. Then by Proposition (2.4) Ch. II we obtain that F is a finite extension of Qp of
degree n = ef . In (4.6) Ch. I such a field was called a local number field.

In the second case Propositions (5.4) Ch. II and (5.1) Ch. II show that F is isomorphic
(with respect to the field structure and the discrete valuation topology) to the field of
formal power series Fq((X)) with prime element X . In (4.6) Ch. I such a field was
called a local functional field.

Lemma. F is a locally compact topological space with respect to the discrete valu-
ation topology. The ring of integers O and the maximal ideal M are compact. The
multiplicative group F ∗ is locally compact, and the group of units U is compact.

Proof. Assume that O is not compact. Let (Vi)i∈I be a covering by open subsets in
O, i.e., O = ∪Vi , such that O isn’t covered by a finite union of Vi . Let π be a prime
element of O. Since O/πO is finite, there exists an element θ0 ∈ O such that the set
θ0 + πO is not contained in the union of a finite number of Vi . Similarly, there exist
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elements θ1, . . . , θn ∈ O such that θ0 + θ1π + · · · + θnπn + πn+1O is not contained in
the union of a finite number of Vi . However, the element α = limn→+∞

∑n
m=0 θmπ

m

belongs to some Vi , a contradiction. Hence, O is compact and U , as the union of
θ + πO with θ 6= 0, is compact.

(1.2). Lemma. The Galois group of every finite extension of F is solvable.

Proof. Follows from Corollary 3 of (4.4) Ch. II .

Proposition. For every n > 1 there exists a unique unramified extension L of F
of degree n : L = F (µqn−1). The extension L/F is cyclic and the maximal unrami-
fied extension F ur of F is a Galois extension. Gal(F ur/F ) is isomorphic to Ẑ and
topologically generated by an automorphism ϕF , such that

ϕF (α) ≡ αq mod MF ur for α ∈ OF ur .

The automorphism ϕF is called the Frobenius automorphism of F .

Proof. First we note that, by Corollary 1 of (7.3) Ch. I, F contains the group µq−1
of (q − 1) th roots of unity which coincides with the set of nonzero multiplicative
representatives of F in O. Moreover, Proposition (5.4) and section 7 of Ch. I imply
that the unit group UF is isomorphic to µq−1 × U1,F .

The field Fq has the unique extension Fqn of degree n, which is cyclic over Fq .
Propositions (3.2) and (3.3) Ch. II show that there is a unique unramified extension L
of degree n over F and hence L = F (µqn−1).

Now let E be an unramified extension of F and α ∈ E . Then F (α)/F is of finite
degree. Therefore, F ur is contained in the union of all finite unramified extensions of
F . We have

Gal(F ur/F ) ' lim←− Gal(Fqn/Fq) ' Ẑ.

It is well known that Gal(F sep
q /Fq) is topologically generated by the automorphism σ

such that σ(a) = aq for a ∈ F sep
q . Hence, Gal(F ur/F ) is topologically generated by

the Frobenius automorphism ϕF .

Remark. If θ ∈ µqn−1 , then

ϕF (θ) ≡ θq mod ML

and ϕF (θ) ∈ µqn−1 . The uniqueness of the multiplicative representative for θ
q ∈ F

implies now that ϕF (θ) = θq .

(1.3). Example. Let ζpm be a primitive pm th root of unity. Put Q(m)
p = Qp(ζpm ).

Then
vQ(m)

p
(ζpm ) = 0
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and ζpm belongs to the ring of integers of Q(m)
p . Let

fm(X) =
Xpm − 1
Xpm−1 − 1

= X (p−1)pm−1
+X (p−2)pm−1

+ · · · + 1.

Then ζpm is a root of fm(X), and hence |Q(m)
p : Qp| 6 (p − 1)pm−1 . The elements

ζipm , 0 < i < pm, p - i, are roots of fm(X). Hence

fm(X) =
∏
p-i

0<i<pm

(X − ζipm ) and p = fm(1) =
∏
p-i

0<i<pm

(1− ζipm ).

However,
(1− ζipm )(1− ζpm )−1 = 1 + ζpm + · · · + ζi−1

pm

belongs to the ring of integers of Q(m)
p . For the same reason, (1 − ζpm )(1 − ζipm )−1

belongs to the ring of integers of Q(m)
p . Thus, (1 − ζipm )(1 − ζpm )−1 is a unit and

p = (1 − ζpm )p
m−1(p−1)ε for some unit ε. Therefore, e(Q(m)

p |Qp) > (p − 1)pm−1 ,
and Q(m)

p is a cyclic totally ramified extension with the prime element 1− ζpm , and of
degree (p− 1)pm−1 over Qp . In particular,

OQ(m)
p

= OQp [1− ζpm ] = OQp [ζpm ].

(1.4). In order to describe the group U1 = U1,F of principal units we can apply
assertions of sections 5, 6 Ch. I.

If char(F ) = p, then Proposition (6.2) Ch. I shows that every element α ∈ U1 can
be uniquely expressed as the convergent product

α =
∏
p-i
i>0

∏
j∈J

(1 + θjπi)aij ,

where the index-set J numerates f elements in OF , such that their residues form a
basis of Fq over Fp , and the elements θj belong to this set of f elements; πi are
elements of OF with v(πi) = i, and aij ∈ Zp . Thus, U1 has the infinite topological
basis 1 + θjπi .

Now let char(F ) = 0. (6.4) and (6.5) Ch. I show that every element α ∈ U1 can be
expressed as a convergent product

α =
∏
i∈I

∏
j∈J

(1 + θjπi)aijωa∗

where I = {1 6 i < pe/(p − 1), p - i}, e = e(F ); the index-set J numerates f
elements in OF , such that their residues form a basis of Fq over Fp , and the elements
θj belong to this set of f elements; πi are elements of OF with v(πi) = i, and
aij ∈ Zp .
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If a primitive p th root of unity does not belong to F , then ω∗ = 1, a = 0 and the
above expression for α is unique; U1 is a free Zp-module of rank n = ef = |F : Qp|.

If a primitive p th root of unity belongs to F , then ω∗ = 1 + θ∗πpe/(p−1) is a
principal unit such that ω∗ /∈ F ∗p , and a ∈ Zp . In this case the above expression for
α is not unique. Subsections (5.7) and (5.8) Ch. I imply that U1 is isomorphic to the
product of n copies of Zp and the p-torsion group µpr , where r > 1 is the maximal
integer such that µpr ⊂ F .

Lemma. If char(F ) = 0, then F ∗n is an open subgroup of finite index in F ∗ for
n > 1. If char(F ) = p, then F ∗n is an open subgroup of finite index in F ∗ for p - n.
If char(F ) = p and p|n, then F ∗n is not open and is not of finite index in F ∗ .

Proof. It follows from Proposition (5.9) Ch. I and the previous considerations.

(1.5). Now we have a look at the norm group NL/F (L∗) for a finite extension L of
F . Recall that the norm map

NFq′/Fq :F ∗q′ −→ F ∗q
is surjective when Fq′ ⊃ Fq . Then the second and third diagrams of Proposition (1.2)
Ch. III show that NL/FUL = UF in the case of an unramified extension L/F . Further,
the first diagram there implies that

NL/FL
∗ = 〈πn〉 × UF ,

where π is a prime element in F , n = |L : F |. This means, in particular, that
F ∗/NL/FL

∗ is a cyclic group of order n in the case under consideration. Conversely,
every subgroup of finite index in F ∗ that contains UF coincides with the norm group
NL/FL

∗ for a suitable unramified extension L/F .
The next case is a totally and tamely ramified Galois extension L/F of degree n.

Proposition (1.3) Ch. III and its Corollary show that

NL/FU1,L = U1,F , π ∈ NL/FL∗,

for a suitable prime element π in F (e.g. such that L = F ( n
√
−π), and θ ∈ NL/FL∗

for θ ∈ UF if and only if θ ∈ F ∗nq ). Since L/F is Galois, we get µn ⊂ F ∗ and
n|(q − 1). Hence, the subgroup F ∗nq is of index n in F ∗q , and the quotient group
F ∗q /F ∗nq is cyclic. We conclude that

NL/FL
∗ = 〈π〉 × 〈θ〉 × U1,F

with an element θ ∈ UF , such that its residue θ generates F∗q/F ∗nq . In particular,
F ∗/NL/FL

∗ is cyclic of order n. Conversely, every subgroup of F ∗ of index dividing
q − 1 and containing a prime element of F coincides with the norm group NL/FL

∗

for a suitable cyclic extension L/F .
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The last case to be considered is the case of a totally ramified Galois extension L/F
of degree p. Preserving the notations of (1.4) Ch. III, we apply Proposition (1.5) Ch.
III. The right vertical homomorphism of the fourth diagram

θ → θ
p − ηp−1θ

has a kernel of order p; therefore its cokernel is also of order p. Let θ∗ ∈ UF be such
that θ

∗
does not belong to the image of this homomorphism. Since F is perfect, we

deduce, using the third and fourth diagrams, that 1 + θ∗πsF /∈ NL/FU1,L . The other
diagrams imply that F ∗/NL/FL∗ is a cyclic group of order p and generated by

ω∗ = 1 + θ∗πsF mod NL/FL∗.

If char(F ) = 0, then, by Proposition (2.3) Ch. III, s 6 pe/(p − 1), where e = e(F ).
That Proposition also shows that if p|s, then s = pe/(p− 1) and a primitive p th root
of unity ζp belongs to F , and L = F ( p

√
π) for a suitable prime element π in F . In

this case F ∗/NL/FL∗ is generated by ω∗ mod NL/FL∗ .
Conversely, note that every subgroup of index p in the additive group Fq can be

written as η℘
(
Fq
)

for some η ∈ Fq . Let N be an open subgroup of index p in F ∗

such that some prime element πF ∈ N and ω∗ ∈ N (if char(F ) = 0 ). Then, in terms
of the cited Corollary (2.5) Ch. III, if s is the maximal integer relatively prime to p such
that Us,F 6⊂ N and Us+1,F ⊂ N , then 1+η℘ (OF )πs+πs+1OF ⊂ N for some element
η ∈ OF . By that Corollary we obtain that 1+η℘ (OF )πs+πs+1OF ⊂ NL/FL∗ , where
L = F (λ) and λ is a root of the polynomial Xp−X + θpα, with α = θ−pη−1π−s for
a suitable θ ∈ UF . Since s = s(L|F ) (see (1.4) Ch. III), we get

Ui,F ⊂ Ui+1,FNL/FUL for i < s

by Proposition (1.5) Ch. III. In terms of the homomorphism λi of section 5 Ch. I we
obtain that

λi
(
(N ∩ Ui,F )Ui+1,F /Ui+1,F

)
= λi

(
(NL/FL∗ ∩ Ui,F )Ui+1,F /Ui+1,F

)
for i > 0. If ω∗ /∈ N and char(F ) = 0, then one can put L = F ( p

√
π).Then we

obtain the same relations for N and NL/FL
∗ as just above. Later we shall show that,

moreover, for every open subgroup N of finite index in F ∗ , N = NL/FL
∗ for a

suitable abelian extension L/F .

(1.6). Now we prove several properties of the maximal unramified extension F ur

of F and its completion. The field F ur is a Henselian discrete valuation field with
algebraically closed residue field and its completion is a local field with algebraically
closed residue field F sep

q .
If fact, the case of complete fields will be enough in the main text, and we have

included the Henselian case for the sake of completeness, especially because the two
cases can be handled almost similarly. The field F ur as an algebraic extension of F is
perhaps easier to deal with than its completion which is a transcendental extension of
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F . All results of sections 2–6 except Corollary (3.2) can be proved without using the
completion of F ur , see Exercise 6 section 3.

We consider, keeping in mind applications in Ch. V, the more general situation of a
Henselian or complete discrete valuation fields with algebraically closed residue field.
We denote any of these fields by F.

Let R be the set of multiplicative representatives of the residue field of F if its
characteristic is p or a coefficient field, see section 5 Ch. II, if that characteristic is zero.

In the case where the residue field is F sep
q , R is the union of all sets µqn−1, n > 1

(which coincides with the set of all roots of unity of order relatively prime to p ) and of
0. Then R is the set of the multiplicative representatives of F sep

q in F.
Let L be a finite separable extension of F. Since the residue field of F is

algebraically closed, L/F is totally ramified.

Lemma. The norm maps

NL/F:L∗ → F∗, NL/F:UL → UF

are surjective.

Proof. Since the Galois group of L/F is solvable by Corollary 3 (4.4) Ch. II, it
suffices to consider the case of a Galois extension of prime degree l. Certainly, the
norm of a prime element of L is a prime element of F. Now if F is complete, then
from results of section 1 Ch. III we deduce the surjectivity of the norm maps. If F = F ur

then every element of Ui,F belongs to Ui,F ′ for a finite unramified extension F ′ of F
and is already in the image.

If F = F ur , from results of section 1 Ch. III we deduce UF ⊂ Ui,FNL/FUL for
i = 1 if l is prime to p and i = s(L|F) + 1 if l = p. On the other hand, every element
of Ui,F belongs to Ui,F ′ for a finite unramified extension F ′ of F . Enlarging F ′

inside F ur if necessary, we can assume that there is a cyclic extension L′ of F ′ of
degree l such that L = L′F. Since Ui,F ′ ⊂ NL′/F ′Ui,L′ by section 1 Ch. III, we
deduce Ui,F ′ ⊂ NL/FUi,L and UF ⊂ NL/FUL .

Remark. If the extension L/F is totally ramified of degree a power of p and the
residue field of F is not algebraically closed but just a perfect field without nontrivial
separable p-extensions, then similarly to the proof of the Lemma we deduce that the
norm NL/F is still surjective.

(1.7). Definition. For a finite Galois extension L/F denote by U (L/F) the sub-
group of U1,L generated by uσ−1 where u runs through all elements of U1,L and σ
runs through all elements of Gal(L/F).

Every unit in UL can be factorized as θε with θ ∈ R∗ , ε ∈ U1,L Since θσ−1 = 1
we deduce that U (L/F) coincides with the subgroup of UL generated by uσ−1 ,
u ∈ UL , σ ∈ Gal(L/F).
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Proposition. Let L be a finite Galois extension of F. For a prime element π of L

define

`: Gal(L/F)→ UL/U (L/F), `(σ) = πσ−1 mod U (L/F).

The map ` is a homomorphism which does not depend on the choice of π. It induces a
monomorphism `: Gal(L/F)ab → UL/U (L/F) where for a group G the notation Gab

stands for the maximal abelian quotient of G.
The sequence

1→ Gal(L/F)ab `−−−−→ UL/U (L/F)
NL/F−−−−→ UF → 1

is exact.

Proof. Since πτ−1 belongs to UL , we deduce that (πτ−1)σ−1 ∈ U (L/F) and

πστ−1 ≡ πτ−1πσ−1 mod U (L/F).

Thus, the map ` is a homomorphism. It does not depend on the choice of π, since
(πε)σ−1 ≡ πσ−1 mod U (L/F).

Surjectivity of the norm map has already been proved.
Suppose first that Gal(L/F) is cyclic with generator σ. Proposition (4.1) Ch. III

shows that the kernel of NL/F coincides with L∗σ−1 . Since ` is a homomorphism,
we have πσ

m−1 ≡ (πσ−1)m mod U (L/F). So we deduce that L∗σ−1 is equal to the
product of U (L/F) and the image of `. This shows the exactness in the middle term.

Note that uσ
m−1 = (u1+σ+···+σm−1

)σ−1 , so U (L/F) = Uσ−1
L . If πσ

m−1 ∈ U (L/F),
then (πσ−1)m = uσ−1 for some u ∈ UL . Hence πmu−1 belongs to F and therefore
|L : F | divides m and σm = 1. This shows the injectivity of `.

Now in the general case we use the solvability of Gal(L/F) and argue by induction.
Let M/F be a Galois cyclic subextension of L/F such that L 6= M 6= F. Put πM =
NL/Mπ. Since NL/M:UL → UM is surjective, we deduce that NL/MU (L/F) =
U (M/F).

Let NL/Fu = 1 for u ∈ UL . Then by the induction hypothesis there is τ ∈
Gal(L/F) such that NL/Mu = πτ−1

M η with η ∈ U (M/F). Write η = NL/Mξ with
ξ ∈ U (L/F). Then u−1πτ−1ξ belongs to the kernel of NL/M and therefore by the
induction hypothesis can be written as πσ−1ρ with σ ∈ Gal(L/M), ρ ∈ U (L/M).
Altogether, u ≡ πστ−1 mod U (L/F) which shows the exactness in the middle term.

To show the injectivity of ` assume that πσ−1 ∈ U (L/F). Then πσ−1
M ∈ U (M/F)

and by the previous considerations of the cyclic case σ acts trivially on M. So
σ belongs to Gal(L/M). Now the maximal abelian extension of F in L is the
compositum of all cyclic extensions M of F in L. Since σ acts trivially on each M,
we conclude that ` is injective.
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Remark. If the extension L/F is totally ramified of degree a power of p and the
residue field of F is not algebraically closed but just a perfect field without nontrivial
separable p-extensions, then the Proposition still holds.

(1.8). For every n every element α ∈ F can be uniquely expanded as

α =
∑

a6i6n−1

θiπ
i mod πn, θi ∈ R,

where π is a prime element in F . If F is complete, then the same holds with n =∞.
Suppose from now on that F is the maximal unramified extension F ur , or its

completion, of a local field F with perfect residue field, such that the Galois group
Gal(F ur/F ) is isomorphic to Ẑ. Fix a generator ϕ of Gal(F ur/F ).

For example, if the residue field of F is F sep
q , then F is just a local number field.

In the situation of the previous paragraph we can take the Frobenius automorphism ϕF
as the generator ϕ.

Since ϕ:F ur → F ur is continuous, it has exactly one extension ϕ:F → F.
If the residue field of F is F sep

q then the continuous extension ϕ of the Frobenius
automorphism ϕF acts as

∑
i>a θiπ

i 7→
∑
i>a θ

q
i π

i , since Remark in (1.2) shows that
ϕ(θi) = ϕF (θi) = θqi for θi ∈ R.

We shall study the action of ϕ−1 on the multiplicative group.
Denote by TF the group of roots of unity in F of order not divisible by the

characteristic of the residue field of F. If the residue field of F is F sep
q then TF =

R \ {0}.

Proposition.

(1) The kernel of the homomorphism

F∗ → F∗, α 7→ αϕ−1

is equal to F and the image is contained in UF .
(2) Uϕ−1

0,F ⊃ TF .
(3) For every n,m > 1 the sequence

1→ Un,FUn+m,F/Un+m,F → Un,F/Un+m,F
ϕ−1−−−−→ Un,F/Un+m,F → 1

is exact.
(4) If F is complete, then Uϕ−1

n,F = Un,F for every n > 1.
(5) If F is complete, then F∗ϕ−1 contains TFU1,F .
(6) If the residue field of F is F sep

q then the sequence

1→ UFUn+1,F/Un+1,F → UF/Un+1,F
ϕ−1−−−−→ UF/Un+1,F → 1

is exact, and F∗ϕ−1 = UF .
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Proof. If F = F ur then every element of it belongs to a finite extension of F , and
the kernel of ϕ−1 is F . If F is complete then for α =

∑
i>a θiπ

i ∈ F with θi ∈ R
the condition ϕ(α) = α implies that ϕ(θi) = θi for i > a. Hence, θi belongs to the
residue field of F and α ∈ F . Similarly one shows the exactness of the sequence in
the central term Un,F/Un+m,F .

Since every prime element π of F belongs to the kernel of ϕ−1 , we deduce that
the image of the homomorphism is contained in UF .

Let ε ∈ TFU1,F . We shall show the existence of a sequence βn ∈ UF such that
ε ≡ βϕ−1

n mod Un+1,F and βn+1β
−1
n ∈ Un+1,F .

Let ε = θε0 with θ ∈ TF , ε0 ∈ U1,F . The element θ is an l th root of unity and
belongs to some finite extension K of F . Let K ′ be the extension of degree l over
K . Then NK′/Kθ = 1, and Proposition (4.1) Ch. III shows that θ = ησ−1 for some
element η ∈ K ′∗ and automorphism σ of F ur over K . Then σ = ϕm for a positive
integer m and we conclude that θ = ρϕ−1 where ρ =

∏m−1
i=0 ϕi(η) . Put β0 = ρ.

Now assume that the elements β0, β1, . . . , βn ∈ UF have already been constructed.
Define the element θn+1 ∈ R from the congruence

ε−1βϕ−1
n ≡ 1 + θn+1π

n+1 mod πn+2.

We claim that there is an element ηn+1 ∈ R such that

ϕ(ηn+1)− ηn+1 + θn+1 ≡ 0 mod π.

Indeed, consider the element θn+1 as an element of some finite extension K over F .
Let K

′
be the extension of degree p over K . Now Tr

K
′
/K

θn+1 = 0. Since K
′
/K

is separable, one can find an element ξ in K
′

with Tr
K
′
/K

ξ = 1. Then, setting

δ = −θn+1
∑p−1
i=1 iσi(ξ), where σ is a generator of Gal(K

′
/K), we conclude that

σ(δ)− δ = θn+1 . If σ = ϕm with positive integer m then put ξ
′

=
∑m−1
i=0 ϕi(δ). Then

ϕ(ξ
′
) − ξ′ = θn+1 . So the required element ηn+1 can be taken as any element of R

whose residue is equal to ξ
′
.

Now put βn+1 = βn(1 + ηn+1π
n+1). Then ε−1βϕ−1

n+1 ∈ Un+2,F and βn+1β
−1
n ∈

Un+1,F .
If F is complete, then there exists β = limβn ∈ UF , and βϕ−1 = ε. When

ε ∈ Un,F the element β can be chosen in Un,F as well.

Remarks.

1. If the residue field of F is F sep
q then the existence of β0 and ηn+1 also

follows from Remark in (1.2), because the polynomials Xq−1− θ, Xq −X + θn+1 are
completely split in F sep

q .
2. If F is the maximal abelian unramified p-extension of a local field F with perfect

residue field such that the Galois group Gal(F/F ) is isomorphic to Zp and ϕ is its
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generator, then assertions (1), (3), (4) of the Proposition still hold. This follows from
the proof of the Proposition in which for principal units we used unramified extensions
of degree p.

(1.9). Let L/F be a finite Galois totally ramified extension. By (4.1) Ch. II the
extension Lur/F ur is Galois with the group isomorphic to that of L/F . We may
assume that the completion of F ur is a subfield of the completion of Lur .

The extension L/F is totally ramified of the same degree as L/F . Using for
example (2.6)–(2.7) Ch. II we deduce that the extension L/F is Galois with the group
isomorphic to that of L/F .

Proposition. Let γ ∈ L∗ be such that γϕ−1 ∈ U (L/F). Then NL/Fγ belongs to
the group NL/FL

∗ .

Proof. We have γϕ−1 =
∏
ε
τj−1
j for some εj ∈ U1,L and τj ∈ Gal(L/F). By

Proposition (1.8) (applied to L ) for every positive integer r we have εj = ηϕ−1
j

mod Ur,L for some ηj ∈ UL . So the element (γ−1∏ η
τj−1
j )ϕ−1 belongs to Ur,L .

By the same Proposition (applied to L ) γ−1∏ η
τj−1
j = aδ with a ∈ L∗ and δ ∈ Ur,L .

Then NL/Fγ = NL/FaNL/Fδ. From the description of the norm map in section 3
Ch. III we know that as soon as r tends to infinity, the element NL/Fδ of UF tends
to 1 and therefore belongs to the norm group NL/FL

∗ for sufficiently large r. Thus,
NL/Fγ belongs to NL/FL

∗ .

Remarks.

1. Due to Remark 2 in (1.8) if the residue field of F is the maximal abelian
unramified p-extension of a local field F with perfect residue field such that the Galois
group Gal(F ur/F ) is isomorphic to Zp and ϕ is its generator, then the Proposition
still holds.

2. Since NL/Fγ = NL/F b for some b ∈ L∗ , we deduce that γ = bλ for some
λ ∈ kerNL/F . From Proposition (1.7) λ = πσ−1u with u ∈ U (L/F) and so
γϕ−1 = uϕ−1 ∈ U (L/F)ϕ−1 . Thus, L∗ϕ−1 ∩ U (L/F) = U (L/F)ϕ−1 . It will be this
property and its extension that we use in section 4 Ch. V for p-class field theory of local
fields with perfect residue field.

Exercises.
1. Show that a discrete valuation field F is locally compact if and only if it is complete and

its residue field is finite.
2. Let F be a finite extension of Qp . Show, using Exercise 5b) section 2 Ch. II, that there

exists a finite extension E over Q such that F = EQp , |F : Qp| = |E : Q|, and E is
dense in F . This means that local number fields are completions of algebraic number fields
(finite extensions of Q ).

3. a) Compute the index of F ∗n in F ∗ .
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b) Show that if F ⊂ L,F 6= L, then the index of F ∗ in L∗ is infinite.
4. a) Show that Q(1)

p = Qp( p−1√−p).
b) Find a local number field F for n > 0 such that µpn ⊂ F, µpn+1 6⊂ F , and the

extension F (µpn+1 )/F is unramified.
5. Let F be a local number field, and let L/F be a Galois totally ramified extension of

degree n. Let M be the unramified extension of F of degree n. Show using (1.5) that
F ∗ ⊂ NLM/M (LM )∗ .

6. Prove the local Kronecker–Weber Theorem: every finite abelian extension L of Qp is
contained in a field Qp(ζn) for a suitable primitive n th root of unity, following the steps
below. Denote by Q cycl

p the extension generated by roots of unity over Qp . For a prime

l let El be the maximal l-subextension in Q cycl
p /Qp , i.e., the compositum of all finite

extensions of degree a power of l of Qp in Q cycl
p .

a) Show that Ep is the compositum of linearly disjoint over Qp extensions Kp and Mp

where Kp/Qp is totally ramified with Galois group isomorphic to Zp (if p > 2 ) or
Z2 × Z/2Z (if p = 2 ) and Mp/Qp is unramified with Galois group isomorphic to
Zp .

b) Show that every abelian tamely totally ramified extension L of Qp is contained in
Qp ( p−1√pa) where a is a (p− 1) st root of unity. Deduce that L ⊂ Q cycl

p .
c) Show that every abelian totally ramified extension of Qp of degree p if p > 2 and

degree 4 if p = 2 is contained in Q cycl
p .

d) Denote by Q pab
p the maximal abelian p-extension of Qp . Let σ ∈ Gal(Q pab

p /Qp)
be a lifting of a generator of Gal(Ep/Mp) if p > 2 and of Gal(Ep/Mp(

√
−1)) if

p = 2. Let ϕ ∈ Gal(Q pab
p /Qp) be a lifting of a generator of Gal(Ep/Kp). Let R

be the fixed field of σ and ϕ in Q pab
p . Deduce from c) that R = Qp if p > 2 and

R = Qp(
√
−1) if p = 2 and therefore Q pab

p ⊂ Q cycl
p .

For another elementary proof see for example [Ro].
7. Let µpn ⊂ F , where F is a local number field. An element ω of F is said to be

pn -primary if the extension F ( pn
√
ω)/F is unramified of degree pn .

a) Show, using Kummer theory ([La1, Ch. VI]), that the set of pn -primary elements
forms in F ∗/F ∗p

n

a cyclic group of order pn .
b) Show that if ω is pn -primary, then it is pm -primary for m 6 n.
c) Show that a p-primary element ω can be written as ω = ωi∗εp , where ε ∈ U1,F and

ω∗ is as in (1.4).
8. Let L be a finite Galois extension of a local number field F . Show that if L/F is

tamely ramified, then the ring of integers OL is a free OF [G]-module of rank 1, where
G = Gal(L/F ). The converse assertion was proved by E. Noether.

9. (�) Let F be a local number field, n = |F : Qp|. Let L/F be a finite Galois extension,
G = Gal(L/F ). A field L is said to possess a normal basis over F , if the group U1,L of
principal units decomposes, as a multiplicative Zp[G]-module, into the direct product of a
finite group and a free Zp[G]-module of rank n.
a) (M. Krasner) Show that if G is of order relatively prime to p, then L possesses a

normal basis over F .
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b) (M. Krasner, D. Gilbarg) Let µp ∩ F ∗ = {1}. Show that L possesses a normal basis
over F if and only if L/F is tamely ramified.

For further information on the group of principal units as a Zp[G]-module see [Bor1–2],
[BSk].

10. (�) (C. Chevalley, K. Yamamoto) Let F be a local number field.
a) Let L/F be a totally ramified cyclic extension of prime degree. Let σ:L → L be a

field automorphism. Show that εσ−1 ∈ NL/FU1,L for ε ∈ U1,F .
b) Let L/F be a cyclic extension, and let σ be a generator of Gal(L/F ). Let M/F

be a subextension in L/F . Show that ασ−1 ∈ NL/ML∗ for α ∈ M∗ and
M∗ ⊂ F ∗NL/ML∗ .

c) From now on let L/F be a cyclic extension of degree n. Prove that the quotient
group F ∗/NL/FL

∗ is of order > n.
d) Show that the group F ∗/NL/FL

∗ is of order 6 n, and deduce that F ∗/NL/FL
∗

is of order |L : F |.
11. Let F be the maximal unramified extension of F . Show that U1,F 6= U

ϕ−1
1,F .

12. Let F be a local field with finite residue field. Prove that there is a nontrivial character
ψ:F → C∗ and that every character of F is of the form x 7→ ψ(ax) for a uniquely
defined a ∈ F . This means that the additive group of F is selfdual. It is one of the
first observations which lead to the theory of J. Tate and K. Iwasawa on harmonic analysis
interpretation of zeta function, see [T1], [W].

13. Check which assertions of this section hold for a Henselian discrete valuation field with
finite residue field.

2. The Neukirch Map

In this section F is a local field with finite residue field. Following J. Neukirch [N3–4]
we introduce and study for a finite Galois extension L/F a map

ϒ̃L/F : Frob(L/F ) −→ F ∗/NL/FL
∗

where the set Frob(L/F ) consists of the Frobenius automorphisms ϕΣ where Σ runs
through all finite extensions Σ of F in Lur with Gal(Lur/Σ) ' Ẑ.

(2.1). Let L be a finite Galois extension of F . According to Proposition (3.4) Ch. II
Lur = LF ur .

Definition. Put

Frob(L/F ) = {σ̃ ∈ Gal(Lur/F ) : σ̃|F ur is a positive integer power of ϕF }

(recall that Gal(F ur/F ) consists of Ẑ-powers of ϕF ).

Proposition. The set Frob(L/F ) is closed with respect to multiplication; it is not
closed with respect to inversion and 1 /∈ Frob(L/F ).



124 IV. Local Class Field Theory. I

The fixed field Σ of σ̃ ∈ Frob(L/F ) is of finite degree over F , Σur = Lur , and σ̃
is the Frobenius automorphism of Σ.

Thus, the set Frob(L/F ) consists of the Frobenius automorphisms ϕΣ of finite
extensions Σ of F in Lur with Gal(Lur/Σ) ' Ẑ.

The map Frob(L/F ) −→ Gal(L/F ), σ̃ 7→ σ̃|L is surjective.

Proof. The first assertion is obvious.
Since F ⊂ Σ ⊂ Lur we deduce that F ur ⊂ Σur ⊂ Lur . The Galois group of

Lur/Σ is topologically generated by σ̃ and isomorphic to Ẑ, therefore it does not have
nontrivial closed subgroups of finite order. So the group Gal(Lur/Σur) being a subgroup
of the finite group Gal(Lur/F ur) should be trivial. So Lur = Σur .

Put Σ0 = Σ∩F ur . This field is the fixed field of σ̃|F ur = ϕmF , therefore |Σ0 : F | = m
is finite. From Corollary (3.4) Ch. II we deduce that

|Σ : Σ0| = |Σur : F ur| = |Lur : F ur| = |L : L0|

is finite. Thus, Σ/F is a finite extension.
Now σ̃ is a power of ϕΣ and ϕΣ|F ur = ϕ

|Σ0:F |
F |F ur = ϕmF |F ur = σ̃|F ur . Therefore,

σ̃ = ϕΣ . Certainly, the Frobenius automorphism ϕΣ of a finite extension Σ of F in
Lur with Gal(Lur/Σ) ' Ẑ belongs to Frob(L/F ).

Denote by ϕ̃ an extension in Gal(Lur/F ) of ϕF . Let σ ∈ Gal(L/F ), then σ|L0

is equal to ϕnF for some positive integer n. Hence σ−1ϕ̃n|L acts trivially on L0 , and
so τ = σϕ̃−n|L belongs to Gal(L/L0). Let τ̃ ∈ Gal(Lur/F ur) be such that τ̃ |L = τ
(see Proposition (4.1) Ch. II). Then for σ̃ = τ̃ ϕ̃n we deduce that σ̃|F ur = ϕnF and
σ̃|L = τϕ̃n|L = σ. Then the element σ̃ ∈ Frob(L/F ) is mapped to σ ∈ Gal(L/F ).

(2.2). Definition. Let L/F be a finite Galois extension. Define

ϒ̃L/F : Frob(L/F ) −→ F ∗/NL/FL
∗, σ̃ 7→ NΣ/FπΣ mod NL/FL∗,

where Σ is the fixed field of σ̃ ∈ Frob(L/F ) and πΣ is any prime element of Σ.

Lemma. The map ϒ̃L/F is well defined. If σ̃|L = idL then ϒ̃L/F (σ̃) = 1.

Proof. Let π1, π2 be prime elements in Σ. Then π1 = π2ε for a unit ε ∈ UΣ . Let E
be the compositum of Σ and L. Since Σ ⊂ E ⊂ Σur , the extension E/Σ is unramified.
From (1.5) we know that ε = NE/Ση for some η ∈ UE . Hence

NΣ/Fπ1 = NΣ/F (π2ε) = NΣ/Fπ2 ·NΣ/F (NE/Ση) = NΣ/Fπ2 ·NL/F (NE/Lη).

We obtain that NΣ/Fπ1 ≡ NΣ/Fπ2 mod NL/FL∗ .
If σ̃|L = idL then L ⊂ Σ and therefore NΣ/FπΣ ∈ NL/FL∗ .
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(2.3). The definition of the Neukirch map is very natural from the point of view of the
well known principle that a prime element in an unramified extension should correspond
to the Frobenius automorphism (see Theorem (2.4) below) and the functorial property
of the reciprocity map (see (2.5) and (3.4)) which forces the reciprocity map ϒL/F to
be defined as it is.

Already at this stage and even without using results of subsections (1.6)–(1.9) one
can prove (see Exercises 1 and 2) that the map ϒ̃L/F : Frob(L/F ) −→ F ∗/NL/FL

∗

induces the Neukirch homomorphism

ϒL/F : Gal(L/F ) −→ F ∗/NL/FL
∗.

In other words, ϒ̃L/F (σ̃) does not depend on the choice of σ̃ ∈ Frob(L/F ) which
extends σ ∈ Gal(L/F ), and moreover, ϒ̃L/F (σ̃1)ϒ̃L/F (σ̃2) = ϒ̃L/F (σ̃1σ2). This is
how the theory proceeds in the first edition of this book and how it goes in Neukirch’s
[N4–5] (where it is also extended to global fields). However, that proof does not seem
to induce a lucid understanding of what is going on.

We will choose a different route, which is a little longer but more clarifying in the
case of local or Henselian fields.

The plan is the following: first we easily show the existence of ϒL/F for unramified
extensions and even prove that it is an isomorphism. Then we deduce some functorial
properties of ϒ̃L/F . To treat the case of totally ramified extensions in the next section,
we introduce, using results of (1.6)–(1.7), the Hazewinkel homomorphism ΨL/F which
acts in the opposite direction to ϒL/F . Calculating composites of the latter with ΨL/F

we shall deduce the existence of ϒL/F which is expressed by the commutative diagram

Frob(L/F )
ϒ̃L/F−−−−→ F ∗/NL/FL

∗y id

y
Gal(L/F )

ϒL/F−−−−→ F ∗/NL/FL
∗.

Then using ΨL/F we prove that ϒL/F is a homomorphism and that its abelian part

ϒ
ab
L/F : Gal(L/F )ab → F ∗/NL/FL

∗

is an isomorphism.
Then we treat the general case of abelian extensions and then Galois extensions

reducing it to the two cases described above and using functorial properties of ϒ̃L/F .
This route not only establishes the existence of ϒL/F , but also implies its isomorphism
properties.

It is exactly this route (its totally ramified part) which can be used for construction
of p-class field theory of local fields with arbitrary perfect residue field of positive
characteristic and other generalizations in section 4 Ch. V.
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(2.4). Theorem. Let L be an unramified extension of F of finite degree.
Then ϒ̃L/F (σ̃) does not depend on the choice of σ̃ for σ ∈ Gal(L/F ). It induces

an isomorphism ϒL/F : Gal(L/F ) −→ F ∗/NL/FL
∗ and

ϒL/F

(
ϕF |L

)
≡ πF mod NL/FL∗

for a prime element πF in F .

Proof. Since L/F is unramified, σ is equal to ϕnF sor some n > 1. Let m = |L : F |.
Then σ̃ must be in the form ϕdF with d = n + lm > 0 for some integer l. The fixed
field Σ of σ̃ is the unramified extension of F of degree d. We can take πF as a prime
element of Σ. Then

ϒ̃L/F (σ̃) = NΣ/FπF = πdF ≡ πnF mod NL/FL∗,

since πmF = NL/FπF . Thus, ϒ̃L/F (σ̃) does not depend on the choice of σ̃.
It is now clear that ϒL/F is a homomorphism and it sends ϕF to πF mod NL/FL∗ .

Results of (1.5) show that πF mod NL/FL∗ generates the group F ∗/NL/FL∗ which
is cyclic of order |L : F |. Hence, ϒL/F is an isomorphism.

(2.5). Now we describe several functorial properties of ϒ̃L/F .

Lemma. Let M/F be a finite separable extension and let L/M be a finite Galois
extension, σ ∈ Gal(F sep/F ). Then the diagram of maps

Frob(L/M )
ϒ̃L/M−−−−→ M∗/NL/ML

∗

σ∗
y yσ

Frob(σL/σM )
ϒ̃σL/σM−−−−−→ (σM )∗/NσL/σM (σL)∗

is commutative; here σ∗(τ̃ ) = στ̃σ−1|σLur for τ̃ ∈ Frob(L/M ).

Proof. If Σ is the fixed field of τ̃ , then σΣ is the fixed field of στ̃σ−1 . For a prime
element π in Σ, the element σπ is prime in σΣ by Corollary 3 of (2.9) Ch. II. Since
NσΣ/σM (σπ) = σNΣ/Mπ, the proof is completed.

Proposition. Let M/F and E/L be finite separable extensions, and let L/F and
E/M be finite Galois extensions. Then the diagram of maps

Frob(E/M )
ϒ̃E/M−−−−→ M∗/NE/ME

∗y yN∗M/F
Frob(L/F )

ϒ̃L/F−−−−→ F ∗/NL/FL
∗
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is commutative. Here the left vertical homomorphism is the restriction σ̃|Lur of σ̃ ∈
Frob(E/M ) and the right vertical homomorphism is induced by the norm map NM/F .

The left vertical map is surjective if M = F .

Proof. Indeed, if σ̃ ∈ Frob(E/M ) then for τ̃ = σ̃|Lur ∈ Gal(Lur/F ) we deduce that
τ̃ |F ur = σ̃|F ur is a positive power of ϕF , i.e., τ̃ ∈ Frob(L/F ). Let Σ be the fixed field
of σ̃. Then T = Σ∩Lur is the fixed field of τ̃ . The extension Σ/T is totally ramified,
since Lur = Tur and so T = Σ ∩ Tur . Hence for a prime element πΣ in Σ the element
πT = NΣ/TπΣ is prime in T and we get NT/FπT = NΣ/FπΣ = NM/F (NΣ/MπΣ).

If M = F , then the left vertical map is surjective, since every extension of σ̃ ∈
Frob(L/F ) to Gal(Eur/F ) belongs to Frob(E/F ).

Corollary. Let M/F be a Galois subextension in a finite Galois extension L/F .
Then the diagram of maps

Frob(L/M ) −−−−→ Frob(L/F ) −−−−→ Frob(M/F )yϒ̃L/M

yϒ̃L/F

yϒ̃M/F

M∗/NL/ML
∗ N∗M/F−−−−→ F ∗/NL/FL

∗ −−−−→ F ∗/NM/FM
∗ −−−−→ 1

is commutative; here the central homomorphism of the lower exact sequence is induced
by the identity map of F ∗ .

Proof. An easy consequence of the preceding Proposition.

Exercises.

1. Let σ̃1, σ̃2 ∈ Frob(L/F ) and σ̃3 = σ̃2σ̃1 ∈ Frob(L/F ). Let Σ1,Σ2,Σ3 be the fixed fields
of σ̃1, σ̃2, σ̃3 . Let π1, π2, π3 be prime elements in Σ1,Σ2,Σ3 . Show that

NΣ3/F
π3 ≡ NΣ1/F

π1NΣ2/F
π2 mod NL/FL

∗

following the steps below (J. Neukirch [N3]).
a) Let ϕ̃ ∈ Frob(L/F ) be an extension of the Frobenius automorphism ϕF . Let

Σ be the fixed field of ϕ̃. Let L1/F be the minimal Galois extension such that
Σ,Σ1,Σ2,Σ3, L are contained in L1 and L1 ⊂ Lur . Then Lur

1 = Lur and the
automorphisms σ̃1, σ̃2, σ̃3 can be considered as elements of Frob(L1/F ). Show that
it suffices to prove that NΣ3/F

π3 ≡ NΣ1/F
π1NΣ2/F

π2 mod NL1/F
L∗1 . Therefore,

we may assume without loss of generality that L contains the fields Σ, Σ1 , Σ2 , Σ3 .
b) Let σ̃i|F ur = ϕniF , then n3 = n1 + n2 . Put σ̃4 = ϕ̃n2 σ̃1ϕ̃

−n2 . Show that the fixed
field Σ4 of σ̃4 coincides with ϕ̃n2 Σ1 and is contained in L. So it suffices to show
that NΣ3/F

π3 ≡ NΣ2/F
π2NΣ4/F

π4 mod NL/FL
∗ .
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c) Let σ̃i = τ−1
i ϕ̃ni for τi ∈ Gal(Lur/F ur); then τ3 = τ4τ2 and τi(πi) = ϕ̃ni (πi).

Put

π̂i =
ni−1∏
j=0

ϕ̃j(πi).

Show that

ε = π̂3π̂
−1
2 π̂−1

4 ∈ UL, εϕ̃−1 = ετ2−1
2 ε

τ4−1
4

where ε2 = π3π
−1
2 ∈ UL , ε4 = π−1

4 τ2(π3) ∈ UL .
d) Let L0 = L∩F ur and let M1/L0 be the unramified extension of degree n = |L : F |.

Put M = M1L. Using (1.5) show that there are elements η, η2, η4 ∈ UM such that

NM/L(η) = ε, NM/L(η2) = ε2, NM/L(η4) = ε4.

Deduce that

εϕ̃−1 = NM/L(ητ2−1
2 η

τ4−1
4 ).

e) Show that there is an element β ∈ UM such that

ηϕ̃−1η
1−τ2
2 η

1−τ4
4 = βϕL−1.

and so

(NM/M1
η)ϕ̃−1 = (NM/M1

β)ϕL−1.

f) Let f = |L0 : F |, then ϕL = ϕ̃f . Show that (NM/M1
η)ϕ̃−1 = γϕ̃−1 where

γ = NM/M1

(∏f−1
j=0 ϕ̃j(β)

)
∈ M∗1 . Deduce that α = γ−1NM/M1

(η) belongs to

F ∗ and

NL/L0
(ε) = NM1/L0

(γ) · αn, NM1/L0
(γ) = NM/F (β).

Conclude that

NΣ3/F
π3NΣ2/F

π−1
2 NΣ4/F

π−1
4 = NL/L0

(ε) = NL/F (α ·NM/L(β)).

2. Deduce from Exercise 1 that the map ϒ̃L/F induces the Neukirch homomorphism

ϒL/F : Gal(L/F ) −→ F ∗/NL/FL
∗, σ 7→ ϒ̃L/F (σ̃)

where σ̃ ∈ Frob(L/F ) is any extension of the element σ ∈ Gal(L/F ).
3. Show that the assertions of this section hold for a Henselian discrete valuation field with

finite residue field (see Exercise 12 in section 1).
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3. The Hazewinkel Homomorphism

In this section we keep the notations of section 2. For a finite Galois totally ram-
ified extension L/F using results of (1.6)–(1.7) we define in (3.1) the Hazewinkel
homomorphism

ΨL/F :F ∗/NL/FL∗ −→ Gal(L/F )ab.

Simultaneous study of it and ϒ̃L/F will lead to the proof that ΨL/F is an isomorphism
in (3.2). Using this result, Theorem (2.4) and functorial properties in (2.5) we shall
show in (3.3) that ϒab

L/F is an isomorphism for an arbitrary finite Galois extension L/F .
In (3.4) we list some functorial properties of the reciprocity homomorphisms and as the
first application of the obtained results reprove in (3.5) the Hasse–Arf Theorem of (4.3)
Ch. III in the case of finite residue field. Finally, in (3.6) we discuss another functorial
properties of ϒL/F related to the transfer map in group theory.

(3.1). Let L be a finite Galois totally ramified extension of F . As in (1.6) we denote
by F the maximal unramified extension of F or its completion. The Galois group of
the extension L/F is isomorphic to Gal(L/F ).

Definition. Let ϕ be the continuous extension on L of the Frobenius automorphism
ϕL . Let π be a prime element of L. Let E be the maximal abelian extension of F
in L. For α ∈ F ∗ by Lemma in (1.6) there is β ∈ L∗ such that α = NL/Fβ . Then
NL/Fβ

ϕ−1 = αϕ−1 = 1 and by Proposition (1.7)

βϕ−1 ≡ π1−σ mod U (L/F)

for some σ ∈ Gal(L/F) which is uniquely determined as an element of Gal(E/F)
where E = EF. Define the Hazewinkel (reciprocity) homomorphism

ΨL/F :F ∗/NL/FL∗ −→ Gal(L/F )ab, α 7→ σ|E .

Lemma. The map ΨL/F is well defined and is a homomorphism.

Proof. First, independence on the choice of π follows from Proposition (1.7). So we
can assume that π ∈ L.

If α = NL/Fγ then γβ−1 belongs to the kernel of NL/F . Therefore by Propo-
sition (1.7) γβ−1 = πτ−1ξ with ξ ∈ U (L/F). Then γϕ−1 = βϕ−1ξϕ−1 ≡ βϕ−1

mod U (L/F) which proves correctness of the definition.
If NL/F(β1) = α1 and NL/F(β2) = α2 , then we can choose β1β2 for α1α2 and

then from Proposition (1.7) we deduce that ΨL/F is a homomorphism.
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Remarks.

1. Since L/F is totally ramified, the norm of a prime element of L is a prime ele-
ment of F . So F ∗/NL/FL

∗ = UF /NL/FUL . Moreover, if L/F is a totally ramified
p-extension (i.e. its degree is a power of p ), then F ∗/NL/FL

∗ = U1,F /NL/FU1,L ,
since all multiplicative representatives are p th powers.

2. The Hazewinkel homomorphism can be defined for every finite Galois extension
[Haz1–2], but it has the simplest form for totally ramified extensions.

(3.2). Now we prove that ΨL/F is inverse to ϒab
L/F .

Theorem. Let L/F be a finite Galois totally ramified extension. Let E/F be the
maximal abelian subextension of L/F . Then
(1) For every σ̃ ∈ Frob(L/F )

ΨL/F

(
ϒ̃L/F (σ̃)

)
= σ̃|E .

(2) Let α ∈ F ∗ and let σ̃ ∈ Frob(L/F ) be such that σ̃|E = ΨL/F (α). Then

ϒ̃L/F (σ̃) ≡ α mod NL/FL∗.

Therefore, ΨL/F is an isomorphism, ϒ̃L/F (σ̃) does not depend on the choice of σ̃
for σ ∈ Gal(L/F ) and induces the Neukirch homomorphism

ϒL/F : Gal(L/F ) −→ F ∗/NL/FL
∗.

The latter induces an isomorphism ϒab
L/F , between Gal(L/F )ab = Gal(E/F ) and

F ∗/NL/FL
∗ , which is inverse to ΨL/F .

Proof. To show (1) note at first that since Gal(Lur/F ) is isomorphic to Gal(Lur/L)×
Gal(Lur/F ur) the element σ̃ is equal to σϕm for some positive integer m and σ ∈
Gal(Lur/F ur), where ϕ is the same as in (3.1). Let πΣ be a prime element of the fixed
field Σ of σ̃. Since πΣ is a prime element of Σur = Lur we have πΣ = πε for some
ε ∈ ULur , where π is a prime element of L. Therefore π1−σ = εσϕ

m−1 .
Let Σ0 = Σ ∩ F ur , then |Σ0 : F | = m. Then NΣ/F = NΣ0/F ◦ NΣ/Σ0 and NΣ/Σ0

acts as NΣur/Σur
0

= NLur/F ur = NL/F , NΣ0/F acts as 1 + ϕ + · · · + ϕm−1 . We have

NΣ/FπΣ = NLur/F urε1 NLur/F urπm, where ε1 = ε1+ϕ+···+ϕm−1
.

So α = NΣ/FπΣ ≡ NLur/F urε1 mod NL/FL∗ and ΨL/F (α) can be calculated by
looking at εϕ−1

1 . We deduce

εϕ−1
1 = εϕ

m−1 ≡ εσϕ
m−1 = π1−σ = π1−σ̃ mod U (L/F).

This proves (1).
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To show (2) let α = NL/Fβ and βϕ−1 ≡ π1−σ mod U (L/F) with σ ∈ Gal(L/F ).
Then again σ̃ = σϕm and similarly to the previous

ϒ̃L/F (σ̃) = NΣ/FπΣ ≡ NLur/F ur ε1 mod NL/FL∗

and
εϕ−1

1 ≡ π1−σ ≡ βϕ−1 mod U (L/F).

From Proposition (1.9) applied to γ = ε1β
−1 we deduce that NL/Fγ belongs to

NL/FL
∗ and therefore NL/Fε1 ≡ NL/Fβ = α mod NL/FL∗ which proves (2).

Now from (1) we deduce the surjectivity of ΨL/F . From (2) and Lemma in (2.2)
by taking σ̃ = ϕ, so that σ̃|E = idE = ΨL/F (α), we deduce that α ∈ NL/FL∗ , i.e.
ΨL/F is injective. Hence ΨL/F is an isomorphism. Now from (1) we conclude that
ϒ̃L/F does not depend on the choice of a lifting σ̃ of σ ∈ Gal(L/F ) and therefore
determines the map ϒL/F .

Since we can take σ̃1σ2 = σ̃1σ̃2 , from (1) we deduce that ϒL/F is a homomorphism.
Proposition (2.1) and (2) show that this homomorphism is surjective. From (1) we

deduce that its kernel is contained in Gal(L/E). The latter coincides with the kernel,
since the image of ϒL/F is abelian.

Using the complete version of F we can give a very simple formula for the Neukirch
and Hazewinkel maps in the case of totally ramified extensions.

Corollary. Let F be the completion of the maximal unramified extension of F , and
let L = LF.

For σ ∈ Gal(L/F ) there exists η ∈ L∗ such that

ηϕ−1 = π1−σ.

Then ε = NL/Fη belongs to F ∗ and

ϒL/F (σ) = NL/Fη.

Conversely, for every ε ∈ F ∗ there exists η ∈ L∗ such that

ε ≡ NL/Fη mod NL/FL∗, ηϕ−1 = π1−σ for some σ ∈ Gal(L/F) .

Then ΨL/F (ε) = σ|E .

Proof. To prove the first assertion, we note that the homomorphism λ0 in Proposi-
tion (4.4) Ch. II sends σ to a root of unity of order dividing the degree of the extension,
so π−1σπ belongs to TLU1,L and therefore, due to Proposition (1.8), η does exist. Its
norm ε = NL/Fη satisfies εϕ−1 = NL/F(π1−σ) = 1 so by Proposition (1.8) ε belongs
to F ∗ .

We can assume that η is a unit, since πϕ−1 = 1. Denote by the same notation
σ the element of Gal(L/F) which corresponds to σ. Let Σ be the fixed field of



132 IV. Local Class Field Theory. I

σ̃ = σϕ. Applying Proposition (1.8) to the continuous extension to L of the Frobenius
automorphism σ̃ we deduce that there is ρ ∈ UL such that ρσϕ−1 = π1−σ . Now

π1−σϕ = π1−σ = ρσϕ−1,

so πρ belongs to the fixed field of σ̃ in L which by Proposition (1.8) equals to the
fixed field Σ of σ̃ in Lur . The element πΣ = πρ is a prime element of Σ. Note
that (ρη−1)ϕ−1 = ρϕ−1πσ−1 = (ρ1−σ)ϕ ∈ U (L/F); hence from Proposition (1.9) we
deduce that NL/Fρ ≡ NL/Fη mod NL/FL∗ . Finally,

NΣ/FπΣ ≡ NL/Fρ ≡ NL/Fη mod NL/FL∗.

To prove the second assertion use the first assertion and the congruence supplied
by the Theorem: ε ≡ ϒL/F (σ) mod NL/FL∗ where σ ∈ Gal(L/F ) is such that
σ|E = ΨL/F (ε).

Remarks.

1. In the proof of Theorem (3.2) we did not use all the information on norm
subgroups described in (1.5). We used the following two properties: the group of units
UF is contained in the image of the norm map of every unramified extension; for every
finite Galois totally ramified extension L/F there is a finite unramified extension E/F
such that UF is contained in the image of the norm map NLE/E .

2. The Theorem demonstrates that for a finite Galois totally ramified extension L/F
in the definition of the Neukirch map one can fix the choice of Σ as the field invariant
under the action of σϕ.

(3.3). The following Lemma will be useful in the proof of the main theorem.

Lemma. Let L/F be a finite abelian extension. Then there is a finite unramified
extension M/L such that M is an abelian extension of F , M is the compositum of
an unramified extension M0 of F and an abelian totally ramified extension K of F .
For every such M we have NM/FM

∗ = NK/FK∗ ∩NM0/FM
∗
0 .

Proof. Since L/F is abelian, the extension LF ur is an abelian extension of F . Let
ϕ̃ ∈ Gal(LF ur/F ) be an extension of ϕF . Let K be the fixed field of ϕ̃. Then
K ∩ F ur = F , so K is an abelian totally ramified extension of F . The compositum
M of K and L is an unramified extension of L, since Kur = Lur . The field M is an
abelian extension of F and Gal(M/F ) ' Gal(M/K)× Gal(M/M0).

Now the left hand side of the formula of the Lemma is contained in the right hand
side N. We have N ∩ UF ⊂ NK/FUK ⊂ NM/FUM , since UK ⊂ NM/KUM
by (1.5). If πM is a prime element of M , then NM/FπM ∈ N. By (2.5) Ch. II
vF (NM/FπM )Z = vF (NM0/FM

∗
0 ). So every α ∈ N can be written as α = NM/Fπ

m
Mε

with ε ∈ N ∩ UF and some m. Thence N is contained in NM/FM
∗ and we have

N = NM/FM
∗ .
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Now we state and prove the first main theorem of local class field theory.

Theorem. Let L/F be a finite Galois extension. Let E/F be the maximal abelian
subextension of L/F .

Then ΨL/F is an isomorphism, ϒ̃L/F (σ̃) does not depend on the choice of σ̃ for
σ ∈ Gal(L/F ) and induces the Neukirch (reciprocity) homomorphism

ϒL/F : Gal(L/F ) −→ F ∗/NL/FL
∗.

The latter induces an isomorphism ϒab
L/F between Gal(L/F )ab = Gal(E/F ) and

F ∗/NL/FL
∗ (which is inverse to ΨL/F for totally ramified extensions).

Proof. First, we consider the case of an abelian extension L/F such that L is the
compositum of the maximal unramified extension L0 of F in L and an abelian totally
ramified extension K of F . Then by the previous Lemma NL/FL

∗ = NK/FK
∗ ∩

NL0/FL
∗
0 . From Proposition (2.5) applied to surjective maps

Frob(L/F )→ Frob(L0/F ) and Frob(L/F )→ Frob(K/F ),

and from Theorem (2.4) and Theorem (3.2) we deduce that ϒ̃L/F does not depend on
the choice of σ̃ modulo NK/FK

∗ ∩ NL0/FL
∗
0 , therefore, modulo NL/FL

∗ . So we
get the map ϒL/F .

Now from Proposition (2.5) and Theorem (2.4), Theorem (3.2) we deduce that ϒL/F

is a homomorphism modulo NK/FK
∗ ∩NL0/FL

∗
0 , so it is a homomorphism modulo

NL/FL
∗ . It is injective, since if ϒL/F (σ) ∈ NL/FL∗ , then σ acts trivially on L0 and

K , and so on L. Its surjectivity follows from the commutative diagram of Corollary
in (2.5).

Second, we consider the case of an arbitrary finite abelian extension L/F . By the
previous Lemma and the preceding arguments there is an unramified extension M/L

such that the map ϒ̃M/F induces the isomorphism ϒM/F . The map Frob(M/F ) →
Frob(L/F ) is surjective and we deduce using Proposition (2.5) that ϒ̃L/F induces the
well defined map ϒL/F , which is a surjective homomorphism. If σ ∈ Gal(M/F ) is
such that ϒL/F (σ) = 1, then from the commutative diagram of Corollary in (2.5) and
surjectivity of ϒ for every finite abelian extension we deduce that ϒM/F (σ) = ϒM/F (τ )
for some τ ∈ Gal(M/L). The injectivity of ϒM/F now implies that σ = τ acts trivially
on L.

Finally, we consider the general case of a finite Galois extension where we argue by
induction on the degree of L/F . We can assume that L/F is not an abelian extension.

Every σ ∈ Gal(L/F ) belongs to the cyclic subgroup of Gal(L/F ) generated by
it, and by what has already been proved and by Proposition in (2.5) ϒ̃L/F (σ̃) does not
depend on the choice of σ̃ and therefore determines the map ϒL/F .

Since Gal(L/F ) is solvable by Lemma (1.2), we conclude similarly to the second
case above using the induction hypothesis that ϒL/F is surjective. In the next several
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paragraphs we shall show that ϒL/F (Gal(L/E)) = 1. Due to surjectivity of ϒ this
implies that the map N∗E/F in the diagram of Corollary (2.5) (where we put M = E )
is zero. Since ϒE/F is an isomorphism we see from the diagram of the Corollary that
ϒL/F is a surjective homomorphism with kernel Gal(L/E).

So it remains to prove that ϒL/F maps every element of the derived group Gal(L/E)
to 1. Since Gal(L/F ) is solvable, we have E 6= F . Proposition (2.5) shows that
ϒL/F (ρ) = N∗E/F (ϒL/E(ρ)) for every ρ ∈ Gal(L/E). Since by the induction assump-
tion ϒL/E is a homomorphism, it suffices to show that

ϒL/F (τστ−1σ−1) = N∗E/F (ϒL/E(τστ−1σ−1)) = 1

for every σ, τ ∈ Gal(L/F ). To achieve that we use Lemma (2.5) and the induction
hypothesis.

Suppose that the subgroup Gal(L/K) of G = Gal(L/F ) generated by Gal(L/E)
and τ is not equal to G. Then from the induction hypothesis and Lemma (2.5)

ϒL/K(τστ−1σ−1) = ϒL/K(τ )ϒL/K(στ−1σ−1) = ϒL/K(τ )1−σ,

and so

ϒL/F (τστ−1σ−1) = N∗K/F
(
ϒL/K(τ )1−σ) = 1.

In the remaining case the image of τ generates Gal(E/F ). Hence σ = τmρ for some
ρ ∈ Gal(L/E) and integer m. We deduce τστ−1σ−1 = τm(τρτ−1ρ−1)τ−m and
similarly to the preceding

ϒL/F (τm(τρτ−1ρ−1)τ−m) = ϒL/F (τρτ−1ρ−1) = N∗E/F
(
ϒL/E(ρ)τ−1) = 1.

Corollary.

(1) Let L/F be a finite Galois extension and let E/F be the maximal abelian subex-
tension in L/F . Then NL/FL

∗ = NE/FE∗ .
(2) Let L/F be a finite abelian extension, and M/F a subextension in L/F . Then

α ∈ NL/ML∗ if and only if NM/Fα ∈ NL/FL∗ .

Proof. The first assertion follows immediately from the Theorem. The second
assertion follows the diagram of Corollary in (2.5) (with Frob being replaced with
Gal ) in which the homomorphism N∗M/F is injective due to the Theorem.

(3.4). We now list functorial properties of the homomorphism ϒL/F . Immediately
from the previous Theorem and (2.5) we deduce the following
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Proposition.

(1) Let M/F be a finite separable extension and let L/M be a finite Galois extension,
σ ∈ Gal(F sep/F ). Then the diagram

Gal(L/M )
ϒL/M−−−−→ M∗/NL/ML

∗

σ∗
y yσ

Gal(σL/σM )
ϒσL/σM−−−−−→ (σM )∗/NσL/σM (σL)∗

is commutative.
(2) Let M/F,E/L be finite separable extensions, and let L/F and E/M be finite

Galois extensions. Then the diagram

Gal(E/M )
ϒE/M−−−−→ M∗/NE/ME

∗y yN∗M/F
Gal(L/F )

ϒL/F−−−−→ F ∗/NL/FL
∗

is commutative.

(3.5). As the first application of Theorem (3.3) and functorial properties in (3.4) we
describe ramification group of finite abelian extensions and reprove the Hasse–Arf
Theorem of (4.3) Ch. III for local fields with finite residue field.

Theorem. Let L/F be a finite abelian extension, G = Gal(L/F ). Denote by h the
Hasse–Herbrand function hL/F . Put U−1,F = F ∗ , U0,F = UF , and h(−1) = −1.
Then for every integer n > −1 the reciprocity map ΨL/F maps the quotient group
Un,FNL/FL

∗/NL/FL
∗ isomorphically onto the ramification group G(n) = Gh(n) and

Un,FNL/FL
∗/Un+1,FNL/FL

∗ isomorphically onto Gh(n)/Gh(n)+1 . Therefore

Gh(n)+1 = Gh(n+1),

i.e., upper ramification jumps of L/F are integers.

Proof. Let L0 be the maximal unramified extension of F in L. We know from
section 3 Ch. III that hL/F = hL/L0 , and from section 1 that the norm NL0/F maps
Un,L0 onto Un,F for n > 0. Using the second commutative diagram of (3.4) (for
E = L,M = F,L = L0 ) we can therefore assume that L/F is totally ramified and
n > 0.

We use the notations of Corollary (3.2), so F and L are complete fields. Let
σ ∈ Gh(n) , then π1−σ belongs to Uh(n),L . Let η ∈ L∗ be such that ηϕ−1 = π1−σ .
Proposition (1.8) shows that η can be chosen in Uh(n),L . Now from Corollary (3.2) and
section 3 Ch. III we deduce that ϒL/F (σ) = ε = NL/F(η) belongs to Un,FNL/FL∗ . So
ϒ(Gh(n)) ⊂ Un,FNL/FL∗ . Similarly, we establish that ϒ(Gh(n)+1) ⊂ Un+1,FNL/FL

∗ .
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Conversely, let ε belong to Un,FNL/FL
∗ . For the abelian extension L/F we will

prove below a stronger assertion than that in Corollary (3.2):

there exists η ∈ UL such that ε ≡ NL/F(η) mod NL/FL∗ and ηϕ−1 = π1−σ

for some σ ∈ Gal(L/F). For every such η we have ηϕ−1 ∈ Uh(n),L .

From this assertion we deduce that Ψ(Un,FNL/FL∗) ⊂ Gh(n) . We conclude
that Ψ(Un,FNL/FL∗) = Gh(n) and ϒL/F (Gh(n)+1) = ϒL/F (Gh(n+1)), so Gh(n)+1 =
Gh(n+1) .

It remains to prove the assertion by induction on the degree of L/F . If n = 0,
the assertion is obvious, so we assume that n > 0. If Gal(L/F ) is of prime order
with generator τ , then from Corollary (3.2) we know that there is η ∈ UL such
that ε ≡ NL/F(η) mod NL/FL∗ and ηϕ−1 = π1−τm for some integer m. So
j = vL(ηϕ−1 − 1) = vL(π1−τm − 1). If τm = 1 then the assertion is obvious, so
assume that τm 6= 1. From section 1 Ch. III we know that Uj+1,F ⊂ NL/FL

∗ . If
NL/F(η) belongs to Uj+1,F , then ΨL/F (NL/F(η)) is 1, not τm , a contradiction.
Therefore, vF (NL/F(η)− 1) = j = hL/F (j).

For the induction step let M/F be a subextension of L/F such that Gal(L/M ) is
of prime degree l with generator τ . By Corollary (3.2) there is η ∈ UL such that ε ≡
NL/F(η) mod NL/FL∗ and ηϕ−1 = π1−σ . By the induction hypothesis NL/Mη

ϕ−1

belongs to UhM/F (n),M . By Proposition (1.8) the latter group is ϕ−1-divisible, and
therefore from the same Proposition we deduce that NL/Mη

ϕ−1 = ρu with ρ ∈
UhM/F (n),M and u ∈ UM . According to results of section 1 Ch. III, the definition
of the Hasse–Herbrand function and Lemma (1.6) there is ξ ∈ UhL/F (n),L such that
NL/M(ξ) = ρ. Then ξϕ−1 = π1−σα for some α in the kernel of NL/M .

Let τ be a generator of Gal(L/M ). Using Proposition (1.7) we deduce that
α ≡ π1−τm mod U (L/M) and so ξϕ−1 = π1−στmγ1−τ for an appropriate γ ∈ UL

and some integer m. By Proposition (1.8) there is δ ∈ UL such that δϕ−1 = γ1−τ .
Then ηϕ−1 = πστ

m−1 where η = ξδ−1 . All we need to show is that γτ−1 belongs to
Uh(n),L . If it does not, then j = vL(γτ−1−1) = vL(π1−στm−1) > 0. Let s = s(L|M )
as defined in (1.4) Ch. III. Since γ is a unit, from (1.4) Ch. III we deduce that j − s is
prime to p. On the other hand, Proposition (4.5) Ch. II implies that j is congruent to
s modulo p, a contradiction.

Remark. For a similar result in the case of perfect residue field of positive character-
istic see (4.7) Ch. V.

(3.6). Another functorial property involves the transfer map from group theory. Recall
the notion of transfer (Verlagerung). Let G be a group and let G′ be its commutator
subgroup (derived group). Denote the quotient group G/G′ by Gab; it is abelian. Let
H be a subgroup of finite index in G. Let

G = ∪iHρi, ρi ∈ G, 1 6 i 6 |G : H|
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be the decomposition of G into the disjoint union of sets Hρi .
Define the transfer

Ver:Gab → Hab, σ mod G′ 7→
∏
i

ρiσρ
−1
σ(i) mod H ′,

where σ(i) is determined by the condition ρiσ ∈ Hρσ(i) . So σ(1), . . . , σ(|G : H|) is
a permutation of 1, . . . , |G : H|.

We shall verify that Ver is well defined. Let ρ′i = κiρi with κi ∈ H . Then∏
ρ′iσρ

′−1
σ(i) =

∏
κi

(
ρiσρ

−1
σ(i)

)
κ−1
σ(i) ≡

∏
ρiσρ

−1
σ(i) ·

∏
κi ·

∏
κ−1
σ(i) mod H ′,

because H/H ′ is abelian. Hence∏
ρ′iσρ

′−1
σ(i) ≡

∏
ρiσρ

−1
σ(i) mod H ′.

Now we shall verify that Ver is a homomorphism. Let σ, τ ∈ G; then

ρiστρ
−1
στ (i) ≡ ρiσρ

−1
σ(i)ρσ(i)τρ

−1
στ (i) mod H ′

and, as ρiσρ
−1
σ(i) ∈ H , ρiστρ

−1
στ (i) ∈ H , we get ρσ(i)τρ

−1
στ (i) ∈ H , i.e., στ (i) =

τ
(
σ(i)

)
. Hence∏

ρiστρ
−1
στ (i) ≡

∏
ρiσρ

−1
σ(i) ·

∏
ρiτρ

−1
τ (i) mod H ′.

Let σ be an element of G. For an element τ1 ∈ G let g1 = g(σ, τ1) be the
maximal integer such that all the sets Hτ1σ,Hτ1σ

2, . . . , Hτ1σ
g1 are distinct. Then,

take an element τ2 ∈ G such that all Hτ2σ,Hτ1σ, . . . ,Hτ1σ
g1 are distinct and find

g2 = g(σ, τ1, τ2) such that all the sets

Hτ2σ, . . . ,Hτ2σ
g2 , Hτ1σ, . . . ,Hτ1σ

g1

are distinct. Repeating this construction, we finally obtain that G is the disjoint union
of the sets Hτnσmn , where 1 6 n 6 k, 1 6 mn 6 gn = g(σ, τ1, τ2, . . . , τn). The
number gi can also be determined as the minimal positive integer, for which the element

σ[τi] = τiσgiτ−1
i

belongs to H . The definition of Ver shows that in this case

Ver(σ mod G′) ≡
∏
n

σ[τn] mod H ′.

Since the image of ϒL/F is abelian, one can define the homomorphism

ϒL/F : Gal(L/F )ab −→ F ∗/NL/FL
∗.
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Proposition. Let L/F be a finite Galois extension and let M/F be a subextension
in L/F . Then the diagram

Gal(L/F )ab ϒL/F−−−−→ F ∗/NL/FL
∗yVer

y
Gal(L/M )ab ϒL/M−−−−→ M∗/NL/ML

∗

is commutative; here the right vertical homomorphism is induced by the embedding
F ↪→M .

Proof. Denote G̃ = Gal(Lur/F ), H̃ = Gal(Lur/M ). Let σ ∈ Gal(L/F ), and
let σ̃ ∈ Frob(L/F ) be its extension. Let G̃ be the disjoint union of H̃τ̃nσ̃mn for
1 6 n 6 k, 1 6 mn 6 gn , as above. Let G = Gal(L/F ) and H = Gal(L/M ); then
G is the disjoint union of Hτnσmn for τn = τ̃n|L ∈ Gal(L/F ). This means that

Ver(σ mod G′) ≡
∏
n

σ[τn] mod H ′.

Let Ã be the subgroup in G̃ generated topologically by σ̃ and

H̃n = H̃ ∩ τ̃nÃτ̃−1
n .

Then H̃n is a subgroup in H̃ , which coincides with the subgroup in H̃ topologically
generated by σ̃[τ̃n]. Note that τ̃nÃ is the disjoint union of H̃nτ̃nσ̃

mn for 1 6 mn 6
gn .

Let H̃ be the disjoint union of ν̃n,lH̃n for ν̃n,l ∈ H̃, 1 6 l 6 |H̃ : H̃n|. Then

G̃ = ∪ ∪ ν̃n,lH̃nτ̃nσ
mn = ∪ν̃n,lτ̃nÃ.

If Σ is the fixed field of σ̃, then it is the fixed field of Ã, and we obtain that

NΣ/F (α) =
∏
n,l

ν̃n,lτ̃n(α) for α ∈ Σ.

Let Σn be the fixed field of σ̃[τ̃n] = τ̃nσ̃gn τ̃−1
n . Then (τ̃nΣ)ur = τ̃nΣur = τ̃nLur = Lur ,

τ̃nΣ ⊂ Σn , and Σn/τ̃nΣ is the unramified extension of degree gn . Hence, for a prime
element π in Σ, the element τ̃n(π) is prime in Σn . Moreover, one can show as before
that

NΣn/M (α) =
∏
l

ν̃n,l(α) for α ∈ Σn.

We deduce that

NΣ/F (π) =
∏
n,l

ν̃n,lτ̃n(π) =
∏
n

NΣn/M

(
τ̃n(π)

)
.
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Since σ̃[τ̃n] ∈ Frob(L/M ) extends the element σ[τn] ∈ Gal(L/M ), we conclude that

ϒL/F (σ) =
∏
n

ϒL/M (σ[τn]) = ϒL/M

(∏
n

σ[τn]
)

and ϒL/F (σ) = ϒL/M

(
Ver (σmod Gal(L/F )′

)
.

Exercises.

1. Let F be of characteristic p, and let L/F be a purely inseparable extension of degree pk .

Let τ = τ (L|F ) be the automorphism of F alg such that τ (α) = α1/pk for α ∈ F alg . Show

that Lp
k

= F, L/F is totally ramified, NL/FL
∗ = F ∗, τ (F ) = L, and vF ◦ τ−1 = vL .

2. Show that the first assertion of Proposition in (3.4) holds if the condition σ ∈ Gal(F sep/F )
is replaced by σ ∈ Aut(F alg) and M/F is a finite extension. Show that the second
assertion of the same Proposition holds if the condition “M/F,E/L are finite separable
extensions” is replaced by “M/F,E/L are finite extensions”.

3. a) Show that Ver does not depend on the choice of (right / left) cosets of H in G.
b) Show that for a subgroup H1 of finite index in G and for an intermediate subgroup H2

the map Ver:Gab → Hab
1 coincides with with the composition Gab → Hab

2 → Hab
1 .

c) Show that if G = H × H1 and H1 is of order n, then Ver:Gab → Hab maps an
element σ ∈ G to pr(σ)n , where pr:G→ H is the natural projection.

d) (�) Let G be finitely generated, H = G′ and |G : H| < ∞. Show that the
homomorphism Ver:G′ → H ′ is the zero homomorphism.

4. (B. Dwork [Dw]) Let L/F be a finite Galois totally ramified extension and E be the
maximal abelian extension of F in L. Let α ∈ F ∗ and α = NLur/F urβ for some

β ∈ Lur . Let βϕ−1 =
∏m
i=1 γ

σ̃i−1
i with γi ∈ Lur∗ and σ̃i ∈ Gal(Lur/F ur). Show that

ΨL/F (α)|E = σ̃−1|E

where σ̃ = σ̃v(γ1)
1 . . . σ̃v(γm)

m ∈ Gal(Lur/F ur) and v is the discrete valuation of Lur . De-

duce that, in particular, if βϕ−1 = πσ̃−1 for a prime element π of Lur , then ΨL/F (α)|E =

σ̃−1|E .
In fact, from this theorem known already in the fifties one can deduce the construction of
the Hazewinkel and Neukirch reciprocity maps for totally ramified extensions.

5. Let L/F be a finite abelian extension. Show that Un,F ∩NL/FL∗ = NL/FUhL/F (n),L
for every n > 0.

6. a) Show that if F = F ur then Corollary (3.2) holds if the equality ηϕ−1 = π1−σ is
replaced with the congruence ηϕ−1 ≡ π1−σ mod Ur,L where r is any positive
integer.

b) Find a proof of Theorem (3.5) which uses only F ur and its finite extensions.
7. Let L be a finite separable extension of F . Let M be the maximal abelian subextension

of F in L. Show that NL/FL
∗ = NM/FM

∗ .
8. Show that the results of this section hold for a Henselian discrete valuation field with finite

residue field.
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9. Let L/F be a finite Galois extension with group G. Show, following the steps below, that
[Gi, Gj] 6 Gi+pj if 1 6 j 6 i.
a) Reduce the problem to the following assertion: Let E/M be a finite Galois totally ram-

ified p-extension and let K/M be its subextension of degree p. Let j = s(K|M ) as in
sect. 1 Ch. III and let i be the minimal integer such that Gal(E/K)i 6= Gal(E/K)i+1 .
Suppose that E/K is abelian and Gal(E/K)i+pj = {1}. Then E/M is abelian.

b) Using Proposition (3.6) Ch. III deduce that Ui+j,K ⊂ NE/KUE .

c) By using b) and the formula τστ−1σ−1 = ϒE/K (τ )1−σ prove the assertion of a).
For more information on k = k(i, j) such that [Gi, Gj] 6 Gk see [Mau5].

4. The Reciprocity Map

In this section we define and describe properties of the reciprocity map

ΨF :F ∗ −→ Gal(F ab/F )

using the Neukirch map ϒL/F studied in the previous sections. We keep the conventions
of the two preceding sections.

(4.1). The homomorphism inverse to ϒL/F induces the surjective homomorphism

( · , L/F ):F ∗ −→ Gal(L/F )ab.

It coincides with ΨL/F for totally ramified extensions.
Denote the maximal abelian extension of F in F sep by F ab .

Proposition. Let H be a subgroup in Gal(L/F )ab , and let M be the fixed field of
H in L ∩ F ab . Then ( ·, L/F )−1(H) = NM/FM

∗ .
Let L1, L2 be abelian extensions of finite degree over F , and let L3 = L1L2 ,

L4 = L1 ∩ L2 . Then

NL3/FL
∗
3 = NL1/FL

∗
1 ∩NL2/FL

∗
2, NL4/FL

∗
4 = NL1/FL

∗
1 NL2/FL

∗
2.

The field L1 is a subfield of the field L2 if and only if NL2/FL
∗
2 ⊂ NL1/FL

∗
1 ; in

particular, L1 = L2 if and only if NL1/FL
∗
1 = NL2/FL

∗
2 .

If a subgroup N in F ∗ contains a norm subgroup NL/FL
∗ for some finite Galois

extension L/F , then N itself is a norm subgroup.

Proof. The first assertion follows immediately from (3.3) and (3.4). Put Hi =
Gal(L3/Li), i = 1, 2. Then

NL3/FL
∗
3 = ( ·, L3/F )−1(1) = ( ·, L3/F )−1(H1 ∩H2)

= ( ·, L3/F )−1(H1) ∩ ( ·, L3/F )−1(H2) = NL1/FL
∗
1 ∩NL2/FL

∗
2,

NL4/FL
∗
4 = ( ·, L3/F )−1(H1H2) = ( ·, L3/F )−1(H1)( ·, L3/F )−1(H2)

= NL1/FL
∗
1NL2/FL

∗
2.
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If L1 ⊂ L2 , then NL2/FL
∗
2 ⊂ NL1/FL

∗
1 . Conversely, if NL2/FL

∗
2 ⊂ NL1/FL

∗
1 ,

then NL1L2/F (L1L2)∗ coincides with NL2/FL
∗
2 , and Theorem (3.3) shows that the

extension L1L2/F is of the same degree as L2/F , hence L1 ⊂ L2 .
Finally, if N ⊃ NL/FL

∗ , then N = NM/FM
∗ , where M is the fixed field of

(N,L/F ).

Passing to the projective limit, we get

ΨF :F ∗ −→ lim←−F
∗/NL/FL

∗ −→ lim←− Gal(L/F )ab = Gal(F ab/F )

where L runs through all finite Galois (or all finite abelian) extensions of F . The
homomorphism ΨF is called the reciprocity map.

(4.2). Theorem. The reciprocity map is well defined.
Its image is dense in Gal(F ab/F ), and its kernel coincides with the intersection

of all norm subgroups NL/FL∗ in F ∗ for finite Galois (or finite abelian) extensions
L/F .

If L/F is a finite Galois extension and α ∈ F ∗ , then the automorphism ΨF (α)
acts trivially on L ∩ F ab if and only if α ∈ NL/FL∗ .

The restriction of ΨF (α) on F ur coincides with ϕvF (α)
F for α ∈ F ∗ .

Let L be a finite separable extension of F , and let σ be an automorphism of
Gal(F sep/F ). Then the diagrams

L∗
ΨL−−−−→ Gal(Lab/L)yσ yσ∗

(σL)∗ ΨσL−−−−→ Gal
(
(σL)ab/σL

)
L∗

ΨL−−−−→ Gal(Lab/L)yNL/F y
F ∗

ΨF−−−−→ Gal
(
F ab/F

)
F ∗

ΨF−−−−→ Gal(F ab/F )y yVer

L∗
ΨL−−−−→ Gal

(
Lab/L

)
are commutative, where σ∗(τ ) = στσ−1 , the right vertical homomorphism of the
second diagram is the restriction and

Ver: Gal(F sep/F )ab −→ Gal(F sep/L)ab = Gal(Lab/L).
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Proof. Let L1/F, L2/F be finite extensions and L1 ⊂ L2 . Then Proposition (3.4)
shows that the restriction of the automorphism

(α,L2/F ) ∈ Gal(L2/F )ab

on the field L1 ∩ F ab coincides with (α,L1/F ) for an element α ∈ F ∗ . This means
that ΨF is well defined.

The condition α ∈ NL/FL∗ is equivalent (α,L/F ) = 1 and the last relation means
that ΨF (α) acts trivially on L ∩ F ab .

Hence, the kernel of ΨF is equal to
⋂
NL/FL

∗ , where L runs through all finite
Galois extensions of F . Since ΨF (F ∗)|L = Gal(L/F ) for a finite abelian extension
L/F , we deduce that ΨF (F ∗) is dense in Gal(F ab/F ).

Theorem (2.4) shows that ΨF (πF )|F ur = ϕF for a prime element πF in F . Hence,
ΨF (α)|F ur = ϕvF (α)

F and ΨF (UF )|F ur = 1.
The commutativity of the diagrams follow from Propositions (3.3) and (3.4).

Remark. See Exercise 4 for the case of Henselian discrete valuation fields.

Exercises.

1. Let L be a finite extension of F , let M be the maximal separable subextension of F in
L, pk = |L : M |. Using Exercises 1 and 2 of section 3 show that

ΨσL(σα) = σ∗ΨL(α) for α ∈ L∗, σ ∈ Aut(F alg);

ΨF (NL/Fα) = ΨL(α)|
F ab for α ∈ L∗;

ΨL(α) = τ Ver(ΨF (αp
k

))τ−1 for α ∈ F ∗,

where τ = τ (L|F ) was defined in Exercise 1 section 3.
2. a) Let ζ1 be a primitive (pn − 1) th root of unity, let ζ2 be a primitive pm th root of

unity, and L1 = Qp(ζ1), L2 = Qp(ζ2). Show that

NL1/QpL
∗
1 = 〈pn〉 × UQp , NL2/QpL

∗
2 = 〈p〉 × Um,Qp .

b) Let L be contained in Q(k)
p for some k (see (1.3)). Show that an element α ∈ L

belongs to the intersection of all norm groups NQ(i)
p /L

Q(i)
p
∗

for i > k if and only if

NL/Qpα = pa for an integer a.
3. Let M/F be a cyclic extension with generator σ and L/M a finite abelian extension.

a) Show that L/F is Galois if and only if σNL/ML∗ = NL/ML∗ .

b) Show that L/F is abelian if and only if {ασ−1 : α ∈M∗} ⊂ NL/ML∗ .
4. Show that the assertions of this section hold for a Henselian discrete valuation field with

finite residue field.
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5. Pairings of the Multiplicative Group

In this section we define the Hilbert symbol associated to the local reciprocity map and
study its properties in (5.1)–(5.3). Explicit formulas for the pn th Hilbert symbol will
be derived in Ch. VII.

In (5.4)–(5.7) we study the Artin–Schreier pairing which is important for the p-part
of the theory in characteristic p.

These pairing will appear to be quite useful in the proof of the Existence Theorem
in the next section.

We continue assuming that F is a local field with finite residue field F .

(5.1). Let the group µn of all n th roots of unity in the separable closure F sep be
contained in F and let p - n if char(F ) = p.

The norm residue symbol or Hilbert symbol or Hilbert pairing ( ·, · )n:F ∗×F ∗ → µn
is defined by the formula

(α, β)n = γ−1
ΨF (α)(γ), where γn = β, γ ∈ F sep.

If γ′ ∈ F sep is another element with γ′
n = β , then γ−1γ′ ∈ µn and

γ′
−1

ΨF (α)(γ′) = γ−1
ΨF (α)(γ).

This means that the Hilbert symbol is well defined.

Proposition. The norm residue symbol possesses the following properties:
(1) ( ·, · )n is bilinear;
(2) (1− α, α)n = 1 for α ∈ F ∗, α 6= 1 (Steinberg property);
(3) (−α, α)n = 1 for α ∈ F ∗ ;
(4) (α, β)n = (β, α)−1

n ;
(5) (α, β)n = 1 if and only if α ∈ N

F ( n
√
β)/FF ( n

√
β)∗ and if and only if

β ∈ NF ( n
√
α)/FF ( n

√
α)∗ ;

(6) (α, β)n = 1 for all β ∈ F ∗ if and only if α ∈ F ∗n ,
(α, β)n = 1 for all α ∈ F ∗ if and only if β ∈ F ∗n ;

(7) (α, β)mnm = (α, β)n for m > 1, µnm ⊂ F ∗ ;
(8) (α, β)n,L = (NL/Fα, β)n,F for α ∈ L∗, β ∈ F ∗ , where ( ·, · )n,L is the Hilbert

symbol in L, ( ·, · )n,F is the Hilbert symbol in F , and L is a finite separable
extension of F ;

(9) (σα, σβ)n,σL = σ(α, β)n,L , where L is a finite separable extension of F , σ ∈
Gal(F sep/F ), and µn ⊂ L∗ but not necessarily µn ⊂ F ∗ .

Proof. (1): For γ ∈ F sep, γn = β we get

γ−1
ΨF (α1α2)(γ) = ΨF (α1)

(
γ−1

ΨF (α2)(γ)
)
·
(
γ−1

ΨF (α1)(γ)
)

=
(
γ−1

ΨF (α2)(γ)
)(
γ−1

ΨF (α1)(γ)
)
,
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since ΨF (α1) acts trivially on (α2, β)n ∈ µn . We also obtain

(α, β1β2)n =
(
γ−1

1 γ−1
2 ΨF (α)(γ1γ2)

)
=
(
γ−1

1 ΨF (α)(γ1)
)(
γ−1

2 ΨF (α)(γ2)
)

= (α, β1)n(α, β2)n.

for γ1, γ2 ∈ F sep , γn1 = β1, γ
n
2 = β2 .

(5),(2),(3),(4): (α, β)n = 1 if and only if ΨF (α) acts trivially on F ( n
√
β) and if and

only if
(

by Theorem (4.2)
)
α ∈ N

F ( n
√
β)/FF ( n

√
β))∗ .

Let m|n be the maximal integer for which α ∈ F ∗m . Then F ( n
√
α)/F is of

degree nm−1 . Let α = αm1 with α1 ∈ F ∗ and let ζn be a primitive n th root of unity.
Then for δ ∈ F sep, δn = α, we get

1− α =
n∏
i=1

(1− ζinδ) =
n∏
i=1

nm−1∏
j=1

(
1− ζinζ

j

nm−1δ
)

= NF ( n
√
α)/F

( n∏
i=1

(
1− ζinδ

))
∈ NF ( n

√
α)/FF ( n

√
α)∗.

Hence, (1 − α, α)n = 1. Further, −α = (1 − α)(1 − α−1)−1 for α 6= 0, α 6= 1. This
means that (−α, α)n = (1− α, α)n(1− α−1, α−1)−1

n = 1. Moreover,

1 = (−αβ, αβ)n = (−α, α)n(α, β)n(β, α)n(−β, β)n = (α, β)n(β, α)n,

i.e., (α, β)n = (β, α)−1
n .

Finally, if (α, β)n = 1, then (β, α)n = 1, which is equivalent to

β ∈ NF ( n
√
α)/FF ( n

√
α)∗.

(6): Let β ∈ F ∗n; then (α, β)n = 1 for all α ∈ F ∗ . Let β /∈ F ∗n , then L = F ( n
√
β) 6=

F , and L/F is a nontrivial abelian extension. By Theorem (4.2) the subgroup NL/FL∗

does not coincide with F ∗ . If we take an element α ∈ F ∗ such that α /∈ NL/FL∗
then, by property (5), we get (α, β)n 6= 1.
(7): For γ ∈ F sep, γnm = β , one has

(α, β)mnm =
(
γ−1

ΨF (α)(γ)
)m

=
(
γ−mΨF (α)(γm)

)
= (α, β)n,

because (γm)n = β .
(8): Theorem (4.2) shows that

(α, β)n,L = γ−1
ΨL(α)(γ) = γ−1

ΨF

(
NL/F (α)

)
(γ) =

(
NL/Fα, β

)
n,F

,

where γ ∈ F sep, γn = β .
(9): Theorem (4.2) shows that for γ ∈ F sep, γn = β ,

(σα, σβ)n,σL = σ
(
γ−1

ΨL(α)(γ)
)

= σ(α, β)n,L.
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Corollary. The Hilbert symbol induces the nondegenerate pairing

( ·, · )n:F ∗/F ∗n × F ∗/F ∗n −→ µn.

(5.2). Kummer theory (see [La1, Ch. VIII]) asserts that abelian extensions L/F of
exponent n (µn ⊂ F ∗, p - n if char(F ) = p) are in one-to-one correspondence with
subgroups BL ⊂ F ∗ , such that BL ⊃ F ∗n , L = F ( n

√
BL) = F (γi : γni ∈ BL) and the

group BL/F ∗n is dual to Gal(L/F ).

Theorem. Let µn ⊂ F ∗, p - n, if char(F ) = p. Let A be a subgroup in F ∗ such
that F ∗n ⊂ A. Denote its orthogonal complement with respect to the Hilbert symbol
( ·, · )n by B = A⊥ , i.e.,

B = {β ∈ F ∗ : (α, β)n = 1 for all α ∈ A}.

Then A = NL/FL∗ , where L = F ( n
√

B) and A = B⊥ .

Proof. We first recall that F ∗n is of finite index in F ∗ by Lemma (1.4).
Let B be a subgroup in F ∗ with F ∗n ⊂ B and |B : F ∗n| = m. Let A = B⊥ .

Then ΨF (α), for α ∈ A, acts trivially on F ( n
√
β) for β ∈ B. This means that ΨF (α)

acts trivially on L = F ( n
√

B) and, by Theorem (4.2), α ∈ NL/FL∗ . Hence

A ⊂ NL/FL∗.

Conversely, if α ∈ NL/FL∗ , then ΨF (α) acts trivially on F ( n
√
β) ⊂ L and

α ∈ N
F ( n
√
β)/FF ( n

√
β)∗

for every β ∈ B. Property (5) of (5.1) shows that (α, β)n = 1 and hence NL/FL∗ ⊂ A.
Thus, A = NL/FL∗ .

Furthermore, to complete the proof it suffices to verify that a subgroup A in F ∗

with F ∗n ⊂ A coincides with (A⊥)⊥ . Restricting the Hilbert symbol on A× F ∗ we
obtain that it induces the nondegenerate pairing A/F ∗n × F ∗/A⊥ → µn . The theory
of finite abelian groups (see [La1, Ch. I]) implies that the order of A/F ∗n coincides
with the order of F ∗/A⊥ . Similarly, one can verify that the order of A⊥/F×n is
the same as that of F×/(A⊥)⊥ , and hence the order of F×/A⊥ equals the order of
(A⊥)⊥/F×n . From A ⊂ (A⊥)⊥ we deduce that A = (A⊥)⊥ .

(5.3). The problem to find explicit formulas for the norm residue symbol originates
from Hilbert. In the case under consideration the challenge is to find a formula for the
Hilbert symbol (α, β)n in terms of the elements α, β of the field F . This problem is
very complicated when p|n and it will be discussed in Ch. VII. Nevertheless, there is a
simple answer when p - n.

Theorem. Let n be relatively prime with p and µn ⊂ F ∗ . Then

(α, β)n = c(α, β)(q−1)/n,
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where q is the cardinality of the residue field F and

c:F ∗ × F ∗ −→ µq−1

is the tame symbol defined by the formula

c(α, β) = pr
(
βvF (α)α−vF (β)(−1)vF (α)vF (β)

)
,

with the projection pr:UF → µq−1 induced by the decomposition UF ' µq−1 × U1,F
from (1.2) (i.e., pr(u) is the multiplicative representative of u ∈ F ).

Proof. Note that the elements of the group µn , for p - n, are isomorphically mapped
onto the subgroup in the multiplicative group F∗q . Hence, n|(q− 1). Note also that the
prime elements generate F ∗ . Indeed, if α = πaε with ε ∈ UF , then α = π1π

a−1 for
the prime element π1 = πε, when a 6= 1, and α = π2 for the prime element π2 = πε,
when a = 1. Using properties (1) and (7) of the Hilbert symbol it suffices to verify that
c(π, β) = (π, β)q−1 for β ∈ F ∗ .

Let β = (−π)aθε with a = vF (β), θ ∈ µq−1, ε ∈ U1,F . Then, as c(π,−π) =
1, c(π, ε) = 1, we obtain c(π, β) = c(π, θ) = θ. Property (3) of the Hilbert symbol
shows that (π,−π)q−1 = 1. Corollary (5.5) Ch. I implies that the group U1,F is
(q − 1)-divisible. Hence, (π, ε)q−1 = 1. Finally, since the extension F ( n

√
θ)/F is

unramified, Remark in (1.2) shows that for η ∈ F sep, ηq−1 = θ,

(π, θ)q−1 = η−1
ΨF (π)(η) = η−1ϕF (η) = ηq−1 = θ.

We conclude that (π, β)q−1 = θ = c(π, β).

(5.4). Abelian extensions of exponent p of a field F of characteristic p are described
by the Artin–Schreier theory (see [La1, Ch. VIII]). Recall that the polynomial Xp−X
is denoted by ℘ (X) (see (6.3) Ch. I). This polynomial is additive, i.e.,

℘ (α + β) = ℘ (α) + ℘ (β)

for α, β ∈ F . Abelian extensions L/F of exponent p are in one-to-one correspon-
dence with subgroups B ⊂ F such that ℘ (F ) ⊂ B. The quotient group B/℘ (F ) is
dual to Gal(L/F ), where

L = F
(
℘−1(B)

)
= F

(
γ : ℘ (γ) ∈ B

)
.

Since the kernel of the homomorphism ℘:Fq → Fq is of order p, the quotient
group Fq/℘

(
Fq
)

is of order p. Note that the index of ℘ (F ) in F is infinite. Indeed,
we shall show that for a prime element π in F , the sets π−i +℘ (F ) with p - i, i > 1,
are distinct cosets of ℘ (F ) in F . If we had π−i +℘ (F ) = π−j +℘ (F ) for 1 6 i < j ,
p - i, p - j , then we would have π−j − π−i ∈ ℘ (F ). However, as vF

(
℘
(
π−i
))

= −pi
for i > 0, we obtain that

vF
(
℘ (α)

)
= pvF (α)
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if vF (α) 6 0. Hence, the relation π−j − π−i ∈ ℘ (F ) is impossible.
For a complete discrete valuation field F of characteristic p with a finite residue

field we define the map
( ·, · ]:F ∗ × F −→ Fp

by the formula
(α, β] = ΨF (α)(γ)− γ,

where γ is a root of the polynomial Xp − X − β . All the roots of this polynomial
are γ + c where c runs through Fp , therefore we deduce that the pairing ( ·, · ] is well
defined.

Proposition. The map ( ·, · ] has the following properties:
(1) (α1α2, β] = (α1, β] + (α2, β], (α, β1 + β2] = (α, β1] + (α, β2] ;
(2) (−α, α] = 0 for α ∈ F ∗ ;
(3) (α, β] = 0 if and only if α ∈ NF (γ)/FF (γ)∗ , where γp − γ = β ;
(4) (α, β] = 0 for all α ∈ F ∗ if and only if β ∈ ℘ (F ) ;
(5) (α, β] = 0 for all β ∈ F if and only if α ∈ F ∗p ;
(6) (π, β] = TrFq/Fp θ0 , where π is a prime element in F and β =

∑
i>a θiπ

i with
θi ∈ Fq .

Proof.
(1): One has

ΨF (α1α2)(γ)− γ = ΨF (α1)
(
ΨF (α2)(γ)− γ

)
+ ΨF (α1)(γ)− γ

= ΨF (α1)(γ)− γ + Ψ(α2)(γ)− γ,
since ΨF (α2)(γ)− γ ∈ F . One also has

ΨF (α)(γ1 + γ2)− (γ1 + γ2) = ΨF (α)(γ1)− γ1 + ΨF (α)(γ2)− γ2.

(3): (α, β] = 0 if and only if ΨF (α) acts trivially on F (γ), where γp − γ = β .
Theorem (4.2) shows that this is equivalent to α ∈ NF (γ)/FF (γ)∗ .
(2): If α ∈ ℘ (F ), then (−α, α] = 0 by property (3). If a root γ of the polynomial
Xp −X − α does not belong to F , then −α = NF (γ)/F (−γ) and property 3) shows
that (−α, α] = 0.
(4): If β /∈ ℘ (F ), then L = F (γ) 6= F for a root γ of the polynomial Xp −X − β;
L/F is an abelian extension of degree p, and (1.5) shows that NL/FL∗ 6= F ∗ . For an
element α ∈ F ∗ , such that α /∈ NL/FL∗ , we deduce by Theorem (4.2) that ΨF (α)
acts nontrivially on L, i.e., ΨF (α)(γ) 6= γ and (α, β] 6= 0.
(5): Let A denote the set of those α ∈ F ∗ , for which (α, β] = 0 for all β ∈ F . Note
that for α, β ∈ F ∗ properties (1) and (2) imply

(−β, αβ] = (−αβ, αβ]− (α, αβ] = −(α, αβ].

Hence, the condition α ∈ A is equivalent to (α, αβ] = 0 for all β ∈ F ∗ and to
(−β, αβ] = 0 for all β ∈ F ∗ . Then, if α1, α2 ∈ A we get (−β, (α1 + α2)β] =
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(−β, α1β] + (−β, α2β] = 0, and (−β,−α1β] = −(−β, α1β] = 0. This means that
α1 + α2,−α1 ∈ A. Obviously, α1α2 ∈ A, α−1

1 ∈ A. Therefore, the set A ∪ {0} is a
subfield in F . Further, F p ⊂ A∪{0} by property (1), and we obtain F p ⊂ A∪{0} ⊂
F .

One can identify the field F with Fq((π)). Then the field F p is identified with
the field Fq((πp)) and we obtain that the extension Fq((π))/Fq((πp)) is of degree p.
Hence, A ∪ {0} = F p or A ∪ {0} = F . As we saw in (5.4) ℘ (F ) 6= F , and so
property (4) shows that (α, β] 6= 0 for some β ∈ F, α ∈ F ∗ . Thus, A ∪ {0} 6= F , i.e.,
A = F ∗p .
(6): If θ ∈ Fq and γ ∈ F sep , γp−γ = θ, then F (γ) = F or F (γ)/F is the unramified
extension of degree p. Remark in (1.2) and Theorem (4.2) imply

(π, θ] = ϕF (γ)− γ = γq − γ = θq/p + θq/p
2

+ · · · + θ = TrFq/Fp θ.

Let a be a positive integer and θ ∈ F∗q . Then

a(π, θπa] = (πa, θπa] = (θπa, θπa] = (−1, θπa] = 0,

since the group F∗q is p-divisible and −1 ∈ Fpq . Hence (π, θπa] = 0 for p -a. Finally,
let a = psb, where s > 0 and p - b, b > 0. Then

θπa = (θ1π
ps−1b)p − θ1π

ps−1b + θ1π
ps−1b ∈ θ1π

ps−1b + ℘ (F ) ,

where θp1 = θ. Continuing in this way we deduce that θπa = θsπ
b + ℘ (λ), where

θp
s

s = θ and λ ∈ F . Then (π, θπa] = (π, θsπb] = 0. We obtain property (6) and
complete the proof.

Corollary. The pairing ( ·, · ] determines the nondegenerate pairing

F ∗/F ∗p × F/℘ (F ) −→ Fp

(5.5). We introduce a map dπ which in fact coincides with ( ·, · ].
Let π be a prime element of a complete discrete valuation field F of characteristic

p with the residue field Fq . Then an element α ∈ F can be uniquely expanded as

α =
∑
i>a

θiπ
i, θi ∈ Fq.

Put
dα

dπ
=
∑
i>a

iθiπ
i−1, resπ α = θ−1.

Define the Artin–Schreier pairing

dπ:F ∗ × F → Fp, dπ(α, β) = TrFq/Fp resπ(βα−1 dα

dπ
).
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Proposition. The map dπ possesses the following properties:
(1) linearity

dπ(α1α2, β) = dπ(α1, β) + dπ(α2, β),
dπ(α, β1 + β2) = dπ(α, β1) + dπ(α, β2);

(2) if π1 is a prime element in F , then

dπ(π1, β) = dπ1 (π1, β) = TrFq/Fp θ0,

where β =
∑
i>a θiπ

i
1, θi ∈ Fq .

Proof. (1): We have

d(α1α2)
dπ

1
α1α2

=
dα1

dπ

1
α1

+
dα2

dπ

1
α2
,

since
dα

dπ
can be treated as a formal derivative

dα(X)
dX

∣∣∣∣
X=π

for the series α(X) =∑
aiX

i . Hence, we get dπ(α1α2, β) = dπ(α1, β) + dπ(α2, β).
The other formula follows immediately.
(2): Let C = Z[X1, X2, . . . ], where X1, X2, . . . are independent indeterminates.

Let X be an indeterminate over C . Put

α(X) = X1X +X2X
2 +X3X

3 + · · · ∈ C[[X]].

For an element
∑
j>a κjX

j ∈ C[[X]], κi ∈ C , we put

d(
∑
j>a κjX

j)

dX
=
∑
j>a

jκjX
j−1, resX

∑
j>a

κjX
j = κ−1.

Note that

resX
d
(∑

j>a κjX
j
)

dX
= 0.

Hence, for i 6= 0 we get

resX

(
α(X)i−1 dα(X)

dX

)
= resX

(
1
i

d
(
α(X)i

)
dX

)
= 0.

One can define a ring-homomorphism C[[X]] → F as follows: Xi ∈ C → ηi ∈
Fq, X → π. The series α(X) is mapped to α(π) = η1π + η2π

2 + · · · ∈ F , and we
conclude that

resπ

(
α(π)i−1 dα(π)

dπ

)
= 0 if i 6= 0.

Now let β =
∑
i>a θiπ

i
1, θi ∈ Fq . The definition of dπ1 shows that

dπ1 (π1, β) = TrFq/Fp θ0.
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Writing π1 = η1π + η2π
2 + · · · = α(π) with ηi ∈ Fq , we get

dπ(π1, θiπ
i
1) = resπ

(
θiπ

i−1
1

dπ1

dπ

)
= resπ

(
θiα(π)i−1 dα(π)

dπ

)
= 0,

if i 6= 0, and

dπ(π1, θ0) = resπ

(
θ0α(π)−1 dα(π)

dπ

)
= resπ(θ0π

−1 + δ) = TrFq/Fp θ0

where δ ∈ OF . Thus dπ1 (π1, β) = dπ(π1, β) = TrFq/Fp θ0 , as desired.

(5.6). Theorem. Let F be a complete discrete valuation field of characteristic p
with the residue field Fq . Then the pairing ( ·, · ] defined in (5.4) coincides with dπ
defined in (5.5). In particular, the pairing dπ does not depend on the choice of the
prime element π.

Proof. As the prime elements generate F ∗ , it suffices to show, using property (1) of
( ·, · ] and property (1) of dπ , that for a prime element π1 in F the following equality
holds:

(π1, β] = dπ(π1, β), β ∈ F.

Let β =
∑
i>a θiπ

i
1 . Then property (6) of ( ·, · ] and property (2) of dπ imply that

(π1, β] = dπ(π1, β) = TrFq/Fp θ0,

as desired.

Corollary. Let i be a positive integer, and B = Fqπ−i + · · · + Fqπ−1 + Fq + ℘ (F ).
Then B is an additive subgroup of F and the set

A = B⊥ = {α ∈ F ∗ : (α, β] = 0 for all β ∈ B}

coincides with Ui+1F
∗p .

Proof. For θ, η ∈ Fq one has

dπ(1 + ηπj , θπ−i) = 0 if j > i > 0.

Hence, Ui+1F
∗p ⊂ A. If we fix η ∈ Fq , then there exists an element θ ∈ Fq such that

TrFq/Fp (θη) 6= 0. Therefore,

dπ(1 + ηπj , θπ−j) = TrFq/Fp (jθη) 6= 0 for p - j.

We also get dπ(π, θ) = TrFq/Fp θ. Thus, for an element α ∈ F ∗ such that α /∈
Ui+1F

∗p , there exists an element β ∈ B with (α, β] = dπ(α, β) 6= 0. This means that
Ui+1F

∗p = A, as required.
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Remark. J. Tate in [T8] gave an interpretation of the residues of differentials in terms
of traces of linear operators acting on infinite dimensional vector spaces (like K((X))
over K ). A generalization of this idea to the tame symbol by using the theory of infinite
wedge representations is contained in [AdCK].

(5.7). Using Artin–Schreier extensions we saw in (1.5) the connection between an
open subgroup of prime index in F ∗ and the norm subgroup NL/FL

∗ for a cyclic
extension L/F of the same degree. Now we can refine this connection in a different
way, applying the pairings of F ∗ defined above. We shall show, for instance, that every
open subgroup N of prime index l in F ∗ contains the norm subgroup NL/FL

∗ for
some abelian extension L/F if µl ⊂ F ∗ . If char(F ) = 0 or l is relatively prime
with p, then Theorem (5.2) shows that N = NL/FL

∗ for L = F ( l
√
N⊥), where N⊥

is the orthogonal complement of N with respect to the Hilbert symbol ( ·, · )l . If
l = p = char(F ) and UF ⊂ N , then

N = 〈πp〉 × UF
for a prime element π in F . Taking an element θ ∈ Fq with TrFq/Fp θ 6= 0, we obtain

(π, θ] 6= 0, (πp, θ] = 0, (ε, θ] = 0

for ε ∈ UF . Therefore, N coincides with the orthogonal complement of θ + ℘ (F )
with respect to the pairing ( ·, · ], and Proposition (5.4) shows that N = NF (γ)/FF (γ)∗

for γ ∈ F sep with γp − γ = θ. If UF 6⊂ N , then one can find a positive integer i
such that Ui+1 ⊂ N and Ui 6⊂ N (since N is open). If B is as in Corollary (5.6),
then B⊥ = Ui+1F

∗p ⊂ N . Proposition (5.4) implies that B⊥ ⊃ NL/FL
∗ for L =

F
(
℘−1(B)

)
and hence NL/FL∗ ⊂ N .

One can show that N = NL/FL
∗ for L = F

(
℘−1(N⊥)

)
, where N⊥ is the

orthogonal complement of N with respect to the pairing ( ·, · ] (see Exercise 5).

Exercises.
1. a) Let n be odd. Show that (β, β)n = (−1, β)n = 1 for β ∈ F ∗ .

b) Show that (θ, β)pm = 1 for θ ∈ µq−1, β ∈ F ∗ .
2. Let p be an odd prime, and let ζp be a primitive p th root of unity.

a) Show that Xp − Y p =
∏p−1
i=0

(
ζipX − ζ−ip Y

)
and

∏p−1
i=1

(
ζip − ζ−ip

)
= p.

b) Put c(ζp) =
∏ p−1

2
i=1

(
ζip − ζ−ip

)
. Show that c(ζp)2 = (−1)

p−1
2 p.

c) For a natural b put (
b

p

)
=


0 if p|b,
1 if p - b, b ≡ a2 mod p for

−1, otherwise.

Show that (
b

p

)
=
c(ζbp)
c(ζp)

.
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d) Let q be an odd prime, q 6= p, and let ζq be a primitive q th root of unity. Show that

(
q

p

)
=

p−1
2∏
i=1

q−1
2∏
j=1

(
ζipζ

j
q − ζ−ip ζ−jq

)
.

e) Prove the quadratic reciprocity law: if p, q are odd primes, p 6= q, then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

(
2
p

)
= (−1)

p2−1
8 .

(there exist about 200 proofs of the quadratic reciprocity law, and the first of them are
due to Gauss. See [IR, Ch. V] for more details.)

3. Let ( ·, · )(p) be the Hilbert symbol ( ·, · )2,Qp :Q∗p ×Q∗p → µ2 . Show that if ε, η are units
in Zp , then for p > 2

(ε, η)(p) = 1, (p, ε)(p) =
(
ε0
p

)
, (p, p)(p) = (−1)

p−1
2

and

(ε, η)(2) = (−1)
ε−1

2
η−1

2 , (ε, 2)(2) = (−1)
ε2−1

8 , (2, 2)(2) = 1,

where ε0 is an integer such that ε ≡ ε0 mod p, (−1)a = (−1)a0 for a = a0 + 2a1 +
22a2 + · · · ∈ Z2 with integers a0, a1, a2, . . . .

4. For α, β ∈ Q∗ put (α, β)(∞) = 1, if α > 0, β > 0, and = −1 otherwise. Show that∏
p∈P ′ (α, β)(p) = 1 for α, β ∈ Q∗ , where the set P ′ consists of all positive primes and

the symbol ∞. Show that the last equality is equivalent to the quadratic reciprocity law.
5. Let char(F ) = p. Show that if A is an open subgroup of finite index in F ∗ such that

F ∗p ⊂ A, and B is its orthogonal complement with respect to the pairing ( ·, · ], then
A = NL/FL

∗ for L = F
(
℘−1(B)

)
. Conversely: if B is a subgroup in F such that

℘ (F ) ⊂ B and B/℘ (F ) is finite, then the orthogonal complement A = B⊥ with respect
to ( ·, · ] coincides with NL/FL

∗ , where L = F
(
℘−1(B)

)
, and the index of A in F ∗ is

equal to the order of B/℘ (F ).
6. (�) Let F be a field of characteristic p. Recall that the Witt theory establishes a one-

to-one correspondence between subgroups B in Wn(F ) with ℘Wn(F ) ⊂ B and abelian
extensions L/F of exponent pn B ↔ L = F

(
℘−1(B)

)
, where the map ℘ was de-

fined in Exercise 7 in section 8 Ch. I, and F
(
℘−1(B)

)
is the compositum of the fields

F (γ0, γ1, . . . , γn−1) such that ℘
(
(γ0, γ1, . . . , γn−1)

)
∈ B (see [La1, Ch. VIII, Exer-

cises 21–25]). This corresponds to Witt pairing

Gal(Fn/F )×Wn(F )/℘(Wn(F ))→Wn(Fp)/℘Wn(Fp),

where Fn is the compositum of all extensions L/F as above, and there is an isomorphism

Hom(GF ,Z/pnZ) 'Wn(F )/℘(Wn(F )).
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For a complete discrete valuation field F of characteristic p with residue field Fq define
a map

( ·, · ]n:F ∗ ×Wn(F ) −→Wn(Fp) ' Z/pnZ

by the formula

(α, x]n = ΨF (α)(z)− z,

where z ∈ Wn(F sep), and ℘ (z) = x. In particular, ( ·, · ] = ( ·, · ]1 . Show that the map
( ·, · ]n determines a nondegenerate pairing

F ∗/F ∗
pn ×Wn(F )/℘Wn(F ) −→Wn(Fp) ' Z/pnZ.

Show that if A is an open subgroup of finite index in F ∗ such that F ∗p
n

⊂ A, then
A = NL/FL

∗ for L = F
(
℘−1(A⊥)

)
, where A⊥ is the orthogonal complement of A

with respect to ( ·, · ]n . Conversely, if B is a subgroup in Wn(F ), such that ℘Wn(F ) ⊂ B
and B/℘Wn(F ) is finite, then B⊥ = NL/FL

∗ for L = F
(
℘−1(B)

)
. Passing to the

injective limit, we obtain the nondegenerate pairing

( ·, · ]∞:F ∗ ×W −→ lim−→Z/pnZ ' Qp/Zp,

where W = lim−→Wn(F )/℘Wn(F ) with respect to the homomorphisms

Wn(F )/℘Wn(F )→Wn+1(F )/℘Wn+1(F ),

(α0, . . . ) + ℘Wn(F ) 7→ (0, α0, . . . ) + ℘Wn+1(F ).

Note that the group W is dual to the Galois group of the maximal abelian p-extension of
F over F .

7. (�) Let π be a prime element in F , char(F ) = p, and |F : Fp| = f . Let

dπ,n:F ∗ ×Wn(F )→Wn(Fp)

be the map defined by the formula dπ,n(α, x) = (1 + F + · · · + Ff−1)y, where the
map F was defined in section 8 Ch. I, y ∈ Wn(Fq), and its ghost component y(m) =

resπ
(
α−1 dα

dπ
x(m)

)
, where x(m) is the ghost component of x (more precisely one

needs to pass from F to a ring of characteristic zero from which there is a surjective
homomorphism to F (e.g. Zp((t)) ) and operate with the ghost components at that level,
returning afterwards to Witt vectors over F ). Show that dπ,n = ( ·, · ]n .

8. (�) (Y. Kawada, I. Satake [KwS]) Let F be of characteristic p with the residue field Fq .
Let π be a prime element in F, θ a generator of µq−1 . Put F1 = F ( q−1√π, q−1√

θ) =
F ( q−1√F ∗). Then Kummer theory and the tame symbol determine the homomorphism

Ψ1:F ∗ −→ G1 = Gal(F1/F ).

Let F2 be the maximal abelian p-extension of F . The Witt theory and the pairings
dπ,n determine the homomorphism Ψ2:F ∗ → G2 = Gal(F2/F ) (the group G2 is dual
to W defined in Exercise 6). Introduce Ψ3:F ∗ → G3 = Gal(F ur/F ) by the formula
Ψ3(α) = ϕvF (α)

F for α ∈ F ∗ .
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Prove that Ψi are compatible with each other and therefore induce a homomorphism
Ψ:F ∗ → Gal(F ab/F ) which coincides with the reciprocity map ΨF . This way one can
construct class field theory for the fields of positive characteristic.

9. Show that the assertions of this section hold also for a Henselian discrete valuation field
of characteristic 0 with finite residue field. What can be said about the case of positive
characteristic?

6. The Existence Theorem

In this section we exhibit an additional feature of the reciprocity map which is expressed
by the existence theorem. We show in (6.2) that the set of all open subgroups of finite
index in F ∗ and the set of all norm subgroups NL/FL∗ for finite Galois extensions
L/F coincide. Then we discuss additional properties of the reciprocity map ΨF

in (6.3) and (6.4). A relation to the first continuous Galois cohomology group with
coefficients in the completion of the separable closure of the field in characteristic zero
is discussed in (6.5). Finally in (6.6) we describe two first generalizations of class field
theory.

We continue to assume that F is a complete discrete valuation field with finite
residue field.

(6.1). Proposition. Let L be a finite separable extension of F . Then the norm map
NL/F :L∗ → F ∗ is continuous and NL/FL

∗ is an open subgroup of finite index in
F ∗ .

Proof. Let E/F be a finite Galois extension with L ⊂ E . Then, by Theorem (4.2),
NE/FE

∗ is of finite index in F ∗ . The Galois group of the extension E/F is solvable
by (1.2). Therefore, in order to show that NL/FL∗ is open, it suffices to verify that
the norm map for a cyclic extension of prime degree transforms open subgroups to
open subgroups. This follows from the description of the behavior of the norm map
in Propositions (1.2), (1.3), (1.5) Ch. III. Similarly, the same description of the norm
map implies that the pre-image N−1

M/F of an open subgroup is an open subgroup for a

cyclic extension M/F . Therefore, the pre-image N−1
E/F of an open subgroup N in

F ∗ is an open subgroup in E∗ . Since N−1
L/F (N ) ⊃ NE/L

(
N−1
E/F (N )

)
, we obtain that

N−1
L/F (N ) is open in L∗ and NL/F is continuous.

Corollary. The Hilbert symbol ( ·, · )n is a continuous map of F ∗ × F ∗ to µn .

Proof. It follows from property (5) of the Hilbert symbol and the Proposition.
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(6.2). Theorem (“Existence Theorem”). There is a one-to-one correspondence
between open subgroups of finite index in F ∗ and the norm subgroups of finite abelian
extensions: N ↔ NL/FL

∗ . This correspondence is an order reversing bijection be-
tween the lattice of open subgroups of finite index in F ∗ (with respect to the intersection
N1∩N2 and the product N1N2 ) and the lattice of finite abelian extensions of F (with
respect to the intersection L1 ∩ L2 and the compositum L1L2 ).

Proof. We verify that an open subgroup N of finite index in F ∗ coincides with the
norm subgroup NL/FL

∗ of some finite abelian extension L/F . It suffices to verify
that N contains the norm subgroup NL/FL

∗ of some finite separable extension L/F .
Indeed, in this case N contains NE/FE∗ , where E/F is a finite Galois extension,
E ⊃ L. Then by Proposition (4.1) we deduce that N = NM/FM

∗ , where M is the
fixed field of (N,E/F ) and M/F is abelian.

Assume char(F ) - n, where n is the index of N in F ∗ . If µn ⊂ F ∗ , then
Theorem (5.2) shows that F ∗n = NL/FL

∗ for some finite abelian extension L/F ,
since F ∗n is of finite index in F ∗ . Then NL/FL

∗ ⊂ N . If µn is not contained in
F ∗ , then put F1 = F (µn). By the same arguments, F ∗1

n = NL/F1L
∗ for some finite

abelian extension L/F1 . Then NL/FL
∗ ⊂ F ∗n ⊂ N .

Assume now that char(F ) = p. We will show by induction on m > 1 that any
open subgroup N of index pm in F ∗ contains a norm subgroup. The arguments
of (5.7) show that this is true for m = 1. Let m > 1, and let N1 be an open
subgroup of index pm−1 in F ∗ such that N ⊂ N1 . By the induction assumption,
N1 ⊃ NL1/FL

∗
1 . The subgroup N ∩ NL1/FL

∗
1 is of index 1 or p in NL1/FL

∗
1 . In

the first case N ⊃ NL1/FL
∗
1 , and in the second case let L/L1 be a finite separable

extension with N−1
L1/F

(
N ∩NL1/FL

∗
1
)
⊃ NL/L1L

∗; then N ⊃ NL/FL∗ .
For an open subgroup N of index npm in F ∗ with p-n we now take open subgroups

N1 and N2 of indices n and pm , respectively, in F ∗ such that N ⊂ N1, N2 . Then
N = N1 ∩ N2 ⊃ NL1/FL

∗
1 ∩ NL2/FL

∗
2 ⊃ NL1L2/F (L1L2)∗ and we have proved the

desired assertion for N .
Finally, Proposition (4.1) implies all remaining assertions.

Corollary.

(1) The reciprocity map ΨF is injective and continuous.
(2) For n > 0 it maps Un,F isomorphically onto G(n), where G = Gal(F ab/F ).
(3) Every abelian extension with finite residue field extension is arithmetically profinite.
(4) Every abelian extension has integer upper ramification jumps.

Proof.
(1) By Theorem (4.2) the preimage Ψ

−1
F (G) of an open subgroup G of the group

Gal(F ab/F ) coincides with NL/FL
∗ , where L is the fixed field of G. Hence,

Ψ
−1
F (G) is open and ΨF is continuous. Since the intersection of all norm subgroups
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coincides with the intersection of all open subgroups of finite index in F ∗ , we conclude
that ΨF is injective.
(2) By Theorem (3.5) ΨL/F (Un,FNL/FL∗) = Gal(L/F )(n) for every finite abelian
extension L/F . We deduce that ΨF (Un,F ) is a dense subset of G(n). Since in our
case Un,F is compact, we conclude that ΨF (Un,F ) = G(n).
(3) Due to the definition of the upper ramification filtration in (3.5) Ch. III for an abelian
extension L/F we know that Gal(L/F )(n) is the image of G(n) in Gal(L/F ). Since
every G(n) has finite index in G(0) by (2), we deduce that every Gal(L/F )(x) has
finite index in Gal(L/F ). Thus, L/F is arithmetically profinite by Remark 1 in (5.1)
Ch. III.
(4) Let L/F be an abelian extension and let T be its maximal unramified subexten-
sion. For an upper ramification jump x of L/F from the proof of (3) we know that
Gal(L/F )(x + 1) has finite index in Gal(L/F )(0) = Gal(L/T ). Therefore, the fixed
field E of Gal(L/F )(x + 1) is a finite abelian extension of T . Let E = T (α). The
monic irreducible polynomial of α has coefficients in some finite subextension R of
F in T . The jump x corresponds to the jump x of Gal(R(α)/F ) and therefore is
integer by Theorem (3.5).

Remarks.

1. Lemma (1.4) implies that one may omit the word “open” in the Theorem if
char(F ) = 0, but not if char(F ) 6= 0.

2. Theorems (3.3) and (6.2) can be reformulated as the existence of a canonical
isomorphism between the group X

(
Gal(F sep/F )

)
of all continuous characters of the

profinite group Gal(F sep/F ) and the group X(F ∗) of all continuous characters of
finite order of the abelian group F ∗ . As a generalization, a part of the local Langlands
programme predicts existence of a certain bijection, satisfying some properties, between
isomorphism classes of complex irreducible smooth representations of GLn(F ) and
isomorphism classes of complex n-dimensional semi-simple Weil–Deligne representa-
tions of the so called Weil group (closely related to Gal(F sep/F ) ). This approach is
often called a nonabelian class field theory. For introductory texts to the programme
see Bibliography. Efforts of many mathematicians culminated in two proofs of this part
of the Langlands programme by G. Henniart [Henn3] and M. Harris–R. Taylor [HT] in
characteristic zero and in positive characteristic by G. Laumon–M. Rapoport–U. Stuhler
[LRS], L. Lafforgue [L]. The proofs are quite difficult, and it is likely to take many years
before the subject reaches the state of relative completion. In section 8 one can find an
arithmetically oriented noncommutative generalization of the local reciprocity map.

Definition. The field L, which is an abelian extension of finite degree over F , with
the property NL/FL

∗ = N is called the class field of the subgroup N ⊂ F ∗ .
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(6.3). Now we will generalize Theorem (6.2) for abelian (not necessarily finite) ex-
tensions of F . For an abelian extension L/F , we put

NL/FL
∗ =
⋂
M

NM/FM
∗,

where M runs through all finite subextensions of F in L. Then the norm subgroup
NL/FL

∗ , as the intersection of closed subgroups, is closed in F ∗ . Theorem (4.2)
implies that NL/FL∗ =

⋂
M Ψ

−1
F

(
Gal(F ab/M )

)
= Ψ

−1
F

(
Gal(F ab/L)

)
. Moreover, for

a closed subgroup N in F ∗ denote the topological closure of ΨF (N ) in Gal(F ab/F )
by G(N) . In other words, G(N) coincides with the intersection of all open subgroups
H in Gal(F ab/F ) with H ⊃ ΨF (N ). If an element α ∈ F ∗ belongs to Ψ

−1
F (G(N)),

then the automorphism ΨF (α) acts trivially on the fixed field of an open subgroup H
with H ⊃ ΨF (N ). From Theorem (4.2) we deduce that α ∈ ∩

M
NM/FM

∗ , where M

corresponds to H . We conclude that N = NL(N)/FL
∗
(N) for the fixed field L(N) of

G(N) (or of ΨF (N ) ).
One can ask whether L/F −→ N = NL/FL∗ −→ L(N)/F is the identity map. To

answer this question, first consider the following situation. Let L/F be a finite abelian
extension, and L0 be the maximal unramified subextension of F in L. Theorem (4.2)
shows that ΨF (UF )|L ⊂ Gal(L/L0). Conversely, if σ ∈ Gal(L/L0) and σ = ΨF (α)|L
for α ∈ F ∗ , then Theorem (4.2) implies that vF (α) = 0, i.e., α ∈ UF . Hence
ΨF (UF )|L = Gal(L/L0). The extension Lur/F is abelian, and we similarly deduce
that ΨF (UF )|Lur = Gal(Lur/F ur). Since UF is compact and ΨF is continuous, the
group ΨF (UF ) is closed and equal to Gal(F ab/F ur).

Using this, it is easy to show that if L/F has finite residue field extension then
L = L(N) , and if L/F has infinite residue field extension then L = L(N)F

ur . One also
deduces that for two abelian extensions L1/F , L2/F if NL1/FL

∗
1 = NL2/FL

∗
2 6⊂ UF

then L1 = L2 , and if NL1/FL
∗
1 = NL2/FL

∗
2 ⊂ UF then L1F

ur = L2F
ur .

Theorem. The correspondence L→ NL/FL
∗ is an order reversing bijection between

the lattice of abelian extensions of F with finite residue field and the lattice of closed
subgroups in F ∗ which are not contained in UF . The quotient group F ∗/NL/FL∗ for
such extensions is isomorphic to Gal(L/F ).

Proof. Use the previous arguments and also the arguments in the proof of Proposi-
tion (4.2) and Theorem (6.2) (replacing the word “open” by “closed”).

(6.4). Let π be a prime element in F and ΨF (π) = ϕ. Then ϕ|F ur = ϕF , and for
the fixed field Fπ of ϕ we get

Fπ ∩ F ur = F, FπF
ur = F ab

(the second equality can be deduced by the same arguments as in the proof of Proposi-
tion (2.1). The prime element π belongs to the norm group of every finite subextension
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L/F of Fπ/F . The group Gal(F ab/Fπ) is mapped isomorphically onto Gal(F ur/F )
and the group Gal(Fπ/F ) is isomorphic Gal(F ab/F ur). The latter group is often
denoted by IF and called the inertia subgroup of Gab

F = Gal(F ab/F ).
We have

Gal(F ab/F ) ' Gal(Fπ/F )× Gal(F ur/F ), Gal(Fπ/F ) ' UF ,Gal(F ur/F ) ' Ẑ

and
ΨF (F ∗) = 〈ϕ〉 × Gal(F ab/F ur),

where 〈ϕ〉 is the cyclic group generated by ϕ. We observe that the distinction between
F ∗ and Gal(F ab/F ) is the same as that between Z and Ẑ. So if we define the
group F̂ ∗ as lim←−F

∗/U where U runs over all open subgroups of finite index in F ∗ ,

then F̂ ∗ = UF × Ẑ and the reciprocity map ΨF extends to the isomorphism (and
homeomorphism of topological spaces)

Ψ̂F : F̂ ∗ −→ Gal(F ab/F ) = Gab
F .

Define
ϒF = Ψ̂

−1
F : Gal(F ab/F ) −→ F̂ ∗.

Then ϒF maps IF homeomorphically onto UF .
The field Fπ can be explicitly generated by roots of iterated powers of the isogeny

of a formal Lubin–Tate group associated to π. For this and other properties of Fπ see
Exercise 6 of this section and Exercises 5–7 section 1 Ch. VIII.

(6.5). Choose a prime element π. Then the surjective homomorphism Gal(F ab/F )→
Gal(Fπ/F ) induces the epimorphism GF → IF . Its composition with the restriction
of the reciprocity homomorphism ϒF : IF −→ UF defined in the previous subsection
is a surjective homomorphism ΦF = ΦF,π:GF −→ UF . Certainly, ΦF,π is just a
modification of ϒF : ϕ = Ψ(π) instead of being sent to π is sent to 1, and ΦF,π|IF =
ϒF |IF .

The homomorphism ΦF can be viewed as an element of the group H1
c (GF , F ∗)

of continuous cochains from GF to F ∗ modulo coborders. Extend the target group
F ∗ replacing it with the multiplicative group C∗ of the completion C of F sep with
respect to the valuation on F sep .

Now assume that F is of characteristic zero. J. Tate proved [T2] that the group
H1
c (GF , C∗) is isomorphic to H1

c (G(E/F ), E∗) where E/F is any abelian extension
with finite residue field extension and Gal(E/F ) ' Zp . He proved that H0

c (GF , C) =
F (for a simpler proof see [Ax]) and that H1

c (GF , C) is a one-dimensional vector
space over F generated by the class of log ◦ΦF :GF → F . His work shows that if F
is a finite Galois extension of Qp and τ is a nontrivial element of Gal(F/Qp), then
there is a non-zero element ατ in the completion of Fπ such that

ϒF (σ) = (ασ−1
τ )τ for every σ ∈ IF .
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For another proof which uses differential forms see [Fo3], see also Exercise 9. For a
direct proof of the assertions of this paragraph see Exercise 8.

(6.6). Consider some generalizations of local class field theory (see also section 8 and
the next chapter).

Example 1. The completion F = F̂ ur is a local field with the residue field
Fsep
q , which is algebraically closed. As F ur is Henselian, Theorem (2.8) Ch. II im-

plies that the group Gal
(
(F ur)ab/F ur) is embedded isomorphically onto the group

Gal
(
(F̂ ur)ab/F̂ ur

)
. Let π be prime in F . Proposition (4.2) Ch. II and (6.4) show that

the former group can be identified with the projective limit lim←− Gal(Fn,π/Fn) where
Fn is the unramified extension of F of degree n. The preceding considerations and
Theorem (4.2) now imply the existence of the isomorphism

ΨF: lim←−UFn −→ Gal(Fab/F),

where the projective limit is taken with respect to the norm maps. For UF = lim←−UFn and
for a finite separable extension L/F one can introduce the norm map NL/F:UL → UF .
For a finite abelian extension L/F

NL/FUL = Ψ
−1
F

(
Gal(Fab/L)

)
, UF/NL/FUL ' Gal(L/F).

Moreover, open subgroups in UF are in one-to-one correspondence with finite abelian
extensions.

In the general case of a local field F with algebraically closed residue field k J.-P.
Serre’s geometric class field theory describes the group Gal(Fab/F) via the fundamental
group π1(UF) of UF viewed as a proalgebraic group over k. For a finite Galois
extension L/F there is an exact sequence

· · · → π1(UL)
NL/F−−−→ π1(UF) ∂−→ π0(VL)→ π0(UL)→ . . .

where VL is the kernel of the norm map NL/F:UL → UF . Since UL is connected
and the connected component of VL is U (L/F) defined in (1.7), Proposition (1.7) and
the previous sequence induce the reciprocity map

π1(UF)/NL/Fπ1(UL)→ Gal(L/F)ab.

One shows that the corresponding reciprocity map π1(UF) → Gal(Fab/F) is an iso-
morphism [Se2].

This theory can be also deduced from the approach discussed above for the field F

with residue field F sep
q , and for the general case see Exercise 4 section 3 of the next

chapter.

Example 2. Let F be an infinite separable extension of a complete discrete
valuation field F with residue field Fq . Put F× = lim←−M

∗ , where M runs all finite
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subextensions of F in F and the projective limit is taken with respect to the norm maps.
Assume that the residue field of F is finite. Then for an element A = (αM ) ∈ F× we
put v(A) = vM (αM ) for M containing F∩F ur; v is a homomorphism of F× onto Z.
If L/F is a finite separable extension, then it is a straightforward exercise to define the
norm map NL/F:L× → F× . It can be shown that v(NL/FL

×) = f (L/F)Z. If L/F

is a finite Galois extension, then Gal(L/F) acts on L× , and the set of fixed elements
with respect to this action coincides with F× . One can verify the assertions analogous
to those of sections 2–4 and show that there is the isomorphism

ϒL/F: Gal(L/F)ab −→ F×/NL/FL
×

(for more details see [Sch], [Kaw2], [N3, Ch. II, section 5]).
In the particular case of arithmetically profinite extension F/F , the group F× is

identified with N (F|F )∗ , and Gal(L/F)ab is identified with Gal
(
N (L|F )/N (F|F )

)ab .

We obtain isomorphisms Gal
(
N (L|F )/N (F|F )

)ab →̃ Gal(L/F)ab →̃F×/NL/FL
×

→̃N (F|F )∗/NN(L|F )/N(F|F )N (L|F )∗ . Thus, the reciprocity ϒL/F in characteristic
p or zero is connected with the reciprocity map ϒN(L|F )/N(F|F ) in characteristic p.
See also Exercise 7.

Exercises.
1. Show that the map ( ·, · ]n:F ∗×Wn(F )→Wn(Fp) (see Exercise 6 section 5) is continuous

with respect to the discrete topologies on Wn(F ),Wn(Fp).
2. Prove Theorem (6.2) using Artin–Schreier extensions and the considerations of (1.5) instead

of the pairings of F ∗ of section 5.
3. By using Exercise 2a) section 4 find another proof of the local Kronecker–Weber Theorem,

different from the proof in Exercise 6 section 1. Show that the assertion the theorem does
not hold if Qp is replaced by Qp(ζp).

4. Show that the closed subgroups in UF are in one-to-one correspondence with the abelian
extensions L/F such that F ur ⊂ L.

5. Prove the existence Theorem for a Henselian discrete valuation field of characteristic 0 with
finite residue field (see Exercise 4 section 4 and Exercise 9 section 5). For the case of
characteristic p see p. 160 of [Mi].

6. A field E ⊂ F ab is said to be a frame field if E ∩ F ur = F and EF ur = F ab .
a) Show that Gal(F ab/F ) ' Gal(F ab/E)× Gal(F ab/F ur) for a frame field E .
b) Let ϕ ∈ Gal(F ab/F ) be an extension of the Frobenius automorphism ϕF . Show

that the fixed field Eϕ of ϕ is a frame field and that the correspondence ϕ→ Eϕ is
a one-to-one correspondence between extensions of ϕF and frame fields.

c) Show that the correspondence π → ΨF (π) is a one-to-one correspondence between
prime elements in F and extensions of ϕF . Therefore, the correspondence π → Fπ
is a one-to-one correspondence between prime elements in F and frame fields.

d) π ∈ NL/FL∗ for some prime element π if and only if L ∩ F ur = F .
Further information on the field Fπ can be deduced using Lubin–Tate formal groups, see
Exercises 5–7 section 1 Ch. VIII.

7. (�) Let F be a local field with finite residue field, and let L be a totally ramified infinite
arithmetically profinite extension of F . Let N = N (L|F ). Show that there is a homomor-
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phism Ψ:N∗ → Gal(Lab/L) induced by the reciprocity maps ΨE :E∗ 7→ Gal(Eab/E)
for finite subextensions E/F in L/F . Show that χ◦Ψ = ΨN , where the homomorphism
χ: Gal(Lab/L)→ Gal(Nab/N ) is defined similarly to the homomorphism τ 7→ T of (5.6)
Ch. III. For further details see [Lau4].

8. (�) Let F be of characteristic zero. Let E/F be a totally ramified Galois extension
with the group isomorphic to Ẑ. Let σ be a generator of Gal(E/F ). Denote by Ê the
completion of E . Denote by En the subextension of degree pn over F .
a) Let ε ∈ NE/FUE . Using properties of the Hasse–Herbrand function and Exercise 2

section 5 Ch. III show that there exist ηn ∈ E∗n such that εp
n

= NEn/F ηn and
vEn (ηn − 1) > pn−n0e(F |Qp)(n − n0) for some n0 and all sufficiently large n.
Deduce that ηn tends to 1 when n tends to infinity. Write ε = ηnγ

σ−1
n with

γn ∈ E∗n . Show that the limit γ of γn exists in Ê∗ and ε = γσ−1 . Deduce that
NE/FUE ⊂ F ∗ ∩ Ê∗σ−1 .

b) Using a) show that the operator NEn/F : Ê∗ → Ê∗ is surjective. Then using the

description of the reciprocity map in section 2 show that every ε ∈ F ∗ ∩ Ê∗σ−1

belongs to NE/FUE .

c) Deduce that NE/FUE = F ∗ ∩ Ê∗σ−1 and Ê∗σ−1 coincides with the closure of
∪nNE/EnE

∗ .
d) Deduce from c) that if F/Qp is a finite Galois extension and τ is a nontrivial element

of Gal(F/Qp), then there is a non-zero element ατ in the completion of Fπ such
that τ−1

ϒF (σ) = ασ−1
τ for every σ ∈ IF .

e) Show that the class of ΦF in H1
c (GF , C∗) is nontrivial.

Now, using the logarithm and two linear algebra–Galois theory exercises in [S6, Exercises
1–2 Appendix to Ch. III] one easily deduces avoiding Hodge–Tate theory that H1

c (GF , C)
is a one-dimensional vector space over F generated by the class of log ◦ΦF :GF → F . It
follows from c) that the class of log ◦ΦF,π:GF → F in H1

c (GF , C) coincides with the
class of log ◦ΦQp,NF/Qpπ:GF → F .

9. (�) (J.-M. Fontaine [Fo3]) Let F be a local field of characteristic zero. Let v be the
valuation on C normalized by v(πF ) = 1 where πF is a prime element of F . Denote by Ω

the module of relative differential forms ΩOF sep/OF . For a GF -module M put Tp(M ) =
lim←− n p

nM where pnM stands for the pn -torsion of M . For example, Tp(F sep∗) is
a free Zp -module of rank 1 with generator ζ and GF -action given by σ(ζ) = χ(σ)ζ
where χ:GF → Z∗p is the so called cyclotomic character: choose for every n a primitive

pn th root ζpn of unity such that ζp
pn+1 = ζpn , then σ(ζpn ) = ζχ(σ)

pn . Denote M (1) =

M ⊗Zp Tp(F sep∗).
a) Show that ΩOL/OF = OLdπL for a finite extension L/F , where πL is a prime

element of L. Denote by dF the non-negative integer such that the ideal {α ∈ OF :
αdπF = 0 in ΩOF /Zp} is equal to MdF

F .
b) Show that if E/F is a subextension of a finite extension L/F , then the sequence

0→ ΩOE/OF ⊗OE OL → ΩOL/OF → ΩOL/OE → 0

is exact.
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c) Define g:F sep(1) −→ Ω, α/pn ⊗ ζ 7→ α
dζpn
ζpn

where α ∈ OF sep . Show that this
map is a well defined surjective GF -homomorphism. Show that its kernel equals to
A(1) where

A = {α ∈ F sep : v(απ1/(p−1)
F ) + dF /e(F |Qp) > 0}.

d) Deduce that there is an isomorphism of GF -modules pnΩ ' (A/pnA)(1) and

Tp(Ω)⊗Zp Qp ' C(1).

10. Let M be the maximal abelian extension of the maximal abelian extension of the maximal
abelian extension of F . Show, using the notations of Exercise 3 sect. 3 Ch. III, that B(M/F )
is dense in [0,+∞) and deduce that every nonnegative real number is an upper ramification
jump of M/F . Therefore, every nonnegative real number is an upper ramification jump of
F sep/F .

7. Other approaches to the local reciprocity map

In this section we just briefly review other approaches to local class field theory.
We keep the conventions on F .

(7.1). The approaches of Hazewinkel and Neukirch for local fields with finite residue
field can be developed without using each other, see [Haz1–2], [Iw5], [N4–5]; but each
of them has to go through some “unpleasant” lemmas.

In characteristic p there is a very elegant elementary approach by Y. Kawada and
I. Satake [KwS] which employs Artin–Schreier–Witt theory, see Exercise 8 section 5.

(7.2). The maximal abelian totally ramified extension of Qp coincides with Qp(µp∞ )
where µp∞ is the group of all roots of order a power of p (see Exercise 3 section 6).
By using formal Lubin–Tate groups associated to a prime element π one can similarly
construct the field Fπ of (6.5). Due to explicit results on the extensions generated by
roots of iterated powers of the isogeny of the formal group (see Exercises 5–7 section 1
Ch. VIII), one can develop an explicit class field theory for local fields with finite residue
field, see for instance [Iw6]. Disadvantage of this approach is that it is not apparently
generalizable to local fields with infinite residue field.

(7.3). All other approaches prove and use the fact (or its equivalent) that for the Brauer
group of a local field F there is a (canonical) isomorphism

invF : Br(F ) −→ Q/Z.

Historically this is the first approach [Schm], [Ch1].
Recall that the Brauer group of a field K is the group of equivalence classes of

central simple algebras over K . A finite dimensional algebra A over K is called
central simple if there exists a finite Galois extension L/K such that the algebra
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viewed over L isomorphic to a matrix algebra over L (in this case A is said to split
over L ). A central simple algebra A over K is isomorphic to Mm(D) where D is a
division algebra with centre K , m > 1. Two central simple algebras A,A′ are said
to be equivalent if the associated division algebras are isomorphic over K . The group
structure of Br(K) is given by the class of the tensor product of representatives.

A standard way to prove the assertion about Br(F ) is the show that every central
simple algebra over F splits over some finite unramified extension of F , and then
using Gal(F ur/F ) ' Gal(F sep

q /Fq) reduce the calculation to the fact that the group
of continuous characters X Fq of GFq is canonically (due to the canonical Frobenius
automorphism) isomorphic with Q/Z. For proofs of the existence of the isomorphism
invF see for instance [W, Ch. XII] or a cohomological calculation in [Se3, Ch. XII] or
a review of the latter in [Iw6, Appendix].

Now let a characterχ ∈ XF = Homc(GF ,Q/Z) correspond to a cyclic extension
L/F of degree n with generator σ such that χ(σ) = 1/n. For every element α ∈ F ∗
there is a so called cyclic algebra Aα,χ defined as ⊕n−1

i=0 Lβ
i where βn = α, aβ =

β · σ(a) for every a ∈ L. We have a pairing

F ∗ × XF −→ Q/Z, (α, χ) 7→ invF ([Aα,χ]).

This pairing induces then a homomorphism

F ∗ −→ Gal(F ab/F ) = Hom(XF ,Q/Z).

Then one proves that this homomorphism possesses all nice properties, i.e. establishes
local class field theory for abelian extensions.

If the field F contains a primitive n th root of unity, then Kummer theory supplies
a homomorphism from F ∗/F ∗n to the n-torsion subgroup nXF and the resulting
pairing F ∗/F ∗n × F ∗/F ∗n → 1

nZ/Z after identifications coincides with the Hilbert
symbol in (5.1)–(5.3). Similarly, if F is of characteristic p then Artin–Schreier
theory supplies a homomorphism F/℘(F ) → pXF which then induces a pairing
F ∗/F ∗p × F/℘(F ) → 1

pZ/Z which after identifications coincides with the pairing of
(5.4)–(5.5).

The just described approach does not require cohomological tools and was known
before the invention of those.

(7.4). Using cohomology groups one can perhaps simplify the proofs in the approach
described in (7.3). From our point of view the exposition of class field theory for local
fields with finite residue field given in this chapter is the most appropriate for a beginner;
at a later stage the cohomological approach can be mastered. The real disadvantage of
the cohomological approach is its unexplicitness whereas the approach in this chapter
in addition to quite an explicit nature can be easily extended to many other situations.

If L is a finite Galois extension of F then one has an exact sequence

1→ H2(Gal(L/F ), L∗)→ Br(F )→ Br(L)→ 1
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and Br(F ) is the union of classes of algebras which split over L (i.e. the image of all
H2(Gal(L/F ), L∗) for all finite Galois extensions L/F ). So invF induces a canonical
isomorphism

invL/F :H2(Gal(L/F ), L∗) →̃ 1
|L : F |

Z/Z.

Denote the element which is mapped to 1/|L : F | by uL/F . If Ĥr stands for the
modified Tate’s cohomology group, see [Se3, sect. 1 Ch. VIII], then the cup product
with uL/F induces an isomorphism

Ĥr(Gal(L/F ),Z) →̃ Ĥr+2(Gal(L/F ), L∗).

For r = 0 we have

Gal(L/F )ab = Ĥ0(Gal(L/F ),Z) →̃ Ĥ2(Gal(L/F ), L∗) = F ∗/NL/FL∗

which leads to the analog of Theorems (3.3) and (4.2). Certainly the last isomorphism
in much more explicit form is given in the definition of ϒab

L/F in section 2.

Using cohomology groups one can interpret the pairing F ∗ × XF −→ Q/Z of the
previous subsection as arising from the cup product

H0(Gal(L/F ), L∗)×H2(Gal(L/F ),Z)→ H2(Gal(L/F ), L∗)

and the border homomorphism H1(Gal(L/F ),Q/Z) → H2(Gal(L/F ),Z) associated
to the exact sequence

0→ Z→ Q→ Q/Z→ 0.

For a field K one can try to axiomatize those properties of its cohomology groups
which are sufficient to get a reciprocity map from K∗ to Gab

K , as it is well known this
leads to the notion of class formation, see for example [Se3, Ch. XI].

(7.5). Assume that F is of characteristic zero with finite residue field of characteristic
p. For n > 1 the pn-component of the pairing F ∗ ×XF −→ Q/Z defined in (7.3) is
a pairing

H1(GF , µpn )×H1(GF ,Z/pnZ)→ H2(GF , µpn ).

If for every n one knows that this pairing is a perfect pairing, and the right hand side is
a cyclic group of order pn , then one deduces the p-part of class field theory of the field
F .

More generally, for a finitely generated Zp-module M equipped with the action of
GF and annihilated by pn define M∗(1) = Hom(M,µpn ). The previous pairing can
be generalized to the pairing given by the cup product

Hi(GF ,M )×H2−i(GF ,M∗(1))→ H2(GF , µpn ).
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By Tate local duality it is a perfect pairing of finite groups. So, if one can establish
Tate local duality independently of local class field theory, then one obtains another
approach to the p-part of local class field theory in characteristic zero.

J.-M. Fontaine’s theory of Φ − Γ-modules [Fo5] was used by L. Herr to relate
Hi(GF ,M ) with cohomology groups of a simple complex of Φ− Γ-modules.

Namely, let L be the cyclotomic Zp-extension of F , i.e. the only subfield of
F (µp∞ ) such that Gal(L/F ) ' Zp . It follows from Exercise 2 section 5 Ch. III that the
Hasse–Herbrand function of L/F grows sufficiently fast as in Exercise 7 of the same
section, so we have a continuous field homomorphism N (L|F ) −→ R = R(C) where
C and R(C) are defined in the same exercise. Denote by X ∈W (R) the multiplicative
representative in W (R) of the image in R of a prime element of N (L|F ). We have
also a continuous ring homomorphism W (F ) −→ W (R), denote by W its image.
The action of elements of GF is naturally extended on W (R). One can show that the
ring OL = W{{X}} is contained in W (R), which means that the series of Example 4
of (4.5) Ch. I converge in W (R).

The module S = D(M ) = (OL ⊗Zp M )GL is a finitely generated OL-module
endowed with an action of a generator γ of Gal(L/F ) and an action of Frobenius
automorphism ϕ. It is shown in [Fo5] and [Herr1] that Hi(GF ,M ) is equal to the
i th cohomology group of the complex

0 −−−−→ S
f−−−−→ S ⊕ S g−−−−→ S −−−−→ 0

where f (s) = ((ϕ− 1)s, (γ − 1)s) and g(s, t) = (γ − 1)s− (ϕ− 1)t (for a review see
[Herr2]).

Then Tate local duality can be established by working with the complex above and
this provides another approach to the p-part of local class field theory [Herr1].

This approach is just a small application of the theory of Galois representations over
local fields, see [A], [Colm] and references there.

8. Nonabelian Extensions

In (8.1) we shall introduce a description of totally ramified Galois extensions of a local
field with finite residue field (extensions have to satisfy certain arithmetical restrictions
if they are infinite) in terms of subquotients of formal power series F sep

p [[X]]∗ . This
description can be viewed as a non-commutative local reciprocity map (which is not in
general a homomorphism but a cocycle) describing the Galois group in terms of certain
objects related to the ground field. It can be viewed as a generalization of the reciprocity
map of the previous sections.

In subsections (8.2)–(8.3) we review results on the absolute Galois group of local
fields with finite residue field.
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(8.1). Let F be a local field with finite residue field Fq . Let ϕ in the absolute Galois
group GF of F be an extension of the Frobenius automorphism ϕF . Let Fϕ be
the fixed field of ϕ. It is a totally ramified extension of F and its compositum with
F ur coincides with the maximal separable extension of F . In this subsection we shall
work with Galois extensions of F inside Fϕ . For every finite subextension E/F of
Fϕ/F put πE = ϒE(ϕ|Eab ), see (6.4). Then πE is a prime element of E and from
functorial properties of the reciprocity maps we deduce that πM = NE/MπE for every
subextension M/F of E/F .

Let L ⊂ Fϕ be a Galois totally ramified arithmetically profinite extension (see
section 5 Ch. III) of F . If L/F is infinite, then the prime elements (πE) in finite
subextensions E of Fϕ/F supply the sequence of norm-compatible prime elements
(πE) in finite subextensions of L/F and therefore by the theory of fields of norms
(section 5 Ch. III) a prime element X of the local field N = N (L|F ). Denote by
ϕ the automorphism of Nur and of its completion N̂ur (which can be identified with
N (L̂ur/F̂ ur) ) corresponding to ϕ. Note that N and N̂ur are GF -modules. If L/F
is finite then we view N∗ as just the group of norm compatible non-zero elements in
subextensions of F in L.

Definition. Define a noncommutative local reciprocity map [Fe13–14]

ΘL/F : Gal(L/F ) −→ U
N̂ur/UN

by
ΘL/F (σ) = U mod UN ,

where U ∈ U
N̂ur satisfies the equation

Uϕ−1 = X1−σ.

The element U exists by Proposition (1.8) applied to the local field N̂ur . It is
uniquely determined modulo UN due to the same Proposition.

A link between the reciprocity maps studied in the previous sections and the map
ΘL/F is supplied by the following

Lemma.

(1) The ground component u
F̂ ur of U = (u

M̂ur ) belongs to F .
(2) ΘL/F (σ)

F̂ ur = u
F̂ ur = ϒF (σ) mod NL/FL∗ where ϒF is defined in (6.4).

(3) ΘL/F is injective.
(4) ΘL/F (στ ) = ΘL/F (σ)σ(ΘL/F (τ )).

Proof. The unit u
F̂ ur belongs to F , since uϕ−1

F̂ ur
= 1. The second assertion follows

from Corollary in (3.2).
To show the third assertion assume that ΘL/F (σ) = 1. Then σ acts trivially on the

prime elements πM of finite subextension M/F in L/F , therefore σ = 1.
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Finally, X1−στ = X1−σ(X1−τ )σ .

This lemma shows that the ground component of Θ is the abelian reciprocity map
ϒ. We see that the reciprocity map ΘL/F is not a homomorphism in general, but a
Galois cocycle. The map ΘL/F satisfies functorial properties which generalize those
in (3.4).

Denote by U�
N̂ur

the subgroup of the group U
N̂ur of those elements whose F̂ ur-com-

ponent belongs to UF . From the previous Lemma we know that Θ(σ) belongs to U�
N̂ur

.

Note that N̂ur = F sep
q ((X)) and so U

N̂ur = F sep
q [[X]]∗ . Hence the quotient group

U�
N̂ur

/UN , where the image of the reciprocity map Θ is contained, is a subquotient of
the invertible power series over F sep

q .
The image of ΘL/F is not in general closed with respect to the multiplication. Due

to the Lemma the set im(ΘL/F ) endowed with new operation x ? y = xΘ
−1
L/F (x)(y) is

a group isomorphic to Gal(L/F ).
In order to describe the image of ΘL/F one introduces another reciprocity map

which is a generalization of the Hazewinkel map.
Denote by U1

N̂ur
the subgroup of the group U

N̂ur of those elements whose F̂ ur-com-
ponent is 1. This subgroup correspongs to the kernel of the norm map N

L̂ur/F̂ ur . Instead
of the subgroup U (L/F) as in Proposition (1.7), we introduce another subgroup Z of
U1
N̂ur

. Assume, for simplicity, that there is only one root of order p in L̂ur . Let
F = E0 − E1 − E2 − . . . be a tower of subfields, such that L = ∪Ei , Ei/F is a
Galois extension, and Ei/Ei−1 is cyclic of prime degree with generator σi . Let Zi be
a homomorphic image of Uσi−1

Êur
i

in U
N(L̂ur/Êur

i
)
, so that at the level of Êur

i -component

it is the indentity map. The group Zi can be viewed as a subgroup of U
N̂ur and one can

show that
∏
zi , zi ∈ Zi converges in U

N̂ur . Denote by Z the subgroup generated by
all such products. For the general case see [Fe13].

As a generalization of Proposition (1.7) one can show that the map

`: Gal(L/F ) −→ U1
N̂ur/Z, σ 7→ Xσ−1

is a bijection. Using this result, one defines a generalization of the Hazewinkel map

U�
N̂ur/Y −→ Gal(L/F )

where Y = {y ∈ U�
N̂ur

: yϕ−1 ∈ Z}. Using both reciprocity maps one verifies that
Gal(L/F ) −→ U�

N̂ur
/Y is a bijection. For details see [Fe13].

Remark. H. Koch and E. de Shalit [Ko7], [KdS] constructed a so called metabelian
local class field theory which describes metabelian extensions of F (metabelian means
that the second derived group of the Galois group is trivial). For totally ramified
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metabelian extensions their description is given in terms of the group

n(F ) =
{

(u ∈ UF , ξ(X) ∈ F sep
q [[X]]∗) : ξ(X)ϕ−1 = {u}(X)/X

}
with certain group structure. Here {u}(X) is the residue series in F sep

q [[X]]∗ of the
endomorphism [u](X) ∈ OF [[X]] of the formal Lubin–Tate group corresponding to
πF , q, u (see section 1 Ch. VIII).

Let M/F be the maximal totally ramified metabelian subextension of Fϕ/F . Let
R/F be the maximal abelian subextension of M/F . Note that the extension M/F
is arithmetically profinite (apply Exercise 5 section 5 Ch. III and Corollary of (6.2) to
M/R/F ).

Send an element U = (u
Q̂ur ) ∈ U� ̂N(M |F )ur

(F ⊂ Q ⊂M , |Q : F | <∞ ) satisfying

(u
Q̂ur )

ϕ−1 = (πQ)1−τ , τ ∈ Gal(M/F ), to(
u−1
F̂ ur
, (u

Êur ) ∈ U�̂N(R|F )ur

)
(F ⊂ E ⊂ R, |E : F | <∞).

So we forget about the components of U lying above the level of R (like in abelian
class field theory we don’t need components lying above the ground level).

The element
(
u−1
F̂ ur
, (u

Êur )
)

can be viewed as an element of n(F ), and we get a map

g:U� ̂N(M |F )ur → n(F ).

One can prove [Fe13] that the composite of this map with ΘL/F is an isomorphism
which makes Koch–de Shalit’s theory a partial case of the theory of this subsection.

Remark. A theorem of I.R. Shafarevich says that for every finite Galois extension
F/K and abelian extension L/F the image of uF/K ∈ H2(Gal(F/K), F ∗) (defined
in (7.4)) with respect to

H2(Gal(F/K), F ∗)→ H2(Gal(F/K), F ∗/NL/FL∗)→ H2(Gal(F/K),Gal(L/F ))

(where the last homomorphism is induced by ΨL/F ) is equal to the cohomology class
corresponding to the extension of groups

1→ Gal(L/F )→ Gal(L/K)→ Gal(F/K)→ 1.

This theorem (being appropriately reformulated) is used and reproved in metabelian
local class field theory where its meaning becomes clearer.

(8.2). In this and next subsection we review results on the absolute Galois group GF
of a local field F with finite residue field. Let F ur be the maximal unramified extension
of F in F sep , F tr the maximal tamely ramified extension. Then Gal(F ur/F ) ' Ẑ
and F ur = ∪

(l,p)=1
F (ζl), where ζl is a primitive l th root of unity. In addition, F tr =

∪
(l,p)=1

F ur( l
√
π), where π is a prime element in F .
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Let n1 < n2 < . . . be a sequence of natural numbers, such that ni+1 is divisible
by ni and for every positive integer m there exists an index i for which ni is divisible
by m. Put li = qni − 1. Choose primitive li th roots of unity ζli and li

√
π so

that ζlj l
−1
i

lj
= ζli , ( lj

√
π)lj l

−1
i = li

√
π for j > i. Take σ ∈ Gal(F tr/F ) such that

σ( li
√
π) = li

√
π, σ(ζli ) = ζqli , and τ ∈ Gal(F tr/F ) such that τ ( li

√
π) = ζli

li
√
π,

τ (ζli ) = ζli . Then σ|F ur coincides with the Frobenius automorphism of F and
στσ−1 = τ q . A theorem of H. Hasse–K. Iwasawa ([Has12], [Iw1]) asserts that
Gtr = Gal(F tr/F ) is topologically generated by σ and τ with the relation στσ−1 = τ q .

(8.3). Now let I be an index-set and let FI be a free profinite group with a basis zi ,
i ∈ I . Let FI ∗ Gtr be the free profinite product of FI and Gtr (see [N2], [BNW]).
Let H be the normal closed subgroup of FI ∗ Gtr generated by (zi)i∈I , and let K
be the normal closed subgroup of H such that the factor group H/K is the maximal
pro-p factorgroup of H . Then K is a normal closed subgroup of FI ∗ Gtr . Define
F (I,Gtr) = (FI ∗ Gtr)/K . Denote the image of zi in F (I,Gtr) by xi . The group
F (I,Gtr) has topological generators σ, τ, xi , i ∈ I with the relation στσ−1 = τ q .

Assume first that char(F ) = p (the functional case). Then a theorem of H. Koch
(see [Ko3]) says that the group GF is topologically isomorphic to F (N, Gtr). Recall
that U1,F is a free Zp-module of rank N in this case.

Assume next that char(F ) = 0, i.e., F is a local number field. If there is no
p-torsion in F ∗ , then a theorem of I.R. Shafarevich (see [Sha1], [JW]) implies that the
group GF is topologically isomorphic to F (n,Gtr), where n = |F : Qp|. See also
[Se4, II], [Mik1], [Mar2] for the case of a perfect residue field. Recall that U1,F is a
free Zp-module of rank n in this case.

Assume, finally, that char(F ) = 0 and µp ⊂ F ∗ . Let r > 1 be the maximal
integer such that µpr ⊂ F tr∗ . This is the most complicated case. Let χ0 be a
homomorphism of Gtr onto (Z/prZ)∗ such that ρ(ζpr ) = ζ

χ0(ρ)
pr for ρ ∈ Gtr , where

ζpr is a primitive pr th root of unity. Let χ:Gtr → Z∗p be a lifting of χ0 . Let l be
prime, {p1, p2, . . . } the set of all primes 6= l. For m > 1 there exist integers am ,
bm such that 1 = aml

m + bmpm1 p
m
2 . . . pmm . Put πl = lim bmp

m
1 p

m
2 . . . pmm ∈ Ẑ. For

elements ρ ∈ Gtr , ξ ∈ F (I,Gtr) put

(ξ, ρ) =
(
ξχ(1)ρξχ(ρ)ρ . . . ξχ(ρp−2)ρ

)πp/(p−1)
,

{ξ, ρ} =
(
ξχ(1)ρ2ξχ(ρ)ρ2 . . . ξχ(ρp−2)ρ2

)πp/(p−1)
.

If n = |F : Qp| is even, put

λ = σx−1
0 σ−1(x0, τ )χ(σ)−1

xp
n

1 x1x2x
−1
1 x−1

2 x3x4x
−1
3 x−1

4 . . . xn−1xnx
−1
n−1x

−1
n .
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If n = |F : Qp| is odd, let a, b be integers such that −χ0(στa) is a square mod p
and −χ0(στ b) is not a square mod p. Put

λ1 = τp+1
2 x1τ

−(p+1)
2 σ2τ

a
2 {x1, τ

p+1
2 }τ−a+b

2
{
{x1, τ

p+1
2 }, σ2τ

a
2
}
τ−b2 σ−1

2

× τ (p+1)/2
2

{
{x1, τ

p+1
2 }, σ2τ

a
2
}
τ
−(p+1)/2
2 ,

where σ2 = σπ2 , τ2 = τπ2 . Put

λ = σx−1
0 σ−1(x0, τ )χ(σ)−1

xp
r

1 x1λ1x
−1
1 λ−1

1 x2x3x
−1
2 x−1

3 . . . xn−1xnx
−1
n−1x

−1
n .

For n + 1 we choose the indexset I = {0, 1, . . . , n}.
A series of works of H. Koch [Ko1–5]), S.P. Demushkin [Dem1–2], A.V. Yakovlev

(see [Yak1–5], J.-P. Labute [Lab]) and U. Jannsen–K. Wingberg (see [Jan], [Wig1],
[JW]) leads to the following result: if p > 2 then the absolute Galois group GF is
topologically isomorphic to F (n+1, Gtr)/(λ), where (λ) is the closed normal subgroup
of F (n + 1, Gtr) generated by λ. Recall that U1,F is a Zp-module of rank n + 1 with
one relation. The case p = 2,

√
−1 ∈ F was considered in [Di], [Ze]; see also [Gor],

[JR2], and [Mik2], [Kom] for a brief discussion of the proofs.
Unfortunately, the description of the absolute Galois groups does not provide arith-

metical information on their generators.

Remarks.

1. M. Jarden and J. Ritter ([JR1], [Rit1]) proved that two absolute Galois groups
GF and GL for local number fields F and L are topologically isomorphic if and only
if |F : Qp| = |L : Qp| and F ∩Qab

p = L ∩Qab
p (for p > 2 or p = 2,

√
−1 ∈ F,L ).

2. Recall that a theorem first proved by F. Pop [Po2] states that if two absolute Galois
groups of finitely generated fields over Q are isomorphic, then so are the fields. The
previous Remark shows that this is not true in the local situation. One can ask which
additional conditions should be imposed on an isomorphism between two absolute
Galois groups of local fields so that one can deduce that the fields are isomorphic.
Sh. Mochizuki (in the case of characteristic zero, [Moc1]) and V.A. Abrashkin (in
the general case [Ab8]) proved that if the isomorphism translates upper ramification
subgroups onto each other, then the fields are isomorphic.

3. A formally p-adic field (defined in Exercise 6 sect. 2 Ch. I) K is said to be a
p-adically closed field if for every proper algebraic extension L/K of valuation fields
the quotient of the ring of integers of L modulo p is strictly larger than the quotient of
the ring of integers of K modulo p. Certainly, finite extensions of Qp are p-adically
closed fields.

The works of I. Efrat [Ef1] (odd p ) and J. Koenigsman [Koen2], extending earlier
results of J. Neukirch [N1] and F. Pop [Po1], prove that every field F with the absolute
Galois group GF isomorphic to an open subgroup of GQp is p-adically closed. The
proof involves a construction of Henselian valuations using only Galois theoretic data.
For the situation in positive characteristic see [EF].



CHAPTER 5

Local Class Field Theory II

In this chapter we consider various generalizations of local class field theory established
in the previous chapter. In sections 1–3 we study the question for which complete
discrete valuation fields their abelian extensions are described by their multiplicative
group in the way similar to the theory of the previous chapter. We shall see in section 1
that such fields must have a quasi-finite residue field, i.e. a perfect field with absolute
Galois group isomorphic to Ẑ. Then we indicate which results of the previous chapter
(except sections 6-8) indeed take place for local fields with quasi-finite residue field. If
the residue field is infinite of positive characteristic, it is not true that every open subgroup
of finite index is the norm group of an abelian extension. To prove the existence theorem
for local fields with quasi-finite residue field we study additive polynomials over quasi-
finite fields of positive characteristic in section 2. Then in section 3 we state and prove
the existence theorem for local fields with quasi-finite residue field.

In section 4 we describe abelian totally ramified p-extensions of a local field with
arbitrary perfect residue field of characteristic p which is not separably p-closed. The
corresponding reciprocity maps are a generalization of those in sections 2 and 3 of the
previous chapter. Finally, in section 5 we review other generalizations of local class
field theory: for complete discrete valuation fields with imperfect residue field and for
certain abelian varieties over local fields.

1. The Multiplicative Group and Abelian Extensions

In this section we discuss to which local fields one can generalize class field theory of
the previous chapter so that still the multiplicative group essentially describes abelian
extensions of the fields. We shall show that except the existence theorem, all other
ingredients of the theory of the previous chapter can be extended to local fields with
quasi-finite residue field.

(1.1). For which complete discrete valuation fields their abelian extensions correspond
to subgroups in the multiplicative group? The answer is as follows.

Proposition. Let F be a complete discrete valuation field. Assume that for every
finite separable extension M of F and every cyclic extension L of M of prime

171
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degree the index of the norm group NL/ML
∗ in M∗ coincides with the degree of

L/M . Then the residue field K = F is perfect, and for any n > 1 there exists
exactly one separable extension of K of degree n. Moreover, such an extension is
cyclic. Conversely, if the residue field F is perfect and there exists exactly one Galois
extension of degree n over F for n > 1 and it is cyclic, then for the fields M and L
as above |M∗/NL/ML∗| = |L : M |.

Proof. To verify the first part of the Proposition we use the computations of norm
subgroups in section 1 Ch. III. Note that the assertions which will be proved for the field
F hold also for every finite separable extension of F . Proposition (1.2) Ch. III shows
that the norm map and the trace map must be surjective for every finite residue extension.
Let l be a prime, different from char(F ). If a primitive l th root of unity belongs to F ,
then by Hensel’s Lemma, this is also true for F . The extension F ( l

√
π)/F is a totally

and tamely ramified Galois extension for a prime element π in F . Proposition (1.3)

Ch. III shows that the subgroup F
∗l

is of index l in F
∗
. Next, Proposition (1.5)

Ch. III shows that if char(F ) = p > 0, then F
p

= F , and the image of the right vertical
homomorphism in the fourth diagram is of index p in F . In terms of those Propositions
this image can be written as ηp℘

(
F
)
. Thus, we deduce that the subgroup ℘

(
F
)

is of
index p in F .

Kummer theory and Artin–Schreier theory imply that there is exactly one cyclic
extension of prime degree l ( char(F ) - l, µl ⊂ F ) over F , and that there is exactly
one cyclic extension of degree p (if char(F ) = p ) over F . This assertion also holds
for a finite extension of F . In particular, putting L = F (µl) if µl 6⊂ F, char(F ) - l, we
get exactly one cyclic extension of degree l over L. The Galois theory immediately
implies that there exists exactly one cyclic extension of degree l over F (note that
F (µl)/F is a cyclic extension of degree < l ).

Now we verify that there is exactly one cyclic extension of degree n over K = F ,
n > 1. The uniqueness is shown easily: if K1/K , K2/K are cyclic extensions of
degree n and l is a prime divisor of n, l < n, then K1 and K2 are cyclic extensions
of degree n/l over the field K3 that is the cyclic extension of degree l over K . Then
induction arguments show that K1 = K2 .

For the existence of cyclic extensions it suffices to construct cyclic extensions of
degree ln for a prime l, n > 1. If l = p, then, as it has been shown, K/℘ (K) is of
order p; therefore Wn(K)/℘Wn(K) is of order > pn and by the Witt theory (see also
Exercise 6 in section 5 Ch. IV) there exists a cyclic extension of degree pn over K .

If l 6= p, then denote K ′ = K(µl). It suffices to construct a cyclic extension of degree
ln over K ′ . Put K ′′ = ∪i>1K(µli ). If |K ′′ : K ′| > ln , then the desired extension
can be chosen as the appropriate subextension in K ′′/K ′ . If lm = |K ′′ : K ′| < ln ,
then choose any element a ∈ K ′′ such that a is not an l-power in K ′′ . The field
Ki = K ′′( li

√
a) is the unique cyclic extension of K ′′ of degree li . Put K0 = K ′′ .

We show by induction on i that Ki/K
′ is a cyclic extension of degree lm+i . Assume
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that Ki/K
′ is cyclic. By Kummer theory one immediately deduces that Ki+1/K

′′

is Galois. To show that Ki+1/K
′′ is abelian, assume the opposite and consider the

fixed field R of the non-trivial centre of the Galois group of Ki+1/K
′′ , then R 6= Ki .

Then the intersection of R and Ki has two different cyclic extensions of degree l, a
contradiction. Hence Ki+1/K

′′ is abelian. If it were not cyclic, then Ki+1 would have
two different subextensions Ki and S over which it has degree l, and similarly to the
previous argument we arrive at a contradiction.

Note that the existence and uniqueness of cyclic extensions imply that if K ′′/K ′ ,
K ′/K are cyclic extensions, then K ′′/K is cyclic. Let K1/K be a finite Galois
extension, let σ ∈ Gal(K1/K) be of prime order l, and let K2 be the fixed field of σ.
Then for the cyclic extension K ′/K of degree l we get K ′K2 ⊂ K1 and K ′ ⊂ K1 .
Now, by induction arguments we may assume that K1/K

′ is cyclic. Since K ′/K is
also cyclic, we deduce that K1/K is cyclic as well. Finally, every finite separable
extension of K is a subextension in a finite Galois extension, which is cyclic. Thus,
every finite separable extension is cyclic.

To verify the second part of the Proposition, assume that there is exactly one Galois
extension of degree n over F and it is cyclic, n > 1. Then, by the same arguments
as just above, every finite separable extension of F is cyclic. Hence, if K ′/K is
a cyclic extension of prime degree n, then the uniqueness of K ′ implies that the
polynomial Xn − α splits completely in K ′[X] for every α ∈ K . We deduce that
−α = NK′/K(−γ), where γ is a root of this polynomial. This shows that the norm
map is surjective for every finite residue extension. This is also true for the trace map.

Kummer and Artin–Schreier theories imply that F
∗l

is of index l in F
∗

for a prime
l, char(F ) - l, µl ⊂ F

∗
; F ∗l = F ∗ if µl ∩ F = {1}, and ℘

(
F
)

is of index p in F

if char(F ) = p. Now Propositions (1.2), (1.3), (1.5) Ch. III show that the index of the
norm subgroup NL/FL

∗ in F ∗ is equal to the degree of the Galois extension L/F
when this degree is prime.

The same assertion holds for a finite separable extension M/F . This completes the
proof.

(1.2). A field K satisfying the conditions of the Proposition (1.1) is called quasi-
finite. From the previous Proposition we conclude that Gal(Ksep/K) is isomorphic
to Ẑ. This explains the name, since Gal(F sep

q /Fq) ' Ẑ. In particular, the arguments
in the proof of the Proposition (1.1) show that the norm and trace maps are surjective
for every finite extension of a quasi-finite field. Below we shall show that class field
theory of the previous chapter can be generalized to a local field with quasi-finite residue
field. This generalization was developed by M. Moriya, O.F.G. Schilling, G. Whaples,
J.-P. Serre and K. Sekiguchi.

Examples.
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1. Let K be a quasi-finite field, and let L be its extension in Ksep . Let deg(L/K) =∏
l l
n(l) be the Steinitz degree, which defines the degree of L over K : the formal

product taken over all primes l, n(l) ∈ N ∪ {+∞}, such that K has an extension of
degree ln in L if and only if n 6 n(l). Then L is a quasi-finite field if and only if
n(l) 6= +∞ for all prime l. In particular, an extension L over Fp with all n(l) 6= +∞
is a quasi-finite field.

2. Let Q cycl denote the field generated by all the roots of unity over Q. Then
Q cycl = ∪

n>1
Q(µn) and

Gal(Q cycl/Q) = lim←− Gal(Q(µn)/Q) = lim←− (Z/nZ)∗ = Ẑ∗

(the group Gal(Q(µn)/Q) is isomorphic to the multiplicative group of invertible ele-
ments in Z/nZ, see [La1, Ch. VIII]). As Ẑ =

∏
p Zp , we get

Ẑ∗ '
∏
p

Z∗p '
∏
p

Zp × Z/2Z×
∏
p 6=2

Z/(p− 1)Z.

Hence, the fixed field F of the subgroup Z/2Z ×
∏
p 6=2 Z/(p − 1)Z in Ẑ∗ is a

Ẑ-extension of Q (it plays an important role in global class field theory [N3–5]).
3. Let E be an algebraically closed field, and let {xi}i∈I be a basis of transcendental

elements in E over the prime field E0 in E (see [La1, Ch. X]). Put M = E0({xi}i∈I ).
Since the prime field E0 has a Ẑ-extension E1 (F sep

p or F , as above), we deduce that
M has the Ẑ-extension M1 = E1({xi}i∈I ). The field E is algebraic over the field M
and is its algebraic closure. Let L be the fixed field of all automorphisms of E over
M . Then L/M is purely inseparable and E/L is separable (see [La1, Ch. VII]). Let
σ̃ ∈ Gal(E/L) denote an automorphism, such that its restriction σ̃|LM1

∈ Gal(LM1/L)
is a topological generator of Gal(LM1/L). Then, applying the same arguments as in
the proof of Proposition (2.1) Ch. IV, we conclude that the fixed field K of σ̃ satisfies
Gal(E/K) ' Ẑ, i.e., K is quasi-finite. We have shown that every algebraically closed
field E has a subfield K which is quasi-finite.

4. Let E be an algebraically closed field of characteristic 0, K = E((X)). Then
there is the unique extension E((X1/n)) of degree n over K , and K is a quasi-finite
field of characteristic 0.

(1.3). Now we will give a brief review of the previous chapter from the standpoint of
a generalization of its assertions to a local field F with quasi-finite residue field.

Section 1
(1.1) There are three types of local fields with quasi-finite residue field, the additional

third class is that of char(F ) = char(F ) = 0. Note that in this case Corollary (5.5)
Ch. I shows that U1,F is uniquely divisible. This means that the group U1,F of
such a field is not interesting from the standpoint of class field theory. Since abelian
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extensions of a local field with quasi-finite residue field of characteristic zero are
tamely ramified, it is relatively easy to describe them without using the method of
the previous chapter, see Exercise 9.
Denote by R the set of multiplicative representatives if char(F ) is positive and a
coefficient field if char(F ) = 0.
Further, F is not locally compact and UF is not compact if F is not finite (see
Exercise 1 in section 1 Ch. IV).

(1.2) The Galois group of a finite Galois extension L/F is solvable, since the absolute
Galois group of the residue field is abelian.
As for an analog of the Frobenius automorphism, the problem is that there is no
canonical choice of a generator of Gal(F ur/F ) unless the residue field is finite.
Therefore, from now on we fix an isomorphism of Gal(F

sep
/F ) onto Ẑ and let ϕ

denote the element of Gal(F
sep
/F ) which is mapped to 1 under this isomorphism

Gal(F
sep
/F ) −→ Ẑ.

Propositions (3.2) and (3.3) Ch. II show that for the maximal unramified extension
F ur of F its Galois group is isomorphic to Ẑ. Let ϕF denote the automorphism
in Gal(F ur/F ), such that ϕF is mapped to ϕ. Then the group Gal(F ur/F ) is
topologically generated by ϕF . We get UF ' R∗ × U1,F due to section 5 Ch. I.

(1.4) If char(F ) = p, then there are analogs of the expansions in (1.4) Ch. IV. Namely,
the index-set J numerates now elements in R0 ⊂ OF such that their residues
form a basis of F over Fp .
In the case of char(F ) = p an element α ∈ U1,F can be uniquely expressed as
convergent product

α =
∏
p-i
i>0

∏
j∈J

(
1 + θjπi

)aij
with θj ∈ R0, aij ∈ Zp and the sets Ji,c = {j ∈ J : vp(aij) 6 c} finite for all
c > 0, p - i, i > 0, where vp is the p-adic valuation.
In the case of char(F ) = 0 we know from the proof of Proposition (1.1) that ℘

(
F
)

is of index p in F . Hence by (6.3), (6.4) Ch. I an element α ∈ U1,F can be
expressed as convergent product

α =
∏
i∈I

∏
j∈J

(
1 + θjπi

)aij
ωa∗

with I = {1 6 i < pe
p−1 , p - i}, the absolute index of ramification e = e(F ), and

the index-set J as above, aij ∈ Zp . Conditions on ωa∗ are the same as in (1.4)
Ch. IV.
If char(F ) = 0, then F ∗n is an open subgroup of finite index in F ∗ , since
according to the proof of Proposition (1.1) F

∗n
is of finite index in F

∗
. If

char(F ) = 0, char(F ) = p, then F ∗n is an open subgroup in F ∗ but not of finite
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index if F is infinite and p|n. If char(F ) = p, then F ∗n is an open subgroup in
F ∗ only if p - n; and in this case it is of finite index.

(1.5) We have seen in Proposition (1.1) that if L/F is a cyclic extension of prime degree,
then |F ∗/NL/FL∗| = |L : F |. The assertions of (1.5) Ch. IV for unramified and
tamely ramified extensions of local fields with quasi-finite residue field are valid.
We shall show below (see (3.6)) that an open subgroup N of finite index in F ∗ is
not in general a norm subgroup if char(F ) 6= 0. This may explain why we need to
study some additional topics in section 2 to follow.

(1.6)–(1.9) Everything works for local fields with quasi-finite residue field.

Section 2 The definition of the Neukirch map is exactly the same. All the assertions
hold for F .

Section 3 The definition of the Hazewinkel homomorphism for a finite Galois totally
ramified extension is exactly the same. All results of section 3 remains valid.

Section 4 Everything remains valid. Thus, we have the reciprocity map ΨF :F ∗ −→
Gal(F ab/F ).

Section 5
(5.1) The definition of the Hilbert norm residue symbol is valid for F , and all its

properties described in Proposition (5.1) Ch. IV remian valid.
(5.2) The Theorem is not true if F is infinite, since not every open subgroup of finite

index is the norm subgroup of a finite abelian extension (see Corollary 2 in (3.6)).
(5.3) The Theorem must be formulated as follows. Let char(F ) - n and µn ⊂ F ∗ .

From the proof of Proposition (1.1) we know that F
∗
/F
∗n

is a cyclic group of
order n. Define a homomorphism

νn:F
∗
/F
∗n −→ µn, θ 7→ ρ−1ϕ(ρ),

where an element ρ ∈ F
sep

with ρn = θ. It is easy to show that νn is an
isomorphism. Then for α, β ∈ F ∗ we obtain

(α, β)n = νnd(α, β), d(α, β) = γ mod F
∗n
,

γ = βvF (α)α−vF (β)(−1)vF (α)vF (β).

The proof of this assertion is carried out in the same way as that of Theorem (5.3)
Ch. IV. In particular, for an element θ ∈ R∗ we get

(π, θ)n = ρϕF−1, where ρn = θ.

(5.4)–(5.6) These assertions except Corollary (5.6) Ch. IV (see Exercise 7) can be
appropriately reformulated to remain valid.

(5.7) Not true in general.
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Section 6 We shall consider the Existence Theorem below in section 3.

Exercises.

1. (G. Whaples) Let K be an algebraic extension of Fp , and S the set of primes l such
that n(l) = +∞ in deg(K/Fp) =

∏
ln(l) . Assume that p /∈ S and µln ⊂ K for every

n > 1, l ∈ S (e.g., K = ∪
n>1

F3(µ2n ) ). Let I be the additive subgroup of rational

numbers m/n with integer m,n, n relatively prime to any l ∈ S . Let K′ be the formal
power series field

∑
i∈I
i>i0

aiX
i, ai ∈ K . Show that K′ is quasi-finite and that K is the

algebraic closure of Fp in K′ .
2. Let K be a field, and let G be the group of all automorphisms of Kalg over K . There is

a natural continuous map

Ẑ×G→ G, (a, σ) 7→ σa.

An element σ ∈ G has a period a ∈ Ẑ that is a generator of the ideal A ⊂ Ẑ of those
elements b ∈ Ẑ for which σb = 1. Show that
a) K has an algebraic extension, which is a quasi-finite field, if and only if there is an

element of period 0 in G.
b) If for every n > 1 there is a cyclic extension over K of degree n, then there is an

element of period 0 in G.
3. (�) ([Wh4], [Wen])

a) Let n be any positive integer. Show that there exists a field K with no extensions of
degree 6 n, but with algebraic extensions of degree divisible by n.

b) Show that if a field K has a cyclic extension of degree l, where l is an odd prime,
then K has cyclic extensions Kn of degree ln over K for every n > 1, such
that Kn ⊂ Kn+1 (then for K′ = ∪

n>1
Kn the group Gal(K′/K) is isomorphic

to Zl ; such an extension is called a Zl -extension). Show that if a field K has a
cyclic extension of degree 4, then K has a Z2 -extension. Show that if a field has a
cyclic extension of degree 2 but not of degree 4, then K is a formally real field (see
[La1, Ch. XI]) of characteristic 0.

4. (G. Whaples [Wh3]) A field K is said to be a Brauer field if it is perfect and there is at
most one extension over K in Kalg of degree n for every n > 1.
a) Show that every finite extension of a Brauer field K is cyclic.
b) Let K be a Brauer field and deg(Ksep/K) =

∏
ld(l) . Show that if l is an odd prime,

then d(l) = 0 or d(l) = +∞. Show that d(2) = 0, or d(2) = 1, or d(2) = +∞. Prove
that for a finite extension E/K the norm map is surjective if d(2) 6= 1, and

NE/KE
∗ =
{
K∗, if |E : K| is odd,

K∗2 6= K∗, if |E : K| is even,

if d(2) = 1.
5. Let F be a complete discrete valuation field and let its residue field F be a Brauer field.

Define the Neukirch map ϒL/F and show that Theorem (4.2) Ch. IV holds for all finite
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abelian extensions of degree dividing

deg(F
sep
/F ) =

∏
l

ln(l)

when n(2) 6= 1 and is, in addition, odd when n(2) = 1.
6. (�) Let F be a local field with quasi-finite residue field. Let (Fi)i∈Z be an increasing

chain of separable finite extensions of F , F = ∪i Fi . Let S denote the set of primes l,
such that |Fi+1 : Fi| is divisible by l for almost all i.
a) Let L be a finite abelian extension of F. Show that if Gal(L/F) is isomorphic to

F∗/NL/FL
∗ , then the degree |L : F | is relatively prime with all l ∈ S .

b) Show that Theorem (4.2) Ch. IV holds for all finite abelian extensions L/F of degree
relatively prime to all l ∈ S .

7. Let F be a local field of characteristic p with quasi-finite residue field.
a) Show that for the map (·, ·]:F ∗ × F → Fp defined by the formula

(α, β] = ΨF (α)(γ)− γ, where ℘ (γ) = β ,

all the properties in Proposition (5.4) Ch. IV, except (6), hold.
b) Let ρn : F/℘

(
F
)
→ Fp be the homomorphism defined as

θ mod ℘
(
F
)
→ ϕ(η)− η

with ℘ (η) = θ, where ϕ is as in (1.3). Show that ρn is an isomorphism. Show that

(α, β] = ρn res
(
βα−1 ∂α

∂π

)
.

8. (�) (Sh. Sen [Sen1, 2], E. Maus [Mau2]) Let F be a local field of characteristic 0
with perfect residue field of characteristic p. Let L/F be a finite abelian p-extension,
G = Gal(L/F ), h = hL/F , e = e(F ). Assertion:

if n 6
e

p− 1
then Gp

h(n) ⊂ Gh(pn);

if n >
e

p− 1
then Gp

h(n) = Gh(n+e).

a) Using Proposition (5.7) Ch. I, show that the assertion is true when F is quasi-finite.
b) Show that the assertion is true when F is algebraically closed.
c) Show that the assertion is true when F is perfect.

9. Let F be a local field.
a) Let L/F be a finite abelian tamely ramified extension. Put L0 = L∩F ur and denote

e = |L : L0|. Using (3.5) Ch. II show that F contains a primitive e th root of unity
and there is a prime element π ∈ F such that L = L0( e

√
π).

b) Denote by F abtr the maximal abelian tamely ramified extension of F and by F abur

the maximal abelian unramified extension of F . Fix a prime element π if F and
denote by Eπ the subfield of F abtr generated by e

√
π where e runs over all integers

not divisible by char(F ) and such that µe ⊂ F . Show that F abtr is the compositum
of linearly disjoint abelian extension F abur and Eπ .
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c) Choose primitive roots ζe of unity of order e not divisible by char(F ) in such a way
that ζeee′ = ζe for all e, e′ . The choice of the roots determine an isomorphism between
the Galois group of a Kummer extension of F and the corresponding quotient of F ∗ .
Show that with respect to this choice the Galois group Gal(E/F ) is isomorphic to
lim←− e F

∗/F ∗e . Show that if R is the set of multiplicative representatives in F or a

coefficient field (in the case char(F ) = 0 ), then F ∗/F ∗e ' Z/eZ× R∗/R∗e .

2. Additive Polynomials

In this section we consider the theory of additive polynomials which will be applied in
the next section. This theory was developed by O. Ore, H. Hasse and E. Witt in the
general case, and by G. Whaples in the case of quasi-finite fields.

(2.1). Let K be a field. A polynomial f(X) over K is called additive if for every
θ, η ∈ K the equality f (θ + η) = f (θ) + f (η) holds.

Lemma. Let q 6 +∞ be the cardinality of K . If q is finite, then assume that
deg f(X) 6 q. Then f(X) is additive if and only if f (X + Y ) = f (X) + f (Y ) in
K[X,Y ]. In this case f(X) = aX with a ∈ K if char(K) = 0, and f(X) =∑n
m=0 amX

pm with am ∈ K if char(K) = p.

Proof. Assume that f (X + Y ) − f (X) − f (Y ) =
∑
hi(Y )Xi 6= 0 in K[X,Y ],

where hi are polynomials over K . Then there is an index i such that hi(Y ) 6= 0.
Since deghi < q, there exists an element θ ∈ K for which hi(θ) 6= 0. Then the
polynomial

∑
hi(θ)Xi ∈ K[X] is not zero and its degree is less that q. Therefore,

there exists an element η ∈ K such that
∑
hi(θ)ηi 6= 0. This is impossible because

f (θ + η) = f (θ) + f (η).
Now we deduce that the derivative f ′(X) is a constant and obtain the last assertion.

From this point on till the end of this section we assume that K is infinite of positive
characteristic p.

(2.2). The sum of two additive polynomials is additive, but the product, in general,
is not. So we introduce another operation of composition and put f ◦ g = f

(
g(X)

)
.

The ring of additive polynomials with respect to +, ◦ is isomorphic to the ring of
noncommutative polynomials K[Λ] with multiplication defined as (aΛ)(bΛ) = abpΛ2

for a, b ∈ K , under the map
n∑
m=0

amX
pm 7→

n∑
m=0

amΛ
m.
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If a polynomial f(X) ∈ K[X] is written as g(X) ◦ h(X), then g(X) is called an
outer component of f(X) and h(X) is called an inner component of f(X).

Lemma. For additive polynomials f(X), g(X) ∈ K[X], g(X) 6= 0, there exist ad-
ditive polynomials h(X), q(X) such that f(X) = h(X) ◦ g(X) + q(X) and the de-
gree of q(X) is smaller than the degree of g(X). If K is perfect, then there exist
additive polynomials h1(X), q1(X) such that f(X) = g(X) ◦ h1(X) + q1(X) with
deg q1(X) < deg g(X).

Proof. Let f(X) =
∑n
m=0 amX

pm , g(X) =
∑k
m=0 bmX

pm , n > k. Then

deg
(
f(X)− anb−p

n−k

k Xpn−k ◦ g(X)
)
< pn,

deg
(
f(X)− g(X) ◦

((
anb
−1
k

)p−k
Xpn−k

))
< pn.

Now the proof of the Lemma follows by induction.

Proposition. The ring of additive polynomials under addition and composition is a
left Euclidean principal ideal ring. If K is perfect, then it is also a right Euclidean
principal ideal ring.

Proof. It immediately follows from the previous Lemma.

Remark. If f(X) = g(X) ◦ h(X) for additive polynomials over Ksep and two of
these polynomials have coefficients in K , then the coefficients of the third are also in
K .

Corollary. Let K be perfect, and let f1(X), f2(X) be additive polynomials. If
f3(X) is a least common outer multiple of f1(X), f2(X) and f4(X) is a greatest
common outer divisor of f1(X), f2(X), then

f3(K) ⊂ f1(K) ∩ f2(K), f4(K) = f1(K) + f2(K).

Proof. Let f3(X) be a least common outer multiple of f1, f2 , i.e., f3(X) is an
additive polynomial of the minimal positive degree such that f3 = f1 ◦ g1 = f2 ◦ g2 ,
with additive polynomials g1, g2 (for the existence of f3(X) see Exercise 2). Then
f3(K) ⊂ f1(K) ∩ f2(K). Let f4(X) be a greatest common outer divisor of f1, f2 ,
i.e., an additive polynomial of the maximal degree such that f1 = f4 ◦ h1, f2 = f4 ◦ h2 ,
with additive polynomials h1, h2 . The polynomial f4 can be also presented in the
form f4 = f1 ◦ p1 + f2 ◦ p2 with additive polynomials p1, p2 . Therefore, f4(K) ⊂
f1(K) + f2(K) ⊂ f4(K) + f4(K) = f4(K).

This Corollary shows a connection between additive polynomials and subgroups in
K . Of great importance is the following assertion.
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(2.3). Proposition. Any finite additive subgroup H ⊂ K is the set of all roots of
some additive polynomial f(X) over K such that deg(f ) = |H|.

Proof. Put f(X) =
∏
ai∈H (X − ai). Assume that g(X,Y ) = f (X + Y ) − f (X) −

f (Y ) 6= 0 in K[X,Y ]. Observing that f (θ) = f (θ + ai) for every θ ∈ K , we obtain
that the polynomial g(X, θ) of degree < deg(f ) has roots ai . This implies

g(X, θ) = 0 and f (η + θ) = f (η) + f (θ) for θ, η ∈ K,

as desired.

Corollary 1. Let H be any finite additive subgroup in Ksep , such that σ(H) = H
for every σ ∈ Gal(Ksep/K). Then H is the set of all roots of some additive polynomial
over K .

Corollary 2. Let {ai} ⊂ K be a set of n linearly independent elements over Fp ,
and let {bi} be a set of n elements in K . Then there exists an additive polynomial
f(X) of degree 6 pn over K such that f (ai) = bi .

Proof. It suffices to show that there exists an additive polynomial f(X) such that
f (a1) = · · · = f (an−1) = 0, f (an) 6= 0. Let H be an additive group of order pn−1

generated by a1, . . . , an−1 . If f is an additive polynomial with H as the set of its
roots, then f (an) 6= 0.

(2.4). From this point on till the end of this section we assume that K is an infinite
quasi-finite field of characteristic p.

Proposition. Let f(X) be a nonzero additive polynomial. Then the index of f (K)
in K coincides with the number of roots of f(X) in K .

Proof. Let H be the set of roots of f(X) in Ksep . Let ϕ be a topological generator
of Gal(Ksep/K) ' Ẑ, which is mapped to 1. As H is finite, the kernel and cokernel of
the homomorphism ϕ−1:H → H are of the same order. Thus, it suffices to show that
the index of f (K) in K coincides with the order of H/(ϕ − 1)H . We shall verify a
more general assertion, namely, there is an isomorphism ψ:K/f (K) ∼→ H/(ϕ− 1)H .

Let a ∈ K ; put ψ(a mod f (K)) = ϕ(b) − b, where b ∈ Ksep, f (b) = a. Then
ψ is well defined and is an injective homomorphism. Any element c ∈ H can be
regarded as an element of a finite extension K1 of K . Then TrK2/K1 c = 0, where
K2 is the cyclic extension of K1 of degree p. For the same reasons as in the proof
of Proposition (1.8) Ch. IV, there exists an element d ∈ K2 such that ϕ(d) − d = c.
Then f (d) ∈ K and ψ

(
f (d) mod f (K)

)
= c. This means that ψ is surjective, and

the proof is completed.



182 V. Local Class Field Theory. II

Corollary. Let f(X) be an additive polynomial over K , f ′(0) 6= 0, and let all
the roots of f belong to K . Let g(X) be an additive polynomial over K . Then
g(K) ⊂ f (K) if and only if f(X) is an outer component of g(X).

Proof. The “if” part is clear. Let h(X) be a greatest common outer divisor of
f(X), g(X). If g(K) ⊂ f (K), then by Corollary (2.2) h(K) = f (K). Now the
Proposition implies deg(h) = deg(f ). Therefore, h(X) = af(X) for some a ∈ K ,
and f(X) is an outer component of g(X).

(2.5). There is a close connection between inner components and the sets of roots of
additive polynomials.

Proposition. Let f(X) be an additive polynomial over K and f ′(0) 6= 0. Let g(X)
be an additive polynomial over K . Then the set of roots of f(X) in Ksep is a subset of
the set of roots of g(X) in Ksep if and only if f(X) is an inner component of g(X).

Proof. The “if” part is clear. To prove the “only if” part, put H ′ = f (H), where H
is the set of roots of g(X). By Proposition (2.3), there exists an additive polynomial
h(X) with H ′ as its set of roots. One may assume h′(0) 6= 0. Then the polynomials
h
(
f(X)

)
and g(X) have the same roots. Since h

(
f(X)

)
is simple, i.e., (h◦f )′(0) 6= 0,

we conclude that g(X) = ah
(
f(X)

)pm for some a ∈ K,m > 0. This means that
f(X) is an inner component of g(X).

Remark. The Proposition holds also for perfect fields.

(2.6). Proposition. Let f(X) be an additive polynomial over K . Then there exists
an additive polynomial g(X) over K with g′(0) 6= 0, such that f = g ◦ h for some
additive polynomial h(X) over K , f (K) = g(K), and all roots of g(X) belong to
K .

Proof. Let H be the set of roots of f(X) in Ksep , L = K(H). Since K is quasi-
finite, one can choose a generator σ of G = Gal(L/K). Put H1 = {a ∈ H : σ(a) =
a}. The theory of linear operators in finite-dimensional spaces (see [La1, Ch. XV])
implies that there exists a decomposition of H into a direct sum of indecomposable
Fp[G]-submodules H (i), 1 6 i 6 m. If H (i) ∩H1 = 0, then we put H (i)

2 = H (i) . If
H (i)∩H1 6= 0, then the minimal polynomial of the restriction of σ on H (i) is (X−1)n ,
where n = dimFp H

(i) . In this case, there exists a Jordan basis of H (i) : a1, . . . , an ,
such that σ(aj) = aj + aj+1 if 1 6 j 6 n− 1, σ(an) = an . Then H (i) ∩H1 = anFp .

Put H (i)
2 =

j=n
⊕
j=2

ajFp .

Now for H2 = ⊕H (i)
2 we get

dimFp H2 = dimFp H − dimFp H1, σ(H2) = H2, (σ − 1)H ⊂ H2.
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Let, by Corollary 1 of Proposition (2.3), h(X) be an additive polynomial over K , such
that H2 is its set of roots. One may assume h′(0) 6= 0. Then, by Proposition (2.5),
there exists an additive polynomial g(X) over Ksep such that f(X) = g

(
h(X)

)
. The

set of roots of g coincides with h(H). In fact, the coefficients of g(X) belong to K .
Since the element σa − a belongs to H2 for an element a ∈ H , we get h(H) ⊂ K .
On the other hand, the order of h(H) is equal to the index of H2 in H , i.e., the order of
H1 . Finally, f (K) ⊂ g(K) and, by Proposition (2.4), |K/f (K)| = |K/g(K)|. Thus,
f (K) = g(K) and g(X) is the required polynomial.

Corollary. Let f(X) be a nonzero additive polynomial over K . The following
conditions are equivalent:
(i) f (K) 6= K ,
(ii) f has a root 6= 0 in K ,
(iii) ℘ (aX) is an inner component of f(X) for some a ∈ K∗ ,
(iv) b℘ (X) is an outer component of f(X) for some b ∈ K∗ .

Proof. Proposition (2.4) shows the equivalence of (i) and (ii), and proposition (2.5)
that of (ii) and (iii). The implication (iv)⇒ (i) follows immediately, because ℘ (K) is
of index p in K . To show that (i)⇒ (iv), we write f = g ◦ h as in the Proposition. As
g(K) = f (K) 6= K , we get g = g1 ◦ ℘ (aX) for some additive polynomial g1(X) over
K , and a ∈ K by Proposition (2.5). If the polynomial g1(X) is not linear, then it has
a root c 6= 0 in Ksep . Then an element d ∈ Ksep , such that ℘ (ad) = c, is a root of the
polynomial g(X). Since all roots of g(X) belong to K , we obtain d ∈ K . Therefore,
c ∈ K , and Proposition (2.4) shows that g1(K) 6= K . Applying the previous arguments
to g1(X), we deduce after a series of steps that b℘ (X) is an outer component of f(X)
for some b ∈ K∗ , as desired.

(2.7). Let f(X) be a nonzero additive polynomial over K, S = f (K). Then S is
a subgroup of finite index in K according to Proposition (2.4). Our first goal is to
show that every intermediate subgroup between S and K is the set of values of some
additive polynomial.

Proposition. The endomorphisms of the Fp-space K/S are induced by additive
polynomials.

Proof. One may assume, by Proposition (2.6), that all roots of f(X) belong to K and
f ′(0) 6= 0. Denote H = ker(f ). By Corollary 2 of Proposition (2.3) endomorphisms
of the set H of all roots of f(X) are induced by additive polynomials. Let an additive
polynomial h(X) induce an endomorphism of H . This means that the set of roots
of f is a subset of the set of roots of f ◦ h. By Proposition (2.5) there exists an
additive polynomial g(X) over K such that f ◦ h = g ◦ f . Then g(X) induces an
endomorphism of K/S . Conversely, if g(X) is an additive polynomial which induces
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an endomorphism of K/S , then g
(
f (K)

)
⊂ f (K). By Corollary (2.4), there exists

an additive polynomial h(X) over K such that f ◦ h = g ◦ f . Then h(X) induces
an endomorphism of H . Thus, there is the isomorphism f 7→ h between the ring
of endomorphisms of H , which are induced by additive polynomials, and the ring
of endomorphisms of K/S , which are induced by additive polynomials. Since the
dimensions of End(H) and End(K/S) coincide by Proposition (2.4), we obtain the
desired assertion.

Corollary 1. Any intermediate subgroup between f (K) and K can be presented
as g(K) for some additive polynomial.

Corollary 2. The homomorphisms of K/f1(K) to K/f2(K), where f1, f2 are
additive polynomials, are induced by additive polynomials.

Proof. Let f3 be as in Corollary (2.2). Then Hom(K/f1(K),K/f2(K)) is a subfactor
of the space End(K/f3(K)).

Corollary 3. f (K) is the intersection of a suitable finite set of bi℘ (K), bi ∈ K .

Proof. The intersection of all intermediate subgroups of index p between f (K) and
K coincides with f (K). Such a subgroup can be written as h(K) by Corollary 1.
Corollary (2.6) shows that h(K) = b℘ (g(K)) for some additive polynomial g(X). As
h(K) is of index p in K , we conclude that h(K) = b℘ (K).

(2.8). The assertions of (2.7) and (2.2) show that the set of subgroups f (K), where f
runs through the set of additive polynomials over K , forms a basis of neighborhoods
of a linear topology on K . This topology is said to be additive. Any neighborhood
S of 0 can be written as f (K) for some additive polynomial f (X) by Corollary 1 of
(2.7).

Proposition. Additive polynomials define continuous endomorphisms of K with
respect to the additive topology. The subring of these endomorphisms is dense in the
ring of all continuous endomorphisms of K .

Proof. Let S be a neighborhood of 0 in K . Then S = f (K) for some additive
polynomial f . Let g(X) be an additive polynomial and let h(X) be a least common
outer multiple of f(X), h(X). Then h = f ◦ f1 = g ◦ g1 for some additive polynomials
f1(X), g1(X) over K and g1(K) ⊂ g−1(S). This means that g induces a continuous
endomorphism of K .

Let A be a continuous endomorphism of K . For a neighborhood S2 = f2(K) of
0 in K there exists a neighborhood S1 = f1(K) with A(S1) ⊂ S2 . By Corollary 2
of (2.7) the induced homomorphism A:K/S1 → K/S2 is induced by an additive
polynomial f(X) over K . Then (A−f )(K) ⊂ S2 and we obtain the second assertion
of the Proposition.
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(2.9). Finally, we show that every polynomial can be transformed to an additive
polynomial.

Proposition. Let f(X) be a nonzero polynomial over K, f (0) = 0. Then there exists
a finite set of elements ai ∈ K , such that g(X) =

∑
f (aiX) is an additive polynomial

and
∑
ai = 1. Moreover, there exists a finite set of polynomials hi(X) over K , such

that h(X) =
∑
f
(
hi(X)

)
is a nonzero additive polynomial.

Proof. Let q be the cardinality of K and deg(f ) > q. Then one can write f(X) =
p(X)(Xq−X) +r(X) with p(X), r(X) ∈ K[X], deg(r) < q. In this case f (θ) = r(θ)
for θ ∈ K , and we may assume, without loss of generality, that deg(f ) < q. Now
let n < q and let n be relatively prime to p. Let m | n be the maximal integer
such that a primitive m th root of unity belongs to K . If m > 1, then putting
ci = 1, 1 6 i 6 p − 1, cp = ζ , where ζ is a primitive m th root of unity, we get∑
cni = 0,

∑
ci 6= 0.

If m = 1, then let l be prime, l | n. Assume that K∗l 6= K∗ . Then for
a ∈ K∗, a /∈ K∗l , the extension K( l

√
a)/K is cyclic of degree l since K is quasi-

finite. Therefore, a primitive l th root of unity belongs to K( l
√
a) and does not belong

to K , which is impossible. Thus, K∗l = K∗ and K∗n = K∗ . The conditions on n
imply that there exist elements c1, c2 ∈ K such that c1 + c2 6= −1, cn1 + cn2 = −1.
Hence, for c3 = 1 we get cn1 + cn2 + cn3 = 0, c1 + c2 + c3 6= 0.

Thus, we conclude that the polynomial
∑
f (ciX) has the coefficient 0 at Xn and∑

ci 6= 0. After a series of steps of this kind we obtain the elements ai ∈ K indicated
in the first assertion of the Proposition.

To prove the second assertion, we take a polynomial h(X) such that the degree of
f
(
h(X)

)
is a power of p. As above, we find elements a1, a2, . . . in K , such that∑

ai = 1 and g(X) =
∑
f
(
h(aiX)

)
is an additive polynomial. Then g(X) 6= 0, as

required.

Corollary 1. Let p(X) be a given nonzero additive polynomial, and let f(X) be
as in the Proposition. Then there exist polynomials fi(X), gi(X) over K such that∑
fi(X) is a nonzero additive polynomial and p(X) is an outer component of the

additive polynomial
∑
f ◦ fi and of the nonzero additive polynomial

∑
f ◦ gi ( 0 is

considered as having p(X) as an outer component).

Proof. Let g(X), h(X), ai ∈ K , hi(X) be as in the Proposition. Let p̃(X) be a
least common outer multiple of g(X), h(X), p(X). Then p̃ = g ◦ g̃ = h ◦ h̃ for some
additive polynomials g̃(X), h̃(X) over K . Putting fi = aig̃, gi = hi ◦ h̃, we get the
required assertion.

Corollary 2. A neighborhood of 0 in the additive topology in K can be redefined as
a vector subspace over Fp that contains the set of values of some nonzero polynomial
f(X) over K with f (0) = 0.
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Proof. Let h(X) for f(X) be as in the Proposition. Then h(K) is contained in every
vector subspace over Fp containing the set f (K).

Exercises.
1. a) Show that f = g ◦ h in the ring of additive polynomials over K if and only if h(X)

divides f(X) in K[X].
b) Show that for a polynomial f(X) of degree n over K there exists an additive

polynomial g(X) of degree 6 pn over K , such that f(X) divides g(X) in K[X].
2. a) Let f1(X), f2(X) be nonzero additive polynomials and let

f1(X) = q1(X) ◦ f2(X) + f3(X), . . . ,

fi(X) = qi(X) ◦ fi+1(X) + fi+2(X), . . . ,

fn−1(X) = qn−1(X) ◦ fn(X)

be the Euclid algorithm for f1(X), f2(X) in the ring of additive polynomials. Show
that

fn−1(X) ◦ fn(X)−1 ◦ fn−2(X) ◦ fn−1(X)−1 ◦ · · · ◦ f2(X) ◦ f3(X)−1 ◦ f1(X)

is an additive polynomial and a least common inner multiple of the polynomials
f1(X), f2(X).

b) Show that if K is perfect and

g1(X) = g2(X) ◦ r1(X) + g3(X), . . . ,

gi(X) = gi+1(X) ◦ ri(X) + gi+2(X), . . . , gm−1(X) = gm(X) ◦ rm−1(X)

is the Euclid algorithm for nonzero additive g1(X), g2(X), then

g1(X) ◦ g3(X)−1 ◦ g2(X) ◦ g4(X)−1 ◦ g3(X) ◦ · · · ◦ gm(X)−1 ◦ gm−1(X)

is an additive polynomial and a least common outer multiple of the polynomials
g1(X), g2(X).

3. Define a generalized additive polynomial as a finite sum of aiXpi with i ∈ Z. Show
that generalized additive polynomials form a ring under addition and composition. For a

generalized additive polynomial f(X) =
∑

aiX
pi put f∗(X) =

∑
ap
−i

i Xp−i .
a) Show that (f + g)∗ = f∗ + g∗, (f ◦ g)∗ = g∗ ◦ f∗, (f∗)∗ = f .
b) Let K be a quasi-finite field of characteristic p. Show that an additive polynomial

f(X) over K has a nonzero root in K if and only if f∗(X) does.
c) Let K be quasi-finite, and let f(X) be an additive polynomial over K . Show that the

set {b ∈ K : b℘ (X) is an outer component of f(X)} is an additive group of order
equal to the index of f (K) in K .

d) Let K be quasi-finite. Show that the number of roots in K of an additive polynomial
f(X) over K is equal to the number of roots in K of f∗(X).

4. Let K be quasi-finite of characteristic p. Let f(X) be an additive polynomial over K ,
and H the set of its roots in Ksep .
a) Assume that there are no additive polynomials h(X) of degree < deg(f ), that are

inner components of f(X). Show that the degree of K(H)/K is relatively prime to
p.



3. Normic Subgroups 187

b) Show that f(X) is a composition of ℘ (X) , Xp, aX with a ∈ K if and only if
K(H)/K is a p-extension.

5. Let K be a perfect field of characteristic p. Call an additive polynomial K -decomposable
if all its roots lie in K .
a) Let f be a K -decomposable polynomial such that f ′(0) 6= 0. Show that f (X) =

d1X ◦ ℘(X) ◦ d2X ◦ · · · ◦ ℘(X) ◦ dn+1X , where d−1
i ∈ (℘(X) ◦ di+1X ◦ · · · ◦

dn+1X)(K). Conversely, show that each such polynomial is K -decomposable.
b) Let f be a K -decomposable polynomial. Show that a homomorphism from K/f (K)

to the module of homomorphisms from the Galois group of the maximal abelian
p-extension of K to the kernel of f , a 7→ (ϕ 7→ ϕb − b), where f (b) = a, is an
isomorphism.

c) Let g be a K -decomposable polynomial, g′(0) 6= 0. Show that g is an outer
component of an additive polynomial f iff f (K) ⊂ g(K).

d) Let f be a K -decomposable polynomial. Show that f (K) = ∩α−1
i ℘(K) for appro-

priate αi whose set is of the same cardinality as the kernel of f .
6. (�) (V.G. Drinfeld [Dr]) Let L be a finite extension of Fq((X)), and let Γ be a finite

discrete Fq[X]-submodule of dimension d in Lsep such that Gal(Lsep/L) acts trivially
on Γ. Put

eΓ(t) = t
∏
a∈Γ
a6=0

(
1− t

a

)
.

Show that eΓ(t+u) = eΓ(t) + eΓ(u) and that eΓ induces the isomorphism Lalg/Γ ∼→ Lalg

of Fq[X]-modules. Introduce a new structure of Fq[X]-module on Lalg , putting a ∗ y =
eΓ(az) for a ∈ Fq[X], where eΓ(z) = y, z ∈ Lalg . Show that

eΓ(at) = aeΓ(t)
∏

b∈a−1
Γ/Γ

b/∈Γ

(
1− eΓ(t)

eΓ(b)

)
= pa

(
eΓ(t)

)
,

where pa(X) =
∑n
i=0 aiX

qi , n = d deg a(X), a0 = a. The correspondence a(X) 7→∑n
i=0 aiΛ

i determines an injective Fq -homomorphism ψΓ:Fq[X] → Lalg[Λ] (the ring
of noncommutative polynomials, see (2.2)). This homomorphism is said to determine an
elliptic Fq[X]-module over Fq((X)) of rank d.
Conversely, for a given ψΓ there uniquely exists a series

eΓ(t) = t +
∑
i>1

bit
qi ∈ L[[t]],

such that eΓ(Xt) = eΓ(t)ψΓ(X) and eΓ(at) = eΓ(t)ψΓ(a) for a ∈ Fq[X]. The kernel
of eΓ(t) is a finite discrete Fq[X]-submodule Γ

′ of dimension d in Lsep and Γ
′ = Γ.

(This construction is used to describe abelian ( d = 1 ) and non-abelian ( d > 1 ) extensions
of Fq(X). )
For an introduction to Drinfeld modules see [Gos].
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3. Normic Subgroups

In this section we apply the theory developed in the previous section to describe the
norm subgroups in the case of a local field F with quasi-finite residue field. This theory
was first obtained by G. Whaples [Wh1]. From our description it will follow that for
infinite residue fields not every open subgroup of finite index is a norm subgroup (see
Corollary 2 in (3.6)). We shall define the notion of a normic subgroup in (3.1) and the
normic topology on F ∗ in (3.3). In (3.4) we prove the Existence Theorem which claims
that there is a on-to-one correspondence between normic subgroups of finite index and
norm subgroups of finite abelian extensions. Using the Existence Theorem we shall
show in (3.6) that the kernel of the reciprocity map ΨF :F ∗ −→ Gal(F ab/F ) is equal
to the subgroup of divisible elements in F ∗ .

In this section we assume that the residue field F is an infinite quasi-finite field of
characteristic p.

(3.1). Let π be a prime element in F .

Definition. An open subgroup N in F ∗ is said to be normic if there exist
polynomials fi(X) ∈ OF [X], such that the residue polynomials f i(X) ∈ F [X] are
not constants and 1 + fi(α)πi ∈ N for α ∈ OF , i > 0.

This definition does not depend on the choice of a prime element π, because for
π′ = πε one can take f ′i (X) = fi(X)ε−i ∈ OF [X]. If F = Fq is finite, then every open
subgroup N in F ∗ is normic. Indeed, there exists an integer s such that Us+1,F ⊂ N .
Putting fi(X) = (Xq − X)p

s

for 1 6 i 6 s, we get 1 + fi(α)πi ∈ Us+1,F for
α ∈ OF , i > 0. If char(F ) = 0, then the group U1,F is uniquely divisible and any
open subgroup N of finite index in F ∗ contains U1,F , and hence is normic. From
now on we shall assume that F is infinite of characteristic p .

We may assume fi(0) = 0, replacing fi(X) by f̃i(X) otherwise, where f̃i(X)πi =(
1+fi(X)πi

)(
1+fi(0)πi

)−1−1. By Proposition (2.9) there exist polynomials gij(X) ∈
F [X], such that

∑
j f i
(
gij(X)

)
is a nonzero additive polynomial over F . Then for

polynomials hij(X) ∈ OF [X], such that hij = gij , and the polynomial gi(X) ∈
OF [X], such that

1 + gi(X)πi =
∏
j

(
1 + fi

(
hij(X)πi

))
,

we get 1+gi(α)πi ∈ N for i > 0, α ∈ OF , and gi(X) is a nonzero additive polynomial
over F . Therefore, in the definition of a normic subgroup one can assume that the
residue polynomial f i(X) is nonzero additive over F . In terms of the homomorphisms
λi defined in section 5 Ch. I, we get

λ
(
(N ∩ Ui,F )Ui+1,F /Ui+1,F

)
⊃ f i(F ).
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Since f i(F ) is of finite index in F by Proposition (2.4), we obtain that N ∩ U1,F is
of finite index in U1,F .

(3.2). Now we show that the norm subgroups are normic.

Proposition. Let L be a finite Galois extension of F . Then NL/FL
∗ is a normic

subgroup of finite index in F ∗ .

Proof. Since the assertion holds in the case when F is finite, we assume that F
is infinite. The arguments of Proposition (6.1) Ch. IV show that NL/FL∗ is an open
subgroup of finite index in F ∗ . Since the Galois group of L/F is solvable, it suffices to
verify that for a cyclic extension L/F of prime degree the norm map NL/F transforms
normic groups in L∗ to normic groups in F ∗ .

Let L/F be unramified, and π a prime element in F . Let N be normic in L∗ ,
1 + fi(α)πi ∈ N for α ∈ OL , where fi(X) ∈ OL[X] is such that f i is a nonzero
additive polynomial over L. Since the trace map TrL/F is surjective and F is infinite,

the index of ker(TrL/F ) in L is infinite. Proposition (2.4) implies that f i(L) is of

finite index in L. Therefore, there exists an element β ∈ OL with TrL/F
(
f i(β)

)
6= 0.

Then Lemma (1.1) Ch. III shows that

NL/F
(
1 + fi(βα)πi

)
= 1 + gi(α)πi for α ∈ OF ,

where gi(X) ∈ OF [X] with deg(gi) > 0. Thus, NL/F (N ) is normic in F ∗ .
Let L/F be a totally ramified Galois extension of prime degree n, πL a prime

element in L, πF = NL/FπL . Let n - i and let p(X) = Xn + βn−1X
n−1 + · · · + β0

be the monic irreducible polynomial of πiL over F . Then

NL/F (1− απiL) = αnp(α−1) = β0α
n + β1α

n−1 + · · · + βn−1α + 1

for α ∈ OF . Let hL/F be the Hasse-Herbrand function of L/F (see section 3 Ch. III).
For α ∈ OF we get

NL/F (1 + απiL) = 1 + gi(α)πjF
for a suitable polynomial gi(X) over OF with ḡi 6= 0 and j > 0. The same assertion is
trivially true also for n | i. Propositions (1.3), (1.5) Ch. III show that j > h−1

L/F (i) for
i /∈ hL/F (N), and if i = hL/F (j0), then one may take j = j0 and then deg

(
ḡi(X)

)
> 0.

Let N be a normic subgroup in L∗ , Us+1,L ⊂ N , 1 + fi(α)πiL ∈ N for α ∈ OL ,
where fi(X) ∈ OL[X] and deg

(
f i(X)

)
> 0. Let Ur+1,F ⊂ NL/F (N ). The previous

arguments imply that for i = hL/F (j) there exists a polynomial g(X) over OF , such
that g(X) = gi

(
f i(X)

)
is not a constant and

NL/F
(
1 + fi(α)πiL

)
≡ 1 + g(α)πjF mod πr+1

F for α ∈ OF .

Thus, NL/F (N ) is normic.
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(3.3). Proposition. The normic subgroups in F ∗ determine in F ∗ a basis of neigh-
borhoods in for the so called normic topology on F ∗ . If L/F is a finite Galois
extension, then the norm map NL/F is continuous with respect to the normic topology.

Proof. We must show that the intersection of two normic subgroups and the pre-image
N−1
L/F of a normic subgroup is a normic subgroup. As Gal(L/F ) is solvable, it suffices

to verify the last assertion only for a cyclic extension of prime degree. Note that the
pre-image of a normic subgroup is an open subgroup by the arguments in the proof of
Proposition (6.1) Ch. IV.

Let L be either a totally ramified Galois extension of prime degree over F or
L = F . Let N1 be a normic subgroup in L∗ , and N a normic subgroup in F ∗ . We
shall verify that N1 ∩ N−1

L/F (N ) is normic in L∗ . This will complete the proof of
the Proposition, except for the case of an unramified extension L/F . We leave the
verification of the latter case to the reader. In fact, the case of an unramified extension
will not be used in the sequel.

Let πL be prime in L, πF = NL/FπL . Let f(X) be a polynomial over OL , such
that 1 + f (α)πiL ∈ N1 for α ∈ OL and f (X) is a nonzero additive polynomial over
L = F . Then the arguments in the proof of the previous Proposition show that there
exist a number j and a polynomial g(X) ∈ OF [X], such that NL/F (1 + f (α)πiL) ≡
1 + g(α)πjF mod N for α ∈ OF .

Let q(X) be a polynomial over OF , such that q(X) is a nonzero additive polynomial
over F and 1 + q(α)πjF ∈ N for α ∈ OF . Corollary 1 of (2.9) shows that there are
polynomials hk(X) ∈ OF [X], such that

∑
k hk(X) is a nonzero additive polynomial

over F , and ∑
g(hk(X)) = q(h(X))

for some polynomial h(X) ∈ OF [X], such that its residue polynomial h is additive.
Define the polynomial f1(X) by the equality

1 + f1(X)πiL =
∏
k

(
1 + f

(
hk(X)

)
πiL

)
.

Then f1 is a nonzero additive polynomial over F ,

1 + f1(α)πiL ∈ N1 for α ∈ OL,

and for α ∈ OF

NL/F (1 + f1(α)πiL) =
∏
k

(1 + g
(
hk(α)

)
πjF ) = (1 + q(h(α))πjF )(1 + g1(α)πj+1

F )

for some polynomial g1(X) ∈ OF [X]. Therefore,

NL/F
(
1 + f1(α)πiL

)
≡ 1 + g1(α)πj+1

F mod N for α ∈ OF .
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Proceeding in this way, one can find fm(X) ∈ OL[X] and gm(X) ∈ OF [X], such
that fm(X) is a nonzero additive polynomial over F , 1+fm(α)πiL ∈ N1 for α ∈ OL ,
and

NL/F
(
1 + fm(α)πiL

)
≡ 1 + gm(α)πj+m

F mod N for α ∈ OF .

Since Ur+1,F ⊂ N for some integer r > 0, we obtain that 1 + fm(α)πiL ∈ N1 ∩
N−1
L/F (N ) for sufficiently large m,α ∈ OF . Let Us+1,L ⊂ N1 and NL/F (Us+1,L) ⊂

N . Subsections (5.7) and (5.8) of Ch. I imply that Up
t

1,L ⊂ Us+1,L for sufficiently large

t. As L = F , we deduce that Op
t

L ⊂ OFUs+1,L , and hence

1 + fm(αp
t

)πiL ∈ N1 ∩N−1
L/F (N ) for α ∈ OL.

This means that N1 ∩N−1
L/F (N ) is normic.

(3.4). Theorem (“Existence Theorem”). Let F be a local field with quasi-finite
residue field. There is a one-to-one correspondence between normic subgroups of finite
index in F ∗ and the norm subgroups of finite abelian extensions: N ←→ NL/FL

∗ .
This correspondence is an order reversing bijection between the lattice of normic
subgroups of finite index in F ∗ and the lattice of finite abelian extensions of F .

Proof. Similarly to the proof of Theorem (6.2) Ch. IV, it suffices to verify that a
normic subgroup of finite index contains NL/FL∗ for some finite separable extension
L/F .

Let N be a normic subgroup of index n in F ∗ and char(F ) - n. Then N ⊃ U1,F ,
and the arguments in (1.5) Ch. IV show that N coincides with NL/FL

∗ for some
tamely ramified abelian extension of degree n.

Let n = char(F ) = p. If U1,F ⊂ N , then UF ⊂ N and a prime element π of F
does not belong to N . In this case N = NL/FL∗ , where L is the unramified extension
of degree p over F . Let Us,F 6⊂ N,Us+1,F ⊂ N for s > 1. As N is normic, we get
in terms of the homomorphism λi from section 5 Ch. I that

λi
(
(N ∩ Ui,F )Ui+1,F /Ui+1,F

)
= F , if i 6= s

λi
(
(N ∩ Ui,F )Ui+1,F /Ui+1,F

)
= η℘

(
F
)
, if i = s,

where η is a proper element of OF . The arguments in (1.5) Ch. IV show that there
exists a cyclic extension L/F of degree p (a Kummer extension or an Artin–Schreier
extension), such that the λi

(
(NL/FL∗∩Ui,F )Ui+1,F /Ui+1,F

)
are the same as those for

N , and some prime element π in F is contained in N ∩NL/FL∗ .
If s = 1, then obviously N = NL/FL

∗ . Otherwise we can proceed by induction
on s. If N 6= NL/FL∗ , then the group N ∩NL/FL∗ is normic of index p2 in F ∗ by
Propositions (3.2) and (3.3). Therefore, there exists an integer s1 < s such that

λs1

(
(N ∩NL/FL∗ ∩ Us1,F )Us1+1,F /Us1+1,F

)
6= F .
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Then the group (N ∩NL/FL∗)Us1+1,F is normic of index p in F ∗ . By the induction
assumption (N ∩NL/FL∗)Us1+1,F = NL1/FL

∗
1 for a cyclic extension L1/F of degree

p. Then N contains the group N ∩NL/FL∗ = NL1/FL
∗
1 ∩NL/FL∗ , which coincides

with NL1L/F (L1L)∗ and is a norm subgroup in F ∗ . Therefore, N is a norm subgroup.
The case n = pm can be considered in the same way as in the proof of Theorem (6.2)

Ch. IV, using Propositions (3.2) and (3.3). Now, repeating the arguments in the proof
of Theorem (6.2) Ch. IV, we obtain that every normic subgroup of finite index in F ∗ is
a norm subgroup. The remaining assertions of the Theorem are proved similarly, as in
the proof of Theorem (6.2).

Remark. Another proof of this Theorem can be carried out using pairings of the
multiplicative group F ∗ , similarly to the proof of Theorem (6.2) Ch. IV. For the case
of char(F ) = p see [Sek1]; that paper also contains another description of normic
subgroups.

(3.5). There exists another description of normic subgroups, more convenient in some
cases. Let char(F ) = p and let

E( · , X):W (F ) −→ 1 +XOF [[X]]

be the Artin–Hasse map (see (9.3) Ch. I). We keep the notations of section 9 Ch. I. For
an element α ∈W (F ) and a prime element π in F we put E(α, πi) = E(α,Xi)|X=π .
Note that E(α, πi) ≡ 1 + r(c0)πi mod πi+1; this follows from Proposition (9.3) Ch. I,
where α =

∑
i>0 r0(ci)pi with ci ∈ F , r0 is the Teichmüller map F → W (F ),

and r is the Teichmüller map F → OF . An advantage of introducing the map
E( · , πi):W (F )→ Ui,F is its linearity: E(α + β, πi) = E(α, πi)E(β, πi).

Let A denote the ring of linear operators on W (F ) of the form

A =
n∑
m=0

αmFm, αm ∈W (F ),

where F is the Frobenius map (see section 8 Ch. I). Then

A(β) =
n∑
m=0

αmFm(β)

for β ∈ W (F ). Compare the ring A with the ring of noncommutative polynomials
W (F )[Λ] in (2.2). Since F is perfect, arguments similar to those in (2.2) show that the
ring A is a left and right Euclidean principal ideal ring under addition and composition.

There is a natural homomorphism from the ring A to the ring of additive polynomials
over F :

A =
n∑
m=0

αmFm 7→ A =
n∑
m=0

αmX
pm ∈ F [X].
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Proposition. An open subgroup N in F ∗ is normic if and only if for a prime
element π in F there exists a linear operator A ∈ A, such that deg(A) > 0 and
E(A(α), πi) ∈ N for all α ∈W (F ), i > 0.

Proof. Let Us+1,F ⊂ N . Suppose that there exists a linear operator A ∈ A, with the
properties indicated in the Proposition. Put

E
(
Ar0(a), πi

)
≡ 1 + f

(
r(a)

)
πi mod πs+1 for a ∈ F ,

where f(X) ∈ OF [X] and deg(f ) > 0. If β is an element in OF such that β = a,
then Lemma (7.2) Ch. I shows that r(ap

s

) = r(a)p
s ≡ βp

s

mod πs+1 . Therefore,
1 + f (βp

s

)πi ∈ N for β ∈ OF and deg
(
f (Xps )

)
> 0. Thus, N is normic.

Conversely, let N be a normic subgroup and Us+1,F ⊂ N . We saw in (3.1) that
N ∩U1,F is of finite index in U1,F . Let pm be this index. Then E

(
pmA(α), πi

)
∈ N

for α ∈W (F ), i > 0, where A is any linear operator in A.
Let f(X) ∈ OF [X] be as above. Then writing α ≡ r0(a) mod pW (F ) for

elements α ∈W (F ) and a ∈ F , we obtain

E
(
pm−1A(α), πi

)
≡ E

(
pm−1A

(
r0(a)

)
, πi
)
≡ E

(
A
(
r0(a)

)
, πi
)pm−1

.

Let g(X) ∈ OF [X] be any polynomial such that 1+g
(
r(a)

)
πj ≡

(
1+f

(
r(a)

)
πi
)pm−1

mod πs+1 for some j > i. Then E
(
pm−1A(α), πi

)
≡ 1 + g

(
r(a)

)
πj mod N .

Proposition (2.9) shows that there are elements αk ∈ W (F ), such that
∑
αk = 1

and
∑
g(αkX) is an additive polynomial over F . Then

E
(
pm−1A(α), πi

)
≡
∏(

1 + g
(
r(αka)

))
πj mod N,

and we may assume, without loss of generality, that g is an additive polynomial over
F .

Let hi(X) be a polynomial over OF , such that hi is a nonzero additive polynomial
and

1 + hi(α)πi ∈ N for α ∈ OF .

Choose an operator A1 ∈ A such that the polynomial g ◦ A1 has an outer component
hj . Then

E
(
pm−1AA1(α), πi

)
≡ 1 + g

(
A1r(a)

)
πj ≡ 1 + g1

(
r(a)

)
πj+1 mod N

for some polynomial g1(X) ∈ OF [X].
Similarly, one can find operators A2 , . . . ∈ A such that for B(i)

1 = AA1A2 . . . we
get E

(
pm−1B(i)

1 (α), πi
)
∈ N for α ∈ W (F ). Proceeding by induction on m, we

conclude that there exist operators B(i)
m ∈ A such that

E
(
B(i)
m (α), πi

)
∈ N for α ∈W (F ), 0 < i 6 s.
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Now let B ∈ A be a least common outer multiple of the B(i)
m . Then we deduce that

E
(
B(α), πi

)
∈ N , as desired.

The argument similar to the proof of the previous proposition also proves

Corollary. An open subgroup N in F ∗ is normic if and only if there exist polyno-
mials pi(X) ∈W (F )[X], such that the polynomials pi ∈ F [X] are of positive degree
and E

(
pi(α), πi

)
∈ N for α ∈W (F ), i > 0.

(3.6). Finally, we shall find another characterization of normic subgroups of index p.
Let N be an open subgroup of index p in U1,F . Let Us+1,F ⊂ N and Us,F 6⊂ N .

Then the group
H = λs

(
(N ∩ Us,F )Us+1,F /Us+1,F

)
is of index p in F . For every i, 0 < i < s, and α ∈ W (F ) there exists an element
fi(α) ∈W (F ) such that

E(α, πi)E
(
fi(α), πs

)
∈ N.

Then E
(
fi(α + β), πs

)
≡ E(α + β, πi)−1 = E(α, πi)−1E(β, πi)−1 mod N . We obtain

that E
(
fi(α + β)− fi(α)− fi(β), πs

)
∈ N and

fi(α + β) ≡ fi(α) + fi(β) mod H.

Since E(pα, πi) ∈ N , we deduce that fi , in fact, depends on the residue classes of α
mod pW (F ). Hence, fi induces the linear homomorphism f i : F → F/H .

Proposition. Let N be a subgroup of index p in U1,F such that

Us+1,F ⊂ N and Us,F 6⊂ N

for some s > 1. Then N ↔ (H, f1, . . . , fs−1) is a one-to-one correspondence
between such subgroups and sequences of a subgroup H of index p in F , and ho-
momorphisms f i:F → F/H . A subgroup N is normic if and only if H is open
in the additive topology on F and the homomorphisms f i are induced by additive
polynomials.

Proof. Assume that (H, f1, . . . , fs−1) 6= (H ′, f
′
1, . . . , f

′
s−1). If H 6= H ′ , then

clearly N 6= N ′ . If f i 6= f
′
i then NN ′ = U1,F and N 6= N ′ .

If N is normic then H is open. Let gi(X) be a polynomial over OF , such that
gi is a nonzero additive polynomial over F and 1 + gi(α)πi ∈ N for α ∈ OF .
Then (f igi)(F ) = 0, and Proposition (2.4) shows that gi(F ) is of finite index in F .
Therefore, by Corollary 2 of (2.7) the homomorphism f i:F/gi(F )→ F/H is induced
by an additive polynomial.

Conversely, let H be open in the additive topology on F and let g(X) ∈ OF [X] be
such that g(F ) = H and g is an additive polynomial. Let gi(X) ∈W (F )[X] be such
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that f i is induced by an additive polynomial gi(X) over F . Let hi(X) ∈ W (F )[X]
be such that hi is a least common outer multiple of g, gi . Put hi = gi ◦ pi with
pi(X) ∈W (F )[X]. Then

E
(
g(α), πs

)
∈ N, E

(
pi(α), πi

)
≡ E

(
gipi(α), πs

)−1 ≡ 1 mod N,

for α ∈W (F ). Now Corollary (3.5) shows that N is normic.

Corollary 1. The reciprocity map ΨF is continuous with respect to the normic
topology on F ∗ . Its kernel coincides with the subgroup of divisible elements in F ∗ .

Proof. Denote ΛF = ∩NL/FL∗ . The intersection of all normic subgroups of index l

coincides with F ∗l . Hence, ΛF = ∩F ∗l . Fix l. For every a ∈ ΛF and every L there
is b ∈ F ∗ such that a = bl and b ∈ NL/FL∗ . Therefore, the intersection of finitely
many closed subgroups NLi/FL

∗
i with the finite discrete set l

√
a is nonempty. Then

there is c ∈ l
√
a which belongs to ΛF . Thus, ΛF is l-divisible. It coincides with the

subgroup of multiplicative representatives of F in F which are in the image of the
subgroup of divisible elements of F in F .

Corollary 2. Let char(F ) = p. Suppose that the cardinality of F is q. The set of
all subgroups N ∩ U1,F for normic subgroups N of finite index has the cardinality q
( we assume that q is not finite). The set of all open subgroups N in F ∗ of finite index
in U1,F , such that

λi
(
Ui+1,F (N ∩ Ui,F )/Ui+1,F

)
is open in F with respect to the additive topology for i > 0, has the cardinality 2q .
The set of all open subgroups of finite index in U1,F has the cardinality 2q .

Proof. For every normic subgroup N of finite index in F ∗ there is a totally ramified
extension L/F such that N ∩ U1,F = NL/FL∗ ∩ U1,F . This extension is obtained by
adjoining a root of a polynomial, such that its coefficients may be written as polynomials
in a prime element π of F with coefficients in r(F ) (see Exercise 5 in section 3 Ch. II).
Therefore, there are at most q such extensions. By the previous Proposition there are
q normic subgroups N of index p in U1,F such that U2,F ⊂ N . We conclude that
there are q normic subgroups of finite index. This Proposition also shows that there are
2q open subgroups of index p in U1,F , since there are 2q subgroups H of index p in
F and 2q homomorphisms of F to F/H . Therefore, there are 2q open subgroups of
finite index in U1,F .

Assume that if char(F ) = 0, p > 2, then the absolute index of ramification e(F ) 6= 1.
Then Corollary 2 of (5.8) Ch. I shows that there exists an index s > 1, p - s, such that
Us+1,F ⊂ UpF , Us,F 6⊂ UpF . Choose a subgroup H of index p in F open in the
additive topology, such that λs

(
Us+1,F (Up1,F ∩ Us,F )/Us+1,F

)
⊂ H . As there are 2q
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homomorphisms of F to F/H , using the previous Proposition we conclude that there
are 2q open subgroups N of index p in U1,F , such that

λs
(
Us+1,F (N ∩ Us,F )/Us+1,F

)
= H and λi

(
Ui+1,F (N ∩ Ui,F )/Ui+1,F

)
= F

for i 6= s. If char(F ) = 0, p > 2, e(F ) = 1, then it is straightforward to show
that there are 2q open subgroups N of index p2 in U1,F , such that their images
λi
(
Ui+1,F (N ∩ Ui,F )/Ui+1,F

)
are open in the additive topology of F . Thus, in the

general case there are 2q such open subgroups of finite index.

Remark. Another description of normic groups, using the language of algebraic
groups over F , can be found in [Se3, sect. 2 Ch. XV].

Exercises.

1. Show that for a normic group N ⊂ U1,F , such that Us+1,F ⊂ N , there exists a se-
quence of linear operators Aij ∈ A, 1 6 i 6 s, i 6 j 6 s, such that Aii(F ) =
λi
(
Ui+1,F (N ∩Ui,F )/Ui+1,F

)
and N is generated by Us+1,F and the elements βi(α) =∏s

j=i E
(
Aij(α), πj

)
, α ∈W (F ), 1 6 i 6 s.

2. An open subgroup N of finite index in U1,F , such that λi
(
Ui+1,F (N ∩ Ui,F )/Ui+1,F

)
are open in the additive topology of F for all i > 0, is called pseudonormic.
Show that the intersection of two pseudonormic subgroups is not always pseudonormic
when F is an infinite field of characteristic p.

3. Generalize the arguments of (6.4) Ch. IV to a local field with quasi-finite residue field.
4. (�) Let F be a local field such that its residue field is a Brauer field (see Exercises 4, 5

in section 1). The notion of a normic group in F ∗ is the same as in the previous section.
Show that normic groups of index n that divides deg(F

sep
/F ) =

∏
ln(l) (n is odd when

n(2) = 1 ) are in one-to-one correspondence with finite abelian extensions of degree n.
5. Let K be a perfect field of characteristic p. Let F be a complete discrete valuation field

with residue field K . Let L/F be a finite totally ramified extension. Let i = hL/F (j)

and let NL/F (1 + απiL) = 1 + g(α)πjF with g ∈ OF [X]. Using Exercise 5 in section 2
show that the residue of g is a K -decomposable additive polynomial.

4. Local p-Class Field Theory

In this section we consider a local field F with perfect residue field of characteristic
p and describe its abelian totally ramified p-extensions by using the group of principal
units U1,F . This theory is a generalization of the theory of Chapter IV, and the methods
of section 2 and 3 of that chapter. Note that abelian totally tamely ramified extensions
are described by Kummer theory (see Exercise 9 section 1) and unramified extensions
just correspond to separable extensions of the residue field.
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Let F̃ denote the maximal abelian unramified p-extension of F and let L/F be a
finite Galois totally ramified p-extension. We shall show in (4.5) that a generalization
ϒL/F of the Neukirch map of section 2 Ch. IV induces an isomorphism

HomZp
(
Gal(F̃ /F ),Gal(L/F )ab) →̃U1,F /NL/FU1,L,

where HomZp denotes continuous Zp-homomorphisms from the group Gal(F̃ /F )
endowed with the topology of profinite group to the discrete finite group Gal(L/F )ab .
We shall show how various results of class field theory for local fields with (quasi-)finite
residue field can be generalized in p-class field theory.

(4.1). Let F be a complete (or Henselian) discrete valuation field with perfect residue
field F of characteristic p > 0. Let ℘(X) denote as usually the polynomial Xp −X .
Denote κ = dimFp F/℘(F ). Further we will assume that κ 6= 0. This means that the
field F is not separably p-closed, i.e., it has nontrivial separable extensions of degree
p. If F is quasi-finite, then κ = 1.

Remark. If κ = 0 then the field F is separably p-closed. By choosing nontrivial
perfect subfields of it and local fields Fi ⊂ F having them as residue fields and
containing a prime element of F for sufficiently large i one can view extensions of
F as coming from extensions of local fields Fi . Then one can describe abelian totally
ramified p-extensions of F using the description for Fi similarly to Example 1 of (6.6)
Ch. IV.

Denote by F̃ the maximal abelian unramified p-extension of F . Due to Witt theory
(see Exercise 6 section 5 Ch. IV) there is a canonical isomorphism

Gal(F̃ /F ) ' Hom(W (F )/℘W (F )⊗Qp/Zp,Qp/Zp).

Non-canonically Gal(F̃ /F ) is isomorphic to
∏
κ Zp (we have a canonically defined

generator of this group, the Frobenius automorphism, only when the residue field is
finite).

Denote by F̂ the maximal unramified p-extension of F . It is well known that the
Galois group of F̂ /F is a free pro-p-group, see e.g. Prop. 6.1.7 of [NSchW]. The
group Gal(F̃ /F ) is its maximal abelian quotient. The residue field of F̂ does not have
nontrivial separable p-extensions.

Now let L/F be a Galois totally ramified p-extension. Then Gal(L/F ) can be
identified with Gal(L̃/F̃ ) and Gal(L̂/F̂ ), and Gal(L̃/F ) ' Gal(L̃/F̃ )× Gal(F̃ /F ).

Definition. Denote Gal(L/F )̂ = Hom
(
Gal(F̂ /F ),Gal(L/F )

)
the group of con-

tinuous homomorphisms from the profinite group Gal(F̂ /F ) to the discrete group
Gal(L/F ).

Denote Gal(L/F )̃ = HomZp
(
Gal(F̃ /F ),Gal(L/F )

)
the group of continuous ho-

momorphisms from the profinite group Gal(F̃ /F ) which is a Zp-module (a · σ = σa ,



198 V. Local Class Field Theory. II

a ∈ Zp ) to the discrete Zp-module Gal(L/F ). So Gal(L/F )̃ is non-canonically iso-
morphic to ⊕κ Gal(L/F ). We have the natural injective homomorphism Gal(L/F )̃ →
Gal(L/F )̂ which is surjective if L/F is abelian.

By Witt theory HomZp (Gal(F̃ /F ),Z/pnZ) is canonically isomorphic to the group
Wn(F )/℘(Wn(F )). Hence if Gal(L/F )p

n

= {1} for some n, then Gal(L/F )̃ is
canonically isomorphic to Gal(L/F )⊗Wn(F )/℘(Wn(F )).

Definition. Let in addition the degree of L/F be finite. For χ ∈ Gal(L/F )̂ denote
by Σχ the fixed field of all σϕ ∈ Gal(L̂/F ), where σϕ

∣∣
F̂

= ϕ
∣∣
F̂
, σϕ

∣∣
L

= χ(ϕ)|L and
ϕ runs over all elements (or just a topological basis) of Gal(F̂ /F ). Then Σχ ∩ F̂ = F ,
i.e., Σχ/F is a totally ramified p-extension.

For χ ∈ Gal(L/F )̂ let πχ be a prime element of Σχ . Put

ϒL/F (χ) = NΣχ/FπχNL/Fπ
−1
L mod NL/FUL,

where πL is a prime element in L.

Remark. The field Σχ is a subfield of L̃ if and only if L/F is abelian. So in the
definition of ϒL/F for abelian L/F one can work with L̃/F instead of L̂/F .

(4.2). Lemma. The map ϒL/F : Gal(L/F )̂ −→ UF /NL/FUL is well defined.

Proof. ϒL/F does not depend on the choice of πL . Let M be the compositum of
Σχ and L. Then M/Σχ is unramified and a prime element in Σχ can be written as
πχNM/Σχ

ε for a suitable ε ∈ UM . Since NM/F ε = NL/F (NM/Lε) ∈ NL/FUL , we
complete the proof.

Since L/F is a p-extension, the inclusion U1,F → UF induces U1,F /NL/FU1,L '
UF /NL/FUL , and hence the image of ϒL/F is in U1,F /NL/FU1,L .

(4.3). For every finite Galois totally ramified p-extension L/F the norm map N
L̂/F̂

from U1,L̂ to U1,F̂ is surjective, see Remark in (1.6) Ch. IV.

Now we introduce the map inverse to ϒL/F . Let L/F be a finite Galois totally
ramified p-extension. Let ε ∈ U1,F and ϕ ∈ Gal(F̂ /F ). Let η ∈ U1,L̂ be such

that N
L̂/F̂

η = ε. Let πL be a prime element in L. Since N
L̂/F̂

(
ηϕ−1) = 1, we

deduce from Proposition and Remark in (1.7) Ch. IV that ηϕ−1 ≡ π1−σ
L mod U (L̂/F̂ )

for a σ ∈ Gal(L̂/F̂ ) which is uniquely determined as an element of Gal(L̂/F̂ )ab .
Similarly to Lemma (3.1) Ch. IV the element σ does not depend on the choice of η.
Set χ(ϕ) = σ

∣∣
L

. Then χ(ϕ1ϕ2) = σ1σ2 , since

ηϕ1ϕ2−1 ≡ ηϕ1−1(ηϕ2−1)ϕ1 ≡ π1−σ1
L π

1−σ2
L ≡ π1−σ1σ2

L mod U (L̂/F̂ ).

This means χ ∈ (Gal(L/F )ab)̂ .
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Similarly to the proof of Lemma (3.1) Ch. IV we deduce that the map

ΨL/F : U1,F /NL/FU1,L −→ (Gal(L/F )ab)̃ , ε 7→ χ,

where we use (Gal(L/F )ab)̂ →̃ (Gal(L/F )ab)̃ , is a homomorphism.

(4.4). The proof of the following Proposition is similar to the proof of Proposition (3.4)
Ch. IV.

Proposition.

We have the following commutative diagrams which involve the maps ϒ.
(1) Let L/F , L′/F ′ be finite Galois totally ramified p-extensions, and let F ′/F ,

L′/L be finite totally ramified extensions. Then the diagram

Gal(L′/F ′ )̂ −−−−→ U1,F ′/NL′/F ′U1,L′y yNF ′/F
Gal(L/F )̂ −−−−→ U1,F /NL/FU1,L

is commutative, where the left vertical homomorphism is induced by the natu-
ral restriction Gal(L′/F ′) −→ Gal(L/F ) and the isomorphism Gal(F̂ ′/F ′) ∼−→
Gal(F̂ /F ).

(2) Let L/F be a Galois totally ramified p-extension, and let σ be an automorphism.
Then the diagram

Gal(L/F )̂ −−−−→ U1,F /NL/FU1,L

σ

̂y y
Gal(σL/σF )̂ −−−−→ U1,σF /NσL/σFU1,σL

is commutative, where (σ χ̂)(σϕσ−1) = σχ(ϕ)σ−1 .
For Ψ we have similar commutative diagrams of homomorphisms.

We will use the following auxiliary Lemma.

Lemma. Let L/F be a totally ramified cyclic extension of degree p. Let ψ,ψi ∈
Gal(L̃/F ), i ∈ I , be a set of automorphisms such that ψ|

F̃
, ψi|F̃ are Zp-linearly

independent and almost all ψi ∈ Gal(L̃/L). Denote by F, L the completion of F̃ , L̃
and by F̂ and L̂ the completion of F̂ and L̂. Put U (L/F) = UL ∩ U (L̂/F̂).
(1) Let ρ ∈ U1,L be such that ψi(ρ) = ρ for all i ∈ I . Then there is a unit ξ ∈ U1,L

such that ρ = ξψ−1 and ψi(ξ) = ξ for all i ∈ I .
(2) Let ρ ∈ U (L/F) be such that ψi(ρ) = ρ for all i ∈ I . Then there is a ξ ∈ U (L/F)

such that ρ = ξψ−1 and ψi(ξ) = ξ for all i ∈ I .
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Proof. (1) Similarly to the proof of Proposition (1.8) Ch. IV one checks that for every
unit ρ in U1,L and an automorphism ψ of Gal(L̂/F ) there is a unit ξ ∈ U1,L such
that ρ = ξψ−1 .

Similarly, one checks that for every set of automorphisms as in the statement of (1)
and for every unit ρ in U1,L , ψi(ρ) = ρ, there is a unit ξ ∈ U1,L such that ρ = ξψ−1

and ψi(ξ) = ξ .
(2) Denote by σ a generator of Gal(L/F ). Since L/F is of degree p we know

that U (L̂/F̂) = Uσ−1
1,L̂

, hence U (L/F) = Uσ−1
1,L . The rest follows using (1).

(4.5). Theorem. Let L/F be a finite Galois totally ramified p-extension. The map
ϒL/F is a surjective homomorphism. It induces an isomorphism

ϒ
ab
L/F :

(
Gal(L/F )ab)̃ −→ U1,F /NL/FU1,L

and ΨL/F is its inverse.

Proof.
(1) First we verify that ΨL/F ◦ϒab

L/F is the identity on Gal(L∩F ab/F )̃ . Indeed, let

πχ = πLη with η ∈ U
L̂

. Let ϕ ∈ Gal(L̂/L) and σϕ ∈ Gal(L̂/F ), where σϕ
∣∣
F̂

= ϕ|
F̂

,
σϕ
∣∣
L

= σ = χ(ϕ). Then

π1−σ
L = ησϕ−1 ≡ ηϕ−1 mod U (L̂/F̂ )

and N
L̂/F̂

η = NΣχ/FπχNL/Fπ
−1
L . Therefore, ΨL/F (ϒL/F (χ)) is the image of χ

in Gal(L ∩ F ab/F )̃ with respect to the projection Gal(L/F ) → Gal(L ∩ F ab/F ) =
Gal(L/F )ab . In particular, ΨL/F is a surjective and ϒab

L/F is injective.
(2) Next we show that if L/F is cyclic of degree p then ϒL/F ◦ΨL/F = id. From

the description of the norm map in (1.5) Ch. III and in its notation we deduce that U1,F
is in the image of the norm map of the extension EL/E where E is the unramified
extension of F which corresponds to the residue field extension generated by roots of
polynomials Xp − ηp−1X − a, a running through elements of the residue field of
F . In particular, U1,F ⊂ N

L̃/F̃
U1,L̃ . Choose ϕ,ϕi ∈ Gal(L̃/L), i ∈ I , a full set

of generators of Gal(L̃/L) such that each ϕi acts trivially on EL. Denote by L′ the
fixed field of all ϕi , so EL ⊂ L′ .

Let ε ∈ U1,F . We can write it as ε = N
L̃/F̃

ρ for a ρ ∈ U1,EL . Then ρϕi−1 = 1

and ρϕ−1 = π1−σ
L ν1−σ for some ν ∈ U1,L′ , σ ∈ Gal(L̃/F̃ ).

Put ψ = σφ. Using the previous Lemma, applied to ψ and ϕi , find λ ∈ L′ such
that λ1−ψ = (νρ−ϕ)σ−1 . Then η = πLρλ1−σ is ψ-fixed and ϕi-fixed, hence η ∈ Σχ ,
where Σχ corresponds to χ ∈ Gal(L/F )̃ defined as χ(ϕi

∣∣
F̃

) = 1 and χ(ϕ
∣∣
F̃

) = σ
∣∣
L

.
Now ε = NΣχ/F η mod NL/FUL and ϒL/F ◦ ΨL/F = id. Thus, ϒL/F , ΨL/F are
isomorphisms for cyclic extensions L/F of degree p.
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(3) Now we show that for an arbitrary abelian totally ramified p-extension L/F
both ΨL/F and ϒL/F are isomorphisms, arguing by induction on the degree of the
extension. In view of (1) it is sufficient to show that ΨL/F is injective.

Let M/F be a proper Galois subextension of a totally ramified Galois p-extension
L/F . The functorial properties of the homomorphism ΨL/F imply the following
commutative diagram

U1,M/NL/MU1,L
NM/F−−−−→ U1,F /NL/FU1,L −−−−→ U1,F /NM/FU1,MyΨL/M

yΨL/F

yΨM/F

Gal(L/M )̂ −−−−→ Gal(L/F )̂ −−−−→ Gal(M/F )̂

with exact rows. Hence the induction on the degree implies the injectivity of ΨL/F .
(4) Finally we will show that ϒL/F is a surjective homomorphism and ϒab

L/F is an
isomorphism whose inverse is ΨL/F .

Let E/F be the maximal abelian subjection of L/F . From Proposition (4.4) we
get the following commutative diagram

Gal(L/E )̂ −−−−→ Gal(L/F )̂ −−−−→ Gal(E/F )̃ −−−−→ 1yϒL/E

yϒL/F

yϒE/F

U1,E/NL/EU1,L
N∗E/F−−−−→ U1,F /NL/FU1,L −−−−→ U1,F /NE/FU1,E −−−−→ 1.

Proposition (4.4) and this diagram imply that every element of U1,F /NL/FU1,L is the
sum of an element of ϒL/F (Gal(L/F )̂ ) and of N∗E/FϒL/E(Gal(L/E )̂ ). Arguing by
induction on degree we can assume that ϒL/E is a homomorphism. Then using the
functorial properties of Proposition (4.4) arguing similar to the last part (starting with
So) in the proof of Theorem (3.3) Ch. IV, we deduce that ϒL/F (Gal(L/E )̂ ) = 1 and
the map N∗E/F in the diagram is the zero map. Since ϒE/F is an isomorphism we
complete the proof.

(4.6). Corollary 1. Let L/F be a totally ramified abelian p-extension. Then U1,F ⊂
N
L̃/F̃

U1,L̃ .

Proof. The image of ϒL/F lies in (U1,F ∩ NL̃/F̃U1,L̃)/NL/FU1,L , since the field

Σχ is a subfield of L̃. It remains to use the surjectivity of ϒL/F .

Corollary 2. Let M/F be the maximal abelian subextension in a Galois totally
ramified p-extension L/F . Then NM/FU1,M = NL/FU1,L .

Similarly to section 4 Ch. IV one proves
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Corollary 3. Let L1/F , L2/F , L1L2/F be abelian totally ramified p-extensions.
Put L3 = L1L2 , L4 = L1 ∩ L2 . Then NL3/FU1,L3 = NL1/FU1,L1 ∩ NL2/FU1,L2
and NL4/FU1,L4 = NL1/FU1,L1NL2/FU1,L2 . Moreover, NL1/FU1,L1 ⊂ NL2/FU1,L2
if and only if L1 ⊃ L2 ; NL1/FU1,L1 = NL2/FU1,L2 if and only if L1 = L2 .

(4.7). The following assertion is proved in a similar way to Theorem (3.5) Ch. IV.

Theorem. Assume that L/F is a finite abelian totally ramified p-extension and G =
Gal(L/F ). Let h = hL/F be the Hasse–Herbrand function of L/F Then for n > 1
the reciprocity isomorphism ΨL/F maps the quotient group Un,FNL/FL

∗/NL/FL
∗

isomorphically onto the group Gh(n)̃ , and the reciprocity isomorphism ϒL/F maps
the group Gh(n)+1̃ isomorphically onto Un+1,FNL/FL

∗/NL/FL
∗ .

Therefore, Gh(n)+1 = Gh(n+1) , i.e., upper ramification jumps of L/F are integers.

Remark. Since for a local field F with separably p-closed residue field of charac-
teristic p its finite abelian totally ramified extension L/F is generated by an element
which is defined over a local field E ⊂ F with non-separably-p-closed residue field,
we can apply the previous Theorem to deduce the validity of the Hasse–Arf Theorem
in the general case.

(4.8). Let F abp/F be the maximal p-subextension in F ab/F . Let {ψi} be a set of
automorphisms in Gal(F abp/F ) such that ψi

∣∣
F̃

are linearly independent and generate
Gal(F̃ /F ). Then the group Gal(Σ/F ) for the fixed field Σ of ψi is isomorphic to
Gal(F abp/F̃ ). Passing to the projective limit we obtain the p-class reciprocity map

ΨF : U1,F −→ HomZp
(
Gal(F̃ /F ),Gal(F abp/F̃ )

)
.

This map possesses functional properties analogous to stated in Proposition. The kernel
of ΨF coincides with the intersection of all norm groups NL/FU1,L for abelian totally
ramified p-extensions L/F , L ⊂ Σ.

Similarly to the case of quasi-finite residue field the Existence Theorem requires
an additional study of additive polynomials over perfect fields of characteristic p. We
refer to [Fe6] for details. The presentation in this section corrects one mistake in [Fe6]
about the norm map N

L̃/F̃
: it is not clear whether it is surjective for non-abelian L/F .

The Existence Theorem implies that the reciprocity map ΨF is injective. It is not
surjective unless the residue field of F is finite.

Another Corollary of the Existence Theorem is the following assertion [Fe6, sect.3]:
Let π be a prime element in F . Let Fπ be the compositum of all finite abelian

p-extensions L of F such that π ∈ NL/FL∗ . Then Fπ is a maximal abelian totally
ramified p-extension of F and the maximal abelian p-extension F abp of F is the
compositum of linearly disjoint extensions Fπ and F̃ .

It is an open problem to generate the field Fπ over F explicitly (similar to how
Lubin–Tate formal groups do in the case of finite residue field, see section 1 Ch. VIII).
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Remark. There is another approach to class field theory of local fields with infinite
perfect residue field due M. Hazewinkel [Haz1]. It provides a description of abelian
extensions in terms of maximal constant quotients of the fundamental group of the group
of units of a local field viewed with respect to its pro-quasi-algebraic structure. This
is a generalization of J.-P. Serre’s geometric class field theory [Se2] (see Example 1
section 6 Ch. IV). The method is to use a generalization of the Hazewinkel map and to
go from the case of algebraically closed residue field to the situation of perfect residue
field. Unfortunately, we know almost nothing about the structure of the fundamental
groups involved.

5. Generalizations

In this section we discuss two further generalizations of local class field theory: imper-
fect residue field case in (5.1) and abelian varieties with ordinary good reduction over
local fields with finite residue field in (5.2).

(5.1). Let F be a complete (Henselian) discrete valuation field with residue field
F of characteristic p. We assume that F is not necessarily perfect and that κ =
dimFp F/℘(F ) is not zero.

Denote by F̃ be the maximal abelian unramified p-extension of F . Denote by F̂
the maximal unramified p-extension of F . In general, N

L̂/F̂
U1,L̂ 6= U1,F̂ .

Let L be a totally ramified Galois p-extension of F . Similarly to the previous
section define Gal(L/F )̂ and Gal(L/F )̃ . In a similar way to the previous section
define the map

ϒL/F : Gal(L/F )̂ → U1,F /NL/FU1,L.

The image of ϒL/F lies in (U1,F ∩ NL̂/F̂U1,L̂)/NL/FU1,L and we denote this

new map by the same notation. Similarly to (4.5), denote ϒab
L/F :

(
Gal(L/F )ab)̃ −→

(U1,F ∩NL̂/F̂U1,L̂)/NL/FU1,L .

Definition. Let F be complete discrete valuation field such that F ⊃ F̂ , e(F|F̂ ) = 1
and the residue field of F is the perfection of the residue field K of F̂ , i.e., ∪n>0K

p−n .
Such a field F exists by (5.3) Ch. II. So the residue field of F does not have nontrivial
algebraic p-extensions.

Put L = LF; the map NL/F is surjective. Denote by U (L̂/F̂ ) = U
L̂
∩ U (L/F),

the latter was defined in (1.7) Ch. IV.

Then similarly to Proposition (1.7) Ch. IV one shows that the sequence

1 −→ Gal(L/F )ab `−→ U1,L̂/U (L̂/F̂ )
N
L̂/F̂−−−→ N

L̂/F̂
U1,L̂ −→ 1
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is exact.
We now generalize the Hazewinkel homomorphism.

Definition. Define a homomorphism

ΨL/F : (U1,F ∩NL̂/F̂U1,L̂)/NL/FU1,L → Gal(L ∩ F ab/F )̃ , ε 7→ χ

where χ(ϕ) = `−1(η1−ϕ) and η ∈ U1,L̂ is such that ε = N
L̂/F̂

η. Similarly to the
previous sections, ΨL/F is well defined.

Properties of ϒL/F ,ΨL/F [Fe9] .
(1) ΨL/F ◦ ϒab

L/F = id on Gal(L ∩ F ab/F )̃ , so ΨL/F is surjective.
(2) Let F be a complete discrete valuation field such that F ⊃ F , e(F|F ) = 1 and

the residue field of F is the perfection of the residue field of F , i.e., is equal to

∪n>0F
p−n

. Such a field exists by (5.3) Ch. II. Put L = LF. The embedding
F → F induces the homomorphism

λL/F : (U1,F ∩NL̂/F̂U1,L̂)/NL/FU1,L → U1,F/NL/FU1,L.

Then the diagram

Gal(L/F )̂
ϒL/F−−−−→ (U1,F ∩NL̂/F̂U1,L̂)/NL/FU1,L

ΨL/F−−−−→ Gal(L ∩ F ab/F )̃

iso
y λL/F

y iso
y

Gal(L/F)̂
ϒL/F−−−−→ U1,F/NL/FU1,L

ΨL/F−−−−→ Gal(L ∩ Fab/F)̃

is commutative.
(3) Since ΨL/F is an isomorphism by the previous section, we deduce that λL/F is

surjective and ker(ΨL/F ) = ker(λL/F ), and therefore we have an isomorphism

(U1,F ∩NL̂/F̂U1,L̂)/N∗(L/F ) →̃ Gal(L ∩ F ab/F )̃

where

N∗(L/F ) = U1,F ∩NL̂/F̂U1,L̂ ∩NL/FU1,L

is the group of elements of U1,F which are norms at the level of the maximal
unramified p-extension (where the residue field is separably p-closed) and at the
level of F (where the residue field is perfect).

Theorem. Let L/F be a finite cyclic totally ramified p-extension. Then

ϒL/F : Gal(L/F )̃ → (U1,F ∩NL̂/F̂U1,L̂)/NL/FU1,L

is an isomorphism.
In addition the left hand side is isomorphic to (U1,F ∩NL̃/F̃U1,L̃)/NL/FU1,L .
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Proof. Since L/F is cyclic, we get U (L̂/F̂ ) = Uσ−1
1,L̂

where σ is a generator

of the Galois group. Let ΨL/F (ε) = 1 for ε = N
L̂/F̂

η ∈ U1,F . Then ηϕ−1 ∈
U (L̂/F̂ ) ∩ Uϕ−1

1,L̂
. Similarly to the previous section we deduce that ε ∈ NL/FU1,L

and so ΨL/F is injective. Then it is an isomorphism. Since the image of ϒL/F is in
(U1,F ∩NL̃/F̃U1,L̃)/NL/FU1,L , the second assertion follows.

Remarks.

1. H. Miki proved this theorem in a different setting [Mik4] which does not mention
class field theory.

2. It is an open problem what is the kernel of ΨL/F for an arbitrary finite abelian
extension L/F , in other words how different is N∗(L/F ) from NL/FU1,L .

Corollary.

(1) Let F be a complete discrete valuation field with residue field of characteris-
tic p. Let L1/F and L2/F be finite abelian totally ramified p-extensions. Let
NL1/FL

∗
1 ∩ NL2/FL

∗
2 contain a prime element of F . Then L1L2/F is totally

ramified.
(2) Assume that F 6= ℘(F ). Let L1/F , L2/F be finite abelian totally ramified

p-extensions. Then NL1/FL
∗
1 = NL2/FL

∗
2 ⇐⇒ L1 = L2.

For the proof see [Fe9]. The second assertion can be viewed as an extension of the
similar assertion of Proposition (4.1) Ch. IV to the most general case.

Remark. Let F be of characteristic zero with absolute ramification index equal to 1.
Let π be a prime element of F .

Define a homomorphism

En,π:Wn(F )→ U1,F /U
pn

1,F , En,π((a0, . . . , an−1)) =
∏

06i6n−1

E(ãi
pn−iπ)p

i

where E(X) is the Artin–Hasse function of (9.1) Ch. I and ãi ∈ OF is a lifting
of ai ∈ F . This homomorphism is injective and if F is perfect then En,π is an
isomorphism.

Assume that F 6= ℘(F ). Then one can prove using the theory of this subsection and
the theory of fields of norms of section 5 Ch. III that cyclic totally ramified extensions
L/F of degree pn such that π ∈ NL/FL

∗ are in one-to-one correspondence with
subgroups En,π

(
F(w)℘(Wn(F ))

)
Up

n

1,F of U1,F /U
pn

1,F where w runs over elements of
Wn(F )∗ , see [Fe9]. This is the existence theorem for the absolutely unramified field
F . This theorem in a stronger form was discovered by M. Kurihara [Ku2].

For a generalization to higher dimensional local fields see (4.13) Ch. IX.
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(5.2). In this short subsection we discuss a class field theoretical interpretation of
a result of B. Mazur [Maz] on abelian varieties with good ordinary reduction over a
local field K with finite residue field, which was given another proof in J. Lubin and
M. Rosen [LR].

Let K be the completion of the maximal unramified extension of K . Let A be an
abelian variety over K of dimension d with good ordinary reduction Ã. Let F be the
formal group of dimension d corresponding to the Neron model A◦ of A, then

F (MK) = A◦(K) = ker(A(K)→ Ã(K)).

Over the field K the formal group of A due to the assumption on the type of its
reduction is isomorphic to the torus λ:F (MK) →̃U⊕d1,K . In fact, the theory below can
be slightly extended to any formal group over a local field which is isomorphic to a
torus over K.

Let ϕ (the continuous extension of ϕK ) act on series coefficientwise. Then ϕλ
is an isomorphism as well, so (ϕλ)−1λ as an element of Aut(U⊕d1,K) = GL d(Zp)
corresponding to an invertible matrix M ∈ GL d(Zp) which is called the twist matrix
of F .

Let L/K be a finite Galois totally ramified p-extension. The norm map NA
L/K

from A(L) to A(K) induces the norm map NA
L/K :A◦(L)→ A◦(K).

For a ∈ A◦(K) = F (MK) let λ(a) = (ε1, . . . εd) and εi = NL/Kηi , ηi ∈
U1,L in accordance with (1.6) Ch. IV. Then NL/K(γi) = 1 where (γ1, . . . , γd) =
(η1, . . . , ηd)ϕ−M and therefore by (1.7) Ch. IV we deduce that

γi ≡ π1−σi
L mod U (L/K) with σi ∈ Gal(L/K) .

Define the twisted reciprocity homomorphism

ΨL/K :A◦(K)/NA
L/KA

◦(L) −→ Gal(L ∩Kab/K)⊕d/(Gal(L ∩Kab/K)⊕d)E−M ,

a 7→ (σ1, . . . , σd) mod (Gal(L ∩Kab/K)⊕d)E−M .

This homomorphism is an isomorphism as was first proved in [Maz] and more explicitly
in [LR] without using the language of class field theory.

Certainly, using the methods of this and the previous chapters this result is easily
established in the framework of class field theory. In fact the twisted reciprocity
homomorphism can be defined for every formal group which is isomorphic to a torus
over the maximal unramified extension.

This result has applications to Iwasawa theory of abelian varieties, see [Maz],
[Man], [CG]. The norm groups NA

L/KA
◦(L) have been intensively studied, see [CG]

and references there.



CHAPTER 6

The Group of Units of Local Number Fields

In this chapter we assume that F is a local field of characteristic 0 with finite residue
field of characteristic p, i.e., F is a local number field. We extend the investigation of
the multiplicative structure of the group of principal units, in particular for applications
in the next chapter.

Section 1 presents power series and some issues of their convergence in the non-
Archimedean case. Section 2 introduces a generalization EX of Artin–Hasse maps,
defined in section 9 Ch. I. This time EX acts as an operator map on power series by
using an operator M. The inverse map to it is a generalization lX of the logarithm map;
and the map lX can be extended to a larger domain as in subsection (2.3). In section 3
we associate to a pn th root of unity several series whose various properties are studied in
detail. Subsections (3.5)–(3.6) contain auxiliary results important for Ch. VII. Section 4
discusses pn-primary elements and their explicit presentation in terms of power series.
Finally, section 5 presents a specific basis of the group of principal units of F , called the
Shafarevich basis. The latter is very useful for the understanding of explicit formulas
for the Hilbert pairing of Ch. VII.

1. Formal Power Series

Local fields of characteristic zero are in many senses similar to power series fields. It is
convenient to use power series when working with elements of local fields as we have
seen in section 6 Ch. I. In this section we discuss elementary properties of power series,
including their convergence.

(1.1). Let K be a field. Then the field K((X)) of formal power series over K is
a complete discrete valuation field (with respect to the valuation vX ; see section 2
Ch. I). Its residue field can be identified with K . Besides addition and multiplication,
there is the operation of composition in some cases. Let f (X) ∈ K((X)) and g(X) ∈
XK[[X]]. Writing f (X) =

∑
n>n0

αnX
n , g(X) =

∑
n>1 βnX

n , put

(f ◦ g)(X) = f (g(X)) =
∑
n>n0

αng(X)n, n > n0,

207
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where

g(X)n =
∑

i1+···+in=m

βi1 . . . βinX
m for n > 0

(there is only a finite number of addends defining the coefficient of Xm ), g(X)n =
(1/g(X))−n for n < 0, and

1/g(X) = β−1
i X−i(1 +

∑
n>i+1

β−1
i βnX

n−i)−1,

where βi is the first nonzero coefficient. Then vX (αng(X)n)→ +∞ as n→ +∞ and
f ◦ g is well defined.

(1.2). Example. Let K be of characteristic 0. Consider the formal power series

exp(X) = 1 +X +
X2

2!
+
X3

3!
+ . . . ,

log(1 +X) = X − X2

2
+
X3

3
− . . . ,

Then log(1 + (exp(X) − 1)) = X , exp(log(1 + X)) = 1 + X and exp(X + Y ) =
exp(X)·exp(Y ), log((1+X)(1+Y )) = log(1+X)+log(1+Y ) in the field K((X))((Y )).
(These equalities hold for K = Q, and therefore for an arbitrary K of characteristic
0). In particular, for series f (X), g(X) ∈ XK[[X]] we obtain

exp(f (X) + g(X)) = exp(f (X)) exp(g(X)),

log
(
(1 + f (X))(1 + g(X))

)
= log(1 + f (X)) + log(1 + g(X)).

Suppose that vX (fn(X)) → +∞ as n → +∞ for formal power series fn(X) ∈
XK[[X]]. Then

exp(
∑
n>1

fn(X)) =
∏
n>1

exp(fn(X)),

log
(∏
n>1

(1 + fn(X))
)

=
∑
n>1

log(1 + fn(X)).

Finally, if K = F is a local number field and a ∈ Zp , then put

(1 +X)a = lim
n→+∞

(1 +X)an ,

where an ∈ Z, lim an = a. For a formal power series f (X) ∈ XF [[X]] put, similarly,

(1 + f (X))a = lim
n→+∞

(1 + f (X))an = exp
(
a log(1 + f (X))

)
.
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The series (1 +X)a , (1 + f (X))a so defined do not depend on the choice of (an) (see
(6.1) Ch. I), and

(1 +X)a+b = (1 +X)a(1 +X)b,
(1 +X)a(1 + Y )a = (1 + (X + Y +XY ))a,

((1 +X)a)b = (1 +X)ab.

(1.3). Let F be a local number field with the discrete valuation v and a prime
element π. In Example 4 of (4.5) Ch. I we introduced the field F{{X}} of formal
series

∑+∞
−∞ αnX

n , such that v(αn) → +∞ as n → −∞ and, for some integer
c, v(αn) > c for all integer n (here F coincides with its completion). This field
is a complete discrete valuation field with a prime element π, and its residue field
is isomorphic to F ((X)). Let O be the ring of integers of F . For f (X), g(X) ∈
O{{X}} = {

∑
αnX

n ∈ F{{X}} : αn ∈ O} we shall write

resX (f ) = res(f ) = α−1,

f (X) ≡ g(X) mod degm if f (X)− g(X) ∈ XmO[[X]],
f (X) ≡ g(X) mod (πn, degm) if f (X)− g(X) ∈ πnO{{X}} +XmO[[X]].

By the way, subgroups πnO{{X}} + XmO[[X]] with n > 0, m ∈ Z, form a basis
of neighborhoods of 0 in the additive group O{{X}} for the topology induced by the
discrete valuation v∗:F{{X}} → Z⊕ Z of rank 2:

v∗

(+∞∑
−∞

αnX
n

)
= min

n
(v(αn), n).

Lemma. A series f (X) ∈ O{{X}} is invertible in O{{X}} if and only if f (X) /∈
πO{{X}}.

Proof. Let f (X) =
∑+∞
−∞ αnX

n , and let m be the minimal integer such that αm
belongs to the unit group U . Then

f (X) = αmXm(1 + g(X)),

where g(X) =
∑+∞
−∞ βnX

n , β0 = 0, and βn ∈ πO for n < 0. Hence

1/f (X) = α−1
m X−m

(
1− g(X) + g(X)2 − g(X)3 + . . .

)
.

The sum converges , because g(X) ∈ πO{{X}} + XO[[X]], and for fixed r, s we get
g(X)n ∈ πrO{{X}}+XsO[[X]], where n > 2 max(r, s). Thus, we deduce that f (X)
is invertible in O{{X}}. The converse assertion is clear.

Let U be the group of units of O, M be its maximal ideal.
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Proposition (“Weierstrass Preparation Theorem”). Let f (X) =
∑
n>0 αnX

n

be a series of O[[X]] invertible in O{{X}}. Let m > 0 be the minimal integer such
that αm ∈ U . Then there exists a series h(X) ∈ O[[X]], uniquely determined and
invertible in O[[X]], and a monic polynomial g(X) of degree m over O, such that
f (X) = g(X)h(X).

Proof. Put g(X) = β0 + · · · + βm−1X
m−1 + Xm , h(X) = γ0 + γ1X + γ2X

2 + . . . ,
with βi ∈M , γi ∈ O, γ0 ∈ U . The equality to be proved is equivalent to the system
of equations

α0 = β0γ0

α1 = β0γ1 + β1γ0

· · ·
αm = β0γm + · · · + βm−1γ1 + γ0

αm+1 = β0γm+1 + · · · + βm−1γ2 + γ1

· · ·

We shall show by induction on n that this system of equations has a unique solution
γ(n)

0 ∈ U , γ(n)
i ∈ O modulo πn , β(n)

i ∈ M modulo πn+1 , and that the limits
γi = limn γ

(n)
i , βi = limn β

(n)
i exist; the latter then form the unique solution of the

system.
Assume first that n = 1. Using the (m+ 1 + i) th equation, put γ(1)

i ≡ αm+i mod π
for i > 0; then γ(1)

0 ∈ U . Using the i th equation, we get

αi−1 ≡ β(1)
0 γ(1)

i−1 + · · · + β(1)
i−1γ

(1)
0 mod π2,

and we find β(1)
0 , β(1)

1 , . . . , β(1)
m−1 from the first m equations.

Furthermore, put β(n)
i = β(n−1)

i + πnδi , γ
(n)
i = γ(n−1)

i + πn−1εi for n > 2. Then
the (m + 1 + i) th equation implies that

πn−1εi ≡ αm+i − β(n−1)
0 γ(n−1)

m+i − · · · − β
(n−1)
m−1 γ

(n−1)
i+1 − γ(n−1)

i mod πn,

because β(n−1)
i ∈M . Therefore, as the right-hand expression is divisible by πn−1 by

the induction assumption, εi is uniquely determined modulo π. The first m equations
imply the congruences

πnγ(n)
0 δ0 ≡ α0 − γ(n)

0 β(n−1)
0 mod πn+1

πnγ(n)
0 δi ≡ αi − β(n−1)

i γ(n)
0 − β(n)

0 γ(n)
i − · · · − β

(n)
i−1γ

(n)
1 mod πn+1, i > 1.

Since the expressions on the right-hand sides are divisible by πn by the induction
assumption, δ0, δ1, . . . are uniquely determined modulo π. This completes the proof.
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Note that for f(X) ∈ O[[X]], α ∈MF , the expression f (α) is well defined.

Corollary. Let f1(X), f2(X) ∈ O[[X]], and let the free coefficient f1(0) of f1 be
a prime element in F . Then, f2(X) is divisible by f1(X) in the ring O[[X]] if and
only if f1(X) and f2(X) have a common root α in the maximal ideal ML of some
finite extension L over F .

Proof. By the Proposition, one can write f1 = g1h1 , f2 = g2h2 , where g1(X),
g2(X) are monic polynomials over O and hi(X) are invertible elements in O[[X]].
We obtain that g1(X) = Xn + βn−1X

n−1 + · · · + β0 with n > 0 and v(β0) = 1,
v(βi) > 1 for i > 0. Therefore, g1(X) is an Eisenstein polynomial over F (see (3.6)
Ch. II). We also deduce that the set of roots of fi(X) in the maximal ideal ML of any
finite extension L/F coincides with the set of roots of gi(X) in ML . Recall that all
roots of g1(X) in L belong to ML .

If f2 is divisible by f1 , then a root α of g1(X) in ML is a root of g2(X), where
L = F (α). If f1(α) = f2(α) = 0 for α ∈ ML and some finite extension L/F , then
α is a root of the Eisenstein polynomial g1(X), which is irreducible. As g2(α) = 0,
f2(X) is divisible by f1(X).

Remark. For other proofs of the Proposition see [Cas, Ch. VI], [Man].

(1.4). Let f (X) =
∑
n>0 αnX

n ∈ F ((X)). Put

c = − lim
n>1

v(αn)
n

.

Then for an element α ∈ F with v(α) > c we get v(αnαn)→ +∞ as n→ +∞. This
means that the sum

∑
n>0 αnα

n is convergent in F . We put f (α) =
∑
n>0 αnα

n .
The series f (X) is then said to converge at α ∈ F . It is easy to show that f (X)
converges on the set

Oc = {α : v(α) > c},

and does not converge on the set {α : v(α) < c}. If we pass to the absolute values ‖·‖,
the constant c should be replaced by the radius of convergence. A special feature of
formal series over local number fields is that the necessary condition v(αnαn)→ +∞
for convergence is also sufficient. It immediately follows that f (X) determines a
continuous function f :Oc → F .

Example. The series exp(X) converges on Oc with c = e/(p − 1), e = v(p).
Indeed,

v(n!)
n

=
e

n

([
n

p

]
+
[
n

p2

]
+ . . .

)
< e

∑
m>1

p−m =
e

p− 1
.
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On the other hand, for n = pm we get

v(n!)
n

= e
1− p−m

p− 1
;

therefore, exp(X) does not converge at α ∈ F with v(α) 6 e/(p − 1). The series
log(1 +X) converges on M , because

lim
v(n−1)
n

= 0.

Note that exp(X) induces an isomorphism of the additive group Oc onto the multi-
plicative group 1 + Oc and log(X) induces the inverse isomorphism.

(1.5). If ∗ denotes one of the operations +,×, and formal power series f (X), g(X)
converge at α ∈ F , then the formal power series h(X) = f (X) ∗ g(X) converges at
α ∈ F and h(α) = f (α) ∗ g(α). The operation of composition is more complicated
(see Exercise 3). The following assertion will be useful below:

Proposition. Let f (X) =
∑
n>0 αnX

n , g(X) =
∑
n>1 βnX

n be formal power

series over F . Let Ô be the ring of integers in the complete discrete valuation field
F̂ ur . Assume that f (X) converges on Ôc , g(X) converges on Ôd . Let g(α) ∈ Ôc for
all α ∈ Ôb ⊂ Ôd . Then the formal power series h(X) = (f ◦ g)(X) converges on Ôb

and h(α) = f (g(α)) for α ∈ Ôb .

Proof. Denote the discrete valuation on F̂ ur by v̂. Assume that for some α ∈ Ôb the
element βnαn does not belong to Ôc for some n. Put a = minn>1 v̂(βnαn). Let S
denote the finite set of those indices n, for which v̂(βnαn) = a. For a prime element π
in F there exists an element θ ∈ U

F̂ ur , such that the residues of βnαnθnπ−a , n ∈ S ,

are linearly independent over Fp (because the residue field of F̂ ur is infinite). Then
αθ ∈ Ôb , f (αθ) /∈ Ôc , and we get a contradiction. Thus, βnαn ∈ Ôc for n > 1.

Put κn = v̂(βnαn), then κn → +∞. Since f (X) converges on Ôc , we obtain

v̂(αnβi1 . . . βinα
m) = v(αn) + v̂(βi1α

i1 ) + · · · + v̂(βinα
in )→ +∞

as n → +∞, for any i1, . . . , in > 1 with i1 + · · · + in = m. This means that for a
fixed s there exists an index n0 such that v̂(αng(α)n) > s for n > n0 . There exists
also an index m0 , such that κm > s − min(v(α1), . . . , v(αn0 )) − n0 · t, κm > 0
for m > m0n

−1
0 , where t = min(0, infn κn). Then v̂(αnβi1 . . . βinα

m) > s for
1 6 n 6 n0 , i1 + · · ·+in = m > m0 . Putting h(X) =

∑
m>0 γmX

m we conclude that
v̂(γmαm) > s for m > m0 . Therefore, h(X) converges at α. As g(X) ∈ XF [[X]],
we get

m0∑
m=0

αmg(X)m =
m0∑
m=0

γmX
m mod degm0 + 1.
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Hence

v̂

( n∑
m=0

αmg(α)m −
∑
m>0

γmα
m

)
> s for n > m0

and
∑n
m=0 αmg(α)m → h(α) as n→ +∞. This means that f (g(α)) = h(α).

Exercises.

1. a) Let f (X) ∈ O{{X}}. Show that

f (X) ≡ Xr mod π

if and only if

1/f (X) ≡ X−r mod π.

b) Let f (X), g(X) be invertible in O{{X}}. Show that

f (X) ≡ g(X) mod πm

if and only if

1/f (X) ≡ 1/g(X) mod πm.

c) Let f (X), g(X) ∈ O{{X}}. Let h(X) be invertible in O{{X}}. Show that

f (X) ≡ g(X) mod πm

if and only if

f (X)/h(X) ≡ g(X)/h(X) mod πm.

2. Let g(X) be an element of O[[X]] invertible in O{{X}}. Show that for an element
f (X) ∈ O[[X]] there exist uniquely determined series q(X) ∈ O[[X]] and polynomial
r(X) of degree < vX (g(X)) over O, such that f = gq+r ( g(X) ∈ F ((X)) is the residue
of the polynomial g(X) ).

3. (G. Henniart [Henn2]) Let char(F ) = p.
a) Let f (X) =

∑
n>0 X

n , g(X) = p−2X−p−3X2 . Show that g converges at α = p,
f converges at g(α), but f ◦ g does not converge at α = p.

b) Let p = 2, f (X) = exp(X), g(X) = log(1 + X). Show that g, f ◦ g converge at
α =
√

2, but f does not converge at g(α).
c) Let f (X) = exp(X), g(X) = log(1 + X), α = ζ − 1, where ζ is a primitive p th

root of unity. Show that g(α) = 0, f (g(α)) = 1, but (f ◦ g)(α) = ζ .
d) Let exp(X) =

∏
n>1(1 + anX

n); put fn(X) = an(log(1 + X))n . Show that∏
n>1(1 + fn(X)) = 1 + X . For α as in c) show that fn(α) = 0 and check that∏
n>1(1 + fn(α)) 6= 1 + α.

4. (G. Henniart [Henn2]) Let f (X) =
∑
n>0 αnX

n , g(X) =
∑
n>1 βnX

n be formal
power series over F , h(X) = f (X) ◦ g(X). Put

am = inf
i1+···+in=m

v(αnβi1 . . . βin ) for m > 0.
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Let am + mv(α) → +∞ as m → +∞ and let g(X) converge at α. Show that f
converges at g(α), h converges at α, and f (g(α)) = h(α).

5. Let f (X) ∈ F [[X]] and let f ′(X) ∈ F [[X]] be its formal derivative. Show that if f (X)
converges on Oc , then f ′(X) converges on Oc and

f ′(α) = lim
v(β)→+∞
β∈Oc

f (α + β)− f (α)
β

, α ∈ O
c.

6. Show that log(1 + α) = limn→+∞
(1 + α)p

n

− 1
pn

for α ∈M .

7. Show that
a) The series (1 + X)a converges on Oc with c = e/(p− 1) if a ∈ Qp , and on O0 if

a ∈ Zp .
b) (1 + α)a = exp(a log(1 + α)) for a ∈ Zp , α ∈ Oc .
c) The function (1 + α)a depends continuously on a ∈ Qp for α ∈ Oc .

8. (�) Let Ô, v̂ be as in (1.5), and let f (X) be an element of O[[X]], convergent on Ô.
a) Show that if f (X) =

∑
n>1 αnX

n , then inf v̂(αn) = inf
α∈Ô v(f (α)).

b) Show that if f (X) vanishes on some non-empty open set A ⊂ O then f = 0.
c) Show that the maximum of f (X) on any set of the form

{α ∈ Ô : a 6 v̂(α) 6 b}, a > 0,

is attained on the set {α ∈ Ô : v̂(α) = a or v̂(α) = b}.
(For other properties of analytic functions in non-Archimedean setting see [Kr2], [T4],
[BGR], [Cas], [Kob1], [Kob2]).

2. The Artin–Hasse–Shafarevich Map

The Artin–Hasse maps, discussed in section 9 Ch. I, play an important role in the
arithmetics of local fields. E. Artin and H. Hasse used these maps in computations of
the values of the Hilbert norm residue symbol in cyclotomic extensions of Qp ([AH2],
1928). Later H. Hasse used them for establishing an explicit form of p-primary elements
([Has8], 1936). I.R. Shafarevich generalized and applied these maps to the construction
of a canonical basis of a local number field ([Sha2], 1950). This construction allows
one to derive explicit formulas for the Hilbert norm residue symbol. In this section we
consider a generalization of the Artin–Hasse maps as linear operators on Zp -modules.

(2.1). As usual, we denote by Qur
p the maximal unramified extension of Qp . Recall

that Gal(Qur
p /Qp) is topologically generated by the Frobenius automorphism which

will be denoted by ϕ (see (1.2) Ch. IV).
Let Ô denote the ring of integers of the completion Q̂ur

p of Qur
p and ϕ the continuous

extension of ϕ to Q̂ur
p .
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For a formal power series f (X) =
∑
αnX

n over Ô, define the Frobenius operator
MX as follows:

MX (f ) = fMX =
∑

ϕ(αn)Xpn.

Then MX is a Zp-endomorphism of Ô[[X]]:

MX (f + g) =MX (f )+ MX (g), MX (fg) =MX (f ) MX (g),
MX (af ) = a MX (f ) for a ∈ Zp.

Note that MX depends on X . We will often write M instead of MX .
Put (

1− M
p

)−1

= 1 +
M
p

+
M2

p2 + . . . .

For a formal power series g(X) ∈ XÔ[[X]](
1− M

p

)−1

(g(X)) = g(X) +
M g(X)
p

+
M2 g(X)
p2 + . . .

is an element of XÔ[[X]], because vX (Mn g(X))→ +∞ as n→ +∞.

(2.2). Regarding the additive group XÔ[[X]] as a Zp-module (a◦f (X) = af (X) for
a ∈ Zp , f (X) ∈ Ô[[X]] ) and the multiplicative group 1 + XÔ[[X]] as a Zp-module
(a•g(X) = g(X)a for a ∈ Zp , g(X) ∈ 1+XÔ[[X]] ), we introduce the Artin–Hasse–
Shafarevich map

EX :XÔ[[X]]→ 1 +XÔ[[X]]

by the formula

EX (f (X)) = exp
((

1− MX
p

)−1

f (X)
)
.

Then EX (X) = E(X), where E(X) is the Artin–Hasse function (see (9.1) Ch. I).
Introduce also the map lX : 1 +XÔ[[X]]→ XÔ[[X]] by the formula

lX (1 + f (X)) =
(

1− MX
p

)(
log(1 + f (X))

)
=
(

1− MX
p

)(∑
i>1

−(−f )i

i

)
.

Proposition. EX induces a Zp-isomorphism of XÔ[[X]] onto 1 +XÔ[[X]], and
the map lX is the inverse isomorphism. If α ∈ Ô = W (Fsep

p ) then EX (αX) = E(α,X),
where E was defined in (9.3) Ch. I.

Proof. For the arguments below, it is convenient to put in evidence the following
result.
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Lemma. Let f (X) ∈ Ô[[X]]. Then

f (X)mp ≡ f (X)mM mod pm.

Proof. One can assume m = pi . If i = 0 then the congruence

M f (X) ≡ f (X)p mod p

follows from the definition of M and the congruence ϕ(α) ≡ αp mod p. It remains
to use Lemma (7.2) Ch. I.

It is clear that

EX (f + g) = EX (f )EX (g), EX (af ) = EX (f )a

for a ∈ Zp , f, g ∈ XÔ[[X]], and

lX ((1 + f )(1 + g)) = lX (1 + f ) + lX (1 + g), lX ((1 + f )a) = alX (1 + f )

for a ∈ Zp , f, g ∈ XÔ[[X]] (see (1.2)).
First we show that EX (f ) ∈ 1 + XÔ[[X]] for f (X) ∈ XÔ[[X]]. By linearity,

one can assume f (X) = αXn with α ∈ Ô. By Proposition (1.2) Ch. IV the ring
Õ is generated over Zp by m th roots of unity with (m, p) = 1. Therefore, by
linearity and continuity one can assume that f (X) = θXn with θ an m th root of
unity, (m, p) = 1. Then ϕ(θ) = θp (see (1.2) Ch. IV) and EX (θXn) = E(θXn),
where E is the Artin–Hasse function, defined in (9.1) Ch. I. Lemma (9.1) Ch. I
implies that E(θXn) ∈ 1 + θXnZp[[θXn]] ⊂ 1 + XÔ[[X]], and we conclude that
EX (f ) ∈ 1 +XÔ[[X]].

Furthermore, for f ∈ XÔ[[X]]

lX (1 + f ) =
(

1− M
p

)(∑
n>1

(−1)n−1

n
fn
)

=
∑
n>1

(−1)n−1

n
fn −

∑
n>1

(−1)n−1

np
fnM

=
∑

(n,p)=1
n>1

(−1)n−1

n
fn −

∑
n>1

(−f )np − (−f )nM

np
.

The first sum is an element of Ô[[X]] because n−1 ∈ Zp for (n, p) = 1. The terms in
the second sum belong to Ô[[X]] by the Lemma. Therefore, lX (1 + f ) ∈ XÔ[[X]].

From the definitions we deduce

(lX ◦ EX )(f ) =
(

1− M
p

)
(log ◦ exp)

((
1− M

p

)−1

(f )
)

= f
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and, similarly, (EX ◦ lX )(1 + f ) = 1 + f . Therefore, EX and lX are inverse to each
other and are Zp-isomorphisms.

(2.3). Lemma. The map lX

lX (f ) = log(f )− M
p

log(f ) =
1
p

log(fp/fM)

is a homomorphism from the group 1 + 2pÔ +XÔ[[X]] to 2Ô +XÔ[[X]] ; the group
1 + (2p,X)O[[X]] is mapped to 2O[[X]] +XO[[X]].

Proof. The group 1 + 2pÔ+XÔ[[X]] is the product of its subgroups 1 + 2pÔ and 1 +
XÔ[[X]]. We have already seen in (2.2) that lX maps 1 +XÔ[[X]] isomorphically to
XÔ[[X]]. It remains to use (1.4) according to which exp and log induce isomorphisms
between 2pÔ and 1 + 2pÔ.

We can extend the map lX even further.
Put

R = Ô((X))∗ if p > 2,

R =
{
Xmaε(X) : ε(X) ∈ 1 +XÔ[[X]], a ∈ Ô∗, aϕ ≡ a2 mod 4,m ∈ Z

}
if p = 2.

For f ∈ R we get fp/fM ∈ 1 + (2p,X)Ô[[X]]. Extend lX to R by the formula

lX (f ) =
1
p

log(fp/fM).

Then lX (f ) ∈ (2, X)Ô[[X]].

(2.4). At the end of this section we make several remarks. First, if f ≡ αXn

mod degn + 1, α ∈ Ô, then

EX (f ) ≡ 1 + αXn mod degn + 1.

Similarly, if f ≡ αXn mod (pk, degn + 1), α ∈ Ô, k > 1, then

EF (f ) ≡ (1 + αXn)(1 + g)p
k

mod degn + 1

for some g ∈ XÔ[[X]].
For a formal power series f ∈ XÔ[[X]] one has

EX (f )p = exp(pf )EX (fM),

since EX (f )pEX (M f )−1 = EX ((p− M)f ).
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Exercises.
1. Let π be a prime element of a finite extension F over Qp . Let f =

∑
n>m αnX

n ∈
XO0[[X]], where O0 is the ring of integers of F0 = F ∩Qur

p . Show that

EX (f (X))|X=π ≡ 1 + αmπm mod πm+1.

Let α be a nonzero root of the polynomial f = pX −Xp . Show that

EX (f )|X=α 6= 1 = EX (f (α)).

2. Let lX :R→ Ô[[X] be the map defined in the end of (2.3).
a) Let f ∈ R. Show that the free coefficient of lX (f ) belongs to (ϕ − 1)Ô + 2Ô +

XÔ[[X]].
b) Show that the kernel of lX is equal to 〈X〉 × µ, where µ is the group generated by

roots of unity of order relatively prime to p and −1, and the image of lX is equal to
(ϕ− 1)Ô + 2Ô +XÔ[[X]].

c) Let LX :R→ Ô[[X]] be the map defined by

LX (f ) =
fp − fMX
pfMX

Show that LX (f ) + LX (MX f ) ≡ lX (f ) mod 2 if p = 2, and LX (f ) ≡ lX (f )
mod p if p 6= 2.

3. (�) Let F be a local number field, O0 the ring of integers of F0 = F ∩ Qur
p . Let L/F

be a totally and tamely ramified finite Galois extension, G = Gal(L/F ). Let π be a prime
element in L such that πn is a prime element in F , n = |L : F |. For σ ∈ G, the element
εσ = π−1σ(π) belongs to the set of multiplicative representatives in F (see section 4
Ch. II). Define the action of G on O0[[X]] by σ(X) = εσX .
a) Let I be a set of n integers such that all their residues modulo n are distinct. Let

AI denote the O0[G]-module generated by Xi , i ∈ I . Show that AI is a free
O0[G]-module of rank 1, and an element α =

∑
i∈I αiX

i with αI ∈ O0 is a
generator of AI if and only if all αi are invertible elements in O0 .

b) Let e = e(F |Qp). Denote

Im =
{
pn(m− 1)
p− 1

6 i <
pnm

p− 1
, (i, p) = 1

}
, 1 6 m 6 e,

I(p) = ∪16m6eIm.

Let Am denote the O0[G]-submodule in O0[[X]] generated by Xi with i ∈ Im ,
A(p) = ⊕

16m6e
Am . Choose in Am a O0[G]-generator αm = αm(X) as in a). Let

β1, . . . , βf be a basis of O0 over Zp . Show that A(p) is a free Zp[G]-module of
rank fe with generators βiαm , 1 6 i 6 f , 1 6 m 6 e.

c) Let the field L contain no nontrivial p th roots of unity. Prove that the map f (X)→
EX (f (X))|X=π induces an isomorphism of Zp[G]-module A(p) onto Zp[G]-mo-
dule U1,L . This means that U1,L is a free Zp[G]-module of rank ef with generators
EX (βiαm(X))|X=π , 1 6 i 6 f , 1 6 m 6 e.
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4. Let F be a complete discrete valuation field of characteristic 0 with perfect residue field F
of characteristic p. Let F be the Frobenius map on the field of fractions of W (F

sep
) (see

(8.2) Ch. I). For a formal power series f (X) =
∑

αnX
n over W (F

sep
) define

MX f (X) =
∑

F(αn)Xpn.

Show that the maps EX , lX , defined similarly to (2.2)–(2.3) have properties similar to the
assertions of this section.

3. Series Associated to Roots

In this section we consider various formal power series associated to a pn th primitive
root of unity; these will be applied in the next two sections and Chapter VII. We also
state and prove several auxiliary results in (3.5)–(3.6) which will be in use in Chapter VII
when we study explicit pairings. The reader may omit subsections (3.3)–(3.6) in the
first reading.

(3.1). Suppose that F contains nontrivial p th roots of unity and let n > 1 be the
maximal integer such that a pn th primitive root ζ of unity is contained in F . Let π be
a prime element in F . Denote the ring of integers of the inertia subfield F0 = F ∩Qur

p

by O0 . By Corollary 2 of (2.9) Ch. II we get an expansion

ζ = 1 + c1π + c2π
2 + . . . , ci ∈ O0.

Let z(X) = 1 + z0(X) denote the following formal power series:

z(X) = 1 + c1X + c2X
2 + . . . .

Then z(X) ∈ O0[[X]] and z(π) = ζ . The formal power series z(X) depends on the
choice of the prime element π and the expansion of ζ as power series in the prime
element π.

Put

sm(X) = z(X)p
m

− 1, s(X) = sn(X),

um(X) =
sm(X)
sm−1(X)

, u(X) = un(X).

Then sm ∈ O0[[X]] and um ∈ O0[[X]], because

um =
(1 + sm−1)p − 1

sm−1
= p +

p−1∑
i=1

(
p

i + 1

)
sim−1.
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We have also s(π) = u(π) = 0. The series u(X) belongs to pO0 + XO0[[X]].
Hence for every g(X) ∈ O0[[X]] and p > 2 we get in accordance with (2.3)

lX (1 + ug) =
∑
i>1

(−1)i−1uigi

i
−
∑
i>1

(−1)i−1uiMgiM

pi
.

To have a similar expression for p = 2 we need to impose an additional restriction that
ug ∈ 2pO0 +XO0[[X]].

Let e = e(F |Qp) and em = e/(p − 1)pm−1 for m > 1. If v denotes the discrete
valuation on F , then v(ζ − 1) = en by Proposition (5.7) Ch. I.

Proposition. The formal power series sm, um are invertible in the ring O0{{X}}.
Moreover, vX (sm) = pmen , vX (um) = pm−ne, where vX is the discrete valuation of
F ((X)). The following congruences hold for m > 1 :

a) sm ≡ zp
m

0 mod p,

b) sm ≡M sm−1 mod pm,

c)
1
sm
≡ 1

M sm−1
mod pm,

d) s′m ≡
(

1
sm

)′
≡ 0 mod pm,

where s′m(X) is the formal derivative of sm(X).

Proof. The first congruence follows from the definition of sm and Lemma (7.2) Ch. I.
If all coefficients ci of z0(X) were divisible by p, then v(ζ − 1) > v(πp) = e + 1

which contradicts v(ζ−1) = en . So let vX (z0(X)) = i. Then for z0(X) = c1X+c2X
2+

. . . we obtain c1 ≡ · · · ≡ ci−1 ≡ 0 mod p. Therefore, v(z0(π)) > min(i, e+1). But
v(z0(π)) = v(ζ − 1) = en 6 e, and hence vX (z0) = en . The first congruence implies
now that vX (sm) = pmen , vX (um) = pm−ne. Lemma (1.3) shows that sm , um are
invertible in O0{{X}}.

We shall verify the second congruence by induction on m. If m = 1 then

s1 = (1 + z0)p − 1 ≡ zp0 mod p

and

zp0 ≡M z0 =M s0 mod p.

Hence, s1 ≡M s0 mod p. Further, if m > 1 and sm−1(X) ≡M sm−2 mod pm−1 ,
then by Lemma (7.1) Ch. I

spm−1 ≡M spm−2 mod pm,

and

sm ≡M ((1 + sm−2)p − 1) =M sm−1 mod pm.
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The third congruence follows from the second one, because sm is invertible in
O0{{X}}.

The last congruence follows from the definition of sm and the equality

(1/sm)′ = −s′m/s2
m.

Corollary. Let the expansion of ζ be the following:

ζ = 1 + cenπ
en + cen+1π

en+1 + . . . with ci ∈ O0.

Then EX (a s(X)) ≡ (1 +a cXpe1 )(1 +g(X))p mod deg pe1 + 1 for a ∈ O0 and some
c ∈ O0 , g(X) ∈ XO0[[X]].

Proof. In this case s(X) ≡ cpnenX
pe1 mod (p, deg pe1 + 1). It remains to apply (2.4).

Lemma. Let the expansion of ζ be the following:

ζ = 1 + cenπ
en + cen+1π

en+1 + . . . with ci ∈ O0.

Then v((MmX s(X))|X=π) > e(1 + max(m,n)) and, in addition, for p = 2

v((MmX s(X))|X=π) > e(2 +m).

Proof. By b) of the Proposition we get

M sn+k−1 = sn+k + pn+kfk, k > 1

with fk ∈ O0[[X]]. As z0 ≡ 0 mod deg en , we deduce

sk ≡ 0 mod deg en for k > 1, and fm ≡ 0 mod deg en.

Acting by Mm−k−1 on the equality and summing for 1 6 k 6 m, we obtain

Mm s = sn+m + pn+mfm + pn+m−1 M fm−1 + · · · + pn+1 Mm−1 f1.

One has

v(pn+k Mm−k fk(X)|X=π) > (n + k)e + pm−ken.

Now,
if n > m, then (n + k)e + pm−ken > e(1 + n) and > e(2 +m) for p = 2.
if n < m and n + k > m + 2, then (n + k)e + pm−ken > e(2 +m).
if n < m and n + k 6 m + 1, k > 1, then (n + k)e + pm−ken > e(1 + m) and
(n + k)e + pm−ken > e(2 +m) for p = 2.

This proves the Lemma.
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(3.2). Proposition. There is an invertible formal power series g(X) ∈ O0[[X]]
such that u(X)g(X) is the Eisenstein polynomial of π over F0 . Any formal power
series f (X) ∈ O0[[X]] with f (π) = 0 is divisible by u(X) in O0[[X]].

Proof. The first assertion follows from the previous Proposition and Proposition (1.3),
the second from Corollary (1.3).

(3.3). Now we compare distinct formal power series corresponding to distinct expan-
sions of ζ in a power series in π.

Proposition. Let s(X), s(1)(X) be two formal power series over O0 which corre-
spond to two expansions of ζ in a power series in π. Then

s(1) = s + png1 + pn−1sp−1g2 + spg3

for some g1 ∈ XO0[[X]], g2, g3 ∈ X2O0[[X]].

Proof. Let z(X), z(1)(X) be two elements of 1 +XO0[[X]] with z(π) = z(1)(π) = ζ .
Then, by Proposition (3.2) the series z(1)(X)/z(X) − 1 is divisible by u(X). Put
z(1) = z(1 + uψ) where ψ ∈ O0[[X]]. Since u(0) = p, we obtain that ψ ∈ XO0[[X]].
According to (3.1), we can write

z(1) = z + pψ1 + sp−1
n−1ψ2

for some formal power series ψ1 , ψ2 in XO0[[X]]. By induction on m one can
obtain that

s(1)
m = sm + pm+1ψ1,m + sp−1

n−1p
mψ2,m + spn−1ψ3,m

for some ψi,m ∈ XO0[[X]]. Then

s(1) ≡M s(1)
n−1 ≡M sn−1 + pn−1 M (sp−1

n−1ψ2,n−1)+ M (spn−1ψ3,n−1)

≡ s + pn−1sp−1 M (ψ2,n−1) + sp M (ψ3,n−1) mod pn

by Proposition (3.1), b). This completes the proof.

Corollary. If p > 2, then

1/s(X) ≡ 1/s(1)(X) mod (pn, deg 0).

Proof. By Proposition

1/s(1) ≡ 1/s · 1/(1 + pn−1sp−2g2 + sp−1g3) mod pn.

Since p > 2, we deduce

1/(1 + pn−1sp−2g2 + sp−1g3) = 1/(1 + sg4) = 1 +
∑
m>1

(−1)msmgm4
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for some g4 ∈ O0[[X]]. Therefore,

1/s(1) ≡ 1/s +
∑
m>1

(−1)msm−1gm4 ≡ 1/s mod (pn, deg 0).

Remark. If p = 2 then r(X)/s(X) ≡ r(1)(X)/s(1)(X) mod (pn, deg 0) where the
polynomial r(X) depends on the series s(X) and is defined in (3.4).

(3.4). In this subsection p = 2. We introduce a series h(X) and polynomial r(X)
introduced by G. Henniart in the case p = 2.

Define

h(X) =
M (sn−1(X))− s(X)

2n
.

Then, by Proposition (3.1), b) the series h belongs to O0[X]]. Let r0(X) ∈ XO0[X]
be a polynomial of degree e− 1, satisfying the condition:

M2 r0 + (1 + (2n−1 − 1)sn−1) M r0 + sn−1r0 ≡ h modev (2, deg 2e),

where we introduced the notation∑
m>0

αmX
m ≡ 0 modev (2, deg 2e)

if α2m ≡ 0 mod 2 for 0 6 m < e. Put

r(X) = 1 + 2n−1 MX r0(X).

Observing that Proposition (3.1) implies

sn−1 ≡ αeXe mod (2, deg e + 1),

we get

sn−1 ≡
2e−1∑
m=e

αmX
m mod (2, deg 2e), αm ∈ O0.

Let

h ≡
2e−1∑
m=1

βmX
m mod (2, deg 2e), r0 =

e−1∑
m=1

ρmX
m
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with βm, ρm ∈ O0 . Then the condition on r0 is equivalent to the following one: for
m < e the coefficient of X2m in the expression

e−1∑
m=1

ϕ2(ρm)X4m +
(
1 + (2n−1 − 1)

2e−1∑
m=e

αmX
m
)(e−1∑
m=1

ϕ(ρm)X2m)
+
(2e−1∑
m=e

αmX
m
)(e−1∑
m=1

ρmX
m
)

is congruent modulo 2 to the coefficient β2m . Thus, every subsequent coefficient
ρm linearly depends on ϕi(ρ1), . . . , ϕi(ρm−1), i = 0, 1,−1. This linear system of
equations has the unique solution when β2m = 0 for 1 6 m < e. Therefore, the
polynomials r0(X) and r(X) are uniquely determined by the conditions indicated.
From Proposition (3.1) one deduces that the condition on r0 is equivalent to the
following one: for m < 0 the coefficient of X4m in the series

H(r) =
M2 r− M (1 + 2n−1h) M r

M s
+
M r− M (1 + 22n−2h)r

s

is divisible by 2n .

(3.5). This subsection and the following one contain several auxiliary assertions which
will be applied in Ch. VII.

Lemma.

a) For i > 1,

ui

s
≡ pi−1

sn−1
+

(i− 1)pi−1(p− 1)
2

mod deg 1.

In particular,

ui

s
≡ pi−1

sn−1
mod deg 0.

b) For p > 2, i > 1,

uiM

s
≡ pi

s
+
ipi(p− 1)

2
mod (pi+n−1, deg 1).

In particular,

uiM

s
≡ pi

s
mod (pi+n−1, deg 0).

Moreover,
uM

s
≡ p

s
+
p(p− 1)

2
mod (pn+1, deg 1).
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c) For p = 2, i > 1,

uiM

s
≡ (2 + 2nh)i

s
+ i2i−1 mod deg 1

where the series h is defined in (3.4).
d) For p > 2, i > 1,

(ui)′

i2s
≡ (ui)′

is
≡ pi−1

i

( 1
sn−1

)′
mod (pn, deg 0).

Proof. a) Since u = p +
∑p
j=2
(
p
j

)
sj−1
n−1 we have

ui

s
=
ui−1

sn−1
=

1
sn−1

(
p +
(
p

2

)
sn−1 + . . .

)i−1

≡ pi−1/sn−1 + (i− 1)pi−2
(
p

2

)
mod deg 1.

b) By Proposition (3.1), b) we get M u = un+1 + png for some g(X) ∈ O0[[X]].
Hence

uiM

s
=

i∑
j=0

(
i

j

)
pnjgjui−jn+1/s =

1
s

i∑
j=0

(
i

j

)
pnjgj

(
p +
(
p

2

)
s + . . .

)i−j

≡
i∑
j=0

(
i

j

)
pnjgj

(
pi−j/s + (i− j)pi−j(p− 1)/2

)
mod deg 1

which for p > 2 is congruent to pi/s + ipi(p− 1)/2 mod (deg 1, pi+n−1).
For i = 1, p > 2 we deduce

uM

s
=

(
p +
(
p
2

)
sn−1 + · · · + sp−1

n−1
)M

s

≡
p +
(
p
2

)
s + · · · + sp−1

s
≡ p

s
+
p(p− 1)

2
mod (pn+1, deg 1),

since psiMn−1 ≡ psi mod pn+1 from the congruence b) of Proposition (3.1).
c) Next, for p = 2 we get M u = 2 + 2nh + s, hence

uiM/s ≡ (2 + 2nh)i/s + i2i−1 mod deg 1.

d) Finally, Proposition (3.1) implies that

u′ ≡ (sp−1
n−1)′ ≡ −s′n−1s

p−2
n−1 mod pn.

Then

u′/s ≡ −s′n−1/s
2
n−1 mod pn.
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By Proposition (3.1) d) we know that (1/sn−1)′ ≡ 0 mod pn−1 . Then

(ui)′

i2s
=
ui−1u′

is
≡
pi−1s′n−1

is2
n−1

mod (pn, deg 0)

since pi−1s′n−1/i ≡ 0 mod pn for i > 2, p > 2. The latter is ≡ 0 mod (pn, deg 0)

unless i = 1, in which case
(ui)′

i2s
=

(ui)′

is
.

(3.6). And, finally, another three lemmas.
Put V (X) = 1/2 + 1/s(X).

Lemma 1. Let f (X) ∈ O0{{X}}. Then

res f ′/s ≡ f ′V ≡ 0 mod pn.

Proof. By Proposition (3.1), d)

(f/s)′ = f ′/s + f (1/s)′ ≡ f ′/s mod pn.

Since res g′ = 0 for every g ∈ F0{{X}}, the assertion follows.

Lemma 2. Let f (X) belong to R defined in (2.3). Let i be divisible by pk , k > 0.
Then for p > 2

f (X)ip − f (X)iM ≡ iplX (f (X))f (X)iM mod p2(k+1).

Proof. We have

f ip − f iM = f iM(f ip/f iM − 1) = f iM
(
exp(iplX (f ))− 1

)
.

This means that

f ip − f iM = f iMiplX (f ) + f iM
∑
j>2

(ip)j

j!
lX (f )j .

Since (ip)j−2/j! ∈ Zp for p > 2, j > 2, the assertion follows.

Lemma 3. Let f (X) ∈ O0((X)), g(X) ∈ O0((X))∗ , h(X) ∈ O0{{X}}. Then
a) (M f )′ = pXp−1 M (f ′) = pX−1 M (Xf ′),
b) g′/g = lX (g)′ +Xp−1 M (g′/g),
c) TrF0/Qp resX−1h = TrF0/Qp resX−1 M h.

Proof.
a) Let f =

∑
αiX

i , αi ∈ O0 . Then

(M f )′ =
(∑

ϕ(αi)Xpi

)′
=
∑

piϕ(αi)Xpi−1 = pXp−1 M (f ′).
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b) Let g = αXmε(X) with α ∈ O∗0 , ε = 1 +
∑
i>1 βiX

i , βi ∈ O0 . Then using
(2.3) we get g′/g = mX−1 + ε′/ε and lX (g)− lX (ε) ∈ O0 . Now

lX (g)′ = lX (ε)′ =
((

1− M
p

)
log ε

)′
=
(
log ε

)′ −Xp−1 M
(
log ε

)′
= ε′/ε−Xp−1 M

(
ε′/ε

)
= g′/g −Xp−1 M (g′/g).

c) Let h(X) =
∑
αiX

i with αi ∈ O0 . Then

TrF0/Qp resX−1h = TrF0/Qp α0 = TrF0/Qp ϕ(α0) = TrF0/Qp resX−1 M h.

Exercises.
1. a) Show that if

ψ1/s ≡ ψ2/s mod (pn, deg 1)

for ψ1, ψ2 ∈ O0{{X}}, then

M (ψ1)/s ≡M (ψ2)/s mod (pn, deg 1).

b) Show that for m > 1 there exists a series gm ∈ −1 +XO0[[X]], such that

spmn = smn+1 + pmsmn gm.

c) Show that lX (sn) ≡ sng mod pn for some g ∈ XO0[[X]].
2. Show that for p = 2, m > 2, k > 1

a) Mk (um)/s ≡ (2 + 2n Mk−1 (h))m/s mod (pn+m, deg 0),
b) (Mk (um)/m2k)′/s ≡ X2k−1 Mk (s′)/s mod (2n, deg 0).
c) M (um)/s ≡ 2m/s mod (2n+m, deg 0) if m is a power of 2, m > 3.
d) 2(1/sn−1)′ + s′/s + s′/sn−1 ≡ 0 mod (2n+1, deg 1)
e) (M sn−1)′/2 ≡ s′/2 + 2n−1h′ mod 2n .

3. Let p = 2.
a) Show that for f ∈ R (R is defined in (2.3)), g ∈ Ô{{X}}

res f ′ M (g)/f = resX M (f ′g/f ).

b) Show that if f = Xmaε ∈ R with a ∈ Ô∗ , ε ∈ 1 +XÔ[[X]], then(
f2 − fM

2fM

)′
≡ lX (f )′ ≡ ε′(Xε)′/ε2 mod 2.

c) Show that for g ∈ Ô{{X}}

res g′ r/s ≡ 0 mod 2n.

4. Let p = 2. Using Exercise 2 show that for g ∈ O0[[X]] and i,m > 1

TrF0/Q2
res
(Mi (ug)m

2im

)′
r/s ≡ 0 mod 2.
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5. (�) Let p = 2. Let g ∈ R. Put

fj =
gi2

j

− gi2
j−1M

i2j
− lX (g)gi2

j−1M.

a) Show that the series∑
j>1

fj

2j
− i

2
M (giLX (g))− i

2

∑
j>1

M
(
g2j−1ilX (g)

)
belongs to Ô[[X]].

b) Show that

res
(∑
j>1

fj/2j
)′
r/s ≡ res

(
M
(
igiLX (g) + ilX (g)

∑
j>1

g2j−1i))′r/(2s) mod 2n.

6. Let p > 2.
a) Show that V ′ belongs to pnX−2pe/(p−1)O0[[X]] [[pX−e]].
b) Let g ∈ O0[[X]]. Show that log(1 + ug) belongs to O0[[X]] [[p−1Xpe]].
c) Deduce that for every α ∈ O0((X))∗

lX (α) log(1 + ug)V ′ ≡ 0 mod (pn, deg 1).

7. Let p > 2. Deduce from (3.5) and (3.6) that for every f ∈ O0[[X]]

res(1− p M)(V ) f
M
p

log(1 + ug) ≡ 0 mod pn.

8. Let f (X) ∈ XO0[[X]]. Show using Proposition (3.2) that EX (f (X))|X=π belongs to
F ∗p

n

if and only if f (X) − lX (1 + u(X)g(X)) = pnt(X) for some g ∈ XO0[[X]],
t ∈ XO0[[X]].

4. Primary Elements

In this section we shall construct primary elements of a local number field F which
contains a primitive pn th root ζ of unity. F0 denotes, as usually, the inertia subfield
F0 = F ∩Qur

p of F , O0 denotes its ring of integers. The continuous extension of the
Frobenius automorphism ϕ ∈ Gal(Qur

p /Qp) on the completion Q̂ur
p will be denoted by

the same notation. Let ϕF ∈ Gal(F ur/F ) be the Frobenius automorphism of F , and
let its continuous extension to F̂ ur be denoted by the same notation.

From now on we denote the trace map TrF0/Qp by Tr.
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(4.1). An element ω ∈ F ∗ is said to be pn-primary if F ( pn
√
ω)/F is an unramified

extension (see Exercise 7 section 1 Ch. IV). According to Proposition (1.8) Ch. IV, for
an element a ∈ O0 there exists an element κ in the ring of integers of Q̂ur

p such that
ϕ(κ)− κ = a. Let π be a prime element in F and let z(X) be as in section 3.

Proposition.

(1) The element

H(a) = EX
(
pnϕ(κ)lX (z(X))

)
|X=π

is pn-primary. Let γ ∈ F ur be a pn th root of H(a). Then

γϕF−1 = ζTr a.

(2) The element H(a) does not depend, up to pn th powers, on the choice of κ and
prime element π and on the choice of expansion of ζ in a series in π.

Proof. Let f = f (F |Qp). Then ϕf |Qur
p
∈ Gal(Qur

p /F0) is the Frobenius automor-
phism of F0 . We get

ϕf+1(κ)− ϕ(κ) = ϕ(1 + ϕ + · · · + ϕf−1)(ϕ(κ)− κ) = Tr a = b,

where b ∈ Zp . Observing that ϕf commutes with M, we deduce

ϕfEX
(
ϕ(κ)lX (z)

)
= EX

(
(ϕ(κ) + b)lX (z)

)
= EX

(
ϕ(κ)lX (z)

)
zb, (∗)

by Proposition (2.2). Hence for the element γ = EX
(
ϕ(κ)lX (z(X))

)
|X=π we get

γϕF−1 = ζTr a . The element H(a) belongs to F̂ ur = F Q̂ur
p . We have ϕF |Q̂ur

p

= ϕf

and
ϕFH(a) = H(a)z(π)p

nb = H(a)ζp
nb = H(a).

Therefore, H(a) ∈ F by Proposition (1.8) Ch. IV. Thus, H(a) is a pn-primary element
in F .

If for a κ1 in the ring of integers in Q̂ur
p we have ϕ(κ1)−κ1 = a, then ϕ(κ1−κ) =

κ1−κ, and by Proposition (1.8) Ch. IV we get κ1 = κ+ c for some c ∈ Zp . The same
arguments as above show that EX (pnϕ(κ1)lX (z(X)))|X=π coincides with H(a) up to
pn th powers.

Let H1(a) be an element constructed in the same way as H(a) but for another
prime element π or for another series z(1)(X) ∈ 1+XO0[[X]] with z(1)(π) = ζ . Then
as above we deduce that γϕF−1

1 = ζTr a . Since both elements γ and γ1 belong to F ur ,
we deduce that γ = γ1c with c ∈ F . Thus, H1(a) = H(a)cp

n

as required.

Remark. The elements H(a) were constructed by H. Hasse in [Has8]. Hasse’s
elements H(a) are not suitable for our purposes, because they involve elements which
do not belong to the base field F . Later in (4.2) we shall obtain other forms of primary
elements.



230 VI. The Group of Units of Local Number Fields

Lemma. H(a) = EX (pn a log z(X))|X=π

Proof. One has (
1− M

p

)
(κ log z) = ϕ(κ)lX (z)− a log z,

EX

(
pn
(

1− M
p

)
(κ log z)

)
= exp(pnκ log z).

Hence

EX (pnϕ(κ)lX (z)) = EX (pn a log z) exp (pnκ log z).

To apply Proposition (1.5), let f (X) = exp(X), g(X) = pnκ log z(X), c = e/(p− 1),
where e = e(F |Qp), and d = 0. Therefore, putting b = 0, we get g(Ô0) ⊂ Ôc . Now
Proposition (1.5) shows that

exp(pnκ log z(X))|X=π = exp (pnκ log (ζ)).

Since ζp
n

= 1, we obtain log (ζ) = 0. Thus,

EX
(
pnϕ(κ)lX (z)

)
|X=π = EX

(
pn a log (z)

)
|X=π,

as required.

(4.2). Our next goal is to replace the formal power series pn a log (z) in the previous
Lemma with another series over O0[[X]].

Theorem. The element

ω(a) = EX (a s(X))|X=π , a ∈ O0,

coincides with H(a) up to the elements of the pn th power in F .
Thus, ω(a) is a pn-primary element in F and does not depend, up to the pn th

powers in F , on the choice of prime element π and on the choice of expansion of ζ
in a series in π.

Proof. First we verify the assertion of the Theorem for the series z = 1 + cenX
en +

cen+1Xen+1 + . . . with ci ∈ O0 (see (3.1)). The equality pn log (z) = log (1 + s)
implies

EX (pn a log (z)) = EX (a s)EX (a(log (1 + s)− s)).

Put ψ = log (1 + s(X)) − s(X). We shall show that EX (aψ)|X=π = εp
n

for some
ε ∈ F ∗ . Then H(a) = ω(a)εp

n

, as desired. We get

EX (aψ) = exp (aψ) exp
(∑
i>1

Mi (aψ)/pi
)
.
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Let v be the discrete valuation of F̂ ur . Since s(α) = (1 + z0(α))p
n − 1 for an

element α ∈ F̂ ur with v(α) > 1, we deduce v(s(α)) > e. Then Proposition (1.5)
and Example (1.4) show that log (1 + s(X))|X=α = log (1 + s(α)) and v(ψ(α)) > e.
Therefore, by that Proposition,

exp (aψ(X))|X=π = exp (a log (1 + s(π))− a s(π)) = 1.

Further, ψ =
∑
m>2(−1)m−1s(X)m/m; consequently

exp
(∑
i>1

Mi (aψ)/pi
)

= exp
(∑
i>1

∑
m>2

ϕi(a)ψm,i

)pn

where ψm,i = (−1)m−1 Mi sm/mpi+n . For an element α ∈ F̂ ur with v(α) > 1,
Lemma (3.1) shows that

v(ψm,i(α)) > −(m− 1)e +me(1 + max (i, n))− (i + n)e > e,

because v(m) 6 (m − 1)e for m > 1. We also obtain that v(ψm,i(α)) → +∞ as
m→ +∞ or i→ +∞. Therefore, Proposition (1.5) implies that

exp
(∑
i>1

Mi (aψ(X))/pi
)∣∣∣∣

X=π
= exp

(∑
i>1

∑
m>2

ϕi(a)ψm,i(π)
)pn

.

Thus, H(a) coincides with ω(a) up to F ∗p
n

.
Now we verify the assertion of the Theorem for an arbitrary expansion of ζ in a

series in π. Let z(1)(X), s(1)(X) be the corresponding series. By Proposition (3.3)
we get

s(1) = s + png1 + pn−1sp−1g2 + spg3

with gi ∈ XO0[[X]]. Then

EX (png1(X))|X=π = EX (g1(X))p
n

|X=π ∈ F ∗p
n

.

In the same way as above, we deduce that

exp (pn−1sp−1g2)|X=π = 1, exp (spg3)|X=π = 1.

Finally, for an element α ∈ F̂ ur with v(α) > 1 we obtain, by Lemma (3.1), that

v(pn−1 Mi (sp−1g2)/pi|X=α) = vi > e, v(Mi (spg3)/pi|X=α) = wi > e

and vi, wi → +∞ as i→ +∞. Therefore, Proposition (1.5) implies

EX (pn−1sp−1g2)|X=π ∈ F ∗p
n

, EX (spg3)|X=π ∈ F ∗p
n

and EX (a s(1)(X))|X=π coincides with ω(a) up to F ∗p
n

.
The last assertion of the theorem follows from Proposition (4.1).
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(4.3). Proposition. A primary element ω(a), a ∈ O0 , is a pn th power in F if and
only if Tr a ≡ 0 mod pn , where Tr = TrF0/Qp .

Proof. From the previous theorem and (∗) in the proof of Proposition (4.1) we deduce
that ω(a) ∈ F ∗pn if and only if H(a) ∈ F ∗pn if and only if z(X)Tr a|X=π = 1 which
is equivalent to Tr a ≡ 0 mod pn .

Corollary. Let Ω be the group of all pn-primary elements in F ∗ . Then the quotient
group Ω/F ∗p

n

is a cyclic group of order pn and is generated by ω(a0) with a0 ∈ O0 ,
Tr a0 6≡ 0 mod p.

Proof. Since F has unique unramified extension of degree pn , Kummer theory
implies that Ω/F ∗p

n

is a cyclic group of order pn . Let Ω1 be the subgroup in Ω

generated by ω(a) with a ∈ O0 . The kernel of the surjective homomorphism

χ: Ω1 → µ, ω(a)→ ζTr a,

where µ is the group of pn th roots of unity in F , is equal to F ∗p
n

. Therefore,
Ω = Ω1 .

Exercises.

1. Show that H(a) ≡ 1 + a(ζ − 1)p
n

mod πpe1+1 .
2. Let f (X) be an invertible series in O0((X)) and f (π) = 1. Show that

f (X) = (1− αu)(1− ug)

for some α ∈ O0 and g ∈ O0((X)), g(0) = 0.
3. Let F,F, lX , EX be as in Exercise 4 section 2. Let a primitive pn th root ζ of unity belong

to F , π prime in F and z(X) ∈ 1 +XW (F )[[X]], s(X) as in (3.1).
a) Show that for an element a ∈W (F ) there exists an element κ ∈W (F

sep
) such that

F(κ)− κ = a. Show that for every σ ∈ Gal(F ur
0 /F0) the element σ(κ)− κ belongs

to Zp .
b) Show that the element

H(a) = EX
(
pnF(κ)lX (z(X))

)
|X=π

is pn -primary and does not depend, up to the pn th powers in F , on the choice of κ,
π and z(X).

c) Show that the element

ω(a) = EX (a s(X))|X=π

coincides with H(a) up to a pn th power in F , and, thus, it is a pn -primary element
of F .

d) Show that ω(a) ∈ F ∗p
n

if and only if

a ≡ bp − b mod pn

for some b ∈W (F )
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e) Show that ω(a), a ∈ W (F ), generate the group Ω of pn -primary elements of F
and

Ω/F ∗p
n

'W (F )/(pnW (F ) + ℘W (F )),

where ℘(b) = bp − b for b ∈W (F ).

5. The Shafarevich Basis

We keep the notations of the preceding sections. In particular, we fix a prime element π
of F . We shall construct a special system of generators of the multiplicative Zp-module
U1 = U1,F of a local number field F by using the Artin–Hasse–Shafarevich map EX .

(5.1). Proposition. Let a local number field F contain no nontrivial p th roots of
unity. Then for a unit ε ∈ U1 there exists a unique polynomial w(X) =

∑
16i<pe1

(i,p)=1
αiX

i ,

αi ∈ O0 (e1 = e/(p− 1), e = e(F |Qp)), such that

ε = EX (w(X))|X=π.

Proof. Let θ1, . . . , θf be a set of representatives in F of a basis of F over Fp . Put

εij = EX (θjXi)|X=π, 1 6 j 6 f, 1 6 i < pe1, (i, p) = 1.

Then by (2.4)

εij ≡ 1 + θjπi mod πi+1.

Proposition (6.4) and Corollary (6.5) Ch. I show that εij form a basis of the Zp-module
U1 . This means that for some aij ∈ Zp

ε =
∏
i,j

ε
aij
ij = EX

(∑
i,j

aijθjX
i

)∣∣∣∣
X=π

.

Putting w(X) =
∑
αiX

i with αi =
∑
j aijθj , we get the required assertion.

(5.2). Proposition (The Shafarevich Basis). Let n > 1 be the maximal integer
such that a primitive pn th root of unity ζ belongs to F . Then for a unit ε ∈ U1 there
exists an element a of O0 and a polynomial w(X) =

∑
16i<pe1

(i,p)=1
αiX

i , αi ∈ O0 , such

that

ε = EX (w(X))|X=πω(a).

ε ∈ F ∗pn if and only if Tr a ≡ 0 mod pn and w(X) ≡ 0 mod pn .
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Proof. Let

ζ = 1 + cenπ
en + cen+1π

en+1 + . . . , ci ∈ O0,

and let z(X) be the corresponding series over O0 . Then Corollary (3.1) shows that

ω(a) ≡ 1 + a c πpe1 mod πpe1+1

for some c ∈ O0 . If Tr a 6≡ 0 mod p, then by Corollary (4.3), ω(a) /∈ F ∗p . Let θj ,
1 6 j 6 f , be as in the proof of the previous Proposition. Now (6.4) and (6.5) Ch. I
imply (take πi = πi ) that the elements

εij = EX (θjXi)|X=π with 1 6 j 6 f, 1 6 i < pe1, (i, p) = 1,
ω(a0) for a fixed a0 ∈ O0 with Tr a0 6≡ 0 mod p

form a basis of the Zp/pnZp-module U1/U
pn

1 . Thus, by the same arguments as in the
proof of Proposition (5.1), we obtain the required decomposition.

Further, if Tr a ≡ 0 mod pn , w(X) ≡ 0 mod pn , then, by Proposition (4.3),
ε ∈ F ∗pn .

Conversely, assume that ε ∈ F ∗pn . Then, since the elements εij , ω(a) mod U∗p
n

1
form a basis of U1/U

pn

1 , we deduce that w(X) ≡ 0 mod pn and ω(a) ∈ F ∗pn . Now
Proposition (4.3) implies that Tr a ≡ 0 mod pn . This completes the proof.

Corollary. Instead of the Shafarevich basis one can take as a basis of U1/U
pn

1 the
elements 1− θjπi , ω(a0) where θj , i and a0 are as in the proof of the Proposition.

Exercise.

1. Let n > 1 be the maximal integer such that a primitive pn th root of unity ζ belongs to
F . In notations of Exercise 5 section 2 and Exercise 3 section 4, show that for every unit
ε ∈ U1,F there exist a ∈W (F ) and a polynomial

w(X) =
∑

16i<pe1
(i,p)=1

αiX
i, αi ∈W (F ),

such that

ε = EX (w(X))|X=πω(a)

and ε ∈ F ∗p
n

if and only if a ∈ ℘W (F ) + pnW (F ) and αi ∈ pnW (F ).



CHAPTER 7

Explicit Formulas for the Hilbert Symbol

This chapter presents comprehensive explicit formulas for the (pn th) Hilbert symbol
defined on a local number field. Origin of the formulas is discussed in section 1. Sec-
tion 2 introduces a pairing 〈·, ·〉X on formal power series which satisfies the Steinberg
property. This pairing specializes to a pairing 〈·, ·〉π on F ∗ in (2.2); it is well defined
and does not depend on the choice of a prime element π. Subsection (2.5) presents the
technically more difficult case of even p. We apply results of section 2 to construct an
explicit class field theory for Kummer extension in section 3; the latter does not depend
on results of Ch. IV. In section 4 we prove the equality of the Hilbert symbol and the
pairing of section 2, thus establishing an explicit formula for the Hilbert symbol. Sev-
eral other types of explicit formulas are discussed in section 5. There we also comment
on the explicit formula and its generalizations to local fields and n-dimensional local
fields.

We keep the notations of Ch. VI.

1. Origin of Formulas

In subsection (1.1) we calculate values of the Hilbert symbol using the Shafarevich
basis introduced in Chapter VI. Then, as a motivation for the explicit formulas to come
in sections 2 and 4, we treat the case of Qp(ζ) in subsections (1.2)–(1.4).

(1.1). Let a primitive pn th root of unity ζ belong to F , and let π be a prime element
in F . Let (·, ·)pn be the pn th Hilbert symbol (see section 5 Ch. IV).

First, we compute the values of (π, ε)pn for ε ∈ U1,F . Let

ε = EX (w(X))|X=πω(a), w(X) =
∑

16i<pe1
(i,p)=1

αiX
i,

with αi, a ∈ O0 , be the Shafarevich basis as in section 5 Ch. VI. Applying Theorem (4.2)
Ch. VI we get

(π, ω(a))pn = (π,H(a))pn .

235
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Since H(a) is a pn-primary element in F , using the definition of the Hilbert symbol
we deduce that

(π,H(a))pn = ϕFEX (ϕ(κ)lX (z(X)))|X=πEX (−ϕ(κ)lX (z(X)))|X=π,

where ϕF = ΨF (π)|F ur is the Frobenius automorphism (see (1.2) Ch. IV), κ ∈ F̂ ur

and ϕ(κ)− κ = a as in (4.1) Ch. VI. The computation in the proof of Proposition (4.1)
Ch. VI shows that

(π, ω(a))pn = EX
(
lX (z(X))

)Tr a|X=π = ζTr a.

Now let θ be any nonzero multiplicative representative of F in F . Then, as noted
in the proof of Proposition (2.2) Ch. VI, EX (θXi)|X=π = E(θXi)|X=π = E(θπi),
where E(X) is the Artin-Hasse function (see (9.1) Ch. I). Lemma (9.1) Ch. I implies
that

(π,E(θπi))pn =
∏
j>1

(j,p)=1

(
π, (1− θjπij)−µ(j)/j)

pn
,

where µ is the Möbius function. Then(
π, (1− θjπij)−µ(j)/j)ij2

pn
= (πij , 1− θjπij)−µ(j)

pn

= (πijθj , 1− θjπij)−µ(j)
pn = 1,

by Proposition (5.1), (2) Ch. IV and Exercise 1 b) section 5 Ch. IV. If i is relatively
prime to p, then

(π, (1− θjπij)−µ(j)/j)pn = 1, (π,E(θπi))pn = 1.

Since the set of multiplicative representatives generates O0 over Zp and EX is Zp -
linear, we conclude that

(π,EX (w(X))|X=π)pn = 1.

Therefore,

(π, ε)pn = (π,EX (w(X))|X=π ω(a))pn = ζTr a.

(1.2). Let F = Qp(ζ), where ζp is a primitive p th root of unity. Then F is a totally
ramified extension of degree p− 1 over Qp . By (1.3) Ch. IV π = ζp − 1 is prime in
F . The corresponding series z(X) = 1 + X and s(X) = s1(X) = (1 + X)p − 1 ≡ Xp

mod p.
For a principal unit ε = EX (w(X))|X=πω(a) in F , w(X) =

∑
16i6p−1 aiX

i ,
ai ∈ Zp , a ∈ Zp , we get

(π, ε)p = ζa.
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In the case under consideration

resX−1lXEX (w(X))/s(X) ≡ 0 mod p

and
resX−1lXEX (a s(X))/s(X) = a.

This means that for ψ(X) = EX (w(X) + a s(X)) with ψ(π) = ε, one can write

(π, ε)p = ζ resX−1lX (ψ(X))/s(X)
p (∗)

In other words, for computing (π, ψ(π))p we must find the residue of the series

X−1lX (ψ(X))/s(X).

Note that π is a pole of this series.
Now let ψ(X) ∈ 1 + XZp[[X]] be an arbitrary series with ψ(π) = ε. By (2.4)

Ch. VI we can express ψ(X) as

ψ(X) =
∏
i>1

EX (aiXi), ai ∈ Zp.

Then ψ(X) =
∏
i>1 E(Xi)ai and ε =

∏
i>1 E(πi)ai . The arguments of (1.1) show that

(π,E(πi))p = 1 for (i, p) = 1. Subsections (5.7) and (5.8) Ch. I imply Up+1,F ⊂ F ∗p ,
hence

(π, ε)p = (π,E(πp))app .

But, according to (2.4) Ch. VI

ω(ap) = EX (aps(X))|X=π = E(πp)apηp for some η ∈ U1,F .

Therefore,
(π, ε)p = (π, ω(ap))p = ζapp .

On the other hand,

ap ≡ res X−1lX (ψ(X))/s(X) mod p.

Thus, we conclude that formula (∗) holds for an arbitrary expansion of ε in a series in
π.

(1.3). We next compute the values of (ε, ρ)p for ε, ρ ∈ U1,F .
Let θ, η belong to the set of nonzero multiplicative representatives of Fp in F =

Qp(ζ) (i.e., θp−1 = ηp−1 = 1 ). By Exercise 1, f) below,

(E(θπi), E(ηπj))p =
∏
n>0

(−ηπj , E(θηp
n

πi+p
nj))−1

p

∏
m>1

(−θπi, E(θp
m

ηπp
mi+j))p.

Exercise 1 in section 5 Ch. IV and the equality ϕ(θ) = θp for the Frobenius automor-
phism of F imply that for p > 2
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(EX (θXi)|X=π, EX (ηXj)|X=π)p

=
∏
n>0

(π,E(θπijϕn(η)πp
nj))−1

p

∏
m>1

(π,E(ηπjiϕm(θ)πp
mi))p

= (π,EX (−θXi(1+ M + M2 + . . . )(jηXj) + ηXj(M + M2 + . . . )(iθXi))|X=π)p,

where M is defined in (2.1) Ch. VI. Note that this formula holds for every θ, η ∈ Zp ,
due to the Zp-linearity of EX .

Let ε = ε(X)|X=π , ρ = ρ(X)|X=π with ε(X), ρ(X) ∈ 1 +XZp[[X]]. Let

lX (ε(X)) =
∑
i>1

aiX
i, lX (ρ(X)) =

∑
i>1

biX
i, with ai, bi ∈ Zp.

Then we get

(ε, ρ)p = (EX (lX (ε(X)))|X=π, EX (lX (ρ(X)))|X=π)p = (π,EX (ν(X))|X=π)p

where

ν(X) = −lX
(
ε(X)

)(
1+ M + M2 + . . .

)(∑
i>1

ibiX
i

)

+ lX
(
ρ(X)

)(
M + M2 + . . .

)(∑
i>1

iaiX
i

)
.

Since Mj
(∑

i>1 ibiX
i
)

=Mj
(
X
(
lX (ρ(X))

)′ )
= X

(
p−j Mj lX (ρ(X))

)′ , we
obtain(

1+ M + M2 + . . .
)(∑

i>1

ibiX
i

)
= X

(∑
j>0

Mj

pj
lX (ρ(X))

)′
= X

(
log (ρ(X))

)′
,

(
M + M2 + . . .

)(∑
i>1

iaiX
i

)
= X

(
log (ε(X))− lX ((ε(X))

)′
.

Thus,

(ε, ρ)p =
(
π,EX

(
X(−lX (ρ)lX (ε)′ + lX (ρ) log ε(X))′ − lX (ε) log (ρ(X))′)

)
|X=π

)
p

and, by the formula (∗) of (1.2), (ε, ρ)p = ζcp with c = res Φ̃ε,ρ(X)/s(X), where

Φ̃ε,ρ(X) = −lX (ρ(X))lX (ε(X))′ + lX (ρ(X))ε(X)−1ε(X)′ − lX (ε(X))ρ(X)−1ρ(X)′.

Here we used the equality log(ρ(X))′ = ρ(X)−1ρ(X)′ . Since res
(
(lX (ρ)lX (ε))′/Xp

)
≡

0 mod p one can replace Φ̃ε,ρ(X) with

Φε,ρ(X) = lX (ε(X))lX (ρ(X))′ − lX (ε(X))ρ(X)−1ρ(X)′ + lX (ρ(X))ε(X)−1ε(X)′.
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(1.4). Now we treat the case of (α, β)p with arbitrary α, β ∈ Qp(ζ)∗ . Let α = πiθε,
β = πjηρ with ε, ρ ∈ U1,F , i, j ∈ Z, θp−1 = ηp−1 = 1. Let ε(X), ρ(X) be as in
(1.3). By Exercise 1 in section 5 Ch. IV we get

(α, β)p = (πi, ρ)p(πj , ε)−1
p (ε, ρ)p = (π, ρiε−j)p(ε, ρ)p.

Therefore,

(α, β)p = ζ
res Φα,β(X)/s(X)
p , (∗∗),

where

Φα,β(X) = Φε,ρ(X) +X−1lX (ρ(X)iε(X)−j

= Φε,ρ(X) + iX−1lX (ρ(X))− jX−1lX (ε(X))

= lX (ε)lX (ρ)′ − lX (ε)(Xjηρ(X))′/(Xjηρ(X)) + lX (ρ)(Xiθε(X))′/(Xiθε(X)),

because

(Xiθε(X))′(Xiθε(X))−1 = iX−1 + ε(X)′ε(X)−1.

The same formula holds for p = 2 (see Exercise 3).
The series Φα,β(X) on the right-hand side of (∗∗) does depend on the choice of

expansion of α, β in series in π and the choice of a prime element π.

Remarks.

1. Note that for the field F = Qp(ζp) the inertia subfield F0 = F ∩ Qur
p coincides

with Qp . In the general case we shall add the trace operator Tr = TrF0/Qp in front of
res.

2. If we allow the series ε(X), ρ(X) be arbitrary invertible series in Zp((X))∗

which give the elements ε, ρ when X is replaced with π, then we must slightly
modify 1/s(X) by replacing it with 1/2 + 1/s(X).

3. Although for the field F the structure of the formulas for the Hilbert symbol
(·, ·)p is the same for p = 2 and p > 2, in the general case of a local number field the
formulas for the Hilbert symbol differ for p > 2 and p = 2. When p = 2, we shall
add series Φ

(1)
α,β , Φ

(2)
α,β defined in (2.5) below to Φα,β and the factor r(X) defined in

(3.4) Ch. VI.

Exercises.

1. Let F be a local number field, let a primitive pn th root of unity ζ belong to F , and let π
be a prime element in F , α, β ∈ F . Let (·, ·) be the pn th Hilbert symbol in F .
a) Show that for a sufficiently large integer c

(1− α, 1− β) = 1

for all α, β ∈MF
c .

b) Show that for α, β ∈ F ∗ , α 6= 1, β 6= 1,

(1− α, 1− β) = (1− α, 1− αβ)(−β, 1− αβ)(1− αβ, 1− β).
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c) Prove that for α, β ∈MF

(1− α, 1− β) =
∏

(−αi0βj0 , 1− αiβj),

where i, j > 1, (i, j) = 1, i0, j0 > 0 run through all pairs of integer numbers with
ij0 − i0j = 1.

(
Hint: Use a) and b) for α, αβ and αβ, β

)
.

d) Prove that for α, β ∈MF

(1− α, 1− β) =
∏

(−αi0βj0 , E(αiβj))−1,

where i, j > 1, g.c.d.(i, j, p) = 1, i0, j0 > 0 with ij0 − i0j = g.c.d.(i, j).
(

Hint:
Use Exercise 2 in section 9 Ch. I

)
.

e) Prove that for α, β ∈MF

(1− α,E(β)) =
∏

(−αi0βj0 , E(αiβp
s

)),

where i > 1 is relatively prime to p, s > 0, i0, j0 > 0 with ij0− i0ps = 1.
(

Hint:
Use Lemma (9.1) Ch. I

)
.

f) (M. Kneser) Prove that for α, β ∈MF

(E(α), E(β)) =
∏
i>1

(−α,E(αp
i

β))
∏
j>0

(−β−1, E(αβp
j

)).

g) (M. Kneser) Show that for p = 2, α ∈MF

(−1, E(α)) =
∏
i>0

(α2i , E(α2i+1
)).

2. (�) Let α, β ∈ MF , ε = E(α), ρ = E(β), Φε,ρ as in (1.4), (·, ·) as in Exercise 1.
Show that for p > 2

(E(α), E(β)) = (π,EX (XΦε,ρ(X))|X=π),

for p = 2

(E(α), E(β)) = (π,EX (XΦε,ρ(X) +XΦ
(1)
ε,ρ(X))|X=π),

where

Φ
(1)
ε,ρ(X) =

(
M
2

(LX (ψ(X))LX (ϕ(X)))
)′
, LX (ψ(X)) = (1+ M + M2 + . . . )lX (ψ(X))

with ε = ψ(π), ρ = ϕ(π), ψ, ϕ ∈ 1 +XZ[[X]].
3. Using Exercise 3 in section 5 Ch. IV show that for the Hilbert symbol (·, ·)2 in Q2 ,

α, β ∈ Q∗2

(α, β)2 = (−1)res Φα,β(X)/s(X),

where Φα,β is as in (1.4).
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2. The Pairing 〈·, ·〉

We introduce a pairing 〈·, ·〉X on formal power series in subsection (2.1) and study its
properties. Then in subsection (2.2) we define a pairing 〈·, ·〉π on the multiplicative
group of a local number field F and study its properties. We show that 〈·, ·〉π is well
defined in (2.2) and that it does not depend on the choice of prime element π in (2.4).
For the case of p = 2 see subsection (2.5). Later in section 4 we shall prove that 〈·, ·〉π
coincides with the Hilbert symbol.

(2.1). From this point until (2.5) we assume that p > 2.
Recall that O0 is the ring of integers of F0 = F ∩ Qur

p and R is the group of
multiplicative representatives of the residue field of F in O0 . Recall that in (3.6)
of Ch. VI we defined the series V (X) = 1/2 + 1/s(X) of O0{{X}} where s(X) =
z(X)p

n − 1 and z(X) ∈ 1 +XO0[[X]] is such that z(π) = ζ is a pn th primitive root
of unity in F . We denote by l the map lX (which is a sort of a special logarithm) on
O0((X))∗ defined in (2.3) of Ch. VI, so

l(α) =
1
p

log(αp/αM).

Introduce a pairing

〈·, ·〉X :O0((X))∗ × O0((X))∗ → 〈ζ〉

as

〈α, β〉X = ζTr res Φα,βV

where Tr = TrF0/Qp ,

Φα,β = α−1α′ l(β)− l(α)β−1β′ + l(α) l(β)′

Note that Φα,β belongs to O0((X)).
Using the equality

l(β)′ = β−1β′ − 1
p
β−M(βM)′

(see Lemma 3 b) of (3.6) Ch. VI) we can rewrite Φα,β as

Φα,β =
α′

α
l(β)− l(α)

1
p

(βM)′

βM
.

Remark. If α, β ∈ O∗0 , then α′ = β′ = (l(β))′ = 0 and so 〈α, β〉X = 1.
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Proposition.

a) The pairing 〈·, ·〉X is bilinear

〈α1α2, β〉X = 〈α1, β〉X〈α2, β〉X ,
〈α, β1β2〉X = 〈α, β1〉X〈α, β2〉X

and antisymmetric

〈α, β〉X〈β, α〉X = 1.

b) 〈α, α〉X = 1, 〈θ, α〉X = 1 for θ ∈ R∗ .
c) Steinberg property

〈α, 1− α〉X = 1 for every α 6= 1 .

Proof. Bilinearity of 〈·, ·〉 follows from the properties of l ((2.2) and (2.3) Ch. VI).
Furthermore,

Φα,β + Φβ,α = l(α)l(β)′ + l(β)l′(α) = (l(α)l(β))′.

Lemma 1 of (3.6) Ch. VI now implies that 〈α, β〉 = 〈β, α〉−1 .
An element θ ∈ R∗ can be written as ηp

n

with η ∈ R∗; therefore 〈θ, α〉X =
〈η, α〉p

n

X = 1.
Since p > 2, the equality 〈α, α〉2 = 1 implies 〈α, α〉 = 1.
To prove the Steinberg property (which take some time) we first assume that α ∈

XO0[[X]]. Then

Φα,1−α = l(1− α)α−1α′ − l(α)
1
p

(1− α)−M
(
(1− α)M

)′
= −α−1α′

(
1− M

p

)∑
i>1

αi

i
+ l(α)

(∑
i>1

αiM

pi

)′
= −α′ −

∑
p-i>1

αi

i
α−1α′ −

∑
i>1

(
αip − αiM

ip
α−1α′ − l(α)

αiM

ip

)
.

Using Lemma 3 of (3.6) Ch. VI we deduce that

αip − αiM

ip
α−1α′ − l(α)

αiM

ip
= g′i, where gi =

αip − αiM

(ip)2 − l(α)
αiM

ip
.

Thus, in this case

Φα,1−α = −
(
α +

∑
p-i>1

αi

i2
+
∑
i>1

gi

)′
.

By Lemma 2 of (3.6) Ch. VI we have gi ∈ O0[[X]], so by Lemma 1 in the same section
we get

res Φα,1−αV ≡ 0 mod pn, 〈α, 1− α〉 = 1.
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Now suppose that α−1 ∈ XO0[[X]]. Then

1 = 〈α−1, 1− α−1〉 = 〈α, (1− α)/(−α)〉−1 = 〈α,−α〉〈α, 1− α〉−1 = 〈α, 1− α〉−1,

so 〈α, 1− α〉 = 1.
Finally, in the remaining case α = aβ with a ∈ O∗0 , 1 − a ∈ O∗0 and β ∈

1 +XO0[[X]]. The element γ = (1− β)/(1− aβ) belongs to XO0[[X]], so from the
previous we get

1 = 〈1− γ, γ〉 = 〈−(a− 1)β/(1− aβ), (1− β)/(1− aβ)〉
= 〈a− 1, 1− β〉〈a− 1, 1− aβ〉−1〈β, 1− aβ〉−1〈1− aβ, 1− β〉−1,

since 〈β, 1− β〉 = 〈1− aβ, 1− aβ〉 = 1. The element γ′ = a(1− β)/(a− 1) belongs
to XO0[[X]], so similarly

1 = 〈1− γ′, γ′〉 = 〈(1− aβ)/(1− a), a(1− β)/(a− 1)〉
= 〈1− aβ, a〉〈1− aβ, a− 1〉−1〈1− aβ, 1− β〉〈1− a, 1− β〉−1,

since 〈a/(a− 1), 1− a〉 = 1 due to the Remark above. So we deduce that

1 = 〈1− γ, γ〉〈1− γ′, γ′〉 = 〈aβ, 1− aβ〉−1.

Thus, the Steinberg property is proved.

(2.2). Now let π be a prime element in F , α, β ∈ F ∗ , and let α(X), β(X) be any
series in O0((X))∗ such that α(π) = α, β(π) = β . Put

〈α, β〉π = 〈α(X), β(X)〉X

Proposition. The value 〈α, β〉π does not depend of the way the elements α, β, ζ
are expanded in power series in π. Thus, the pairing 〈·, ·〉π:F ∗ × F ∗ → 〈ζ〉 is well
defined.

It is bilinear, and antisymmetric. Moreover,

〈α, α〉π = 1, 〈θ, α〉π = 1 for α ∈ F ∗, θ ∈ R∗

and 〈α, 1− α〉π = 1 for every α different from 0 and 1.

Proof. Let s(X), s(1)(X) be two distinct series corresponding to ζ . Then Corol-
lary (3.3) Ch. VI shows that

res Φα,β/s(X) ≡ res Φα,β/s
(1)(X) mod pn.

Therefore, 〈α, β〉π does not depend on the choice of an expansion of ζ in a power
series in π.
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Due to antisymmetry it is sufficient to show that if α1(X), α2(X) ∈ O0((X))∗ with
α1(π) = α2(π) = α, then

〈α1(X), β(X)〉X = 〈α2(X), β(X)〉X .

The series α1(X)/α2(X) is equal to 1 at X = π. Proposition (3.2) Ch. VI shows
now that α1(X)/α2(X) = 1− ug with some g ∈ O0[[X]].

Using the bilinearity of 〈·, ·〉X , we need to verify that

〈1− ug, β〉X = 1.

One has

Φ1−ug,β =
(
log(1− ug)

)′
l(β)−

(
1− M

p

)(
log(1− ug)

) 1
p

(βM)′

βM
.

First assume that β(X) ∈ O∗0(1 + XO0[[X]]). Then β′/β ∈ O0[[X]] and l(β) ∈
O0[[X]]. So res Φ1−ug,β/2 = 0. We can now apply Lemma (3.5) of Ch. VI (those
parts of it which contain mod deg 0 congruences). Then

− res Φ1−ug,β/s = res
∑
i>1

(
(uigi)′

is
l(β)−

(uigi
is
− uiMgiM

pis

)1
p

(βM)′

βM

)
= res

∑
i>1

fi

where fi is congruent modulo pn to

gi
( 1
sn−1

)′ pi−1

i
l(β) + (gi)′

1
sn−1

pi−1

i
l(β)− gi 1

sn−1

pi−1

i

1
p

(βM)′

βM
+ giM

1
s

pi−1

i

1
p

(βM)′

βM
.

Note that pi−1/i ∈ Z and (βM)′/(pβM) = Xp−1(β′/β)M = −l(β)′ + β′/β belongs to
O0((X)) by Lemma 3 (3.6) Ch. VI. By the same Lemma

Tr res giM
1

sMn−1

pi−1

i

1
p

(βM)′

βM
= Tr res gi

1
sn−1

pi−1

i

β′

β
.

Thus,

−Tr res Φ1−ug,βV ≡ Tr res
(∑
i>1

gi
1

sn−1

pi−1

i
l(β)

)′
= 0 mod pn,

i.e., 〈1− ug, β〉X = 1.
Now, in the general case of β = aXmβ1(X) with β1 ∈ 1 + XO0[[X]] and

a ∈ O∗0 due to bilinearity of 〈·, ·〉X it remains to treat the case β(X) = X . Then
Φ1−ug,X = −X−1l(1 − ug). Similarly to the previous arguments using mod deg 1
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congruences of Lemma (3.5) of Ch. VI we deduce that

res Φ1−ug,X/s ≡ resX−1
(∑
i>1

pi−1gi

isn−1
−
∑
i>1

pi−1giM

is

)

+X−1
(∑
i>1

pi−1(i− 1)(p− 1)gi

2i
−
∑
i>1

pi−1(p− 1)giM

2

)
mod pn

(the first two terms annihilate each other due to the previous discussions). We also have

res Φ1−ug,X/2 ≡ resX−1
(∑
i>1

pi−1pgi

2i
−
∑
i>1

pi−1giM

2i

)
(note that M u ≡ u ≡ p mod deg 1 ). Using Lemma 3 c) of (3.6) Ch. VI we conclude
that

res Φ1−ug,XV ≡ resX−1
(∑
i>1

gipi−1
(

(i− 1)(p− 1)
2i

− p− 1
2

+
p

2i
− 1

2i

))
which is zero.

The other properties follow from Proposition (2.1).

Remarks.

1. If α(X) and β(X) are chosen from the subgroup

P =
{
Xmθε(X) : m ∈ Z, θ ∈ R∗, ε(X) ∈ 1 +XO0[[X]]

}
then the quotient α1/α2 , which is considered in the proof of the previous Proposition,
belongs to 1 +XO0[[X]] and therefore the series g belongs to XO0[[X]]. Then

〈α1(X), β(X)〉′ = 〈α2(X), β(X)〉′

where by 〈·, ·〉′ we denoted the pairing with 1/s(X) instead of V (X). The pairing
〈·, ·〉′:P ×P → 〈ζ〉 is therefore well defined. It can be used instead of the pairing 〈·, ·〉
in the following sections of this chapter (as it was in the first edition of this book).

2. For another proof of independence see Exercise 5.

(2.3). First properties of 〈·, ·〉π .
1. If ε = EX

(∑
16i<pe1

(i,p)=1
αiX

i
)∣∣
X=π , αi ∈ O0 , is as in section 5 Ch. VI, then

〈π, ε〉π = 1.

This follows from

Φ = X−1(∑αiX
i
)

=
(∑

i−1αiX
i
)′
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and Lemma 1 of (3.6) Ch. VI.
2. If ω(a) = EX (a s(X))|X=π is a pn-primary element (a ∈ O0 ) as in section 5 of

Ch. VI, then

〈π, ω(a)〉π = ζTr a.

Indeed, s(0) = 0 and so

res ΦV = resX−1as(X)(1/s(X) + 1/2) = a.

3. If ε ∈ U1,F then

〈ε, ω(a)〉π = 1.

Indeed, if ε = ε(X)|X=π with ε(X) ∈ O0((X))∗ then

Φ = as(log ε(X))′ − l(ε(X))
(∑
i>1

(as)M
i

/pi
)′
.

From Lemma 3 a) of (3.6) Ch. VI we deduce by induction on i that

(sM
i

)′/pi = X−1 Mi (Xs′)

which is congruent to 0 mod pn due to Proposition (3.1) d) of Ch. VI. Thus, res ΦV ≡
0 mod pn .

(2.4). The next property of 〈·, ·〉π to be verified is its invariance with respect to the
choice of a prime element π in F . In other words, we will show that for α, β ∈ F ∗

〈α, β〉π = 〈α, β〉τ ,

for prime elements π, τ in F .

Proposition. The pairing 〈·, ·〉π is invariant with respect to the choice of a prime
element π in F .

Proof. Assume that for any prime elements π, τ in F and β ∈ U1,F

〈π, β〉π = 〈π, β〉τ . (∗)

Let ε be a principal unit in F , then πε is prime in F . We then deduce

〈πε, β〉πε = 〈πε, β〉π = 〈πε, β〉τ .

Therefore

〈ε, β〉π = 〈πε, β〉π〈π, β〉−1
π = 〈πε, β〉τ 〈π, β〉−1

τ = 〈ε, β〉τ .

Now the linear property of 〈·, ·〉π of Proposition (2.2) implies the invariance of 〈·, ·〉π .
To prove (∗) first note that due to Proposition (2.2) we get

〈π, πiθε〉π = 〈π, ε〉π
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and similarly for 〈π, πiθε〉τ , where θ ∈ R∗ , ε ∈ U1 . Now by Corollary of (5.2)
Ch. VI in its notations we can express

ε =
∏

(i,p)=1

(1− θjπi)aij ω(a)

with some θj ∈ R, a ∈ O0 , aij ∈ Zp . Then Proposition (2.2) implies

〈π, 1− θjπi〉iρ = 〈πi, 1− θjπi〉ρ = 〈θjπi, 1− θjπi〉ρ = 1

for ρ = π or = τ . Therefore, since i is prime to p we deduce that

〈π, β〉π = 〈π, ω(a)〉π, 〈π, β〉τ = 〈π, ω(a)〉τ .

Let π = τη with η ∈ O∗ . By Property 3 and 2 in (2.3) we get

〈π, ω(a)〉τ = 〈τ, ω(a)〉τ = ζTr a = 〈π, ω(a)〉π.

Thus, due to the independence of the choice of power expansion in a prime element in
Proposition (2.2) we conclude that

〈π, ε〉π =
∏
〈π, 1− θjπi〉aijπ 〈π, ω(a)〉π = 〈π, ω(a)〉τ

∏
〈π, 1− θjπi〉aijτ = 〈π, ε〉τ .

Remark. For another proof see Exercise 6.

(2.5). In this subsection we treat the special case of p = 2.
The first essential difference with the case p > 2 is that the pairing for the formal

series is defined not for all invertible series in O0((X)) but for series which belong to
Q = R ∩ O0((X)) ={

Xmaε(X) : ε(X) ∈ 1 +XO0[[X]], a ∈ O∗0, a
ϕ ≡ a2 mod 4,m ∈ Z

}
(R is defined in (2.3) of Ch. VI).

Certainly, the group of series P defined in Remark of (2.2) is a subgroup of Q.
The reason why we have to work with Q is that for p = 2 the formula lX (f ) =
1
p log(fp/fMX ) for the map lX of (2.3) Ch. VI is defined for f ∈ Q and not for an
arbitrary invertible series of O0((X)).

For α, β ∈ Q put

Φ
(1)
α,β =

(
M
2

(
α2 − αM

2αM

β2 − βM

2βM

))′
and

Φ
(2)
α,β = X−1vX (α)vX (β) lX (1 + sn−1(X))

where vX is the discrete valuation of O0((X)) corresponding to X . The series
1 + sn−1(X) ∈ Q corresponds to −1, since 1 + sn−1(π) = z(π)2n−1

= −1. The series
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Φ
(2)
α(X),β(X) takes care of the fact that 〈π, π〉π = 〈π,−1〉π is not necessarily equal to 1

in the case p = 2.
Introduce the pairing

〈·, ·〉X :Q×Q→ 〈ζ〉

by the formula

〈α, β〉X = ζTr res
(
Φα,β + Φ

(1)
α,β + Φ

(2)
α,β

)
r(X)V (X)

where V (X),Φα,β are as in (2.1), and r(X) as in (3.4) Ch. VI.
One can show that Proposition (2.1) holds for 〈·, ·〉X . Then for elements α, β ∈ F ∗

let α(X), β(X) ∈ Q be such that α(π) = α and β(π) = β . Put

〈α, β〉π = 〈α(X), β(X)〉X

One can show that Propositions (2.2) and (2.4) hold for the pairing 〈·, ·〉π . The proofs
can be carried in the same way as above, but with longer calculations. For details see
Exercises 2–4.

Exercises.

1. Show that 〈a, b〉π = 1 for a, b ∈ O∗0 .
2. (�) Let p = 2. We use the definitions of (2.5).

a) Show that Φα,β + Φ
(1)
α,β + Φ

(2)
α,β ∈ O0[[X]].

b) Show that Tr res(Φ(1)
α,β + Φ

(2)
α,β)rV ≡ 0 mod 2n−1 .

c) Show that for p = 2 and α, β ∈ 1 +XO0[[X]]

α2 − αM

2αM ≡ (1+ M + M2 + . . . )lX (α) mod deg 2

and therefore

Φ
(1)
α(X),β(X) =

(
M (LX (α(X))LX (β(X))/2

)′
,

where LX (α) = (1+ M + M2 + . . . )lX (α).
d) Show using section 3 (and its exercises) of Ch. VI that the pairing 〈·, ·〉π is bilinear,

antisymmetric and satisfies the Steinberg property.
3. (�) Let p = 2. Using section 3 (and its exercises) of Ch. VI show that 〈1 + ug, β〉X = 1

for β(X) ∈ Q, g(X) ∈ O0[[X]], 1 + ug ∈ Q. Deduce that the pairing 〈·, ·〉π is well
defined.

4. Let p = 2. Using Exercises 2 and 3 show that 〈·, ·〉π is invariant with respect to the choice
of a prime element π.

5. Let p > 2. Prove independence of 〈α, β〉π of the power series expansion of α, β in π
following the steps below.
a) Similarly to the beginning of the proof of Proposition (2.2) it suffices to show that

〈1− ug, β〉X = 1.
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b) Using Lemma 3 of (3.6) Ch. VI and Exercise 7 section 3 Ch. VI show that

res
1
p

(βM)′

βM
M
p

log(1− ug)V ≡ resX−1fM

where f = Xβ−1β′ log(1− ug)V .
c) Using Exercise 6 section 3 Ch. VI show that

res l(β)(log(1− ug))′ V ≡ − res(l(β))′ log(1− ug)V mod pn.

d) Deduce from the previous congruences that

res Φ1−ug,β ≡ resX−1(f − fM) mod pn.

and using Lemma 3 of (3.6) Ch. VI conclude that

Tr res Φ1−ug,β ≡ 0 mod pn

and therefore 〈1− ug, β〉X = 1.
6. Let p > 2. Let π, τ be prime elements of F and π = g(τ ) with g(X) ∈ XO0[[X]]. Let

β = β(π) with β(X) ∈ 1 +XO0[[X]]. Show that

〈π, β〉π = 〈π, β〉τ

following the steps below.
a) Show that it suffices to check the equality for β = E(θXj)|X=π with θ ∈ R.
b) Show that

EX (θXj) = EY

((
1− MY

p

)
f (Y )

)
where f (Y ) =

∑
i>0 θ

pig(Y )jp
i

/pi . Using Lemma (2.2) Ch. VI show that f (Y ) ∈
O0((Y )).

c) Using arguments similar to the proof of Proposition (2.1) show that

Φg(Y ),β(g(Y )) = θg(Y )i−1g(Y )′ +
(∑
i>1

θp
i

fi

)′
where

fi =
gp
ij − gp

i−1jMY

p2ij
− gp

i−1jMY lY (g)
pi

.

d) Deduce that

Tr resX ΦX,β(X)V (X) ≡ Tr resY Φg(Y ),β(g(Y ))V (Y ) mod pn.
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3. Explicit Class Field Theory for Kummer Extensions

In this section we will show, without employing local class field theory of Ch. IV, that
the norm subgroups of abelian extensions of exponent pn of a local number field F ,
which contains a primitive pn th root ζ of unity, are in one-to-one correspondence with
subgroups in F ∗ of exponent pn . This relation is described by means of the pairing
〈·, ·〉π .

(3.1). We shall use the following

Proposition (Chevalley). Let M be an arbitrary field, and let

M1/M,M2/M

be cyclic extensions of degree m. Assume that M1 ∩M2 = M and M3/M is a cyclic
subextension of degree m in M1M2/M such that M1 ∩M3 = M . Then an element
α ∈M∗ belongs to the subgroups NM1/MM

∗
1 and NM2/MM

∗
2 if and only if it belongs

to NM1/MM
∗
1 and NM3/MM

∗
3 .

Proof. Let M3 6= M1 , M3 6= M2 . Then the Galois group Gal(M1M2/M ) is iso-
morphic to Gal(M1/M ) × Gal(M2/M ). Let σ1 and σ2 be elements of the group
Gal(M1M2/M ) such that σ1|M2

, σ2|M1
are trivial automorphisms, σ1|M1

is a gener-
ator of Gal(M1/M ), σ2|M2

is a generator of Gal(M2/M ), and M3 is the fixed field
of σ1σ2 .

Let α ∈ NM1/MM
∗
1 ∩NM2/MM

∗
2 . Write

α =
m−1∏
i=0

σi1(β) =
m−1∏
i=0

σi2(γ),

with β ∈ M1 , γ ∈ M2 . Then we deduce that
∏m−1
i=0 (σ1σ2)i(βγ−1) = 1, i.e.,

NM1M2/M3 (βγ−1) = 1. By Proposition (4.1) Ch. III, we get βγ−1 = λ−1(σ1σ2)(λ) for
some λ ∈M1M2 . Now we put κ = βλσ1(λ−1). Then

σ−1
2 σ−1

1 (κ) = σ−1
2 (γλ−1σ2(λ)) = σ−1

2 (βσ2(λ)(σ1σ2)(λ−1)) = κ,

i.e., κ ∈M3 . We also obtain that

NM3/M (κ) =
m−1∏
i=0

σi1(κ) =
m−1∏
i=0

σi1(β) = NM1/Mβ.
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(3.2). We verify the following assertion for local number fields without employing
class field theory.

Proposition. Let F be a complete discrete valuation field with finite residue field.
Let L/F be a cyclic extension of degree n. Then the quotient group F ∗/NL/FL

∗ is
a cyclic group of order n.

Proof. If n is prime, then the required assertion follows from (1.4) Ch. IV.
Let σ be a generator of Gal(L/F ), and let M/F be a subextension in L/F .

Denote the set {α−1σ(α) : α ∈M∗} denote by M∗σ−1 . We claim that

M∗σ−1 ⊂ NL/M (L∗σ−1), M∗ ⊂ F ∗NL/ML∗.

Indeed, if L/M is of prime degree, then, by (1.4) Ch. IV, M∗/NL/ML∗ is a cyclic group
of the same order. It is generated by αNL/ML

∗ for some α ∈M∗ . Then (1.4) Ch. IV
implies that α−1σ(α) ∈ NL/ML∗; therefore α−1σ(α) = NL/Mβ for some β ∈ L∗ .
We get NL/Fβ = 1, and Proposition (4.1) Ch. III shows that β = γ−1σ(γ) for some
γ ∈ L∗ . Thus, M∗σ−1 ⊂ NL/M (L∗σ−1). In general, we proceed by induction on
the degree |L : M |. Let M1/M be a proper subextension in L/M . Then, by the
induction assumption, M∗σ−1 ⊂ NM1/M (M∗σ−1

1 ) and M∗σ−1
1 ⊂ NL/M1 (L∗σ−1),

hence M∗σ−1 ⊂ NL/M (L∗σ−1). Now for α ∈ M∗ there exists β ∈ NL/ML∗ with
α−1σ(α) = β−1σ(β). Then σ(αβ−1) = αβ−1 and M∗ ⊂ F ∗NL/ML∗ .

Assume that there exists a proper divisor m of n, such that F ∗m ⊂ NL/FL
∗ .

Let M/F be a subextension in L/F of degree m. Then NM/FF
∗ ⊂ NL/FL

∗

and by Proposition (4.1) Ch. III we deduce F ∗ ⊂ (NL/ML∗)M∗σ−1 ⊂ NL/ML
∗ .

Then M∗ ⊂ F ∗NL/ML
∗ ⊂ NL/ML

∗ , which is impossible because M∗ 6= NL/ML
∗

(M∗/NL/ML∗ is of order > l, where l is a prime divisor of nm−1 ). Thus, F ∗m 6⊂
NL/FL

∗ .
On the other hand,

|F ∗ : NL/FL∗| = |F ∗ : NM/FM
∗||NM/FM

∗ : NM/F (NL/ML∗)|
6 |F ∗ : NM/FM

∗||M∗ : NL/ML∗| = n,

and we conclude that F ∗/NL/FL∗ is cyclic of order n.

Corollary. Let L/F be a cyclic extension of degree ln , where l is prime, n > 1.
Let M/F be a subextension of degree ln−1 in L/F . Let α ∈ F ∗ . Then the condition
αl ∈ NL/FL∗ is equivalent to α ∈ NM/FM

∗ .

Proof. If α = NM/Fβ , then αl = NM/Fβ
l = NL/Fβ . If αl ∈ NL/FL∗ , then, by

the Proposition, α ∈ NM/FM
∗ .
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(3.3). Proposition. Let F be a complete discrete valuation field with a finite residue
field of characteristic p. Let α, β ∈ F ∗ . Let a primitive pn th root of unity belong to
F .

Then the conditions α ∈ N
F ( p

n√
β)/FF ( pn

√
β)∗ and β ∈ NF ( pn

√
α)/FF ( pn

√
α) are

equivalent.

Proof. Let α = αp
k

1 with α1 /∈ F ∗p , β = βp
l

1 with β1 /∈ F ∗p . We can assume

l 6 n. Then αp
k

1 ∈ NF ( p
n−l√

β1)/F
F ( pn−l

√
β1)∗ . By Corollary (3.2) α1 belongs to

N
F ( p

n−l−k√
β1)/F

F ( pn−l−k
√
β1)∗ if n− l− k > 0 (if n < l + k then it is easy to show

that β ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ ). We also get

−β1 ∈ NF ( p
n−l−k√

β1)/F
F ( p

n−l−k√
β1)∗.

Let i be an integer relatively prime to p such that αi1β1 /∈ F ∗p . Introduce the field

M = F ( pn−l−k
√
β1)∩F ( pn−l−k

√
αi1β1), M1 = F ( pn−l−k

√
β1), M2 = F ( pn−l−k

√
αi1β1),

M3 = F ( pn−l−k
√
α1). Then M3 ⊃ M . Let −αi1β1 = NM1/F γ , −αi1β1 = NM2/F δ.

Then
NM/F (NM1/MγNM2/Mδ

−1) = 1

and by Proposition (4.1) Ch. III we deduce that NM1/Mγ = NM2/Mδ
−1ε−1σ(ε) for

some ε ∈ M , where σ is a generator of Gal(M/F ). The arguments adduced in
the proof of the preceding Proposition show that ε−1σ(ε) ∈ NM2/MM

∗
2 . Therefore,

NM1/Mγ ∈ NM1/MM
∗
1 ∩ NM2/MM

∗
2 . Now Proposition (3.1) implies NM1/Mγ ∈

NM3/MM
∗
3 , −αi1β1 = NM3/F η for some η ∈ M∗3 . Since −αi1 ∈ NM3/FM

∗
3 ,

we conclude that β1 ∈ NF ( pn−l−k√α1)/FF ( pn−l−k
√
α1)∗ and, by Corollary (3.2), that

β ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ .

Corollary. Let γ ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ ∩N

F ( p
n√
β)/FF ( pn

√
β)∗ .

Then γ ∈ N
F ( p

n√
αβ)/FF ( pn

√
αβ)∗ .

Proof. Since α ∈ NF ( pn√γ)/FF ( pn
√
γ)∗ , β ∈ NF ( pn√γ)/FF ( pn

√
γ)∗ , we get αβ ∈

NF ( pn√γ)/FF ( pn
√
γ)∗ and γ ∈ N

F ( p
n√
αβ)/FF ( pn

√
αβ)∗ .

(3.4). Theorem. Let F be a local number field as in section 2, and let p > 2.
Then 〈α, β〉π = 1 if and only if α ∈ N

F ( p
n√
β)/FF ( pn

√
β)∗ and if and only if

β ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ .

Proof. In accordance with the previous Proposition, we must show that

α ∈ N
F ( p

n√
β)/FF ( p

n
√
β)∗ or β ∈ NF ( pn

√
α)/FF ( pn

√
α)∗.
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Note that for p > 2 〈α, α〉π = 1 for α ∈ F ∗ and α ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ . In

this proof principal units in F ∗ without pn-primary part, i.e., EX (w(X))|X=π for
w(X) =

∑
16i<pe1

(i,p)=1
α1X

i , αi ∈ O0 , will be denoted by ε, ρ. Remark (2.4) shows that

〈π, ε〉π = 1, 〈ω∗, ε〉π = 1,

where ω∗ denotes a pn-primary element EX (as(X))|X=π with Tr a ≡ 1 mod pn .
Since F ( pn

√
ω∗)/F is unramified, ε ∈ NF ( pn

√
ω∗)/FF ( pn

√
ω∗)∗ . We can also write

EX (w(X)) =
∏

16i<pe1
(i,p)=1
16j6f

E(θijXi)aij with θij ∈ R, aij ∈ Zp (see, e.g., the proof of

Proposition (2.2) Ch. VI). Now Lemma (9.1) Ch. I shows that

EX (w(X))|X=π =
∏

16i<pe1
(i,p)=1
16j6f
k>1

(k,p)=1

(1− θkijπki)−aijµ(k)/k.

Note that 1 − θkijπ
ki = 1 − θp

n

1 πki with θ1 ∈ R. Hence 1 − θkijπ
ki belongs to

NF ( pn
√
π)/FF ( pn

√
π) and we obtain that ε ∈ NF ( pn

√
π)/FF ( pn

√
π). Therefore, ε be-

longs to N
F ( p

n√
β)/FF ( pn

√
β)∗ for β = πbηωl∗ , η ∈ R.

Now we will use the following

Lemma. Let α = πaθεωk∗ , β = πbηωl∗ , with θ, η ∈ R∗ . Then

〈α, β〉π = 1 ⇐⇒ a l − b k ≡ 0 mod pn ⇐⇒ α ∈ N
F ( p

n√
β)/FF ( p

n
√
β)∗.

Proof. We get

〈α, β〉π = ζa l−b k.

Furthermore, ε ∈ N
F ( p

n√
β)/FF ( pn

√
β)∗ . Let a = pma1 , k = pmk1 , b = pmb1 ,

l = pml1 and g.c.d.(a1, k1, b1, l1, p) = 1. If a l−b k ≡ 0 mod pn , then a1l1−b1k1 ≡ 0
mod pn−2m when n − 2m > 1. Suppose that b1 is relatively prime to p. Then
(πa1ω

k1
∗ )b1F ∗p

n−2m
= (πb1ω

l1
∗ )a1F ∗p

n−2m
. This means that (πa1ω

k1
∗ )b1 belongs to

N
F ( p

n−m√
β)/F

F ( pn−m
√
β)∗ , and by the preceding considerations we conclude that

α ∈ N
F ( p

n√
β)/FF ( pn

√
β)∗ . Other cases are treated similarly. If n > 2m, then

obviously α ∈ N
F ( p

n√
β)/FF ( pn

√
β)∗ .

Conversely, let α ∈ N
F ( p

n√
β)/FF ( pn

√
β)∗ . Suppose that b ∈ aZp . Then a c ≡ b

mod pn for some integer c. Then

β ≡ πbωl∗ = (πaωk∗ )cωl−kc∗ mod F ∗p
n

.
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Therefore, by Corollary (3.3) and the preceding considerations,

α ∈ N
F ( p

n√
ωl−kc∗ )/F

F ( p
n
√
ωl−kc∗ )∗.

Then πa ∈ N
F ( p

n√
ωl−kc∗ )/F

F ( p
n√
ωl−kc∗ )∗ . Since the quotient group

F ∗/N
F ( p

n√
ωl−kc∗ )/F

F ( p
n√
ωl−kc∗ )∗,

which corresponds to an unramified extension, is cyclic and generated by π, we deduce
that a(l − kc) ≡ 0 mod pn . This means a l − k b ≡ 0 mod pn . Assume that
a ∈ bZp . Then b c ≡ a mod pn for some integer c. Then α ≡ (πbωl∗)

cωk−lc∗ ε

mod F ∗p
n

. By Corollary (3.3) and the preceding considerations, we deduce that
ωk−lc∗ ∈ N

F ( p
n√
πb)/F

F ( p
n√
πb)∗ and b(k − l c) ≡ 0 mod pn , i.e., b k − l a ≡ 0

mod pn .

To complete the proof of the Theorem, let α = πaθεωk∗ with θ ∈ R. Assume first
that k ∈ aZp . Then k ≡ a c mod pn for some integer c. Then, by the Lemma,

〈α, ωc∗〉π = ζac = 〈α, π〉−1
π .

For a prime element τ = πωc∗ we get 〈α, τ〉π = 〈α, τ〉τ = 1. Therefore, the element
α can be written as α = τaθε1 without pn-primary part. However, this case has been
considered above.

Assume a ∈ kZp . Let β = πbηρωl∗ with η ∈ R. Let c be an integer such that
k b− a l ≡ c k mod pn . Then, by the Lemma and Corollary (3.3),

〈α, πb−cωl∗〉π = 1, πb−cωl∗ ∈ NF ( pn
√
α)/FF ( pn

√
α)∗.

Also 〈α, β〉π = 〈α, πb−cωl∗〉π〈α, πcρ〉π . If 〈α, β〉π = 1, then 〈α, πcρ〉π = 1. By the
Lemma and Corollary (3.3) we obtain that

πb−cωl∗ ∈ NF ( pn
√
α)/FF ( pn

√
α)∗, πcρ ∈ NF ( pn

√
α)/FF ( pn

√
α)∗.

Then β ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ .

Conversely, if β ∈ NF ( pn
√
α)/FF ( pn

√
α)∗ , then πcρ ∈ NF ( pn

√
α)/FF ( pn

√
α)∗ . Now

from the Lemma we get ck ≡ 0 mod p and 〈α, πb−cωl∗〉π = 1. We conclude that
〈α, β〉π = 1.

(3.5). Proposition (Nondegeneracy of the pairing 〈·, ·〉π ). Let α ∈ F ∗ \F ∗p .
Then there exists an element β ∈ F ∗ such that 〈α, β〉π = ζ .

Proof. If α = πaθεωk∗ is as in the proof of Theorem (3.4) and a is relatively prime
to p, then we can put β = ωl∗ for a suitable integer l. If a is divisible by p and k is
relatively prime to p, then we can put β = πb for a suitable integer b. If a and k are
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divisible by p, then let ε ≡ 1 + ηπi mod πi+1 with (i, p) = 1, 1 6 i < pe1 , η ∈ OF .
For a unit ρ = 1 + η1π

pe1−i with η1 ∈ OF we get

〈ε, ρ〉π = 〈1 + ηπi,−ηπi(1 + η1π
pe1−i〉π

= 〈1 + ηη1π
pe1 (1 + ηπi)−1,−ηπi(1 + η1π

pe1−i)〉−1
π ,

because 〈γ, 1 − γ〉π = 1 by Theorem (3.4) ( 1 − γ ∈ NF ( pn√γ)/FF ( pn
√
γ)∗). Since

UF,pe1+1 ⊂ F ∗p from (5.7) Ch. I we deduce that 〈ε, ρ〉π = ζ for a proper η1 . This
completes the proof.

(3.6). Theorem. Let F be as in section 2, p > 2. Let A be a subgroup in F ∗ such
that F ∗p

n ⊂ A. Let B = A⊥ denote its orthogonal complement with respect to the
pairing 〈·, ·〉π . Then A = NL/FL∗ , where L = F ( p

n√
B) and B⊥ = A.

Proof. First, using Proposition (3.5) and the arguments of the last paragraph of the
proof of Theorem (5.2) Ch. IV we deduce that B⊥ = A. Then from Theorem (3.4) we
conclude that NL/FL∗ ⊂ A.

In the same way as in the last paragraph of the proof of Proposition (3.2) we deduce
that the index of NL/FL∗ in F ∗ isn’t greater than the degree of the extension L/F .
By Kummer theory the latter is equal to |B : F ∗p

n | which is equal to |F ∗ : A|. Thus,
A = NL/FL∗ .

4. Explicit Formulas

In this section following [Vo1] (the case of p = 2 [Fe1]) we will verify that the pair-
ing 〈·, ·〉π coincides with the pn th Hilbert symbol (·, ·)pn , thereby obtaining explicit
formulas which compute the values of the Hilbert symbol (α, β)pn are computed by
expansions of α, β in series in a prime element π.

Theorem. For α, β ∈ F ∗ and p > 2

(α, β)pn = ζTr res Φα(X),β(X)V (X)

where α(X), β(X) ∈ O0((X))∗ are such that α(π) = α, β(π) = β ;

Φα(X),β(X) =
α(X)′

α(X)
l(β(X))− l(α(X))

1
p

(β(X)M)′

β(X)M

V (X) = 1/2 + 1/s(X), s(X) = z(X)p
n − 1 and z(X) ∈ 1 + XO0[[X]] is such that

z(π) = ζ is a pn th primitive root of unity in F .
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For α, β ∈ F ∗ and p = 2

(α, β)pn = ζTr res
(
Φα(X),β(X) + Φ

(1)
α(X),β(X) + Φ

(2)
α(X),β(X)

)
r(X)V (X)

where α(X), β(X) ∈ Q with α(π) = α, β(π) = β ,

Q =
{
Xmaψ(X) : ψ(X) ∈ 1 +XO[[X]], a ∈ O∗, aϕ ≡ a2 mod 4,m ∈ Z

}
;

Φ
(1)
α(X),β(X) =

(
M
2

(
α2 − αM

2αM

β2 − βM

2βM

))′
;

Φ
(2)
α(X),β(X) = X−1vX (α(X))vX (β(X))lX (1 + sn−1(X)),

where vX is the discrete valuation associated to X , sn−1(X) = z(X)p
n−1 − 1 ;

r(X) = 1 + 2n−1 MX r0(X) where r0(X) ∈ XO0[X] satisfies

M2 r0 + (1 + (2n−1 − 1)sn−1) M r0 + sn−1r0 ≡ h modev (2, deg 2e),

e is the absolute ramification index of F (see (3.4) Ch. VI).

Proof. Let O0 be the ring of integers in F0 = F ∩ Qur
p . Let ε be a principal unit in

F . We have its factorization with respect to the Shafarevich basis (see section 5 Ch. VI)

ε = EX (w(X))|X=πω(a), w(X) =
∑

16i<pe1
(i,p)=1

αiX
i, αi, a ∈ O0.

As we have seen in (1.1)
(π, ε)pn = ζTr a.

On the other hand, Property 2 in (2.3) shows that

〈π, ε〉π = ζTr a

for p > 2. The same equality can be verified for p = 2 (see Exercise 1).
Now let ρ be a principal unit in F . Then τ = πρ is prime, and the invariance of

〈·, ·〉π shows that

〈ρ, ε〉π = 〈πρ, ε〉π〈 π, ε〉−1
π = 〈τ, ε〉τ 〈π, ε〉−1

π .

Then
〈ρ, ε〉π = (τ, ε)pn (π, ε)−1

pn = (ρ, ε)pn .

Finally, for α = πiθε, β = πjηρ with θ, η ∈ R∗ , ε, ρ ∈ U1,F we get

〈α, β〉π = 〈π, ηiθ−j〉π〈π, (−1)ijρiε−j〉π〈ε, ρ〉π
= 〈π, (−1)ijρiε−j〉π〈ε, ρ〉π = (π, (−1)ijρiε−j)pn (ε, ρ)pn = (α, β)pn ,

because ηiθ−j ∈ R∗ . This completes the proof.
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Remarks.

1. If one does not intend to have an independent pairing 〈·, ·〉, then as in Exercise 2
below one can reduce calculations to the case of (π, β)pn and then find an explicit
formula in the way similar to (1.1). This is the method of H. Brückner [Bru1–2], see
also [Henn1–2]. This method does not seem to have a generalization to formal groups.

2. Compare the formulas of this section with the formulas of (5.5), (5.6) Ch. IV for
the local functional fields.

Exercises.

1. Let p = 2. Using Exercise 2 of section 2 and elements 1− θjπi and ω(a) as in the proof
of Proposition (2.4) show that for ε =

∏
(1− θjπi)aij ω(a)

〈π, ε〉π = (π, ε)pn = ζTr a.

2. a) (H. Brückner [Bru1–2]) Prove the equality 〈·, ·〉π = (·, ·)pn using (1.1), the Steinberg
property for 〈, ·, ·〉π (Proposition (2.1) and Exercise 2 of section 2) and the equalities
of Exercise 1f), g) section 1 that hold also for the pairing 〈·, ·〉π .

b) Prove the equality 〈·, ·〉π = (·, ·)pn using (1.1), the Steinberg property for 〈, ·, ·〉π and
the theory of (4.3) Ch. IX instead of Exercise 1f), g) section 1.

3. Let p > 2. Show that

(π, a)pn = ζ
log (NF0/Qpa

p−1)/(2p)
pn

for a ∈ O∗0 .
4. a) Show that (

α,EF (a s(X))|X=π
)
pn

= ζv(α) Tr a, a ∈ O0,

where v is the discrete valuation in F .
b) Show that for every i, 1 6 i < pe1 , (i, p) = 1, θ ∈ R∗ , there exists η ∈ R∗ such

that

(1 + θπi, 1 + ηπpe1−i)pn = ζ.

(Hint. First prove this for n = 1. )
c) If i + j > pe1 , v(α− 1) = i, v(β − 1) = j , then

(α, β)p = 1.

5. (�) (H. Koch [Ko1]). Let F be a local number field, L/F a tamely ramified finite Galois
extension, G = Gal(L/F ), and let a primitive pn th root of unity ζ belong to L, p > 2.
Let (·, ·) be the pn th Hilbert symbol in L.
a) Using Exercise 6, show that there exist elements α1, α2, . . . , αr+2 ∈ L∗ , k = |L :

Qp|, such that αi ∈ U1,L for 1 6 i 6 r, and, for i 6 j , (αi, αj) is a primitive
pn th root of unity if j = i + 1, i is odd, and (αi, αj) = 1 otherwise.

b) Show that U1,L/U
pn

1,L as a Z/pnZ[G]-module is the sum of two submodules A1 ,
A2 , each of rank m/2, m = |F : Qp|, such that (A1, A1) = (A2, A2) = 1.
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5. Applications and Generalizations

In this section we deduce formulas for the Hilbert symbol in some special cases in (5.1)
and (5.2). Then in (5.3)–(5.4) we comment on various aspects of the explicit formulas
and their generalizations. In (5.5) we describe a higher dimensional formula in higher
dimensional local fields.

(5.1). First we prove formulas of E. Kummer and G. Eisenstein that had played a central
role before the works of E. Artin and H. Hasse. By use of the formulas of section 4
we will rewrite these formulas in a form that is somewhat different and appears more
natural in the context of Ch. VII.

Let ζ be a primitive p th root of unity, p > 2. Then π = ζ − 1 is prime in Qp(ζ).
Let ε ∈ 1 +XZp[[X]], η ∈ 1 +XZp[[X]], and ε = ε(π), η = η(π).

Proposition (Kummer formula).

(ε, η)p = ζ res log η(X)(log ε(X))′X−p .

Proof. We have s ≡ Xp mod p (see (1.2)) and

1/s ≡ X−p mod p.

Next, for f ∈ 1 +XZp[[X]]

l(f (X)) =
(

1− M
p

)
log (f (X)) ≡ log f (X) mod deg p.

Then

Φε(X),η(X) = l(ε)l(η)′ − l(ε)η′/η + l(η)ε′/ε

= −l(ε)
(
M
p

log (η)
)′

+ l(η)ε′/ε ≡ log η(X)(log ε(X))′ mod deg p

and

res Φε(X),η(X)V (X) ≡ log η(X)(log ε(X))′X−p mod p,

as desired.

(5.2). Proposition (Eisenstein formula). Let p > 2. Let β ∈ Zp[ζ], β = b

mod π2 , b ∈ Z. Suppose that b is relatively prime to p and an integer a is relatively
prime to p. Then

(a, β)p = 1.
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Proof. It is clear that (a, β)p = 1 if and only if (ap−1, βp−1)p = 1. Note that
ap−1, βp−1 are principal units in Qp(ζ). Further, as ap−1 ≡ 1 mod p and p ≡ −πp−1

mod πp , we get

ap−1 ≡ 1− cπp−1 mod πp for some c ∈ Zp.

Hence, if ap−1 = ε(π) with ε(X) ∈ 1 +XZp[[X]], then we can assume that

log ε(X) ≡ 1− cXp−1 mod Xp.

Next, as β ≡ b mod π2 ,we deduce βp−1 ≡ 1 mod π2 . Then if βp−1 = η(π) with
η(X) ∈ 1 +XZp[[X]], we obtain

η(X) ≡ 1 + dX2 mod X3, d ∈ Zp,

and log η(X) ≡ dX2 mod X3 . Thus, by Proposition (5.1),

Φε(X),η(X) ≡ (1− cXp−1)′dX2 ≡ cdXp mod (p, deg p + 1).

This implies res Φε(X),η(X)V (X) ≡ 0 mod p, (a, β)p = 1.

(5.3). Remarks. 1. Some other formulas for the Hilbert symbol (biquadratic formula,
Kummer–Takagi formula, Artin–Hasse–Iwasawa formulas, Sen formulas) can be found
in the Exercises. For a review of explicit formulas see [V11].

2. Let A be a local ring of characteristic 0 whose maximal ideal M contains
p. Assume that A is p-adically complete (for example, A = O0 or A = O0{{X}} ).
Suppose that there is a ring homomorphism M:A→ A such that for every a ∈ A

aM − ap ∈ pA.

The logarithm map induces an isomorphism

log: 1 + 2pA→ 2pA, 1− a 7→ −
∑
i>1

ai/i.

So if p > 2 then for every a ∈ A∗ the element log(ap/aM) ∈ pA is well defined. The
map

a 7→ l(a) =
1
p

log(ap/aM)

is related to the map

a 7→ aM − ap

p
,

see the proof of Lemma 2 of (3.6) Ch. VI. When A = O0 and M is the Frobenius
automorphism the latter map is sometimes interpreted as a p-adic derivation (of the
identity map of A ) and the right hand side as the derivative of the p-adic number a,
see [Bu1–4].
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3. Let A be as above and p > 2. Let Ω̂1
A be the M -adic completion of the module

of differential forms Ω1
A . For a, b ∈ A∗ define

Θa,b = l(b)
da

a
− l(a)

1
p

dbM

bM

as an element of Ω̂1
A .

Using Milnor K2-groups of local rings (which are defined similarly to how the
K2-group of a field is introduced in Ch. IX) one can interpret the properties of Φα(X),β(X)
proved in (2.1) as the existence of a well defined homomorphism

K2(O0((X)))→ Ω
1
O0((X))/pn/d(O0((X))/pn),

{α(X), β(X)} 7→ Θα(X),β(X) ∈ Ω
1
O0((X))/pn/d(O0((X))/pn)

so that the diagram

K2(O0((X))) −−−−→ Ω1
O0((X))/pn/d(O0((X))/pn)y y

K2(F )
(·,·)pn−−−−→ µpn

is commutative where the left vertical homomorphism is induced by the substitution

O0((X))∗ → F, f (X) 7→ f (π)

and the right vertical homomorphism is given by ω 7→ ζTr res(ωV ) .

4. K. Kato in [Kat6] gave an interpretation of the pairing 〈·, ·〉π in terms of syntomic
cohomologies: the image of {α, β} ∈ K2(OF ) with respect to the symbol map

K2(OF )→ H2(Spec (OF ), Sn(2))

coincides with the class of (dα(X)
α(X)

∧ dβ(X)
β(X)

,Θα(X),β(X)
)

where α(X), β(X) ∈ O0((X))∗ are such that α(π) = α, β(π) = β . Using the product
structure of the syntomic complex [Kat8] one can reduce the proof of independence of
this map of the choice of α(X), β(X) to the independence in the case of the appropriate
map

K1(OF )→ H1(Spec (OF ), Sn(1)), α 7→
(
dα(X)
α(X)

, l(α(X)
)

which is easier to show.

5. As explained in the work of M. Kurihara [Ku3], if in the case of A = O0{{X}}
one chooses the action of the map M:A → A (as in Remark 2 above) on X as
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(1 +X)p− 1 (and not Xp as in this book), then one can derive formulas for the Hilbert
symbol of R. Coleman’s type [Col2].

6. Using the theory of fields of norms (see section 5 of Ch. III) for arithmetically
profinite extension E = F ({πi}) over F , where πpi = πi−1 , π0 = p and a method
of J.-M. Fontaine to obtain a crystalline interpretation of Witt equations in positive
characteristic V.A. Abrashkin derived the explicit formula for odd p in [Ab5].

(5.4). Now let F be a complete discrete valuation field of characteristic 0 with perfect
residue field of characteristic p. Let a primitive pn th root of unity ζ belong to F .

Using Exercise 4 in section 2 Ch. VI and Exercise 3 in section 4 Ch. VI we introduce
the pairing

〈·, ·〉X :W (F )((X))∗ ×W (F )((X))∗ → µpn ⊗Wn(F )/℘(Wn(F )),

where W (F ) is the Witt ring of F , which can be identified with the ring of integers of
the absolute inertia subfield F0 in F , Wn(F ) is the group of Witt vectors of length n,
℘ is defined in section 8 Ch. I, by the formula

〈α(X), β(X)〉X = ζ ⊗ res(Φα(X),β(X)V (X)) where

Φα(X),β(X) =
α(X)′

α(X)
l(β(X))− l(α(X))

1
p

(β(X)M)′

β(X)M

for p > 2 and V (X) is defined as in (2.1). If α, β ∈ F ∗ and p > 2 put

〈α, β〉π = 〈α(X), β(X)〉X ,

where π is prime in F , α(X), β(X) ∈W (F )((X))∗ , such that α(π) = α, β(π) = β .
Applying Exercise 1 in section 5 Ch. VI and the same arguments as in section 2,

one can show that the pairing 〈·, ·〉π:F ∗ × F ∗ → µpn ⊗Wn(F )/℘(Wn(F )) is well
defined, bilinear, symmetric, satisfies the Steinberg property, and invariant with respect
to the choice of π.

If F is quasi-finite, then the choice of ϕ in (1.3) Ch. V, when we fixed an iso-
morphism of Gal(F

sep
/F ) onto Ẑ, corresponds, due to Witt theory (see Exercise 6

section 5 Ch. IV), to the choice of a generator of the cyclic group Wn(F )/℘(Wn(F ))
of order pn . We get the corresponding isomorphism

µpn ⊗Wn(F )/℘(Wn(F )) ' µpn

with respect to which 〈α, β〉π coincides with the Hilbert pairing (α, β)pn defined in
(1.3) Ch. V.

Using class field theory of a complete discrete valuation field with perfect residue
field F of characteristic p with F 6= ℘(F ) (see section 4 Ch. V), define the Hilbert
symbol as

U1,F × U1,F → HomZp (Gal(F̃ /F ), µpn ), (ε, η)pn (ϕ) = ρΨF (ε)(ϕ)−1
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where ρp
n

= η and ΨF is the reciprocity map of (4.8) Ch. V. Note that by Witt theory
HomZp (Gal(F̃ /F ), µpn ) is canonically isomorphic to µpn ⊗Wn(F )/℘(Wn(F )). One
can prove that with respect to this isomorphism

(ε, η)pn = 〈ε, η〉π for every ε, η ∈ U1,F .

(5.5). Let K be an n-dimensional field of characteristic 0 as defined in (4.6) Ch. I.
Associated to K we have fields K = Kn,Kn−1, . . . ,K1,K0 where Ki−1 is the
residue field of complete discrete valuation field Ki for i > 0.

Assume that Kn−1 is of characteristic p and K0 is a finite field.
Assume that p is odd and ζpm belongs to K .
Let t1, . . . , tn be a lifting of prime elements of K1, . . . ,Kn−1,K to K . Denote

by R the multiplicative representatives of K0 in K .
For an element

α = tinn . . . t
i1
1 θ
(
1 +
∑

aJ t
jn
n . . . t

j1
1
)
, θ ∈ R∗, aJ ∈W (K0),

(j1, . . . , jn) > (0, . . . , 0) denote by α the series

Xin
n . . . X

i1
1 θ(1 +

∑
aJX

jn
n . . . X

j1
1 )

in W (K0){{X1}} . . . {{Xn}}. Clearly, α is not uniquely determined even if the choice
of a system of local parameters is fixed.

Define the following explicit pairing [V5]

〈·, ·〉: (K∗)n+1 → µpm

by the formula

〈α1, . . . , αn+1〉 = ζ
Tr res Φα1,...,αn+1/s
pm ,

Φα1,...,αn+1 =
n+1∑
i=1

(−1)n−i+1

pn−i+1 l
(
αi
) dα1

α1
∧ · · · ∧

dαi−1

αi−1
∧
dαi+1

4

αi+14
∧ · · · ∧

dαn+1
4

αn+14

where s = ζpmp
m − 1, Tr = TrW (K0)/Zp , res = resX1,...,Xn ,

l (α) =
1
p

log
(
αp/α4

)
,
(∑

aJX
jn
n · · ·X

ji
1
)4

=
∑

F(aJ )Xpjn
n · · ·Xpj1

1

where F is defined in section 9 Ch. I.

One can prove that the pairing 〈·, ·〉 is well defined, multilinear and satisfies the
Steinberg property.

This pairing plays an important role in the study of (topological) K -groups of
higher local fields, see sections of [FK]. Certainly, the pairing coincides with the
Hilbert symbol as soon as the latter is defined by higher class field theory (see (4.13)
Ch. IX).
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Exercises.

1. Let F = Qp(ζp), let ζp be a primitive p th root of unity, p > 2.
a) Show that

1
p

Tr(ζpπi) ≡
{

1 mod p if i = p− 1

0 mod p if i 6= p− 1, i > 1,

where Tr = TrF/Qp , π = ζp − 1.

b) Let α ≡ 1 mod π2 , β ≡ 1 mod π. If γ =
∑

aiπ
i , ai ∈ Zp , then let Dlog γ

denote the element

γ−1
(∑

iaiπ
i−1
)
,

depending on the choice of expansion of β in a series in π. Let logβ denote the

element (β − 1)− (β − 1)2

2
+

(β − 1)3

3
− . . . . Prove the Artin–Hasse formula

(α, β)p = ζ Tr(ζp logα · Dlogβ)/p
p

c) Using a suitable expansion in a series in π, show that Dlog ζp can be made equal to
−ζ−1

p , Dlogπ to π−1 . Prove the Artin–Hasse formulas

(ζp, β)p = ζ Tr(logβ)/p
p for β ≡ 1 mod π,

(β, π)p = ζ Tr(ζpπ−1 logβ)/p
p for β ≡ 1 mod π.

2. Let F be as in Exercise 1.
a) Let τ be a prime element in F such that π ≡ aτ mod τ2 for some a ∈ Zp . Show

that for ε, η ∈ U1,F

(ε, η)p = ζres a−1 log η(X)(log ε(X))′X−p
p ,

where ε(X), η(X) ∈ 1 +XZp[[X]], ε(τ ) = ε, η(τ ) = η.
b) Put

E[X] = 1 +X +
X2

2!
+ · · · + Xp−1

(p− 1)!
.

Show that ζp = E[τ ] for some prime element τ in F such that τ ≡ π = ζp − 1
mod τ2 .

c) Let ε, η ∈ U1,F and f (X), g(X) ∈ Z[X] such that f (ζp) = ε, g(ζp) = η, f (1) =
g(1) = 1. Show that ε = f (E(X))|X=τ , η = g(E(X))|X=τ .

d) Put

li(h(X)) =
diL(h(X))
dXi

∣∣∣∣
X=0

,

where L(1−X) = −
(
X + X2

2 + · · · + Xp−1

p−1

)
. Prove the Kummer–Takagi formula
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(ε, η)p = ζγp , where γ =
p−1∑
i=1

(−1)ili(g ◦ E)lp−i(f ◦ E).

3. (�) (Biquadratic formula)
Let F = Q2(i), i2 = −1. Show that if α, β ≡ 1 mod (i− 1)3 , then

(α, β)4 = (−1)

α− 1
(i− 1)3

β − 1
(i− 1)3

.

4. (�) Let F = Qp(ζpn ), where ζpn is a pn th primitive root of unity, p > 2. Let
πn = ζpn − 1; then πn is prime in F , see (1.3) Ch. IV. Put Tr = TrF/Qp .
a) Prove the Artin–Hasse formulas

(ζpn , β)pn = ζ Tr(logβ)/pn
pn for β ≡ 1 mod πn

and

(β, πn)pn = ζ Tr(ζpnπ−1
n logβ)/pn

pn for β ≡ 1 mod πn.

b) Prove the Artin–Hasse–Iwasawa formula

(α, β)pn = ζ Tr(ζpn logαDlogβ)/pn
pn

for α ≡ 1 mod π2
1 , β ≡ 1 mod πn .

5. (�) Let a primitive pn th root of unity ζpn belong to F and n > 2 if p = 2. Let π be a
prime element in F . Put Tr = TrF/Qp . Prove the Sen formulas

(α, π)pn = ζ
Tr
( ζpn

f ′(π)π
logα

)
/pn

pn for α ≡ 1 mod (π(ζp − 1)2)

and

(α, β)pn = ζ
Tr
( ζpn
f ′(π)

g′(π)
g(π)

logα
)
/pn

pn for α ≡ 1 mod ((ζp − 1)2), β ∈ UF ,

where f (X), g(X) are arbitrary polynomials over the ring of integers O0 of F0 = F ∩Qur
p

such that f (π) = ζpn , g(π) = β (see also [Sen 3]). This formula was deduced by Sh. Sen
using in particular J. Tate’s theory [T2], see (6.5) Ch. IV.

6. (�) Let F = Qp(ζp), where ζp is a p th primitive root of unity, p > 2.
a) Let w be a root of Xp+pX in F such that w ≡ π = ζp−1 mod π2 . Let π = f (w)

for some f (X) ∈ XZp[[X]]. Show that

λ(X) = log (1 + f (X)) ≡ X mod Xp,

(eaλ(X) − 1)−1(eaλ(X) − 1)′ ≡ (eaX − 1)−1(eaX − 1)′ mod Xp−1.

b) Put ηi = 1 + f (wi) for 1 6 i 6 p. Let σ be a generator of G = Gal(F/Qp). Show

that (ηi) form a Z/pZ[G]-basis of U1,F /U
p
1,F and σ(ηi) = ηa

i

i , where the element
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a belongs to the set of multiplicative representatives in F and is determined by the
condition σ(w) = aw.

c) Show that

(ηi, ηj)p =

{
1 if i + j 6= p,

ζjp if i + j = p.

d) Let

u =
∏
i

(ζaip − 1)ni ,

where ai is relatively prime to p,
∏
i a
ni
i ≡ 1 mod p,

∑
i ni = 0. The unit u is

called cyclotomic. Using Bernoulli’s numbers Bk , determined from the equality

(eaX − 1)−1(eaX − 1)′ = a +
∑
k>0

1
k!
Bka

kXk−1,

show that

(logu(X))′ ≡ 1
2

∑
i

niai +
∑
k>2

Bk
k!

(∑
i

nia
k
i

)
Xk−1 mod Xp−1,

where u(X) ∈ Zp[[X]] such that u = u(w).
e) Show that if u1, u2 are cyclotomic units, then (u1, u2)p = 1.
f) Introduce the cyclotomic units

uk =
p−1∏
a=1

(
ζ
a(1−g)/2
p

ζagp − 1
ζgp − 1

)ap−1−k

, 2 6 k 6 p− 3,

where the integer g is such that gi 6≡ 1 mod p for 1 6 i < p− 1. Using d), show
that

(loguk(X))′ ≡ −Bk
k!
gkXk−1 mod (p,Xp−1),

where uk(X) ∈ Zp[[X]], uk(w) = uk .
g) Show that if uk ∈ F ∗p , then Bk is divisible by p. (Hint: Consider (uk, 1+wp−ku)p

for u ∈ UF ).





CHAPTER 8

Explicit Formulas for Hilbert Pairings on Formal Groups

The method of the previous chapter possesses a valuable property: it can be relatively
easily applied to derive explicit formulas for various generalizations of the Hilbert
symbol. This chapter explains how to establish explicit formulas for the generalized
Hilbert pairing associated to a formal group of Lubin–Tate type or more generally
of Honda type. Section 1 briefly recalls the theory of Lubin–Tate groups and their
applications to local class field theory. In section 2 we discuss for Lubin–Tate formal
groups a generalization of the exponential and logarithm maps EX and lX of Ch. VI
and the arithmetic of the points of formal module. Then we describe explicit formulas
for the Hilbert pairing. In section 3 we discuss the arithmetic and explicit formulas in
the case of Honda formal groups.

The presentation in this chapter is more concise than in the rest of the book.

1. Formal Groups

(1.1). Let A be a commutative ring with unity. A formal power series F (X,Y ) over
A is said to determine the commutative formal group F over A if

F (X, 0) = F (0, X) = X,
F (F (X,Y ), Z) = F (X,F (Y,Z)) (associativity),
F (X,Y ) = F (Y,X) (commutativity).

Natural examples of such formal groups are the additive formal group

F+(X,Y ) = X + Y

and the multiplicative formal group

F×(X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1.

Other examples will be exposed below and in Exercises. The definition implies that
F (X,Y ) = X + Y +

∑
i+j>2 aijX

iY j , aij ∈ A.
A formal power series f (X) ∈ XA[[X]] is called a homomorphism from a formal

group F to a formal group G if

f (F (X,Y )) = G(f (X), f (Y )).

267
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f is called an isomorphism if there exists a series g = f−1 inverse to it with respect
to composition, i.e. such that (f ◦ g)(X) = (g ◦ f )(X) = X . The set EndA(F ) of all
homomorphisms of F to F has a structure of a ring:

f (X)⊕F g(X) = F (f (X), g(X)),
f (X) · g(X) = f (g(X)).

Lemma. There exists a uniquely determined homomorphism

Z→ EndA(F ) : n→ [n]F .

Proof. Put [0]F (X) = 0, [1]F (X) = X , [n + 1]F (X) = F ([n]F (X), X) for n > 0.
Now we will verify that there exists a formal power series [−1]F (X) ∈ XA[[X]] such
that F (X, [−1]F (X)) = 0. Put ϕ1(X) = −X and assume that

F (X,ϕi(X)) ≡ 0 mod deg i + 1 for 1 6 i 6 m.

Let F (X,ϕm(X)) ≡ cm+1X
m+1 mod degm + 2, cm+1 ∈ A. Then for

ϕm+1(X) = ϕm(X)− cm+1X
m+1

we obtain

F (X,ϕm+1(X)) = X + ϕm(X)− cm+1X
m+1 +

∑
i+j>2

aijϕm(X)j

≡ F (X,ϕm(X))− cm+1X
m+1 ≡ 0 mod degm + 2.

The limit of ϕm(X) in A[[X]] is the desired series [−1]F (X). Finally, we put
[n]F (X) = F ([n + 1]F (X), [−1]F (X)) for n 6 −2. This completes the proof.

From now on let A = K be a field of characteristic 0.

Proposition. Any formal group F over K is isomorphic to the additive group F+ ,
i.e. there exists a formal power series λ(X) ∈ XK[[X]], λ(X) ≡ X mod deg 2
such that

F (X,Y ) = λ−1(λ(X) + λ(Y )).

Proof. Denote the partial derivative ∂F
∂Y (X,Y ) by F ′2(X,Y ). First we show that

F ′2(F (X,Y ), 0) = F ′2(X,Y )F ′2(Y, 0).

To do this, we write

F ′2(X,F (Y, Z))F ′2(Y, Z) =
∂

∂Z
F (X,F (Y,Z)) =

∂

∂Z
F (F (X,Y ), Z),

and put Z = 0. Now let λ(X) = X +
∑
i>2 ciX

i be such that

λ′(X) = 1 +
∑
n>2

ncnX
n−1 =

1
F ′2(X, 0)

=
1

1 +X +
∑
i>1 ai1X

i
.
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Then
∂

∂Y
λ(F (X,Y )) =

F ′2(X,Y )
F ′2(F (X,Y ), 0)

=
1

F ′2(Y, 0)
=

∂

∂Y
λ(Y ).

Therefore,
∂

∂Y
(λ(F (X,Y ))− λ(Y )) = 0

and λ(F (X,Y )) = λ(Y )+g(X) for some formal power series g(X) ∈ K[[X]]. Setting
Y = 0, we get λ(X) = λ(F (X, 0)) = g(X). Thus, we conclude that

F (X,Y ) = λ−1(λ(X) + λ(Y )).

The series λ(X) is called the logarithm of the formal group F . We will denote it by
logF (X). The series inverse to it with respect to composition is denoted by expF (X).
Then F (X,Y ) = expF (logF (X) + logF (Y )).

The theory of formal groups is presented in [Fr], [Haz3].

(1.2). From now on we assume that K is a local number field. For such a field the
Lubin–Tate formal groups play an important role. Let Fπ denote the set of formal
power series f (X) ∈ OK[[X]] such that f (X) ≡ πX mod deg 2, f (X) ≡ Xq

mod π, where π is a prime element in K and q is the cardinality of the residue field
K . The following assertion makes it possible to deduce a number of properties of the
Lubin–Tate formal groups.

Lemma. Let f (X), g(X) ∈ Fπ and αi ∈ OK for 1 6 i 6 m. Then there exists a
formal power series h(X1, . . . , Xm) ∈ K[[X1, . . . , Xm]] uniquely determined by the
conditions:

h(X1, . . . , Xm) ≡ α1X1 + · · · + αmXm mod deg 2,
f (h(X1, . . . , Xm)) = h(g(X1), . . . , g(Xm)).

Proof. It is immediately carried out putting h1 = α1X1+ · · ·+αmXm and constructing
polynomials hi ∈ K[X1, . . . , Xm] such that

hi ≡ hi−1 mod deg i,
f (hi(X1, . . . , Xm)) ≡ hi(g(X1), . . . , g(Xm)) mod deg i + 1.

Then h = limhi is the desired series.

Proposition. Let f (X) ∈ Fπ . Then there exists a unique formal group F = Ff over
OK such that

Ff (f (X), f (Y )) = f (Ff (X,Y )).

For each α ∈ OK there exists a unique [α]F ∈ EndOK (F ) such that

[α]F (X) ≡ αX mod deg 2.
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The map OK → EndOK (F ) : α → [α]F is a ring homomorphism, and f = [π]F .
If g(X) ∈ Fπ and G = Fg is the corresponding formal group, then Ff and Fg are
isomorphic over OK , i.e., there is a series ρ(X) ∈ K[[X]], ρ(X) ≡ X mod deg 2,
such that

ρ(Ff (X,Y )) = Fg(ρ(X), ρ(Y )).

Proof. All assertions follow from the preceding Lemma. For instance, there exists a
unique Ff (X,Y ) ∈ K[[X,Y ]] such that

Ff (X,Y ) ≡ X + Y mod deg 2, Ff (f (X), f (Y )) = f (Ff (X,Y )).

Then Ff (X, 0) = Ff (0, X) = X . Both series Ff (X,Ff (Y, Z)) and Ff (Ff (X,Y ), Z)
satisfy the conditions for h:

h(X,Y, Z) ≡ X + Y + Z mod deg 2, h(f (X), f (Y ), f (Z)) = f (h(X,Y, Z)).

Therefore, by the Lemma Ff (X,Ff (Y, Z)) = Ff (Ff (X,Y ), Z). In the same way we
get Ff (X,Y ) = Ff (Y,X). This means that Ff is a formal group.

The formal group Ff is called a Lubin–Tate formal group. Note that the multi-
plicative formal group F× is a Lubin–Tate group for π = p.

(1.3). Let F = Ff , f ∈ Fπ , be a Lubin–Tate formal group over OK , K a local
number field. Let L be the completion of an algebraic extension over K . On the
set ML of elements on which the valuation takes positive values one can define the
structure of OK -module F (ML):

α +F β = F (α, β), a · α = [a]F (α), a ∈ OK , α, β ∈ML.

Let κn denote the group of πn-division points:

κn = {α ∈MKsep : [πn]F (α) = 0}.

It can be shown (see Exercise 5) that κn is a free OK/π
nOK -module of rank 1,

OK/π
nOK is isomorphic to EndOK (κn), and UK/Un,K is isomorphic to AutOK (κn).

Define the field of πn-division points by

Ln = K(κn).

Then one can prove (see Exercise 6) that Ln/K is a totally ramified abelian extension
of degree qn−1(q−1) and Gal(Ln/K) is isomorphic to UK/Un,K . Put Kπ = ∪

n>1
Ln

and let ΨK be the reciprocity map (see section 4 Ch. IV).
The significance of the Lubin–Tate groups for class field theory is expressed by the

following

Theorem. The field Ln is the class field of 〈π〉×Un,K and the field Kπ is the class
field of 〈π〉.



1. Formal Groups 271

The group Gal(Kab/K) is isomorphic to the product Gal(Kur/K) × Gal(Kπ/K)
and

ΨK(πau)(ξ) = [u−1]F (ξ) for ξ ∈ ∪
n>1

κn, a ∈ Z, u ∈ UK .

See Exercise 7.

Exercises.
1. a) Let A = Fp[Z]/(Z2). Show that

F (X,Y ) = X + Y + ZXY p

determines a noncommutative formal group over A.
b) Let A be a commutative ring with unity and let 2 be invertible in A. Show that

Fα(X,Y ) =
X
√

(1− Y 2)(1− α2Y 2) + Y
√

(1−X2)(1− α2X2)
1 + α2X2Y 2

with α ∈ A, determines a formal group over A (this is the addition formula for the
Jacobi functions for elliptic curves).

c) Let F (X,Y ) ∈ Z[X,Y ]. Show that F determines a formal group over Z if and
only if F (X,Y ) = X + Y + αXY for some α ∈ Z.

2. a) Show that logF (X) =
∑
n>1 d

an
n X

n and expF (X) =
∑
n>1 d

bn
n!X

n for some
an ∈ OK , bn ∈ OK .

b) Let F be a Lubin–Tate formal group over OK . Show that logF induces an isomor-
phism of OK -module F (Mm

K ) onto OK -module Fa(Mm
K ), where m is an integer,

m > vK (p)/(p− 1).
c) Let F be as in b). Let M be the maximal ideal of the completion of the separable

closure of K . Show that the kernel of the homomorphism F (M) → Ksep induced
by logF coincides with κ = ∪κn .

3. Show that the homomorphism OK → EndOK (Ff ) of Proposition (1.2) is an isomorphism.
4. a) Let F be a formal group over OK and π a prime element in K . Assume that

logF (X)− π−1 logF (Xq) ∈ OK [[X]]. Put

f (X) = expF (π logF (X)), fi(X) = f (X)i −Xqi, for i > 1.

Show that if logF (X) =
∑
i>1 ciX

i , c1 = 1, then∑
i>1

cifi(X) ≡ 0 mod π.

Deduce that f1(X) ≡ 0 mod π. Since f (X) ≡ πX mod deg 2, this means that
f ∈ Fπ and F is a Lubin–Tate formal group.

b) Show that the series

logFah (X) = X +
Xq

π
+
Xq2

π2 + . . .

determines the Lubin–Tate formal group

Fah(X,Y ) = log−1
Fah

(logFah (X) + logFah (Y ))
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over OK .
c) Using Proposition (1.2), show that if F = Ff is a Lubin–Tate formal group over OK

and f ∈ Fπ , then the series Eπ(X) = expF (logFah (X)) belongs to OK [[X]] and
determines an isomorphism of F0 onto F . The series Eπ(X) is a generalization of
the Artin–Hasse function considered in (9.1) Ch. I.

d) Show using Lemma (7.2) Ch. I that if F is as in c), then logF (X)−π−1 logF (Xq) ∈
OK [[X]]. Thus, a formal group F over OK is a Lubin–Tate formal group over OK
if and only if logF (X)− π−1 logF (Xq) ∈ OK [[X]].

5. a) Let f, g ∈ Fπ . Show that κn associated to f is isomorphic to κn associated to g.
Taking g = πX +Xq show that |κn| = qn .

b) Let ξ ∈ κn \ κn−1 . Using the map OK → κn , a 7→ [a]F (ξ) show that κn is
isomorphic to OK/π

nOK .
c) Using the map OK → EndOK (κn), a 7→ (ξ 7→ [a]F (ξ)) show that OK/π

nOK is
isomorphic to EndOK (κn) and UK/Un,K is isomorphic to AutOK (κn).

6. Let ξ ∈ κn \ κn−1 . Define the field of πn -division points Ln = K(ξ). Using Exer-
cise 5 show that Ln/K is a totally ramified abelian extension of degree qn−1(q − 1),
NLn/L(−ξ) = π and Gal(Ln/K) is isomorphic to UK/Un,K .

7. a) Define a linear operator φ acting on power series with coefficients in the completion
of the ring of integers Ô of the maximal unramified extension of K as φ(

∑
aiX

i) =∑
aϕKi Xi . Let u ∈ UK and u = vφ−1 for some v ∈ Ô∗ according to Propo-

sition (1.8) in Ch. IV. Let f ∈ Fπ and g ∈ Fπu . Using the method of (1.2)
show that there is a unique h(X) ∈ Ô[[X]] such that h(X) ≡ vX mod deg 2 and
f ◦ h = hφ ◦ g.

b) Let u ∈ UK and let σ ∈ Gal(Ln/K) be such that σ(ξ) = [u−1]F (ξ). Denote by Σ

the fixed field of σ̃ = ϕLnσ ∈ Gal(Lur
n /K). Show that Σ is the field of πn -division

points of Fg .
c) Let h be as in a). Show that h(ξ) is a prime element of Σ. Deduce using sections 2

and 3 Ch. IV that

ϒLn/K (σ) ≡ NΣ/K (−h(ξ)) = πu ≡ u mod NLn/KL
∗
n.

Thus, ΨLn/K (πau)(ξ) = [u−1]F (ξ).
d) Deduce that NLn/KL

∗
n = 〈π〉 × Un,K .

e) Show that Kab = KurKπ where Kπ = ∪
n>1

Ln .

2. Generalized Hilbert Pairing for Lubin–Tate Groups

In this section K is a local number field with residue field Fq , π is a prime element
in K , F = Ff is a Lubin–Tate formal group over OK for f ∈ Fπ . Let L/K be a
finite extension such that the OK -module κn of πn -division points is contained in L.
Let OT be the ring of integers of T = L ∩Kur and let O0 be the ring of integers of
L ∩Qur

p . Put e = e(L|Qp), e0 = e(K|Qp).
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(2.1). Define the generalized Hilbert pairing

(·, ·)F = (·, ·)F,n:L∗ × F (ML)→ κn

by the formula

(α, β)F = ΨF (α)(γ) +F [−1]F (γ),

where γ ∈ F (MKsep ) is such that [πn]F (γ) = β . If F = F× , π = p, then (α, β)F,n
coincides with the Hilbert symbol (α, 1 + β)pn .

Proposition. The generalized Hilbert pairing has the following properties:
(1) (α1, α2, β)F = (α1, β)F,n +F (α2, β)F , (α, β1 +F β2)F = (α, β1)F +F (α, β2)F ;
(2) (α, β)F = 0 if and only if α ∈ NL(γ)/LL(γ)∗ , where [πn]F (γ) = β ;
(3) (α, β)F = 0 for all α ∈ L∗ if and only if β ∈ [πn]F F (ML) ;
(4) (α, β)F in the field E coincides with (NE/L(α), β)F in the field L for α ∈ E∗ ,

β ∈ F (ML), where E is a finite extension of L ;
(5) (σα, σβ)F in the field σL coincides with σ(α, β)F , where (α, β)F is considered

to be taken in the field L, σ ∈ Gal(Ksep/K).

Proof. It is carried out similarly to the proof of Proposition (5.1) Ch. IV.

Now we shall briefly discuss a generalization of the relevant assertions of Chap-
ters VI, VII to the case of formal groups.

(2.2). For αi in the completion of the maximal unramified extension Kur of K put

M
(∑

αiX
i
)

=
∑

ϕK(αi)Xqi,

where ϕK is the continuous extension of the Frobenius automorphism of K , and q

is the cardinality of K . Let Ô be the ring of integers in the completion of Kur . Let
F (XÔ[[X]]) denote the OK -module of formal power series in XÔ[[X]] with respect
to operations

f +F g = F (f, g), a · f = [a]F (f ), a ∈ OK .

Analogs of the maps EX , lX of section 2 Ch. VI are the following EF = EF,X ,
lF = lF,X :

EF (f (X)) = expF

((
1 +

M
π

+
M2

π2 + . . .

)
f (X)

)
, f (X) ∈ XÔ[[X]]

lF (g(X)) =
(

1− M
π

)(
logF (g(X))

)
, g(X) ∈ XÔ[[X]].

Then EF is a OK -isomorphism of XÔ[[X]] onto F (XÔ[[X]]) and lF is the inverse
one. This assertion can be proved in the same way as Proposition (2.2) Ch. VI, using
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the equality

EF (θXm) = expF
(
θXm +

(θXm)q

π
+ . . .

)
= expF (logFah (θXm)),

where θ is an l th root of unity, (l, p) = 1, and logFah is the logarithm of the Lubin–Tate
formal group Fah , defined in Exercise 4 section 1.

(2.3). Let Π be a prime element in L. Let ξ be a generator of the OK -module κn .
To ξ we relate a series z(X) = c1X + c2X

2 + . . . , ci ∈ OT , such that z(Π) = ξ . Put
sm(X) = [πm]F (z(X)), s(X) = sn(X).

An element α ∈ ML is called πn-primary if the extension L(γ)/L is unramified
where [πn](γ) = α. As in sections 3 and 4 of Ch. VI one can prove that

ω(a) = EF (a s(X))|X=Π
, a ∈ OT ,

is a πn-primary element and, moreover,

(π, ω(a))F = [Tr a](ξ),

where Tr = TrT/K (see [V3]). The OK -module Ω of πn-primary elements is
generated by an element ω(a0) with Tr a0 /∈ πOK , a0 ∈ OT .

An analog of the Shafarevich basis considered in section 5 Ch. VI can be stated as
follows: every element α ∈ F (ML) can be expressed as

α =
∑
i

(F )EF (aiXi)|X=Π
+F ω(a), ai, a ∈ OT ,

where 1 6 i < qe/(q − 1), i is not divisible by q. The element α belongs to
[πn]FF (ML) if and only if Tr a ∈ πnOK , ai ∈ πnOT . There are also other forms of
generalizations of the Shafarevich basis; see [V2–3].

(2.4). To describe formulas for the generalized Hilbert pairing, we introduce the
following notions. For ai ∈ O0 put

δ
(∑

aiX
i
)

=
∑

ϕ(ai)Xpi,

where ϕ = ϕQp is the Frobenius automorphism of Qp .
For the series α(X) = θXmε(X), where θ is a l th root of unity, l is relatively

prime to p, ε(X) ∈ 1 +XO0[[X]], put, similar to Ch. VII,

l(α(X)) = l(ε(X)) =
(

1− δ

p

)
(log(ε(X))) =

1
p

log
(
α(X)p

α(X)δ

)
,

L(α(X)) = (1 + δ + δ2 + . . . )l(α(X)),

and

lm(α(X)) = lm(ε(X)) =
(

1− M
q

)
(log (ε(X))) =

1
q

log
(
α(X)q

α(X)M

)
.
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Let α ∈ L∗ , β ∈ F (ML). Let α = α(X)|X=Π , β = β(X)|X=Π , where α(X) is as
just above, β(X) ∈ XOT [[X]]. Put

Φα(X),β(X) =
α(X)′

α(X)
lF (β(X))− lm(α(X))

(M
π

logF (β(X))
)′

and

Φ
(1)
α(X),β(X) =

2
π

(
∆

q

(
mlF (β(X)) +

L(α(X))Xε(X)
(Xε(X))′

(logF (β(X)))′
))′

,

Φ
(2)
α(X),β(X) =

(
l(α(X))(M + M2 + M3 + . . . )lF (β(X))

)′
,

Φ
(3)
α(X),β(X) =

(M
2
(
L(α(X))(1+ M + M2 + . . . )lF (β(X))

))′
(concerning the form of Φ(3) see Exercise 2 section 2 Ch. VII keeping in mind the
restriction on the series α(X), β(X) above).

Similarly to (2.1) Ch. VII we can introduce an appropriate pairing 〈·, ·〉X on power
series using the series 1/s(X) instead of V (X). Similarly to (2.2) Ch. VII we can
introduce a pairing 〈·, ·〉π on L∗ × F (ML) and then prove that it coincides with the
generalized Hilbert pairing.

Thus, there are the following explicit formulas for the generalized Hilbert pairing.
If p > 2 then

(α, β)F = [Tr resX Φα(X),β(X)/s(X)](ξn)

If p = 2 and q > 2, then

(α, β)F = [Tr resX (Φα(X),β(X) + Φ
(1)
α(X),β(X))/s(X)](ξn)

If p = 2, q = 2, e0 > 1, then

(α, β)F = [Tr resX (Φα(X),β(X) + Φ
(2)
α(X),β(X))r(X)/s(X)](ξn)

If p = 2, q = 2, e0 = 1, then

(α, β)F = [Tr resX (Φα(X),β(X) + Φ
(3)
α(X),β(X))r(X)/s(X)](ξn)

For odd p see [V2–4]. For p = 2 see [VF], [Fe1], and for full proofs [Fe2, Ch.II].
Here for q = 2, e0 > 1, we put r(X) = 1 + πn−1r0(X) and the polynomial r0(X)

is determined by the congruence

M2 r0 + (1 + (πn−1 − 1)s) M r0 + sr0 ≡ (M2 sn−1− M s)/πnmodev(π, degX4e)

(modev is as in (3.4) Ch. VI).
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For q = 2, e0 = 1, we put r(X) = 1 +πn−1 M r0(X), where the polynomial r0(X)
is determined by the congruence

M2 r0 + (1 + (πn−1 − 1)sn−1) M r0 + sn−1r0 ≡ (M sn−1 − s)/πnmodev(π, degX2e).

(2.5). Remarks.

1. These formulas can be applied to deduce the theory of symbols on Lubin–Tate
formal groups; see [V3]. For a review of different types of formulas see [V11].

2. If in the case p > 2 the series α(X) is chosen in O0(X))∗ , then the series 1/s(X)
should be replaced with V (X) = 1/s(X) + c/(π2−π) where c is the coefficient of X2

in [π](X) = πX + cX2 + . . . . In particular, if [π](X) = πX + Xq , then c = 0 and
V (X) = 1/s(X).

3. In connection with Remark 4 in (5.3) Ch. VII we note that no syntomic theory
related to formal groups, which could provide an interpretation of explicit formulas
discussed in this chapter, is available so far.

3. Generalized Hilbert Pairing for Honda Groups

We assume in this section that p > 2. Let K be a local field with residue field of
cardinality q = pf and L be a finite unramified extension of K . Let π be a prime
element of K . In this section we put ϕ = ϕK which differs from the notation in
section 2.

(3.1). Let M be defined in the same way as in (2.2). The set of operators of the form∑
i>0 ai M

i , where ai ∈ OL , form a noncommutative ring OL[[M]] of series in M in
which M a = aϕ M for a ∈ OL .

Definition. A formal group F ∈ OL[[X,Y ]] with logarithm logF (X) ∈ L[[X]] is
called a Honda formal group if

u ◦ logF ≡ 0 mod π

for some operator u = π + a1 M + · · · ∈ OL[[M]]. The operator u is called the type of
the formal group F .

Every 1-dimensional formal group over an unramified extension of Qp is a Honda
formal group [Hon].

Types u and v of a formal group F are called equivalent if u = ε ◦ v for some
ε ∈ OL[[M]], ε(0) = 1.

Let F be of type u. Then v = π + b1 M + · · · ∈ OL[[X]] is a type of F if and
only if v is equivalent to u.
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Using the Weierstrass preparation theorem for the ring OL[[M]], one can prove
[Hon] that for every formal Honda group F there is a unique canonical type

(*) u = π − a1 M − · · · − ah Mh, a1, . . . , ah−1 ∈ML, ah ∈ O∗L.

This type determines the group F uniquely up to isomorphism. Here h is the height
of F .

If F and G are Honda formal groups of types u and v respectively, then

HomOL (F,G) = {a ∈ OL : au = va}, EndOL (F ) = OK .

Along with (∗) we can use the following equivalent type

ũ = π − ah Mh −ah+1 Mh+1 − . . . ,

where ũ = C−1u, C = 1− a1
π M − · · · − ah−1

π Mh−1 , i.e.,

ũ = (π−1(u + ah Mh))−1u = π − (π−1(u + ah Mh))−1ah Mh

= π − ah Mh −ah+1 Mh+1 − . . . .
Now we state O.Demchenko classification theorems that connect Honda formal groups
with Lubin–Tate groups [De1].

Theorem 1. Let F be a Honda formal group of type

ũ = π − ah Mh −ah+1 Mh+1 − . . . , ai ∈ OL,

where ah is invertible in OL . Let u = π − a1 M − · · · − ah−1 Mh−1 −ah Mh be the
canonical type of F , a1, . . . , ah−1 ∈ML . Let λ = logF be the logarithm of F . Put
λ1 = B1λ

ϕh , where

B1 = 1 +
ah+1

ah
M +

ah+2

ah
M2 + . . .

(i.e., ũ = π − ahB1 Mh ). Then
(1) λ1 is the logarithm of the Honda formal group F1 of type ũ1 = a−1

h ũah and of
canonical type u1 = a−1

h uah ;

(2) f =
[
π

ah

]
F,F1

∈ HomOL (F, F1) and f (X) ≡ Xqh mod π.

Examples. 1. ï‰A formal Lubin–Tate group F has type u = π− M, its height is
h = 1 and F1 = F .

2. A relative Lubin–Tate group F has type u = π−a1 M, where a1 = π/π′ , h = 1,
and F1 = Fϕ .

Theorem 2 (converse to Theorem 1). Let f ∈ OL[[X]] be a series satisfying
relations

f (X) ≡ Xqh mod π, f (X) ≡ π

ah
X mod deg 2,
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where ah is an invertible element of OL . Let u = π − a1 M − · · · − ah Mh , where
a1, . . . , ah−1 ∈ML . Let

C = 1− a1

π
M − · · · − ah−1

π
Mh−1

and ũ = C−1u = π − ah Mh −ah+1 Mh+1 − . . . . Then there exists a unique Honda

formal group F of type ũ and of canonical type u such that f =
[
π

ah

]
F,F1

is a

homomorphism from F to the formal group F1 defined and given by Theorem 1.

Remarks.

1. If λ and λ1 are the logarithms of F and F1 respectively, then

f =
[
π

ah

]
F,F1

= λ−1
1 ◦

(
π

ah

)
◦ λ.

2. Theorem 2 can be viewed as a generalization of Proposition (1.2).

These theorems allow one to define on the set of Honda formal groups over the ring
OL the invertible operator A:F → F1 . Define the sequence of Honda formal groups

(**) F
f−−−−→ F1

f1−−−−→ . . .
fn−1−−−−→ Fn,

where Fm = AmF .
Let λm = logFm be the logarithm of Fm and let um be the canonical type of Fm .

Put

(***)

π1 = π/ah, πm = πϕ
h(m−1)

1 = π/aϕ
h(m−1)

h ,

π(m)
1 =

m∏
i=1

πi = πm
/
a1+ϕh+···+ϕh(m−1)

h .

Then um ◦ π(m)
1 = π(m)

1 u.
Denote f (m) = fm−1 ◦ fm−2 ◦ · · · ◦ f1 ◦ f . From Theorem 1 one can deduce that

fm−1(X)≡πmX mod deg 2, f (m)(X)≡π(m)
1 X mod deg 2.

(3.2). Define the generalized Hilbert pairing for a Honda formal group.
Let E be a finite extension of L which contains all elements of πn-division points

κn = ker [πn]F .
Along with the generalized Hilbert pairing

(·, ·)F = (·, ·)F,n:E∗ × F (ME)→ κn, (α, β)F = ΨE(α)(γ)−F γ,

where ΨE is the reciprocity map, γ is such that [πn]F (γ) = β , we also need another
generalization that uses the homomorphism f (n):

{·, ·}F = {·, ·}F,n:E∗ × F (ME)→ κn, {α, β}F = ΨE(α)(δ)−F δ,
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where δ is such that f (n)(δ) = β . Then

(α, β)F = {α, [π(n)
1 /πn]F,Fn (β)}F .

We get the usual norm property for both (·, ·)F and {·, ·}F .

(3.3). We introduce a generalization for Honda formal modules of the maps EF , lF
defined in (2.2).

Let T be the maximal unramified extension of K in E .
Denote by F (XOT [[X]]) the OK -module whose underlying set is XOT [[X]] and

operations are given by

f +F g = F (f, g); a · f = [a]F (f ), a ∈ OK .

The class of isomorphic Honda formal groups F contains the canonical group Fah
of type

u = π − a1 M − · · · − ah Mh, ai, . . . , ah−1 ∈ML, ah ∈ O∗L

with Artin–Hasse type logarithm

logFah = (u−1π)(X) = X + α1X
q + α2X

q2
+ . . . , αi ∈ L.

Define the map EF and its inverse lF as follows:

EF (g) = log−1
F ◦(1 + α1 M +α2 M2 + . . . )(g)

lF (g) =
(

1− a1

π
M − · · · − ah

π
Mh
)

(logF ◦g),

where g ∈ XOT [[X]].
We also need similar maps for the formal group Fn = AnF with logarithm λn =

logFn defined in the previous section. Let

un = π − b1 M − · · · − bh Mh

be the canonical type of Fn . Consider the canonical formal group Fb of type un
whose logarithm is

λb = (u−1
n π)(X) = X + β1X

q + β2X
q2

+ . . . , βi ∈ L.

The groups Fn and Fb are isomorphic because they have the same type un . Now
we define the functions

EFn (g) = λ−1
n ◦ (u−1

n π)(g) = λ−1
n ◦ (1 + β1 M +β2 M2 + . . . )(g)

lFn (g) = (unπ−1)(λn ◦ ψ) =
(

1− b1

π
M − · · · − bh

π
Mh
)

(λn ◦ g).

The functions EF and lF yield inverse isomorphisms between XOT [[X]] and
F (XOT [[X]]), and the functions EFn and lFn yield inverse isomorphisms between
XOT [[X]] and Fn(XOT [[X]]), see [De2].
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(3.4). We discuss an analog of the Shafarevich basis for a Honda formal module.
Let Π be a prime element of E .
First we construct primary elements. An element ω ∈ F (ME) is called πn-primary

if the extension E(ν)/E is unramified, where [πn]F (ν) = ω.
The OK -module module κn has h generators [Hon], [De 2]. Fix a set of generators

ξ1, . . . , ξh . Let zi(X) ∈ OT [[X]] be the series corresponding to an expansion of ξi
into a power series in Π, i.e. zi(Π) = ξi . Similarly define zi(X).

Put

s(i) = f (n) ◦ zi(X), 1 6 i 6 h.

Fix an element b ∈ OT and put b̂ = b + bϕ + · · · + bϕh−1
.

Let Tr be the trace map for the extension Kh/K where Kh is the unramified
extension of K of degree h; note that b̂ ∈ Kh .

Proposition. The element

ωi(b) = EFn (̂bλn ◦ s(i))
∣∣
X=Π

is well-defined. It belongs to Fn(ME), and it is πn-primary. Moreover,

{Π, ωi(b)}F = [Tr b]F (ξi).

See [De2], [DV2].
Further, let

g0(X) = πn−1X +Xqh

gρ,a(X) = πn−1X + πn−1aX
pρ +Xqh , a ∈ OT , 1 6 ρ < fh.

Let un−1 be the type of the formal group Fn−1 from the sequence (∗∗). By
Theorem 2 in (3.1) there exist unique Honda formal groups G0 and Gρ,a of type un−1
which correspond to g0(X) and gρ,a(X) respectively. Then AG0 and AGρ,a are
of the same type as Fn . Denote by E0

n:AG0 → Fn and Eρ,an :AGρ,a → Fn the
corresponding isomorphisms.

Theorem. Let R be the set of multiplicative representatives in T . Elements

{ωi(b); b ∈ OT , 1 6 i 6 h},
{E0

n(θΠ
i); θ ∈ R, 1 6 i < qhe/(qh − 1), (i, p) = 1},

{Eρ,an (θΠ
i); θ ∈ R, a ∈ O∗T , 1 6 ρ < fh, 1 6 i < qhe/(qh − 1), (i, p) = 1}

form a set of generators of the OK -module Fn(ME). Furthermore,

{Π,E0
n(θΠ

i)}F = {Π,Eρ,an (θΠ
i)}F = 0, {Π, ωi(b)}F = [Tr b]F (zi).

See [De2], [DV2].
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(3.5). Similarly to the case of multiplicative groups discussed Ch. VII and the case
of formal Lubin–Tate groups in section 2 one can introduce a pairing on formal power
series, check its correctness and various properties and then prove that when X is
specialized to Π it gives explicit formulas for the generalized Hilbert pairing.

For a monomial diXi ∈ T ((X)) put ν(diXi) = vT (di) + i/qh where vT is the
discrete valuation of T . Denote by L the T -algebra of series

L =
{∑
i∈Z

diX
i : di ∈ T, inf

i
ν(diXi) > −∞, lim

i→+∞
ν(diXi) = +∞

}
.

Since the OK -module κn has h generators, we are naturally led to work with h×h
matrices. Denote the ring of integers of the maximal unramified extension of Qp in E
by O0 .

Theorem.

For α ∈ E∗ let α(X) be a series in {Xiθε(X) : θ ∈ R∗, ε ∈ 1 +XO0[[X]]}. For
β ∈ F (ME) let β(X) be a series in XOT [[X] such that β(Π) = β .

The generalized Hilbert symbol (·, ·)F is given by the following explicit formula:

(α, β)F =
h∑
j=1

(F )[Tr res ΦVj]F (ξj),

where Φ(X)Vj(X) belongs to L, Vj = Aj/ detA, 1 6 j 6 h,

A =


πnλ ◦ z1(X) . . . πnλ ◦ zh(X)

πn M (λ ◦ z1(X)) . . . πn M (λ ◦ zh(X))
. . . . . . . . .

πn Mh−1 (λ ◦ z1(X)) . . . πn Mh−1 (λ ◦ zh(X))

 ,

Aj is the cofactor of the (j, 1)-element of A,

Φ =
α(X)′

α(X)
lF (β(X))− 1

π

h∑
i=1

ai

(
1− Mi

qi

)(
log ε(X)

)
Mi (λ ◦ β(X)).

See [DV2].

Remarks. 1. The formula above can be simplified in the case of n = 1, see [BeV1].
2. The first explicit formula for the generalized Hilbert pairing for formal Honda

group and arbitrary n in the case of odd p under some additional assumptions on
the field E was obtained by V A. Abrashkin [Ab6] using the link between the Hilbert
pairing and the Witt pairing via an auxiliary construction of a crystalline symbol as a
generalization of his method in [Ab5] (see Remark 6 in (5.3) Ch. VII).





CHAPTER 9

The Milnor K -groups of a Local Field

In this chapter we treat J. Milnor’s K -ring of a field and its properties. Milnor K -groups
of a field is a sort of a weak generalization of the multiplicative group. The Steinberg
property which lies at the heart of Milnor K -groups has already shown itself in the
previous chapters in the study of the Hilbert pairing. Section 1 contains basic definitions.
The study of K -groups of discrete valuation fields is initiated in section 2. We treat
the norm (transfer) map on Milnor K -groups of fields in section 3 using several results
from section 2. Finally, in section 4 we describe the structure of Milnor K -groups of
local fields with finite residue field by using results of the previous chapters.

1. The Milnor Ring of a Field

In this section we just introduce basic definitions. See Exercises for some simple
formulas which hold in K2-groups.

(1.1). Let F be a field, A an additive abelian group. A map

f :F ∗ × · · · × F ∗︸ ︷︷ ︸
n times

→ A

is called an n-symbolic map on F (a Steinberg cocycle) if
1. f ( . . . , αiβi, . . . ) = f ( . . . , αi, . . . ) + f ( . . . , βi, . . . ) for 1 6 i 6 n (multiplica-

tivity).
2. f (α1, . . . , αn) = 0 if αi + αj = 1 for some i 6= j , 1 6 i, j 6 n (Steinberg

property).
Let In denote the subgroup in F ∗ ⊗Z · · · ⊗Z F

∗︸ ︷︷ ︸
n times

generated by the elements α1 ⊗

· · · ⊗ αn with αi + αj = 1 for some i 6= j . The n th Milnor K -group of the field F
is the quotient

Kn(F ) = F ∗ ⊗Z · · · ⊗Z F
∗︸ ︷︷ ︸

n times

/In.

The multiplication in Kn(F ) will be written additively although for K1(F ) = F ∗ the
multiplicative writing will also be used. The image of α1⊗ · · · ⊗αn ∈ F ∗ ⊗ · · · ⊗ F ∗

283
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in Kn(F ) is called a symbol. The symbols generate Kn(F ) and { . . . , αi, . . . } +
{ . . . , βi, . . . } = { . . . , αiβi, . . . }; {α1, . . . , αn} = 0 if αi + αj = 1 for i 6= j .

It is convenient to put K0(F ) = Z. For natural n, m the images of In ⊗
F ∗ ⊗ · · · ⊗ F ∗︸ ︷︷ ︸

m times

, F ∗ ⊗ · · · ⊗ F ∗︸ ︷︷ ︸
n times

⊗Im in F ∗ ⊗ · · · ⊗ F ∗︸ ︷︷ ︸
n+m times

are contained in In+m; thus,

we obtain the homomorphism Kn(F )×Km(F )→ Kn+m(F ):

({α1, . . . , αn}, {β1, . . . , βm})→ {α1, . . . , αn, β1, . . . , βm}.

We also have the homomorphisms K0(F ) ×Kn(F ) → Kn(F ), Kn(F ) ×K0(F ) →
Kn(F ) mapping an element x ∈ Kn(F ) to ax ∈ Kn(F ) for a ∈ Z = K0(F ).

Thus, we obtain the graded ring

K(F ) = K0(F )⊕K1(F )⊕K2(F )⊕ . . . ,

which is called the Milnor ring of the field F .

Lemma.

(1) {α1, . . . , αn} = 0 if αi + αj = 0 for some i 6= j;
(2) { . . . , αi, . . . , αj , . . . } = −{ . . . , αj , . . . , αi, . . . } ; K(F ) is anticommutative.

Proof. Since αj = −αi = (1− α−1
i )−1(1− αi) in (1), we get

{αi, αj} = {α−1
i , 1− α−1

i } + {αi, 1− αi} = 0.

Now for (2) we obtain that

{αi, αj} + {αj , αi} + ({αi,−αi} + {αj ,−αj}) = {αiαj ,−αiαj} = 0.

The definition of Kn(F ) implies that an n-symbolic map f on F can be uniquely
extended to a homomorphism f :Kn(F ) → A. Therefore, for an extension L/F of
fields the embedding F ∗ → L∗ induces the homomorphism

jF/L:Kn(F )→ Kn(L)

(if n = 0, then jF/L is the identical map).

(1.2). The first information on the Milnor K -groups follows from the following

Proposition. Let F ∗ = F ∗m for m natural, and let either m = char(F ) or the
group µm of mth roots of unity in F sep be contained in F . Then Kn(F ) is a uniquely
m-divisible group for n > 2.

Proof. Define the map fm:F ∗ × · · · × F ∗︸ ︷︷ ︸
n times

→ Kn(F ) by the formula

fm(α1, . . . , αn) = {β1, α2, . . . , αn},
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where β1 ∈ F ∗ is such that βm1 = α1 . If γm1 = α1 , then β1γ1
−1 = ζ for some m th

root of unity ζ in F . Since α2 = βm2 for some β2 ∈ F ∗ , we obtain

{β1, α2, . . . , αn} = {γ1, α2, . . . , αn} + {ζ, βm2 , . . . , αn} = {γ1, α2, . . . , αn}.

Hence, the map fm is well defined. Next,

fm(α1α1
′, α2, . . . , αn) = fm(α1, α2, . . . , αn) + fm(α1

′, α2, . . . , αn),

and fm is multiplicative with respect to other arguments as well. If αi + αj = 1 for
some i 6= j , 1 < i, j , then fm(α1, . . . , αn) = 0. If char(F ) = m and α1 + α2 = 1,
α1 = βm1 for some β1 ∈ F ∗ , then α2 = (1−β1)m and we obtain fm(α1, . . . , αn) = 0.
Otherwise α2 =

∏m
i=1(1− ζimβ1), where ζm is a generator of µm . Then

{β1, 1− ζimβ1} = −{ζim, 1− ζimβ1} = −{ζim, δm} = 0,

where δm = 1−ζimβ1, δ ∈ F ∗ . We conclude, that fm is an n-symbolic map. Its exten-
sion on Kn(F ) determines the homomorphism fm:Kn(F )→ Kn(F ). Then mfm =
id, because mfm{α1, . . . , αn} = {α1, . . . , αn}. Therefore, Kn(F ) is uniquely
m-divisible.

Corollary. If F is algebraically closed, then Kn(F ) is a uniquely divisible group
for n > 2.

(1.3). Proposition. Let F be a finite field. Then Kn(F ) = 0 for n > 2.

Proof. It suffices to show that {α, β} = 0 for α, β ∈ F ∗ . Let θ be a generator
of F ∗; then α = θi , β = θj and {α, β} = ij{θ, θ}. By Lemma (1.1) we get
2{θ, θ} = 2{−1, θ} = 0. If char(F ) = 2, then F ∗ is of order 2m − 1 for some
natural m and (2m − 1){θ, θ} = {1, θ} = 0. Hence, {θ, θ} = 0 and {α, β} = 0. If
char(F ) = p > 2, then there are exactly (pm − 1)/2 squares and (pm − 1)/2 non-
squares in F ∗ , where pm is the order of F . The map α → 1 − α can not transfer
all non-squares into squares, because 1 does not belong to its image. Therefore, for
some odd k, l we get θk = 1− θl and 0 = {θk, θl} = kl{θ, θ}. Thus, {θ, θ} = 0 and
{α, β} = 0.

Exercises.

1. Show that condition 2 of (1.1) can be replaced with condition 2’:

f (α1, . . . , αn) = 0

if αi + αi+1 = 1 for some 1 6 i 6 n− 1.
2. Show that {α1, . . . , αn} = 0 in Kn(F ) if, either α1 + · · ·+αn = 0 or α1 + · · ·+αn = 1.
3. Show that {α, β} = {α + β,−α−1β} in K2(F ).
4. (R.K. Dennis and M.R. Stein [DS])
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a) Let α, β, γ ∈ F ∗ , and α, β, γ, αβ, βγ, αγ, αβγ 6= 1. Show that{
−1− βγ

1− α ,
1− αβγ

1− α

}
+
{
−1− αγ

1− β ,
1− αβγ

1− β

}
+
{
−1− αβ

1− γ ,
1− αβγ

1− γ

}
= 0.

b) Let α, β, γ ∈ F ∗ , α, β, αγ, βγ, αβγ 6= 1. Show that

{γ, 1− αβγ} =
{
−1− βγ

1− α ,
1− αβγ

1− α

}
+
{
−1− αγ

1− β ,
1− αβγ

1− β

}
.

5. (A.A. Suslin [Sus1]) Let αi, βi ∈ F ∗ and βi 6= βj for i 6= j . Show that

{β1α1,...,βnαn}−{α1,...,αn}

=
∑n

i=1
(−1)i+n {α1(β1−βi),...,αi−1(βi−1−βi),αi+1(βi+1−βi),...,αn(βn−βi),βi}.

6. Show that Kn(F ) = 0 for an algebraic extension F of a finite field, n > 2.
7. Let F be a field of characteristic p > 0. Show that the differential symbol

d:Kn(F )/pKn(F ) −→ Ω
n
F , {a1, . . . , an} 7→

da1
a1
∧ · · · ∧ dan

an

is well defined. Show that the image d(Kn(F )/pKn(F )) is contained in

νn(F ) = ker(℘: Ω
n
F −→ Ω

n
F /dΩ

n−1
F )

where ℘(adb1
b1
∧ · · · ∧ dbn

bn
) = (ap − a)db1

b1
∧ · · · ∧ dbn

bn
.

A theorem of S. Bloch–K. Kato–O. Gabber asserts that d is an isomorphism between the
quotient group Kn(F )/pKn(F ) and νn(F ) which allows one to calculate the quotient of
the Milnor K -group by using differential forms. For a sketch of the proof see [FK, Append.
to sect. 2].

2. The Milnor Ring of a Discrete Valuation Field

In this section we establish a relation between K -groups of a discrete valuation field
and K -groups of its residue field. In the case of a field F (X) we obtain a complete
description of its K -groups in terms of K -groups of finite extensions of F .

(2.1). Let F be a discrete valuation field, v its valuation, Ov the ring of integers,
Uv the group of units, and F v its residue field. Let α denote the image of an element
α ∈ Ov in F v . Let π be a prime element in F with respect to the discrete valuation
v.

Now we define the border homomorphism

∂π = (∂1, ∂2):Kn(F )→ Kn(F v)⊕Kn−1(F v).

Let αi = πaiεi with εi ∈ Uv , ai = v(αi). For n > 1 introduce the map

∂1:F ∗ × · · · × F ∗︸ ︷︷ ︸
n times

→ Kn(F v), (α1, . . . , αn) 7→ {ε1, . . . , εn}.
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Furthermore, for n = 1 put ∂2(α1) = a1 . For n > 1 and indices k1, . . . , km with
1 6 k1 < · · · < km 6 n, m 6 n, put

∂ k1,...,km (α1, . . . , αn) = ak1 · · · akmxy,

where x is equal to the symbol {ε1, . . . , εn} ∈ Kn−m(F v) with omitted elements
at the k1 th, . . . , km th places if m < n, and equal to 1 if m = n; y is equal to
{−1, . . . ,−1} ∈ Km−1(F v) if m > 1, and equal to 1 otherwise. The element y takes
care of π standing at k2, . . . , km th places: {π, . . . , π} = {π,−1, . . . ,−1}.

Define the map
∂2:F ∗ × · · · × F ∗︸ ︷︷ ︸

n times

→ Kn−1(F v)

by the formula

∂2(α1, . . . , αn) =
∑

16k1<···<km6n
16m6n

(−1)n−k1−···−km∂ k1,...,km (α1, . . . , αn).

So, in particular, we have ∂2(α1, α2) = (−1)a1a2α
a2
1 α
−a1
2 ∈ K1(F v).

For n > 1

∂π(ε1, . . . , εn) = ({ε1, . . . , εn}, 0), ∂π(ε1, . . . , εn−1, π) = (0, {ε1, . . . , εn−1}).

It is easy to verify that ∂π(α1, . . . , αn) = 0 if αi + αj = 0 for some i 6= j , and

∂π( . . . , αiα′i, . . . ) = ∂π( . . . , αi, . . . ) + ∂π( . . . , α′i, . . . ).

Now in the same way as in the proof of Lemma (1.1), one can show that

∂π( . . . , αi, . . . , αj , . . . ) = −∂π( . . . , αj , . . . , αi, . . . ).

Moreover, if α ∈ Uv , 1− α /∈ Uv , then α ∈ 1 + πOv and

∂π( . . . , α, . . . , 1− α, . . . ) = (0, 0);

the same equality holds if α, 1− α ∈ Uv . If α /∈ Ov , then α−1 ∈ Ov and 1− α−1 ∈
1 + πOv , so that

∂π( . . . , α, · · · , 1− α, . . . ) = −∂π( . . . , α−1, . . . , 1− α−1, . . . ) = (0, 0).

Therefore, the map ∂π induces the required homomorphism

∂π = (∂1, ∂2):Kn(F )→ Kn(F v)⊕Kn−1(F v).

(2.2). Proposition. Let U1Kn(F ), {π}Kn−1(F ) denote the subgroups in the group
Kn(F ), generated by the symbols {α1, α2, . . . , αn}, where α2, . . . , αn ∈ F ∗ and
α1 ∈ 1 + πOv , α1 = π, respectively. Let Un(F ) denote the subgroup in Kn(F )
generated by the symbols {α1, . . . , αn} with αi ∈ Uv . Then ∂π, ∂1, ∂2 are surjective
homomorphisms with the kernels

U1Kn(F ), U1Kn(F ) + {π}Kn−1(F ), U1Kn(F ) + Un(F ),



288 IX. The Milnor K -groups of a local field

respectively. The homomorphism ∂2 does not depend on the choice of a prime element
π.

Proof. The surjectivity of ∂π follows from its definition. Introduce the maps

f1:F
∗
v × · · · × F

∗
v︸ ︷︷ ︸

n times

→ Kn(F )/U1Kn(F ),

f2:F
∗
v × · · · × F

∗
v︸ ︷︷ ︸

n−1 times

→ Kn(F )/U1Kn(F )

by the formulas

f1(ε1, . . . , εn) = {ε1, . . . , εn} mod U1Kn(F ),
f2(ε1, . . . , εn−1) = {ε1, . . . , εn−1, π} mod U1Kn(F ).

The maps f1 , f2 are well defined because αβ−1 ∈ 1 + πOv for α, β ∈ Ov if
α = β . The maps f1 , f2 are symbolic and induce the homomorphisms

f1:Kn(F v)→ Kn(F )/U1Kn(F ),

f2:Kn−1(F v)→ Kn(F )/U1Kn(F ),

f = (f1, f2):Kn(F v)⊕Kn−1(F v)→ Kn(F )/U1Kn(F ).

We get

f∂π(x) = x mod U1Kn(F ),
f1∂1(x) = x mod U1Kn(F ) + {π}Kn−1(F ),
f2∂2(x) = x mod U1Kn(F ) + Un(F )

for x ∈ Kn(F ). Hence ker ∂π ⊂ U1Kn(F ),

ker ∂1 ⊂ U1Kn(F ) + {π}Kn−1(F ), ker ∂2 ⊂ U1Kn(F ) + Un(F ).

It immediately follows that the inverse inclusions also hold.
Furthermore, let π1 be a prime element in F with respect to v, and π1 = πε for

some ε ∈ Uv . Then

∂π({ε1, . . . , εn−1, π1}) = ({ε1, . . . , εn−1, ε}, {ε1, . . . , εn−1}),
∂π1 ({ε1, . . . , εn−1, π1}) = (0, {ε1, . . . , εn−1}),

and ∂2 does not depend on the choice of a prime element.

Remark. The first component ∂1 of ∂π does depend in general on the choice of
π. If it were not so, then we would have Un(F ) ⊂ U1Kn(F ) + {π}Kn−1(F ) and
Kn(F v) = 0, and that is not the case for many fields (see (3.9) below).
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(2.3). Denote ∂v = ∂2 .

Lemma. If α ∈ F ∗ then

∂v({α}) = v(α) ∈ Z = K0(F ).

If {α, β} ∈ K2(F ) then

∂v({α, β}) ≡ (−1)v(α)v(β)αv(β)β−v(α) mod πOv.

Proof. The first assertion follows from the definitions. Let v(α) = a, v(β) = b,
α = πaε, β = πbη for some ε, η ∈ Uv . Then

{πaε, πbη} = {ε, η} + {εbη−a(−1)ab, π}

and
∂v({α, β}) = (−1)abεbη−a ≡ (−1)abαbβ−a mod πOv.

Remark. Compare the formula for ∂v:K2(F )→ F
∗
v with that for the Hilbert symbol

(·, ·)q−1 in Theorem (5.3) Ch. IV.

Proposition. Let L be an algebraic extension of F , v and w discrete valuations
of F and L, such that the restriction w|F is equivalent to v (we write w|v ). Let
e = e(w|v) (see (2.3) Ch. II), jv/w = jFv/Lw . Then the diagram

Kn(F )
jF/L−−−−→ Kn(L)

∂v

y ∂w

y
Kn−1(F v)

ejv/w−−−−→ Kn−1(Lw)
is commutative.

Let L/F be a Galois extension, σ ∈ Gal(L/F ) belong to the decomposition group
of Gal(L/F ) (see Remark 2 in (2.7) Ch. II), and let σ be its image in Gal(Lw/F v).
Then the diagram

Kn(L) σ−−−−→ Kn(L)

∂w

y ∂w

y
Kn−1(Lw) σ−−−−→ Kn−1(Lw)

is commutative.

Proof. Let εi ∈ Uv . Then

∂v({ε1, . . . , εn−1, π}) = {ε1, . . . , εn−1}

and
∂w(jF/L{ε1, . . . , εn−1, π}) = e{ε1, . . . , εn−1}
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by (2.3) Ch. II. Furthermore, by Proposition (2.2)

∂w({σ(ε1), . . . , σ(εn−1), σ(πw)}) = {σ(ε1), . . . , σ(εn−1)},

where πw is a prime element with respect to w.

(2.4). Now let E = F (X) and let v be a nontrivial discrete valuation of E , triv-
ial on F . Such valuations are in one-to-one correspondence with monic irreducible
polynomials of positive degree over F and also with 1

X The latter corresponds to the
valuation v∞: v∞(f (X)/g(X)) = deg g(X)− deg f (X) for f (X), g(X) ∈ F [X].

Theorem (Bass–Tate). The sequence

0→ Kn(F )
jF/E−−−−→ Kn(F (X)) ⊕∂v−−−−→ ⊕

v 6=v∞
Kn−1(Ev)→ 0

is exact and splits, where v runs through all nontrivial discrete valuations of E that
are trivial on F , v 6= v∞ .

Proof. If ∂1 is the first component of the homomorphism

∂ 1
X

:Kn(E)→ Kn(F )⊕Kn−1(F ),

which corresponds to the valuation v∞ and the prime element 1
X with respect to

this valuation, then ∂1 ◦ jF/E(x) = x for x ∈ Kn(F ). This means that jF/E is
injective. Let m > 0 and let Am be the subgroup in Kn(E) generated by the symbols
{f1(X), . . . , fn(X)}, where fi(X) ∈ F [X], deg fi 6 m. Note that for two monic
polynomials p(X), q(X) of the same degree l > 0 one can write p(X) = q(X) +r(X)
with deg r(X) < l, and

0 =
{
r(X)
p(X)

,
q(X)
p(X)

}
= {r(X), q(X)} − {−r(X), p(X)} − {p(X), q(X)}

by Lemma (1.1). Hence, the quotient group Am/Am−1 for m > 1 is generated by the
symbols

{α1, . . . , αi−1, pi(X), . . . , pn(X)},
where α1, . . . , αi−1 ∈ F and the polynomials pi(X), . . . , pn(X) are monic irre-
ducible over F , such that 0 < deg pi(X) < · · · < deg pn(X) = m. Let v be
the discrete valuation on F (X) which corresponds to a monic irreducible polynomial
pv(X) of degree m > 0. An element of Ev can be written as g(X) for some
polynomial g(X) over F of degree < m. Define the map

fv:E
∗
v × · · · × E

∗
v︸ ︷︷ ︸

n−1 times

→ Am/Am−1

by the formula

fv(g1(X), . . . , gn−1(X)) = {g1(X), . . . , gn−1(X), pv(X)} mod Am−1,
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where deg gi < m for 1 6 i 6 n− 1. Denote by Bv the subgroup of Am generated
by symbols {g1(X), . . . , gn−1(X), pv(X)}.

We first show that fv is multiplicative. Indeed, let g1(X), h1(X), r1(X) be poly-
nomials over F of degree < m, such that g1(X)h1(X) = r1(X), i.e., g1(X)h1(X) =
pv(X)q(X) + r1(X) for some q(X) ∈ F [X]. Then deg q(X) < m and

{g1(X)h1(X)/r1(X), pv(X)} − {g1(X)h1(X)/r1(X),−q(X)/r1(X)} ∈ Am−1

in K2(Ev). Therefore,

{r1(X), . . . , gn−1(X), pv(X)} ≡ {g1(X), . . . , gn−1(X), pv(X)}
+ {h1(X), . . . , gn−1(X), pv(X)} mod Am−1

and fv is multiplicative. Furthermore, if g1(X) = 1− g2(X) = 1− g2(X), then

fv(g1(X), g2(X), . . . ) ∈ Am−1

and fv is a symbolic map. Thus, fv induces the homomorphism

fv:Kn−1(Ev)→ Am/Am−1.

Now we define

fm = ⊕
deg pv=m

fv: ⊕
deg pv=m

Kn−1(Ev)→ Am/Am−1.

This homomorphism is surjective, which follows from the above description of the
group Am/Am−1 . The homomorphism fm is injective, because ∂vAm−1 = 0 for
any v with deg pv(X) = m and

(
⊕

deg pv=m
∂v

)
fm(x) = x. We obtain that fm is an

isomorphism and that Am = Am−1 ⊕ ⊕
deg pv=m

Bv .

Hence, we get an isomorphism Kn(F ) ⊕
v 6=v∞

Kn−1(Ev) →̃Kn(E).

(2.5). Corollary 1. Let v be the discrete valuation on E which corresponds to a
monic irreducible polynomial pv(X) of degree m > 0. Then Kn(Ev) is generated
by the symbols {β1, . . . , βi−1, pi(αv), . . . , pn(αv)}, where αv is the image of X in
Ev (and hence Ev = F (αv) ), β1, . . . , βi−1 ∈ F , and pi(X), . . . , pn(X) are monic
irreducible polynomials over F , 0 < deg pi(X) < · · · < deg pn(X) < m.

Proof. It follows from the description of the quotient groups Ai/Ai−1 in the proof of
the Theorem.

Corollary 2. Let L/F be an extension of prime degree m and let there be no
extensions over F of degree l < m, l > 1. Then the group Kn(L) is generated by the
symbols {α1, . . . , αn−1, αn} with α1, . . . , αn−1 ∈ F ∗, αn ∈ L∗ .

Proof. In this case any polynomial of degree l over F is reducible.
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Corollary 3. Let L/F be an extension of prime degree m, x ∈ Kn(L). Then there
is a finite extension F1/F of degree relatively prime to m, such that jL/LF1 (x) is a
sum of symbols {α1, . . . , αn−1, αn} with α1, . . . , αn−1 ∈ F1, αn ∈ LF1 .

Proof. Let L = F (α). Without loss of generality one may assume that
x = {β1, . . . , βn}. Let βi = fi(α) with polynomials fi(X) of degree < m over
F . Let F1/F be an extension of degree relatively prime to m, such that all polyno-
mials fi(X) split into linear factors over F1 . Then jL/LF1 (x) is a sum of symbols
{γ1, . . . , γk, α − δ1, . . . , α − δn−k} with γi, δj ∈ F1 . Now the required assertion
follows from the relation

{α− δ1, α− δ2} = {−1, α− δ1} + {δ2 − δ1, α− δ2} − {δ2 − δ1, α− δ1}

for δ1 6= δ2 .

Exercises.

1. Let F be a complete discrete valuation field with a residue field F of characteristic p > 0.
Show that if (m, p) = 1, then U1Kn(F ) ⊂ mKn(F ) and

Kn(F )/mKn(F ) →̃Kn(F )/mKn(F )⊕Kn−1(F )/mKn−1(F ).

2. Show that Kn(Fq(X)) = 0 for n > 3 and that K2(Fq(X)) is a nontrivial torsion group.
3. Let Am denote the subgroup in Kn(Q) generated by {a1, . . . , an}, where the integers

ai satisfy the condition |ai| 6 m for 1 6 i 6 n. Show in the same way as in the proof of
Theorem (2.4) that Am = Am−1 , if m > 1 is not prime, and

∂vp :Ap/Ap−1 →̃Kn−1(Fp),

where vp is the p-adic valuation of Q.
4. Define the map

f :Q∗ × . . . ×Q∗︸ ︷︷ ︸
n times

→ {±1}

setting f (α1, . . . , αn) = −1 if α1 < 0, . . . , αn < 0 and f (α1, . . . , αn) = 1 otherwise.
Show that f is a symbolic map. Thus, we have a homomorphism f :Kn(Q) → µ2
and {−1, . . . ,−1} is of order 2 in Kn(Q). The subgroup A1 ⊂ Kn(Q) is mapped
isomorphically onto µ2 .

5. Using Exercises 3 and 4, show that

K2(Q) →̃µ2 ⊕ F∗3 ⊕ F∗5 ⊕ F∗7 ⊕ F∗11 ⊕ . . .

and Kn(Q) →̃µ2 for n > 3.
In general, a theorem of H. Garland asserts that for a finite extension F over Q the kernel
of K2(F )→ ⊕

v
K1(F v) is of finite order.
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3. The Norm Map

The norm map in the Milnor ring of fields allows one to calculate it. In this section
we define the norm map for Milnor K -groups and study its properties. For alge-
braic extensions generated by one element we define the norm map in subsection (3.1).
Propositions (3.2) and (3.3) demonstrate first properties of this norm map. Subsec-
tion (3.4) introduces the norm map for an arbitrary finite extension and its correctness
and properties are established by Theorem (3.8) after auxiliary results are described in
subsections (3.5)–(3.7).

Let E = F (X) and let v be a nontrivial discrete valuation on E trivial on F . In this
section the residue field Ev will be denoted by F (v). Then |F (v) : F | = deg pv(X),
where pv(X) is the monic irreducible polynomial over F corresponding to v. We get
F (v∞) = F .

(3.1). The homomorphisms jF/E :K(F ) → K(E), jF/F (v)K(F ) → K(F (v)) in-
duce the structure of K(F )-modules on K(E), K(F (v)):

x · y = jF/E(x) · y or x · z = jF/F (v)(x) · z, x ∈ F.

The homomorphism ∂v:K(E) → K(F (v)) is a homomorphism of K(F )-modules.
Instead of the sequence of Theorem (2.4), one can consider the sequence

0→ Kn(F )
jF/E−−−−→ Kn(E) ⊕−−−−→ ⊕Kn−1(F (v))→ 0,

where v runs through all discrete valuations on E trivial on F . This sequence is not
exact in the term ⊕Kn−1(F (v)) but it is exact in the terms Kn(F ), Kn(E), because
∂v∞jF/E(Kn(F )) = 0. Introduce the homomorphism

N = ⊕Nv: ⊕Kn−1(F (v))→ Kn−1(F ),

where Nv∞ is the identity automorphism of Kn(F (v∞)) = Kn(F ) so that the sequence

0→ Kn(F )
jF/E−−−−→ Kn(E) ⊕∂v−−−−→ ⊕Kn−1(F (v)) ⊕Nv−−−−→ Kn−1(F )→ 0

is exact. The exactness in the term Kn−1(F ) follows from the definition of Nv∞ . As
for the exactness in the term ⊕Kn−1(F (v)), we must take Nv for v 6= v∞ such that
the composition

Kn(E)/jF/EKn(F ) →̃ ⊕
v 6=v∞

Kn−1(F (v)) ⊕Nv−−−−→ Kn−1(F )

coincides with
−∂v∞ :Kn(E)/jF/EKn(F )→ Kn−1(F ).

Such homomorphisms Nv , v 6= v∞ , do exist and are uniquely determined. Then
Nv:K(F (v))→ K(F ) is a homomorphism of K(F )-modules, i.e.,

Nv(jF/F (v)(x) · y) = x ·Nv(y) for x ∈ Kn(F ), y ∈ Km(F (v)).
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(3.2). Proposition.

(1) The composition Nv ◦ jF/F (v):Kn(F )→ Kn(F ) coincides with multiplication by
Nv(1) = |F (v) : F | ∈ Z.

(2) The homomorphism Nv:K1(F (v))→ K1(F ) coincides with the norm map

NF (v)/F :F (v)∗ → F ∗.

Proof. For f(X) ∈ F (X) we get∑
v 6=v∞

deg pv(X) · v(f(X)) + v∞(f(X)) = 0.

By Lemma (2.3) v coincides with ∂v:F (X)∗ → Z, consequently

Nv ◦ jF/F (v)(x) = Nv(1)x = deg pv(X)x for x ∈ Kn(F ).

To verify (2) it suffices to show, by the uniqueness of (Nv), that for polynomials
f(X), g(X) over F

〈f(X), g(X)〉 =
∏
v

NF (v)/F∂v{f(X), g(X)} = 1.

Lemma (2.3) implies that

∂v{f(X), g(X)} = (−1)v(f(X))v(g(X))f (αv)v(g(X))g(αv)−v(f(X)) ∈ F (v)∗,

where αv is the image of X in the field F (v). Taking into account the multiplicativity
of 〈·, ·〉, and the relation 〈f(X), f(X)〉 = 〈−1, f(X)〉, we may assume that f(X) =
βpv1 (X), g(X) = γpv2 (X) with monic irreducible polynomials pv1 , pv2 of positive
degree, β, γ ∈ F ∗ . Then 〈f(X), g(X)〉 is equal to

∂v∞{f(X), g(X)} ·NF (v1)/F∂v1{f(X), g(X)}NF (v2)/F∂v2{f(X), g(X)}

and

∂v∞{f(X), g(X)} = (−1)deg f(X) deg g(X)β− deg g(X)γdeg f(X),

∂v1{f(X), g(X)} = g(αv1 )−1, ∂v2{f(X), g(X)} = f (αv2 ).

Let

f(X) = β(X − β1) . . . (X − βn), g(X) = γ(X − γ1) . . . (X − γm)

be the decompositions of f(X), g(X) over F alg . Then

NF (v1)/F g(αv1 )−1 = γ−n
∏

(βi − γj)−1, 1 6 i 6 n, 1 6 j 6 m,

NF (v2)/F f (αv2 ) = βm
∏

(γj − βi), 1 6 j 6 m, 1 6 i 6 n.

Thus, we deduce that 〈f(X), g(X)〉 = 1.
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(3.3). Now let F1 be an extension of F , E = F (X), E1 = F1(X). Let v 6= v∞ be
a discrete valuation on E trivial on F , and pv(X) ∈ F [X] the corresponding monic
irreducible polynomial. Let pv(X) =

∏
w|v pw(X)e(w|v) be the decomposition over F1

(see Example in (2.7) Ch. II), where pw(X) are monic irreducible over F1 polynomials
corresponding to the discrete valuations w on F1 , w|v. Then F (v) is embedded in
F1(w). There is exactly one discrete valuation w∞ over v∞ and e(w∞|v∞) = 1.

Proposition. Let jv/w = jF (v)/F1(w) . Then the diagram

0 −−−→ Kn(F1)
jF1/E1−−−−→ Kn(E1)

⊕∂w−−−→ ⊕
v

⊕
w|v

Kn−1(F1(w))
⊕Nw−−−→ Kn−1(F1) −−−→ 0xjF/F1

xjE/E1

x⊕v ⊕w|ve(w|v)jv/w
xjF/F1

0 −−−→ Kn(F )
jF/E−−−→ Kn(E)

⊕∂v−−−→ ⊕
v

Kn−1(F (v))
⊕Nv−−−→ Kn−1(F ) −−−→ 0

is commutative.

Proof. The commutativity of the left square follows immediately. The commuta-
tivity of the middle square follows from Proposition (2.3). Next, there is exactly one
homomorphism

g:Kn−1(F )→ Kn−1(F1)

instead of jF/F1 , which makes the right square commutative. Indeed, for x =
∑
Nv(yv)

with yv ∈ Kn−1(F (v)) we are to get

g(x) =
∑
v

∑
w|v

Nw(e(w|v)jv/w(yv)).

If x =
∑
Nv(zv), zv ∈ Kn−1(F (v)), then the exactness of the sequences and the

middle square shows that∑
v

∑
w|v

Nw(e(w|v)jv/w(zv)) = g(x).

In particular,

g(Nv∞ (x)) = Nw∞ (jv∞/w∞ (x)) for x ∈ Kn−1(F (v∞)) = Kn−1(F ).

Thus, g(x) = jF/F1 (x) and the right square is commutative.

Corollary 1. Let F1 = F (α) be an algebraic extension of F , and v the discrete
valuation of F (X) which corresponds to the monic irreducible polynomial p(X) of α
over F . Let F2/F be a normal extension and F1/F a subextension in F2/F . Let σi
be distinct embeddings of F1 in F2 over F , m the degree of inseparability of F1/F .
Then the composition

jF/F2 ◦Nv:Kn(F1)→ Kn(F2)
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coincides with m
∑
σi:Kn(F1) → Kn(F2), where the maps σi:Kn(F1) → Kn(F2)

are induced by σi:F1 → F2 .

Proof. We have the decomposition

p(X) =
∏

(X − αi)m

over F2 , where αi = σi(α). Now the right commutative square of the diagram with
F2 instead of F1 implies the desired assertion.

Corollary 2. Let F (v) ∩ F1 = F , F (v)F1 = F1(w). Then the diagram

Kn−1(F1(w)) Nw−−−−→ Kn−1(F1)xjv/w xjF/F1

Kn−1(F (v)) Nv−−−−→ Kn−1(F )
is commutative.

Proof. In this case pv(X) = pw(X).

(3.4). Let L/F be a finite extension and L = F (α1, . . . , αl), where αi are al-
gebraic over F . Put F0 = F , Fi = Fi−1(αi). Then there is the homomorphism
Nvi :Kn(Fi) → Kn(Fi−1), where vi is the discrete valuation of the field Fi−1(X)
which corresponds to αi . We shall denote this homomorphism by Nαi or Nαi/Fi−1 .
Put

Nα1,...,αl = Nα1 ◦ · · · ◦Nαl :Kn(L)→ Kn(F ).

Our first goal is to verify that the homomorphism Nα1,...,αl does not depend on the
choice of α1, . . . , αl . Then we obtain the norm map NL/F :Kn(L)→ Kn(F ).

From (3.1), (3.2) we deduce that

Nα1,...,αl (jF/L(x) · y) = xNα1,...,αl (y) for x ∈ Kn(F ), y ∈ Km(L).

The composition Nα1,...,αl ◦ jF/L:Kn(F )→ Kn(F ) coincides with multiplication by
|L : F |, the action of Nα1,...,αl coincides on K0(L) with multiplication by |L : F |
and on K1(L) with the norm map NL/F :L∗ → F ∗ . Similarly to Corollary 1 of
(3.3), Proposition (3.3) implies that for a normal extension L1/F with L1 ⊃ L the
composition jF/L1 ◦ Nα1,...,αl coincides with m

∑
σi , where m is the degree of

inseparability of L/F and σi:Kn(L)→ Kn(L1) are induced by σi:L→ L1 over F .

Lemma. Let L/F be a finite extension. Then the kernel of the homomorphism

jF/L:Kn(F )→ Kn(L)

is contained in the subgroup of |L : F |-torsion in Kn(F ). For an algebraic extension
L/F the kernel of jF/L is contained in the torsion subgroup of Kn(F ).
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Proof. If jF/Lx = 0, then Nα1,...,αljF/Lx = |L : F |x = 0. If L/F is algebraic and
jF/Lx = 0, then jF/Mx = 0 for some finite subextension M/F in L/F.

(3.5). For subsequent considerations, it is convenient to have the following results at
hand

Proposition. For a field F and a prime p there exists an algebraic extension F ′ of
F with the following properties:
(1) for any finite subextension L/F in F ′/F the degree |L : F | is relatively prime

to p ;
(2) any finite extension F ′′/F ′ is of degree pm for some m > 0 ;
(3) if F ′(α)/F ′ is an extension of degree p, then Kn(F ′(α)) is generated by symbols
{α1, . . . , αn−1, αn} with α1, . . . , αn−1 ∈ F ′ , αn ∈ F ′(α) ;

(4) if pmx = 0 for some x ∈ Kn(F ), m > 0 and jF/F ′ (x) = 0, then x = 0.

Proof. Consider the set of all algebraic extensions F̃ /F with the property: any finite
subextension L/F in F̃ /F is of degree prime to p. This set is not empty. Let F ′/F
be an extension from this set, maximal with respect to embedding of fields. Then
property (1) holds for F ′ .

Let α be a root of an irreducible polynomial f(X) over F ′ . Then f(X) ∈ L[X]
for some finite extension L/F . Assume that deg f(X) is prime to p. Then |L(α) : L|
is relatively prime to p and so is |L(α) : F |. Let F1/F be a finite subextension in
F ′(α)/F ; then |F1L(α) : F | = |F1L(α) : L(α)| · |L(α) : F | is relatively prime to p
because |F1L(α) : L(α)| is relatively prime to p. Therefore, |F1 : F | is relatively
prime to p and F ′(α) = F ′ . We obtain that any finite extension of F ′ of degree
relatively prime to p coincides with F ′ .

Now let F ′′/F ′ be a finite extension and let F ′′′/F ′ be a normal finite extension
with F ′′ ⊂ F ′′′ . If char(F ) 6= p and G is the group of automorphisms of F ′′′ over
F ′ , then the fixed field M of G is purely inseparable over F ′ of degree relatively
prime to p. Hence, M = F ′ and F ′′′/F ′ is Galois. Let Gp be a Sylow p-subgroup in
G and let M1 be the fixed field of G. Then M1 = F ′ and F ′′/F ′ is of degree pm for
some m > 0. If char(F ) = p, then let L′/F ′ be the maximal separable subextension
in F ′′/F ′ . In the same way as just above, we deduce that L′/F ′ is of degree pm and,
consequently, F ′′/F ′ is of degree pk , k > 0. Thus, property (2) holds for F ′ .

Since a polynomial p(X) ∈ F ′[X] of degree 1 < deg p(X) < p is not irreducible
over F ′ , Corollary 2 of (2.5) implies property (3).

Finally, if jF/F ′x = 0, then jF/Lx = 0 for some finite subextension L/F in F ′/F .
Lemma (3.4) shows that |L : F |x = 0. Since pmx = 0 and |L : F | is relatively prime
to pm , we deduce that x = 0.

(3.6). Proposition. Let L/F be a normal extension of prime degree p. Then the
homomorphism Nα/F :Kn(L)→ Kn(F ) does not depend on the choice of α ∈ L and
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determines the norm map

NL/F :Kn(L)→ Kn(F ).

Proof. Let L = F (α) = F (β), and let v1, v2 be the discrete valuations of F (X) which
correspond to the monic irreducible polynomials of α, β over F . Corollary 1 of (3.3)
shows that jF/L ◦Nα = jF/L ◦Nβ . Hence, by Lemma (3.4), p(Nα(x)−Nβ(x)) = 0
for any x ∈ Kn(L). Let F ′ be as in the preceding Proposition. Then L′ = F ′(α) =
F ′(β) is of degree p and Kn(L′) is generated by symbols {α1, . . . , αn−1, αn} with
α1, . . . , αn−1 ∈ F ′ , αn ∈ L′ . We deduce that

Nα/F ′ ◦ {α1, . . . , αn} = {α1, . . . , αn−1, NL′/F ′ (αn)} = Nβ/F ′ ◦ {α1, . . . , αn}.

Therefore, Nα/F ′ = Nβ/F ′ . Corollary 2 of (3.3) implies now that

jF/F ′ (Nα/F (x)−Nβ/F (x)) = Nα/F ′ (jL/L′ (x))−Nβ/F ′ (jL/L′ (x)) = 0.

The property (4) of the preceding Proposition implies Nα/F (x) = Nβ/F (x), as desired.

(3.7). Proposition. Let L/F be a normal extension of prime degree p. Let v be a
nontrivial discrete valuation of F (X) trivial on F . Then the composition

∂v ◦NL(X)/F (X):Kn(L(X))→ Kn−1(F (v))

coincides with ∑
w/v

NL(w)/F (v) ◦ ∂w:Kn(L(X))→ Kn−1(F (v)),

where w runs through all discrete valuations of L(X) trivial on L, w|v.

Proof. Let ṽ be the discrete valuation on F (X)(Y ) which corresponds to the ir-
reducible monic polynomial p(Y ) of α over F (X), where L = F (α). Then, by
Proposition (3.3), the following diagram is commutative:

Kn(L(X))
⊕e(w̃i|ṽ)jṽ/w̃i−−−−−−−−−→ ⊕Kn(F̂ (X)v(w̃i))

Nṽ

y y⊕Nw̃i
Kn(F (X))

j
F (X)/F̂ (X)v−−−−−−−→ Kn(F̂ (X)v)

where w̃i are discrete valuations on F̂ (X)v(Y ), w̃i|ṽ. According to Example (2.7)
Ch. II, the valuations w̃i correspond to the irreducible monic polynomials in the decom-
position p(Y ) =

∏
pw̃i (Y )ei over F̂ (X)v , and ei = e(w̃i|ṽ). We get also F̂ (X)v(w̃i) =

F̂ (X)v(αi), where αi is a root of pw̃i (Y ). On the other hand, Proposition (2.6) Ch. II
shows that L̂(X)wi = F̂ (X)v(αi), where wi|v are discrete valuations on L(X).
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We will next verify that e(w̃i|ṽ) = 1. Indeed, if e(w̃|ṽ) = p, then the polynomial
p(Y ) can be decomposed into linear factors over F̂ (X)v . This means that there is
a unique extension w of v on L(X) and L(w) = F (v), e(w|v) = 1. Applying
Example (2.7) Ch. II for w|v, we obtain that the irreducible monic polynomial pv(X)
over F corresponding to v is irreducible over L (if v 6= v∞ ). Then |F (v) : F | =
deg pv(X) = deg pw(X) = |L(w) : L|, which is impossible. Thus, e(w̃i|ṽ) = 1.

Consequently, the following diagram is commutative:

Kn(L(X))
⊕
w|v

j
L(X)/L̂(X)w

−−−−−−−−−−→ ⊕
w|v

Kn(L̂(X)w)

NL(X)/F (X)

y y ⊕w|vNL̂(X)w/F̂ (X)v

Kn(F (X))
j
F (X)/F̂ (X)v−−−−−−−→ Kn(F̂ (X)v)

The definition of ∂v implies that it coincides with the composition

Kn(F (X))
j
F (X)/F̂ (X)v−−−−−−−→ Kn(F̂ (X)v)→ Kn−1(F (v)).

A similar assertion holds for L. Thus, it suffices to show that the diagram

Kn(L) ∂w−−−−→ Kn−1(Lw)

NL/F

y yNLw/Fv
Kn(F ) ∂v−−−−→ Kn−1(F v)

is commutative, where F is a complete discrete valuation field with respect to v, and
L/F is an extension of degree p.

By Proposition (2.3) we get e(w|v)jFv/Lw (y) = 0 for y = ∂v◦NL/F (x)−NLw/Fv ◦
∂w(x), x ∈ Kn(L). Hence, py = 0. Let F1/F be a finite extension of degree
relatively prime to p such that jL/LF1 (x) is a sum of symbols {α1, . . . , αn} with
α1, . . . , αn−1 ∈ F1 , αn ∈ LF1 , according to Corollary 3 of (2.5). Proposition (2.3),
Corollary 2 of (3.3) and Lemma (3.4) show that one may assume that x = {α1, . . . , αn}.
We get

∂v ◦NL/F ({α1, . . . , αn}) ={
f (w|v){α1, . . . , αn−1}vL(αn), if α1, . . . , αn−1 ∈ UF ,
−{NL/F (αn), α2, . . . , αn−1}vF (α1), if α2, . . . , αn−1 ∈ UF , αn ∈ UL.

The same expression holds for NLw/Fv ◦ ∂w{α1, . . . , αn}.

Corollary. Let L/F be a normal extension of prime degree p and let F1 = F (α)
be an algebraic extension of F . Let L1 = L(α). Then

Nα/F ◦NL1/F1 = NL/F ◦Nα/L:Kn(L1)→ Kn(F ).
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Proof. Let v be the discrete valuation of F (X) corresponding to α. Then F1 =
F (v), L1 = L(w) for some discrete valuation w of L(X), w|v. Let x ∈ Kn(L1) and
x = ∂w(y) for some y ∈ Kn(L(X)), such that ∂w′ (y) = 0 for all w′ 6= w,w∞ (such
an element y exists by Theorem (2.4)). Then

Nα/F ◦NL(w)/F (v)(x) = Nα/F ◦ ∂v ◦NL(X)/F (X)(y)

by the Proposition, and

Nv′ ◦ ∂v′
(
NL(X)/F (X)(y)

)
= 0 for v′ 6= v, v∞.

Hence, we deduce from the definition of Nv that

Nα/F ◦NL(w)/F (v)(x) = −∂v∞ ◦NL(X)/F (X)(y).

On the other hand, Nα/L ◦ ∂w(y) = −∂w∞ (y) and

NL/F ◦Nα/L ◦ ∂w(y) = −NL/F ◦ ∂w∞ (y) = −∂v∞ ◦NL(X)/F (X)(y)

by Corollary 2 of (3.3). This completes the proof.

(3.8). Theorem (Bass–Tate–Kato). Let L/F be a finite extension. Then there is
the norm map NL/F :K(L) → K(F ) which is a homomorphism of K(F )-modules,
with the properties:
(1) NL/F coincides with Nα1,...,αl for any α1, . . . , αl ∈ L with L = F (α1, . . . , αl).
(2) For every subextension M/F in L/F

NL/F = NM/F ◦NL/M .

(3) The map NL/F acts on K0(L) as the multiplication by |L : F | and on K1(L) as
the norm map of fields NL/F :L∗ → F ∗ .

(4) The composition NL/F ◦ jF/L coincides with the multiplication by |L : F |.
(5) If L1/F is a normal finite extension with L1 ⊃ L, then the composition jF/L1 ◦

NL/F coincides with m
∑
σi , where m is the degree of inseparability of L/F

and σi:K(L)→ K(L1) are induced by distinct embeddings of L in L1 over F .
(6) If σ is an automorphism of L over F , then NL/F ◦σ = NL/F , where σ:K(L)→

K(L) is induced by σ.

Proof. Let L = F (α1, . . . , αl) = F (β1, . . . , βk). Let L1/F be a normal finite
extension with L1 ⊃ L. By (3.4) we get

jF/L1 (Nα1,...,αl −Nβ1,...,βk ) = m
∑

σi −m
∑

σi = 0.

Lemma (3.4) implies |L1 : F |y = 0 for the element y = Nα1,...,αl (x) − Nβ1,...,βk (x),
where x ∈ K(L). Let |L1 : F | = prq with (q, p) = 1 and a prime p. Let F ′ be
as in Proposition (3.5), and let L′ = LF ′ , L′1 = L1F

′ . Then L′1/F
′ is of degree pr .

Let L′′/F ′ be the maximal separable subextension in L′/F ′ , and let L′′′/F ′ be the
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minimal normal extension with L′′′ ⊃ L′′ . Then Gal(L′′′/F ′) is a finite p-group.
Therefore, there exists a chain of subgroups

Gal(L′′′/L′′) = G0 6 G1 6 . . . 6 Gs = Gal(L′′′/F ′),

such that Gi is normal in Gi+1 of index p. We obtain a tower of fields

F ′ = F ′0 ⊂ F ′1 ⊂ · · · ⊂ L′′ ⊂ · · · ⊂ F ′k = L′,

such that F ′j/F
′
j−1 is a normal extension of degree p.

Let pi(X) be the monic irreducible polynomial of αi over

Fi−1 = F (α1, . . . , αi−1), F1 = F,

and vi the corresponding discrete valuation of Fi−1(X). Then Nα1,...,αl = Nv1 ◦ · · · ◦
Nvl . By Proposition (3.3),

jF/F ′ ◦Nα1,...,αl =
∑

w1i|v1,...,wli|vl

e(w1i|v1) . . . e(wli|vl)Nw1i ◦ · · · ◦Nwli ◦ jL/L′ ,

where wji are the discrete valuation of F ′Fr−1(X) with wji|vr . Therefore, if we show
that Nw1 ◦ · · · ◦ Nwl :K(L′) → K(F ′) does not depend on the choice of generating
algebraic elements in L′ over F ′ , then we shall obtain jF/F ′ (y) = 0, jF/F ′ (qy) = 0.
Since pr(qy) = 0, Proposition (3.5) implies qy = 0. Continuing in this way for qy we
finally deduce y = 0, as required.

Now let Nw1 ◦ · · · ◦ Nwl = Nγ1,...,γl and F ′′i = F ′(γ1, . . . , γi), F ′′0 = F ′ . Put
F ′i,j = F ′′i F

′
j for 0 6 i 6 l, 0 6 j 6 k. Then F ′i,j−1 = F ′i−1,j−1(γi), and

F ′i−1,j/F
′
i−1,j−1 is a normal extension of degree 1 or p. Applying Corollary (3.7), we

get Nγi/F ′i−1,j−1
◦NF ′

i,j
/F ′
i,j−1

= NF ′
i−1,j/F

′
i−1,j−1

◦Nγi/F ′i−1,j
. Therefore,

Nw1 ◦ · · · ◦Nwl = NF ′1/F ′ ◦ · · · ◦NL′/F ′k−1

and Nw1 ◦ · · · ◦Nwl does not depend on the choice of generating elements.
Furthermore, if σ is an automorphism of L over F , then

L = F (α1, . . . , αl) = F (σα1, . . . , σαl) and NL/F ◦ σ = NL/F .

Other properties of NL/F follow from the corresponding properties of the homomor-
phism Nα1,...,αl discussed in (3.4).

Remark. For the properties of NL/F see also Exercises 2–5.

(3.9). One application of the norm map NL/F is the following. Let Tn be the torsion
group of Kn(F ). The cardinality of Z-module Kn(F )/Tn is said to be the rank of
Kn(F ).

Proposition. Let δ(F ) be the Kronecker dimension of F , i.e., the degree of transcen-
dence of F over Fp in the case of char(F ) = p, and 1+ (the degree of transcendence
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of F over Q ), in the case of char(F ) = 0. Then the rank of Kn(F ) is equal to the
cardinality of F if 1 6 n 6 δ(F ).

Proof. Let n = 1, δ(F ) > 1. Then the cardinality of F is equal to the cardinality of
F ∗/T1 . Let δ(F ) 6= 1. Let E be a subfield in F such that F is an algebraic extension
of E(X) for some element X in F transcendental over E . The cardinality of F
is equal to the cardinalities of E(X) and E . By Theorem (2.4) there is a surjective
homomorphism

Kn(E(X))→ ⊕
v
Kn−1(E(X)v).

If 2 6 n 6 δ(F ) , then 1 6 n − 1 6 δ(E(X)v). By induction we can assume
that the rank of Kn−1(E(X)v) is equal to the cardinality of E . Therefore, the rank
of Kn(E(X)) > the cardinality of E . Lemma (3.4) implies now that the rank of
Kn(F ) > the cardinality of F . The inverse inequality follows from the definition of
Kn(F ).

Corollary. Kn(C) is an uncountable uniquely divisible group for n > 2.

Exercises.

1. Show that the field F ′ in Proposition (3.5) is not uniquely determined and is not a normal
extension of F , in general. Show that for an extension L/F of degree p and the field
L′ = LF ′ the pair (L′, L) does not possess, in general, all the properties formulated in
Proposition (3.5) with respect to L.

2. Let F be a complete discrete valuation field, and let L be a normal extension of F of
finite degree. Show that the diagram

Kn(L) ∂−−−−→ Kn−1(L)

NL/F

y N
L/F

y
Kn(F ) ∂−−−−→ Kn−1(F )

is commutative.
3. Let L be a finite extension of F , σ an automorphism of L. Show that the diagram

Kn(L) σ−−−−→ Kn(σL)

NL/F

y NσL/σF

y
Kn(F ) σ−−−−→ Kn(σF )

is commutative, where σ:Kn(L)→ Kn(σL) is induced by σ:L∗ → (σL)∗ .
4. Let L, M be finite separable extensions of F and

L⊗
F
M = ⊕

σ
Lσ(M ),
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where σ runs through embeddings of M in F sep over L ∩M . Show that the diagram

Kn(M )
⊕jσM/Lσ(M)◦σ−−−−−−−−−−→ ⊕Kn(Lσ(M ))

NM/F

y ⊕NLσ(M)/L

y
Kn(F )

jF/L−−−−→ Kn(L)
is commutative.

5. (�) (S. Rosset and J. Tate [RT])
a) Let f(X), g(X) be relatively prime polynomials over F . If g is a monic irreducible

polynomial of positive degree, g(X) 6= X , then put(
f

g

)
= NF (α)/F {α, f (α)},

where α is a root of g(X). If g(X) is a constant or g(X) = X , then put
(
f
g

)
= 0.

If g = g1g2 and g1 , g2 are relatively prime to f then put(
f

g1g2

)
=
(
f

g1

)
+
(
f

g2

)
.

Show that
(
f
g

)
= NE/F {α, β}, where α, β ∈ E∗ , g(X) ∈ F [X] is the monic

irreducible polynomial with the root α, and f(X) ∈ F [X] is the polynomial of
minimal degree such that NE/F (α)β = f (α). For a polynomial p(X) = αnXn+ · · ·+
αmX

m with αnαm 6= 0, n > m, put p∗(X) = α−1
m X−mp(X), c(p) = (−1)nαn .

Prove the reciprocity law (
f

g

)
=
(
g∗

f

)
− (c(g∗), c(f ))

b) Let for α, β ∈ E∗ the polynomials f(X), g(X) ∈ F [X] be as in a). Put g0 =
g, g1 = f , and let gi+1 be the remainder of the division of g∗i−1 by gi if gi 6= 0 for
i > 1. Show that gm 6= 0, gm+1 = 0 for some m 6 |E : F |, and that

NE/F {α, β} = −
m∑
i=1

{
c(g∗i−1), c(gi)

}
.

In particular, NE/F {α, β} is a sum of at most |E : F | symbols.
6. Let the group µm of all m th roots of unity in F sep be contained in F . Let α ∈ F ∗ , x ∈

Kn(F ) and x ∈ NF ( m
√
α)/FKn(F ( m

√
α)). Show that the element {α} ·x ∈ Kn+1(F ) is

m-divisible in Kn+1(F ). (The converse assertion for n = 1 and arbitrary field (µm is not
necessarily contained in F ) is true if m is square-free and 6= 0 in F ; see [Mil1, sect. 15]).

7. Let char(F ) = p and |F : F p| = pd . Put E = F 1/p . Then the homomorphism
g(α) = α1/p is an isomorphism of F ∗ onto E∗ and jF/E(α) = g(αp). Show that the
homomorphism jF/E :Kn(F )→ Kn(E) coincides with png:Kn(F )→ Kn(E). Show

that the group pdKn(F ) is uniquely p-divisible for n > d and pd−1Kn(F ) = pdKn(F ).
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8. a) Let the map f :R∗ × · · · × R∗︸ ︷︷ ︸
n times

→ µ2 = {±1} be determined in the same manner as

in Exercise 4 section 2. Show that f is n-symbolic and

Kn(R)/2Kn(R) ' µ2.

b) Let the map g:R∗ × R∗ → K2(R)/T , where T is the subgroup generated by the
symbol {−1,−1}, be defined by the formula g(α, β) ≡ {

√
|α|, β} mod T . Show

that g is 2-symbolic and the subgroup of 2-torsion of K2(R) is contained in T .
c) Show that if x ∈ 2K2(R), then x ∈ NC/RK2(C), and hence 2K2(R) is a divisible

group. Deduce that

K2(R) ' µ2 ⊕ 2K2(R),

where µ2 corresponds to T . Show that 2K2(R) is an uncountable uniquely divisible
group.

d) Show that Kn(R) ' µ2⊕2Kn(R) and 2Kn(R) is an uncountable uniquely divisible
group, µ2 corresponds to {−1, . . . ,−1}, n > 2.

9. Let F be a Brauer field (see Exercise 4 in section 1 Ch. V). Show that Kn(F ) is a uniquely
divisible group for n > 2, if d(2) 6= 1 (in terms of the same Exercise).

4. The Milnor Ring of a Local Field

In this section F is a local field with finite residue field Fq of characteristic p. We
shall describe the Milnor groups of F using the Hilbert symbol. The main results are
Theorems (4.3), (4.7) which together give a complete description of K2(F ) and (4.11)
which describes higher Milnor Kn(F ). The role of the Hilbert symbol is demonstrated
in Theorem (4.3) and its Corollary, and in the end of the proof of Theorem (4.7). In
(4.13) we briefly discuss how Milnor K -groups are involved in higher local class field
theory.

(4.1). Lemma. Let θ1, θ2 ∈ µq−1 ⊂ F , ε ∈ U1,F . Then

{θ1, θ2} = {θ1, ε} = 0.

Proof. By (5.5) Ch. I the group U1,F is uniquely (q − 1)-divisible. Then {θ1, ε} =
{θq−1

1 , η} = 0, where ηq−1 = ε, η ∈ U1,F .
Repeating the arguments of the proof of Proposition (1.3) using the relation θk +

θl − 1 ∈ U1,F instead of the equality θk = 1 − θl , we deduce that {θ1, θ2} = 0 for
θ1, θ2 ∈ µq−1 .

Proposition. Let θ be a generator of µq−1 and (m, p) = 1. Then the quotient group
K2(F )/mK2(F ) is a cyclic group of order d = (m, q − 1) and generated by {θ, π}
mod mK2(F ), where π is a prime element in F . The group (q − 1)K2(F ) coincides
with l(q − 1)K2(F ) for l > 1 relatively prime to p.
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Proof. The m-divisibility of U1,F implies that {α, β} ∈ mK2(F ) for α ∈ U1,F , β ∈
F ∗ . Since {π, π} = {−1, π}, applying Proposition (5.4) Ch. I we deduce, that {θ, π}
mod mK2(F ) generates K2(F )/mK2(F ). The Hilbert symbol

(·, ·)q−1:F ∗ × F ∗ → µq−1

is 2-symbolic by Proposition (5.1) Ch. IV, and hence determines the surjective homo-
morphism Hq−1:K2(F )→ µq−1 . Therefore, K2(F )/(q − 1)K2(F ) is cyclic of order
q − 1.

(4.2). Proposition. If there are no nontrivial p th roots of unity in F , then K2(F ) =
pK2(F ). Otherwise K2(F )/pK2(F ) is of order p.

Proof. Since µq−1 is p-divisible, we obtain that K2(F )/pK2(F ) is generated by
symbols {ε1, ε2}, {π, ε2} mod pK2(F ) with ε1, ε2 ∈ U1,F . Put ε1 = 1 + β1 ,
ε2 = 1 + β2 with β1 = πiγ1 , β2 = πjγ2 , γ1, γ2 ∈ UF . Then

{ε1, ε2} = {1 + β1,−β1(1 + β2)} = −{1 + β1β2(1 + β1)−1,−β1(1 + β2)}

= −i
{(

1 +
β1β2

1 + β1

)
, π

}
−
{

1 +
β1β2

1 + β1
,−γ1(1 + β2)

}
.

Continue this calculation for ε′1 = 1 + β1β2(1 + β1)−1 , ε′2 = −γ1(1 + β2) with the
help of Lemma (4.1). We deduce that {ε1, ε2} = {ε, η} + {ε3, π} with ε ∈ Uk,F ,
k > pe/(p− 1), where e = e(F |Qp).

Let char(F ) = 0. Then ε ∈ F ∗p by (5.8) Ch. I, and

{ε1, ε2} ≡ {ε3, π} mod pK2(F ).

Thus, K2(F )/pK2(F ) is generated by symbols {ε, π}, ε ∈ U1,F . Assume that
e/(p − 1) is an integer. Let t = t(F ) be the maximal integer such that pe/(p − 1) is
divisible by pt , e∗ = pe/(pt(p − 1)). Using (6.5) Ch. I take the following generators
of the quotient group U1,F /U

p
1,F :

– (1− θπi)i for 1 6 i < pe/(p− 1), (i, p) = 1, θ ∈ R0 , where R0 is a subset in
µq−1 such that the residues of its elements form a basis of Fq over Fp;

– ω∗ =
(
1− θ∗πpe/(p−1))e∗ if µp ⊂ F ∗ and ω∗ = 1 if µp 6⊂ F ∗ , where θ∗ is an

element of µq−1 such that 1− θ∗πpe/(p−1) /∈ Up1,F .
Then by Lemma (4.1)

{π, (1− θπi)i} = {πi, 1− θπi} = {πiθ, 1− θπi} = 0,

pt{π, ω∗} = {θ∗πpe/(p−1), 1− θ∗πpe/(p−1)} = 0.

This means that K2(F ) = pK2(F ) if µp 6⊂ F ∗ . If µp ⊂ F ∗ , then the Hilbert symbol
(·, ·)p:F ∗ × F ∗ → µp induces the surjective homomorphism

Hp:K2(F )→ µp.
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Therefore, K2(F )/pK2(F ) is a cyclic group of order p and generated by {ω∗, π}
mod pK2(F ).

Now let char(F ) = p. Then the field F 1/p is an inseparable extension of F of
degree p. The norm map

NF 1/p/F :F 1/p∗ → F ∗, NF 1/p/F (α1/p) = α

is surjective and

{α, β} = {NF 1/p/F (α1/p), β} = pNF 1/p/F {α1/p, β1/p}

in K2(F ). Thus, K2(F ) = pK2(F ) in this case.

Corollary. The quotient group K2(F )/psK2(F ) is cyclic and generated by {ω∗, π}
mod psK2(F ) for s > 1 if char(F ) = 0, µp ⊂ F ∗ . Otherwise K2(F ) = psK2(F ).

(4.3). Theorem (C. Moore). Let m be the cardinality of the torsion group in F ∗ .
Then the m th Hilbert symbol (·, ·)m induces the exact sequence

0→ mK2(F )→ K2(F )→ µm → 1

which splits: K2(F ) ' µm ⊕mK2(F ). The group mK2(F ) is divisible.

Proof. Let m = pr(q − 1), r > 0, and let ζm be a primitive m th root of unity in F .
Assume that r > 1. Then ζq−1

m is a primitive pr th root of unity. By property (6) of
Proposition (5.1) Ch. IV there is an element α ∈ F ∗ such that (ζq−1

m , α)p 6= 1. Then
{ζq−1
m , α} mod pK2(F ) generates K2(F )/pK2(F ) and so {ζq−1

m , α} mod psK2(F )
generates the quotient group K2(F )/psK2(F ). Since pr{ζq−1

m , α} = {1, α} = 0, we
obtain that

prK2(F ) = pr+1K2(F ),

and K2(F )/prK2(F ) is a cyclic group of order 6 pr . On the other hand, the Hilbert
symbol (·, ·)pr induces the surjective homomorphism

Hpr :K2(F )→ µpr .

Therefore, K2(F )/prK2(F ) is a cyclic group of order pr if r > 1.
Now Proposition (4.1) implies that K2(F )/mK2(F ) is a cyclic group of order m

and generated by {ζm, β} mod mK2(F ) for some β ∈ F ∗ . We also deduce that
mK2(F ) = lmK2(F ) for l > 1. This means that mK2(F ) is divisible and the exact
sequence of the Theorem splits.

Corollary. Let A be a finite group, and let f :K2(F ) → A be a homomorphism.
Then f (mK2(F )) = 1 and there is a homomorphism g:µm → A such that f = g◦Hm .
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Proof. Let n be the order of A. Then nK2(F ) ⊂ ker(f ) and

nK2(F ) ' µnm ⊕mK2(F ).

Therefore, the order of K2(F )/nK2(F ) is a divisor of m. Let x mod nK2(F )
generate K2(F )/nK2(F ) and g:µm → A be a homomorphism such that f (x) =
g(Hm(x)). Then f = g ◦Hm .

(4.4). Our nearest purpose is to verify that mK2(F ) is in fact a uniquely divisible
group. The following assertion will be useful in the study of l-torsion in K2(F ) for l
relatively prime to p.

Lemma. Let l be a prime, q − 1 divisible by l. Let θ ∈ µq−1 , ε ∈ U1,F . Then
{1− θεl, ε} = 0 in K2(F ).

Proof. Put L = F ( l
√
θ). Then L/F is a cyclic extension of degree l or L = F . We

get

1− θεl =
l∏
i=1

(1− ζil θ1ε),

where θ1 ∈ L, θl1 = θ, and ζl is a primitive l th root of unity in F . If L = F , then

{1− θεl, ε} = −
l∑
i=1

{1− ζil θ1ε, ζ
i
l θ1},

and ζil θ1 ∈ µq−1 , 1−ζil θ1ε ∈ µq−1U1,F . Lemma (4.1) implies now that {1−θεl, ε} =
0. If L 6= F , then 1− θεl = NL/F (1− θ1ε) and

{1− θεl, ε} = NL/F {1− θ1ε, ε} = −NL/F {1− θ1ε, θ1}.

Let µ denote the group µ2(q−1) for p = 2 and the group µq−1 for p > 2. Then
−1 ∈ µ.

Proposition (Carroll). Let l be prime, q − 1 divisible by l. Let lx = 0 for some
x ∈ K2(F ). Then x = {γ, α} for some γ ∈ µ, α ∈ F ∗ .

Proof. Introduce the map f :F ∗ × F ∗ → K2(F )/C , where C is the subgroup in
K2(F ) generated by {γ, α} with γ ∈ µ, α ∈ F ∗ , by the formula

f (α1, α2) ≡ {π, (εa1
2 ε
−a2
1 )1/l} + {ε1, ε

1/l
2 } mod C,

where α1 = πa1θ1ε1 , α2 = πa2θ2ε2 , θ1, θ2 ∈ µq−1 , ε1, ε2 ∈ U1,F . Note that f is
well defined, because the element ε1/l ∈ U1,F for ε ∈ U1,F is uniquely determined.
First we verify that f is 2-symbolic. Indeed, f is multiplicative, because the expression
(εa1

2 ε
−a2
1 )1/l depends multiplicatively on α1 , α2 . Next, if p > 2, then −1 ∈ µq−1
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and f (α1,−α1) ∈ C . If p = 2 and α2 = −α1 , then ε2 = −ε1 , ε1/l
2 = −ε1/l

1 , and
f (α1,−α1) ∈ C . Now let α2 = 1− α1 . If a1 > 0, then 1− α1 = ε2 and

f (α1, 1− α1) ≡ {π, (1− πa1θ1ε1)a1/l} + {ε1, (1− πa1θ1ε1)1/l}
= {πa1ε1, (1− πa1θ1ε1)1/l} mod C.

But {πa1ε1, (1 − πa1θ1ε1)1/l} = {πa1ε1θ1, (1 − πa1θ1ε1)1/l} = {1 − ε2, ε
1/l
2 } by

Lemma (4.1). Then by the preceding Lemma we deduce that f (α1, 1 − α1) ∈ C . If
a1 = 0 and a2 = 0, then α1 = θ1ε1 , 1− α1 = θ2ε2 and, likewise,

f (α1, 1− α1) ≡ {ε1, ε
1/l
2 } = {ε1θ1, ε

1/l
2 } = {1− θ2ε2, ε

1/l
2 } = 0 mod C.

If a1 < 0 then

f (α1, 1− α1) ≡ −f (α−1
1 , 1− α1) ≡ −f (α−1

1 ,−α−1
1 (1− α1))

= −f (α−1
1 , 1− α−1

1 ) ≡ 0 mod C.

Thus, f induces the homomorphism f :K2(F )→ K2(F )/C . We observe that

{α1, α2} ≡ {π, εa1
2 ε
−a2
1 } + {ε1, ε2} mod C

by Lemma (4.1). Therefore, lf (x) ≡ f (lx) ≡ x mod C for x ∈ K2(F ). This means
that the condition lx = 0 implies x ∈ C.

Corollary. Let q−1 be divisible by l. Let lx = 0 for x ∈ K2(F ). Then x = {ζl, π}
for some l th root of unity ζl , where π is prime in F .

Proof. First assume that l is prime. If p > 2, then µ = µq−1 and the Proposition (4.1)
and Lemma (4.1) imply x = {θ, πa} for a generator θ of µq−1 and an integer a.
Proposition (4.1) shows that la is divisible by q − 1, therefore x = {ζl, π} for
ζl = θa ∈ µl . If p = 2 then by the same arguments we obtain x = {θ, πa} + {−1, α}
for some α ∈ F ∗ . Then 0 = {θl, πa} + {−1, α}. As the order of {θ, πa} is
relatively prime to the order of {−1, α}, we conclude that {−1, α} = al{θ, π} = 0
and x = {ζl, π} for ζl = θa ∈ µl .

Now let l = l1l2 , l1 > 1, l2 > 1. We may suppose by induction that l1x = {ζl2 , π}
for some ζl2 ∈ µl2 . Then l1(x − {ζ, π}) = 0 for ζ ∈ µl with ζl1 = ζl2 . Hence,
x = {ζ, π} + {ζl1 , π} = {ζl, π} for a suitable root ζl.

(4.5). Now we formulate without proof the following assertion due to J.Tate ([T6]):
Let char(F ) = 0, µp ⊂ F ∗ and px = 0 for x ∈ K2(F ). Then x = {ζp, α} for
some ζp ∈ µp , α ∈ F ∗ .

A discussion of Tate’s proof of this assertion would have involved introducing
theories out of the scope of this book. It would be interesting to verify this assertion
in an elementary way in the context of this book. Note that a theorem of A.A. Suslin
asserts that
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For an arbitrary field F and l relatively prime to char(F ), µl ⊂ F ∗ , the equality
lx = 0 in K2(F ) implies x = {ζl, α} for some ζl ∈ µl , α ∈ F ∗ ([Sus 3]).

(4.6). For a Theorem of A.S. Merkur’ev to follow it is convenient first to prove

Proposition. Let m = pr(q−1) be the cardinality of the torsion group in F ∗ , r > 1.
Let 2r− 1 > t, where t is the maximal integer such that pe/(p− 1) is divisible by pt ,
e = e(F/Qp). Let ζpr be a primitive pr th root of unity and ζpr /∈ UpUe+1,F . Then the
condition {ζpr , π} ∈ prK2(F ) for a prime π in F implies {ζp, π} = 0 for ζp ∈ µp .

Proof. Take the generators of U1,F /U
p
1,F as in the proof of the Proposition (4.2). Let

ζpr =
∏

(1− θijπi)iaij (1− θ∗πpe/(p−1))e∗a

with 1 6 i < pe/(p− 1), where i is relatively prime to p, aij , a ∈ Zp . Then

{ζpr , π} = {(1− θ∗πpe/(p−1))e∗a, π},

and using Corollary (4.2) we obtain that a ∈ prZp .
Our goal is to show that there exists a prime element π1 in F such that π1π

−1 ∈
Up1,F and

ζpr =
∏

(1− θijπi1)ibij (1− θ∗πpe/(p−1)
1 )e∗b

with 1 6 i < pe/(p − 1), where i is relatively prime to p, bij , b ∈ Z and b is
divisible by pr . From this assertion we deduce that

{ζp, π} = {ζp, π1} = e∗bpr−1{1− θ∗πpe/(p−1)
1 , π1} = 0,

because bpr−1 is divisible by pt and pt{1− θ∗πpe/(p−1)
1 , π1} = 0.

To prove the assertion note that, since pe/(p − 1) > e + 1 and ζpr /∈ Ue+1,FU
p
1,F ,

there is i 6 e such that aij is relatively prime to p. Let i0 6 e be the minimal number
among all i. Consider the element

α =
∑ i2aijθijπ

i

1− θijπi
+
e∗aθ∗π

pe/(p−1)

1− θ∗πpe/(p−1) · pe/(p− 1).

For i < i0 we get iai ∈ pZp and hence

α ≡
∑
j

i20ai0jθi0jπ
i0

1− θi0jπi0
≡
(∑

j

i20ai0jθi0j

)
πi0 mod πi0+1.

Recall that θij ∈ R0 (see the proof of Proposition (4.2)). Then we obtain that∑
i0ai0jθi0j 6≡ 0 mod π and vF (α) = i0 .

Put
f (X) = ζpr −

∏
(1− θijXi)ibij (1− θ∗Xpe/(p−1))e∗b
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with bij , b ∈ Z. If vp(bij − aij) → +∞, vp(b − a) → +∞, where vp is the p-adic
valuation, then vp(f (π)) → +∞ and vp(f ′(π) − απ−1ζpr ) → +∞. In particular,
for n > pe/(p − 1) + 1 there are integer bij , b such that vF (f (π)) > 2n + 1 and
vF (f ′(π)) 6 n. Corollary 3 of (1.3) Ch. II implies now that there exists an element
π1 ∈ F such that π1π

−1 ∈ Un,F ⊂ Up1,F and f (π1) = 0. Then π1 is prime and is the
desired element.

(4.7). Theorem (Merkur’ev). The group mK2(F ) of Theorem (4.3) is an uncount-
able uniquely divisible group.

Proof. K2(F ) is uncountable by Proposition (3.9), because F and δ(F ) are un-
countable.

First we verify that the group mK2(F ) has no nontrivial l-torsion for a prime l 6= p.
If µl ⊂ F ∗ and lx = 0 for x ∈ mK2(F ), then by Corollary (4.4) we get x = {ζl, π}
for some ζl ∈ µl and a prime π. Then Proposition (4.1) shows x = 0. If µl 6⊂ F ∗ ,
then put F1 = F (µl). Assume that lx = 0 for x ∈ mK2(F ). The divisibility of
mK2(F ) implies the existence of y ∈ K2(F ) such that x = mLy, where mL is the
cardinality of the torsion group of F ∗1 . Then lmLjF/F1 (y) = 0 and mLjF/F1 (y) = 0.
By Lemma (3.4) we obtain mL|F1 : F |y = 0. Thus, the order of x divides l and
|F1 : F | < l, and hence x = 0.

It remains to verify that there is no nontrivial p-torsion in mK2(F ). If char(F ) = p,
then {α, β} = pNF 1/p/F {α1/p, β1/p}. The map

f :F ∗ × F ∗ → K2(F ), (α, β) 7→ NF 1/p/F {α1/p, β1/p}

is multiplicative, and f (α, 1 − α) = NF 1/p/F {α1/p, 1 − α1/p} = 0. Therefore, f
induces the homomorphism f :K2(F ) → K2(F ) such that pf (x) = f (px) = x for
x ∈ K2(F ). This means that K2(F ) has no nontrivial p-torsion.

Now we treat the most difficult case of char(F ) = 0. Suppose that for some
finite extension L/F the group mLK2(L) is uniquely divisible, where mL is the
cardinality of the torsion group of L∗ . Then if x ∈ mK2(F ) and px = 0 we obtain
x = |L : F |mLy for some y ∈ K2(F ) and p|L : F |jF/L(mLy) = 0. Hence,
x = NL/F jF/L(mLy) = 0 and mK2(F ) is uniquely divisible. Therefore, we can
replace the field F by its proper finite extension. More specifically, we take the field
L = F (k) of the following

Proposition. Put F (m) = F (µpm ). Let rm denote the maximal integer such that
µprm is contained in F (m)∗ , and let tm be the maximal integer for which pe(F (m)|Qp)
is divisible by ptm . Then there exists a natural k > 1, such that extensions F (k+m)/F (k)

are totally ramified of degree pm , m > 1 and 2rk > tk + 1, µpk 6⊂ Up
F (k)Ue+1,F (k) ,

where e = e(F (k)|Qp).
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Proof. Since F (m) ⊃ Q(rm)
p , we get e(F (m)|Qp) ∈ (p − 1)prm−1Z by (1.3) Ch. IV.

Hence, tm > rm − 1. If rm+1 = rm , then F (m+1) = F (m) and tm+1 = tm; if
rm+1 > rm then F (m+1)/F (m) is of degree p and tm+1 6 tm + 1. Therefore, in any
case tm − rm > −1, and tm − rm does not increase when m increases. This means
that there is a natural n such that rn+m = rn+m−1 + 1, tn+m = tn+m−1 + 1 for m > 1,
rn = n and 2rn+m > tn+m + 1 for m > 0. We obtain that F (n+m)/F (n) is a totally
ramified extension of degree pm .

We next show that, for a sufficiently large m,

(*) NF (n+m)/F (n)Uen+m+1,F (n+m) ⊂ Up
F (n) ,

where en+m = e(F (n+m)|Qp).
Then if µpn+m ⊂ Up

F (n+m)Uen+m+1,F (n+m) we would have

µpn = NF (n+m)/F (n)µpn+m ⊂ Up
F (n) ,

which is impossible in view of the choice of n. Thus, we deduce that the assertion of
the Proposition holds for k = n +m.

To verify (∗) write ε ∈ Uen+m+1,F (n+m) as ε = 1 + pα with α ∈ MF (n+m) . Then
the formula of Lemma (1.1) Ch. III implies the congruence

NF (n+m)/F (n)ε ≡ 1 + pTrF (n+m)/F (n) (α) mod πpen/(p−1)+1
n ,

where πn is prime in F (n) because p2 ∈ πpen/(p−1)
n OF (n) . Therefore, it suffices to

verify that TrF (n+m)/F (n) (OF (n+m) )→ 0 as m→ +∞.
Put β = TrF (n+m)/F (n) (α) ∈ OF (n) . Let i = [e−1

n vF (n) (β)]. Then there exists
δ ∈ Zp with vF (n) (δ) = (i+ 1)en . For γ = δβ−1 we get 0 < vF (n) (γ) 6 en , γβ ∈ Zp .
Put dn = |F (n) : Qp|. Then en 6 dn and

TrF (n+m)/Qp (γα) = TrF (n)/Qp (γTrF (n+m)/F (n) (α)) = dnγβ.

Hence

TrF (n+m)/F (n) (α) = d−1
n γ−1TrQ(n+m)

p /Qp
(Tr

F (n+m)/Q(n+m)
p

(γα)).

Therefore, it remains to show that

TrQ(m)
p /Qp

(
OQ(m)

p

)
→ 0 as m→ +∞.

By (1.3) Ch. IV OQ(m)
p

= OQp [ζpm ]. Now, since

TrQ(m)
p /Qp

(µpm )→ 0 as m→ +∞

(it is straightforward to compute the coefficient of Xpm−1(p−1)−1 in the polynomial
fm(X) of (1.3) Ch. IV), we obtain the required assertion (∗) and complete the proof.
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Returning to the proof of the Theorem, we set L = F (k) . Let px = 0 for x ∈
mLK2(L). By (4.5) we get x = {ζp, α0} for some ζp ∈ µp , α0 ∈ L∗ . Let mL =
pr(q − 1), r > 1. As {ζp, α0} ∈ prK2(L), we deduce with the help of Corol-

lary (4.2) that {ζpr , α0} ∈ pK2(L) for an element ζpr ∈ µpr with ζp
r−1

pr = ζp . Since
ζpr /∈ L∗p , we conclude, by the same arguments as in the proof of Theorem (4.3), that
{ζpr , α} mod prK2(L) generates K2(L)/prK2(L) for some α ∈ L∗ . This means
that {ζpr , α0α

−c} ∈ prK2(L) for some c ∈ pZ. If α0α
−c is prime in L, then Propo-

sition (4.6) implies x = {ζp, α0} = {ζp, α0α
−c} = 0. If this is not the case, then let π0

be a prime element in L belonging to the norm subgroup NL(2r)/LL
(2r)∗ . Property (5)

of Proposition (5.1) Ch. IV shows that (ζpr , π0)pr = 1. Then by Theorem (4.3) we de-
duce {ζpr , π0} ∈ prK2(L) and by Proposition (4.6) {ζp, π0} = 0. Let s be an integer
such that πs0α0α

−c is prime in L. Then {ζpr , πs0α0α
−c} ∈ prK2(L) and by Propo-

sition (4.6) {ζp, πs0α0α
−c} = 0. Thus, x = {ζp, α0} = {ζp, πs0α0} − s{ζp, π0} = 0.

This completes the proof.

(4.8). The rest of this section is concerned with the Milnor Kn-groups of F for
n > 3.

Proposition. Let L/F be an abelian extension of finite degree. Then the norm map
NL/F :K2(L)→ K2(F ) is surjective.

Proof. Let d = |L : F |. It suffices to prove the assertion for a prime d. If d is
relatively prime to m, where m is the cardinality of the torsion group in F ∗ , then by
Theorem (4.3)

dK2(F ) ' mK2(F )⊕ µdm ' mK2(F )⊕ µm ' K2(F ),

and K2(F ) = NL/F (jF/LK2(F )) by Theorem (3.8). Let m be divisible by d. The
norm subgroup NL/FL∗ is of index d in F ∗ , according to (1.5) Ch. IV. Since the index
of F ∗d in F ∗ is > d, there exists an element α ∈ NL/FL∗ , α /∈ F ∗d . Property (6) of
Proposition (5.1) Ch. IV shows that (α, β)d 6= 1 for some β ∈ F ∗ . Therefore, {α, β}
mod dK2(F ) generates the cyclic group K2(F )/dK2(F ) and {α, β} ∈ NL/FK2(L).
Since dK2(F ) = NL/F (jF/LK2(F )), we deduce K2(F ) = NL/FK2(L).

(4.9). Proposition. Let l be relatively prime to char(F ), µl ⊂ F ∗ . Let L/F be a
cyclic extension of degree l, σ a generator of Gal(L/F ), and σ:K2(L)→ K2(L) the
homomorphism induced by σ. Then the sequence

K2(L) 1−σ−−→ K2(L)
NL/F−−−→ K2(F )

is exact.
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Proof. By Theorem (4.3) the groups K2(L)/lK2(L), K2(F )/lK2(F ) are cyclic of
order l. The preceding Proposition implies now that the homomorphism

K2(L)/lK2(L)→ K2(F )/lK2(F )

induced by the norm map NL/F is an isomorphism. Therefore, if NL/F (x) = 0 for
x ∈ K2(L), then x = ly for some y ∈ K2(L) and lNL/F (y) = 0. By subsections
(4.4) and (4.5) NL/F (y) = {ζl, α}, for some α ∈ F ∗ and a primitive l th root ζl of
unity. By Theorem (3.8) we get

jF/LNL/F (y) = (1 + · · · + σl−1)y = jF/L{ζl, α}.

Let L = F ( l
√
β). Then we may assume ζl = β/σ(β). We obtain

x = ly = (l − 1− · · · − σl−1)y + (1− σ){β, α}
= (1− σ)((σl−2 + 2σl−3 + · · · + l − 1)y + {β, α}).

Conversely, NL/F (1− σ)x = 0 for x ∈ K2(L) by Theorem (3.8).

Remark. The assertion of the Proposition, so-called “Satz 90” for K2-groups, holds
for arbitrary fields (Merkur’ev-Suslin, [MS]).

(4.10). Proposition. Let l be prime, µl ⊂ F ∗ . Then {ζl} · x = 0 in K3(F ) for
x ∈ K2(F ), ζl ∈ µl .

Proof. If q − 1 is divisible by l, then Proposition (4.1) implies that {ζl} · x =
{ζl, ζq−1, α} for some α ∈ F ∗ and Lemma (4.1) shows that {ζl} · x = 0. If l = p and
p 6= 2, m = pr(q − 1), then {−ζpr , α} mod pK2(F ) generates the quotient group
K2(F )/pK2(F ) for a primitive pr th root of unity ζpr and some α ∈ F ∗ . Therefore,
{ζp} · x = {ζp,−ζpr , αc} for some integer c and {ζp} · x = pr−1{ζpr ,−ζpr , αc} = 0.
Finally, if l = p = 2, then {−1} · x = {−1, ζ2r , α} for some α ∈ F ∗ . If r > 1, then
{−1, ζ2r} = 2r−1{ζ2r , ζ2r} = 2r−1{−1, ζ2r} = 0. If r = 1, then x = NF (

√
−1)/F y for

some y ∈ K2(F (
√
−1)), by Proposition (4.8). Then {−1} · x = NF (

√
−1)/F ({−1} · y)

and {−1} · y = 0 in K2(F (
√
−1)).

(4.11). Theorem (Sivitskii). The group Kn(F ) is an uncountable uniquely divisible
group for n > 3.

Proof. First we assume that µl ⊂ F ∗ , and that l is relatively prime to char(F ).
Define the map f :F ∗ × · · · × F ∗︸ ︷︷ ︸

n times

→ Kn(F ) by the formula

f (α1, . . . αn) = NF ( l√α1)/F ({α} · x · {α4, . . . , αn}),

where x ∈ K2(F ( l
√
α1)) with NF ( l√α1)/F (x) = {α2, α3} ( x exists by Proposi-

tion (4.8)), α ∈ F ( l
√
α) with αl = α1 . By Proposition (4.10) f does not depend on the
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choice of α. Moreover, if NF ( l√α1)/Fx = NF ( l√α1)/F y, then x−y = σ(z)−z for some
z ∈ K2(F ( l

√
α1)) by Proposition (4.9), where σ is a generator of Gal(F ( l

√
α1)/F ).

Then

{α} · (x− y) = (σ − 1)({α} · z) + {ασ(α−1)} · σ(z),

and

NF ( l√α1)/F ({α} · (x− y)) = {ζl} ·NF ( l√α1)/F (z) = 0,

by Theorem (3.8) and Proposition (4.10), where ζl = α · σ(α−1) ∈ µl . Thus, the map
f is well defined.

Furthermore, the map f is multiplicative on α4, . . . , αn . It is also multiplicative on
α2, α3 , because if α2 = α′2α

′′
2 , then x = x′+x′′ and f (α1, α

′
2α
′′
2 , . . . ) = f (α1, α

′
2, . . . )

+f (α1, α
′′
2 , . . . ). Let α1 = α′1α

′′
1 and L = F ( l

√
α′1,

l
√
α′′1 ). Then {α2, α3} = NL/F y

for some y ∈ K2(L) by Proposition (4.8). Therefore, for α′l = α′1 , α′′l = α′′1 , αl = α1
we get

f (α′1, α2, . . . ) = NF ( l
√
α′1)/F ({α′} ·NL/F ( l

√
α′1)y · . . . ) = NL/F ({α′} · y · . . . ),

f (α′′1 , α2, . . . ) = NL/F ({α′′} · y · . . . ),
f (α′1α

′′
1 , α2, . . . ) = NL/F ({α′α′′} · y · . . . ).

Thus, f is multiplicative on α1 .
Let α1 +αn = 1, then f (α1, . . . , αn) = NF ( l√α1)/F ({α} ·x · { . . . , 1−α1}). Since

1− α1 =
∏l
i=1(1− ζilα), we deduce

{α, 1− α1} =
l∑
i=1

{ζ−il , 1− ζilα}.

Now Proposition (4.10) implies that f (α1, . . . , αn) = 0. Let α1 + α2 = 1 and α /∈ F .
Then α2 = NF ( l√α1)/F (1− α) and

f (α1, . . . , αn) = NF ( l√α1)/F {α, 1− α, α3, . . . } = 0.

Let α1 + α2 = 1 and α ∈ F . Then α2 =
∏l
i=1(1− ζilα) and

f (α1, . . . , αn) =
l∑
i=1

{α, 1− ζilα, . . . } =
l∑
i=1

{ζ−il , 1− ζilα, . . . } = 0.

Let α1 + αn = 1. Then f (α1, . . . , αn) = −f (α2, α1, . . . , αn) = 0. Thus, f is
n-symbolic. It induces the homomorphism f :Kn(F ) → Kn(F ), n > 3. We get
lf (x) = f (lx) = x for x ∈ Kn(F ). Hence, Kn(F ) is uniquely l-divisible.

Suppose now that l is relatively prime to char(F ), µl 6⊂ F ∗ . Put F1 = F (µl).
Then for an element x ∈ Kn(F ) with lx = 0 we get jF/F1 (x) = 0. Therefore,
|F1 : F |x = 0 by Lemma (3.4). As |F1 : F | is relatively prime to l, we conclude that
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x = 0. By Proposition (4.8) for x ∈ Kn(F ) there is y ∈ Kn(F1) with NF1/F (y) = x.
Then y = lz for some z ∈ Kn(F1) and x = lNF1/F (z). Thus, Kn(F ) is uniquely
l-divisible.

Assume finally that l = p = char(F ). Then the map

f :F ∗ × · · · × F ∗︸ ︷︷ ︸
n times

→ Kn(F ), (α1, . . . , αn) 7→ NF 1/p/F {α
1/p
1 , α

1/p
2 , α3, . . . , αn},

is n-symbolic (see the proof of Theorem (4.7)). We conclude, that it induces the map
f :Kn(F ) → Kn(F ) with pf (x) = f (px) = x. Thus, Kn(F ) is uniquely p-divisible.

(4.12). Remarks.

1. For further information on the Milnor ring of a complete discrete valuation field
with a perfect residue field see [Kah], and also [Bog]. A computation of Quillen’s
K -groups of a local field can be found in [Sus2].

2. Differential forms are important for the study of quotients of the Milnor K -groups
annihilated by a power of p, see Exercise 7 section 1; they are useful in the proof of a
theorem of S. Bloch–K.Kato which claims that for every l not divisible by char(F ) the
symbol map

Km(F )/lKm(F )→ Hm(F, µ⊗ml )

is an isomorphism for Henselian discrete valuation fields. For an arbitrary field F and
m = 2 the symbol map is an isomorphism according to the famous Merkur’ev–Suslin
theorem [MS].

When the residue field F of a complete discrete valuation fields of characteristic zero
is imperfect an effective tool for the description of quotients of Km(F ) is Kurihara’s
exponential map [Ku4]

exp: lim←− n Ω
m
OF
⊗ Z/pnZ→ lim←− nKm(F )⊗ Z/pnZ.

(4.13). Theorems (4.3) and (4.11) demonstrate that the most interesting group in the
list of Milnor K -groups of a local field F with finite residue field is the group K1(F )
(infinitely divisible parts are not of great arithmetical interest). The latter group is
related via the local reciprocity map described in Ch. IV and V to the maximal abelian
extension of F .

One can interpret the injective homomorphism Z→ Gal(Ksep/K) for a finite field
K as the 0-dimensional local reciprocity map

K0(K)→ Gal(Kab/K).

It is then natural to expect that for an n-dimensional local field F , as in (5.5)
Ch. VII, its n th Milnor K -group Kn(F ) should be related to abelian extensions of
F . And indeed, there is a higher dimensional local class field theory first developed
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by A.N. Parshin in characteristic p [Pa1–5], K. Kato in the general case [Kat1–3].
We briefly describe here how one can generalize the theory of Ch. IV and V to obtain
another approach [Fe3–5] to a higher dimensional local reciprocity map

ΨF :Kn(F )→ Gal(F ab/F ).

Let L/F be a finite Galois extension and σ ∈ Gal(L/F ). Denote by F ′ the
maximal unramified extension of F corresponding the maximal separable extension of
its last residue field Fq (see (5.5) Ch. VII). Then there is σ̃ ∈ Gal(LF ′/F ) such that
σ̃|L = σ and σ̃F ′ is a positive power of the lifting of the Frobenius automorphism of
GFq . The fixed field Σ of σ̃ is a finite extension of F . Let t1, . . . , tn be a lifting of
prime elements of residue fields Σ1, . . . ,Σn−1,Σ of Σ to Σ. A generalization of the
Neukirch map is then defined as

σ 7→ NΣ/F {t1, . . . , tn} mod NL/FKn(L).

A specific feature of higher dimensional local fields is that in general for an ar-
bitrary finite Galois extension L/F linearly disjoint with F ′/F a generalization of
the Hazewinkel homomorphism does not exist. This is due to the fact that the map
iF/F ′ :Kn(F ) → Kn(F ′) is not injective for n > 1. Still one can define a general-
ization of the Hazewinkel map for extensions which are composed of Artin–Schreier
extensions, and this is enough to prove that the Neukirch map induces an isomorphism

Gal(L/F )ab →̃Kn(F )/NL/FKn(L)

[Fe7].
Contrary to the case of n = 1 the kernel of the map ΨF is nontrivial for n > 1;

it is equal to ∩l>1lKn(F ). The quotient of Kn(F ) by the kernel can be described in
terms of topological generators as a generalization of results of section 6 Ch. I.

For more details and various approaches to higher local class field theory see papers
in [FK].

Exercises.

1. Let A be a topological Hausdorff group, and let f :F ∗×F ∗ → A be a continuous symbolic
map. Show that if m is the cardinality of the torsion group of F ∗ , then mf = 0. Deduce
that there is a homomorphism ψ:µm → A such that f = ψ ◦ (·, ·)m , where (·, ·)m is the
m th Hilbert symbol.

2. Show that for a finite extension L/F of local number fields the norm homomorphism

NL/F :K2(L)→ K2(F )

is surjective.
3. Show that the cokernel of the homomorphism NC/R:Kn(C) → Kn(R) is a cyclic group

of order 2.
4. (J. Tate)

a) Let F be a field, α, β ∈ F ∗ , and βm+1 − βm − β + 1 = α, m > 2. Show that
m{α, β} = 0 in K2(F ).
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b) Let F = Qp(ζpn ), where ζpn is a primitive pn th root of unity, n > 1. Show
that the polynomial Xm+1 − Xm − X + 1 − ζpn has a unique root βm such that
vF (βm) = vF (ζpn − 1) = 1.

c) Put εm = βm(1 − ζpn )−1 , m > 2. Show that the elements εm , 2 6 m 6 pn + 1
generate the group U1,F /U

p
1,F .

d) Show that {ζpn , εm} = 0 for 2 6 m < pn , m = pn + 1, and {ζpn , εpn} generates
the p-torsion group of K2(F ).

5. a) Let L/F be a cyclic extension, and let σ be a generator of Gal(L/F ). Show that the
sequence

0→ Kn(F )
jF/L−−−→ Kn(L) 1−σ−−−→ Kn(L)

NL/F−−−−→ Kn(F )

is exact for n > 3. (O.T. Izhboldin proved that if n > 2, then this sequence is exact
for an arbitrary field F of characteristic p when L/F is of degree pm , see [Izh]).

b) Let L/F be a cyclic unramified extension, and let σ be a generator of Gal(L/F ).
Show that the sequence

0→ K2(F )
jF/L−−−→ K2(L) 1−σ−−−→ K2(L)

is exact if char(F ) is positive.
c) Let L/F be a finite extension. Show that the cardinality of the kernel of the homo-

morphism jF/L:K2(F ) → K2(L) is equal to |tp(F )/NL/F tp(L)| where tp(K)
for a field K stands for the group of roots of unity in K∗ of order a power of p.

6. (�) Let F be a local number field and g(X) ∈ 1 +XZp[[X]], /∈ 1 +X2Zp[[X]]. Let A
be a Hausdorff topological group. A continuous multiplicative pairing c:F ∗ × UF → A
is called g-symbolic if c(α, g(α)) = 1 for all α ∈MF .
a) Show that c(F ∗, UF ) is generated by c(π, ω∗) and c(π, θ) for prime elements π in

F , θ ∈ µq−1, ω∗ as in (1.6).
b) Let E(X) be the Artin–Hasse function (see (9.1) Ch. I). Show that the Hilbert symbol

Hpn :K2(F )→ µpn is E -symbolic.
c) Let p > 2. Show that the Hilbert symbol Hpn is g-symbolic if and only if vF (cm) >

vQp (m) for the series
∑
m>1 cmX

m = lX (g(X)) (for the definition of lX see in
section 2 Ch. VI).
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[Her] J. Herbrand, Sur la théorie des groups de decomposition, d’inertie et de ramification,

J. Math. Pures Appl. 10 (1931), 481–498.
[Herr1] Laurent Herr, Une approche nouvelle de la dualité locale de Tate, Math. Annalen
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[Mau4] , Über die Verteilung der Grundverzweigungszahlen von wild verzweigten
Erweiterungen p-adischer Zahlkörper, J. Reine Angew. Math. 257 (1972), 47–79.

[Mau5] , Relationen in Verzweigungsgruppen, J. Reine Angew. Math. 258 (1973),
23–50.

[Maz] Barry Mazur, Rational points of abelian varieties with values in towers of number
fields, Invent. Math. 18 (1972), 183–266.

[McC] William G. McCallum, Tate duality and wild ramification, Math. Ann. 288 (1990),
553–558.

[McL] S. Mac Lane, Subfields and automorphism groups of p-adic fields, Ann. of Math.
(2) 40 (1939), 423–442.

[Me] A. S. Merkurjev, On the torsion in K2 of local fields, Ann. of Math. (2) 118 (1983),
375–381.



Bibliography 333

[Mi] J. S. Milne, Arithmetic duality theorems, Academic Press, 1986.
[Mik1] Hiroo Miki, On Zp -extensions of complete p-adic power series fields and function

fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 377–393.
[Mik2] , On some Galois cohomology groups of a local field and its application to

the maximal p-extension, J. Math. Soc. Japan 28 (1976), 114–122.
[Mik3] , On the absolute Galois group of local fields. I, Galois groups and their

representations (Nagoya, 1981), Adv. Stud. Pure Math., vol. 2, North-Holland,
Amsterdam and New York, 1983, pp. 55–61.

[Mik4] , On unramified abelian extensions of a complete field under a discrete
valuation with arbitrary residue field of characteristic p 6= 0 and its application to
wildly ramified Zp -extensions, J. Math. Soc. Japan 29 (1977), no. 2, 363–371.

[Mik5] , A note on Maus’ theorem on ramification groups, Tohoku Math. J. (2) 29
(1977), 61–68.

[Mik6] , On the ramification numbers of cyclic p-extensions over local fields, J.
Reine Angew. Math. 328 (1981), 99–115.

[Mil1] John Milnor, Introducion to algebraic K -theory, Princeton Univ. Press, Princeton,
NJ, and Univ. Tokyo Press, Tokyo, 1971.

[Mil2] , Algebraic K -theory and quadratic forms, Invent. Math. 9 (1970), 318–344.
[Miy] Katsuya Miyake, A fundamental theorem on p-extensions of algebraic number fields,

Japan J. Math. 16 (1990), 307–315.
[Mo1] Mikao Moriya, Einige Eigenschaften der endlichen separablen algebraischen Er-

zweiterungen über perfekten Körpern, Proc. Imp. Acad. Tokyo 17 (1941), 405–410.
[Mo2] , Die Theorie der Klassenkörper im Kleinen über diskret perfekten Körpern.

I, Proc. Imp. Acad. Tokyo 18 (1942), 39–44; II, Proc. Imp. Acad. Tokyo 18 (1942),
452–459.

[Mo3] , Zur theorie der Klassenkörper im Kleinen, J. Math. Soc. Japan 3 (1951),
195–203.

[Moc1] Shinichi Mochizuki, A version of the Grothendieck conjecture for p-adic fields, Int.
J. Math. 8 (1997), 499–506.

[Moc2] , The local pro- p anabelian geometry of curves, Invent. Math. 138(1999),
319–423.

[Moo] Calvin C. Moore, Group extensions of p-adic and adelic linear groups, Inst. Hautes
Études Sci. Publ. Math. 1968, no. 35, 157–222.

[MS] A. S. Merkurjev and A. A. Suslin, K -cohomology of Severi–Brauer varieties and
the norm residue homomorphism, Math. USSR-Izv. 21 (1983), 307–340.

[MSh] O. V. Melnikov and A. A. Sharomet, The Galois group of a multidimensional local
field of positive characteristic, Mat. Sb. 180 (1989), no. 8, 1132–1147; English
transl. in Math. USSR-Sb. 67 (1990).

[MW] R. E. MacKenzie and George Whaples, Artin–Schreier equations in characteristic
zero, Amer. J. Math. 78 (1956), 473–485.

[MZh] A. I. Madunts, I. B. Zhukov, Multidimensional complete fields: topology and other
basic constructions, Trudy S.-Peterb. Mat. Obsch. 3 (1995), 4–46; English transl.
in Amer. Math. Soc. Transl. Ser. 2, vol. 166, AMS, 1995, pp. 1–34.

[N1] Jürgen Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen
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