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1D anabelian geometry

Theorem (Neukirch, Iwasawa, Ikeda, Uchida). If K1, K2 are number fields then

Ring-Iso(K1,K2)' TopGroup-Iso(GK1
,GK2

)/Inn(GK2
).

Neukirch’s CFT mechanism was influenced by his previous work in anabelian geometry.

Note that two non-isomorphic finite extensions of Qp can have isomorphic absolute Galois groups:

Theorem (Jarden–Ritter) Two absolute Galois groups of local number fields F1 and F2 with odd
residue characteristic are topologically isomorphic iff their degrees over Qp are the same and the
degree of the maximal abelian extension of Qp in each of them are the same.

Thus, in general one cannot restore the ring structure of a local field from its absolute Galois
group.
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1D anabelian geometry

Including ramification filtration information helps:

Theorem (Mochizuki). If F1, F2 are local fields then

Ring-Iso(F1,F2)' FiltrTopGroup-Iso(GF1
,GF2

)/Inn(GF2
).

Ivan Fesenko Introducing anabelian geometry 3 / 18



2D anabelian geometry

Anabelian geometry for hyperbolic curves over number fields was proposed by Grothendieck and
pioneered by Nakamura, Tamagawa, Mochizuki.

Anabelian geometry includes

bi-anabelian geometry (restoring isomorphism classes of scheme objects from isomorphisms of
their fundamental groups)

relative anabelian geometry (restoring k-scheme objects or their isomorphism classes from their
fundamental group mapped to the fundamental group of k)

absolute anabelian geometry (restoring schemes or their isomorphism classes from fundamental
groups via topological group algorithms)

mono-anabelian geometry (restoring scheme objects from fundamental groups via topological
group algorithms).

These theories are (topological) group theoretical, algorithmic and explicit, features similarly to
CFT mechanism.
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2D anabelian geometry

Tamagawa:

mono-anabelian geometry involves a single object while bi-anabelian geometry involves
two objects.

But, in fact, mono-anabelian geometry should be considered as involving all objects...

to say an algorthim is purely group-theoretic, it must universally and uniformly apply to
all profinite groups isomorphic to Galois/fundamental groups of schemes in a specified
category, forgetting any isomorphism between the profinite group in question and the
Galois/fundamental group.

In this sense, mono-anabelian geometry should be regarded as “pan-anabelian geometry”
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Algebraic fundamental groups

For any geometrically integral (quasi-compact) scheme X over a perfect field k we have the
following fundamental exact sequence

1→ π
geom
1 (X )→ π1(X )→ π1(Spec(k)) = Gk → 1.

Where π1(X ) is the algebraic fundamental group of X ,

π
geom
1 (X ) = π1(X ×k k

alg),

kalg is an algebraic closure of k.

Suppressed dependence of the fundamental groups on basepoints actually means that objects are
often well-defined only up to conjugation by elements of π1(X ).

Algebraic fundamental groups of schemes over number fields (or fields closely related to number
fields, such as local fields or finite fields) are also called arithmetic fundamental groups.

Examples.

π1(P1) = π1(P1 \{0}) = 1,

π1(P1 \{0,1}) = Ẑ,

π1(E) = Ẑ× Ẑ, E an elliptic curve.
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Hyperbolic curves

If C is a complex irreducible smooth projective curve minus a finite set of its points, then π1(C) is
isomorphic to the profinite completion of the topological fundamental group of the Riemann
surface associated to C .

Recall that a hyperbolic curve C over a field k of characteristic zero is a smooth projective
geometrically connected curve of genus g minus r points such that the Euler characteristic
2−2g − r is negative.

Examples include a projective line minus three points or an elliptic curve minus one point.

The algebraic fundamental group of a hyperbolic curve is nonabelian.

If C is the result of base-changing a curve over a field k to the field of complex numbers, then the
fundamental sequence for such a curve over k induces a homomorphism ψ from Gk to the
quotient group Out(π

geom
1 (C)) of the automorphism group of π

geom
1 (C) by its normal subgroup of

inner automorphisms.

Theorem (Belyi (and Bogomolov)). An irreducible smooth projective algebraic curve C defined
over a field of characteristic zero can be defined over an algebraic closure Qalg if and only if there
is a covering C −→ P1 which ramifies over no more than three points of P1.

This theorem implies that ψ is an embedding of GQ into the Out group of the pro-finite
completion of a free group with two generators.
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Rigidity in anabelian geometry

Anabelian geometry “yoga” for so-called anabelian schemes of finite type over a ground field K
(such as a number field, a field finitely generated over its prime subfield, etc.) states that

an anabelian K -scheme X can be recovered from the topological group π1(X ) and the surjective
homomorphism of topological groups π1(X )−→ GK (up to purely inseparable covers and
Frobenius twists in positive characteristic).

Thus, the algebraic fundamental groups of anabelian schemes are rigid.

This can be compared with

Mostow–Prasad–Gromov rigidity theorem: the isometry class of a finite-volume hyperbolic
manifold of dimension > 3 is determined by its topological fundamental group.
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Two questions raised by Grothendieck

Grothendieck proposed the following questions:

Q1. Are hyperbolic curves over number fields or finitely generated fields anabelian?

A point x in X (k), i.e. a morphism Spec(k)−→ X , determines, in a functorial way, a continuous
section Gk −→ π1(X ) (well-defined up to composition with an inner automorphism) of the
surjective map π1(X )−→ Gk .

Q2. The section conjecture asks if, for a geometrically connected smooth projective curve X over
K , of genus > 1, the map from rational points X (K) to the set of conjugacy classes of sections is
surjective (injectivity was already known).
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2D anabelian geometry

The Neukirch–Ikeda–Uchida theorem is a birational version of Q1 in the lowest dimension.

A similar birational recovery property for fields finitely generated over Q was proved by Pop.

Later Mochizuki proved a similar recovery property for a subfield of a field finitely generated over
Qp .

With respect to Q1, important contributions were made by Nakamura and Tamagawa.

Then Mochizuki proved that hyperbolic curves over finitely generated fields of characteristic zero
are indeed anabelian.

Using nonarchimedean Hodge–Tate theory, Mochizuki proved that a hyperbolic curve X over a
subfield K of a field finitely generated over Qp can be recovered functorially from the canonical
projection π1(X )−→ GK .

The section conjecture in Q2 has not been established.

A combinatorial version of the section conjecture is established by Hoshi and Mochizuki.
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Key theorems in 2D anabelian geometry

Let C be a hyperbolic curve over k.

For a point x of C(kalg)\C(kalg) the inertia group Ix is the stabiliser group of an extension of x
to the maximal unramified extension of k(C)⊗kalg, a subgroup of π

geom
1 (C).

The group Ix is pro-cyclic.

The normaliser of Ix in π1(C) is the decomposition group Dx of x .

Theorem (Namakura). If K is a number field then every pro-cyclic subgroup of π
geom
1 (C) is a

subgroup of some Ix , x ∈ C(K alg)\C(K alg).

Theorem (Tamagawa, Mochizuki). Let K be a number field or more generally a subfield of a
finitely generated extension of Qp .

Then for two hyperbolic curves X ,Y over K the map from K -isomorphisms X −→ Y to
continuous open GK -isomorphisms of profinite groups π1(X )→ π1(Y ) modulo inner conjugation
by π1(Y ) is a bijection.
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An absolute version of the previous theorem

An absolute version of this theorem (following previous work, the strongest versions were
established by Mochizuki):

If K is a finitely generated field over Q then for two hyperbolic curves X ,Y over K the map from
isomorphisms X −→ Y to continuous open isomorphisms of profinite groups π1(X )−→ π1(Y )
modulo inner conjugation by π1(Y ), is a bijection.
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Powerful reconstruction

Definition. Two hyperbolic curves C1, C2 over fields k1 and k2 are called isogenous if there is a
hyperbolic curve C over a field k with finite étale morphisms C −→ Ci .

Theorem (Mochizuki).
For a hyperbolic curve C over a number field k isogenous to a hyperbolic curve of genus zero
(e.g. an elliptic curve with one point removed) there is a universal functorial group theoretical
algorithm to reconstruct the field l from the topological group π1(Cl ), where Cl = C ×k l , l = k or
any of its non-archimedean completions.
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Powerful reconstruction

The proof reconstructs

� π
geom
1 (C)

� K×

� K×0
� non-archimedean valuations of K0

� K
� K alg

0 (C0)

� K(C)

using

� Belyi cuspidalisation

� Nakamura’s results

� Kummer theory

� synchronisation of geometric cyclotomes

� Uchida’s Lemma
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Powerful reconstruction

And it uses the following two topological group theoretical properties of the absolute Galois group
of a number field or of its nonarchimedean completion and of arithmetic fundamental groups:

� each of its open subgroups is centre-free (slimness),

� each nontrivial normal closed subgroup H of any open subgroup, with the property that H is
topologically finitely generated as a group, is open (elasticity).
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On cyclotomes in mono-anabelian geometry

Let F be a finite extension of Qp .

Let G be a topological group isomorphic to GF .

Theorem. There is a group theoretical algorithm (for example, using local CFT) to produce from
the group G a G -monoid O.(G) isomorphic to the GF -monoid O..

Denote by Λ(M) the projective limit of n-torsion elements of M, n > 1.

The local reciprocity map induces the cyclotomic rigidity isomorphism Λ(O.)' Λ(GF ).
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On cyclotomes in mono-anabelian geometry

Theorem (Mochizuki). Let G be a topological group isomorphic to GF .

Let M be a G -monoid isomorphic to the GF -monoid O..

Then Aut(G yM)' Aut(G).

There is a functorial algorithm producing from the G -monoid M a GF -isomorphism
Λ(M)' Λ(O.)' Λ(GF ), using the cyclotomic rigidity isomorphism.

Moreover, this is the unique isomorphism Λ(M) ' Λ(GF ) such that the following diagramme is
commutative:

M
� � //

��

lim−→H6GF
H1(H,Λ(M))

��
O.(G)

� � // lim−→H6GF
H1(H,Λ(GF ))

where horizontal arrows are given by Kummer theory.
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Applications of anabelian geometry

The powerful restoration results in absolute mono-anabelian geometry of certain hyperbolic
curves over number fields and local fields are applied in the IUT theory.

See slides on IUT workshops in 2015, 2016,

and slides and videos of the 4 recent RIMS workshops on anabelian geometry and IUT:

https://www.kurims.kyoto-u.ac.jp/~motizuki/project-2021-english.html.
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