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CFT and its three main generalisations

CFT = Class Field Theory, HCFT = Higher CFT, HAT = Higher Adelic Theory,

CFT

Langlands Correspondences HCFT Anabelian Geometry

Higher Langlands Correspondences? HAT IUT

Some of these directions such as Anabelian Geometry, IUT, HAT and some of Langlands
Correspondences use geometrical arguments.
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Back to the root: CFT

CFT

SCFT GCFT

SCFT = special CFT

Using torsion/division points or values of appropriate functions at torsion points to generate finite
extensions of the base fields under investigation and to describe the Galois action on them.

Cyclotomic: Kronecker, Weber, Hilbert.

Using elliptic curves with CM: Kronecker, Weber, a relevant portion of Takagi’s work, ...

Using abelian varieties with CM: Shimura.

These theories are not extendable to arbitrary number fields. They are not functorial.

Hilbert Problem 12 was about extensions of SCFT to number fields, the best was achieved by
Shimura.

Local SCFT using Lubin–Tate formal groups works over any local field with finite residue field
and does not work over local fields with infinite perfect residue field.
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Back to the root: CFT

GCFT = general CFT

These theories follow very different conceptual patterns than SCFT.

The list of GCFTs for arithmetic fields includes:

Takagi 1920, the first work in GCFT with his general existence theorem and its applications;

Artin reciprocity map, whose full construction uses Chebotarev’s theorem;

Hasse, the use of the Brauer group in CFT, the first local CFT, local-to-global aspects;

Chevalley’s invention of idèles, local-to-global, the global reciprocity map as the product of the
local reciprocity maps, whose kernel contains the diagonal image of global elements.

Classical approaches to CFT are presented, among many sources, in Hasse’s
Klassenkörperbericht, and in Weil’s and Lang’s books.

Cohomological approaches: Artin–Tate, ...

Finding explicit formulas for the Hilbert pairing and its generalisations (Hilbert Problem 9) was
one of the ways to get more explicit information about the reciprocity map and to apply CFT.

Ivan Fesenko Higher adelic theory Como School, September 27 2021 5 / 37



Back to the root: CFT

GCFT = general CFT

These theories follow very different conceptual patterns than SCFT.

The list of GCFTs for arithmetic fields includes:

Takagi 1920, the first work in GCFT with his general existence theorem and its applications;

Artin reciprocity map, whose full construction uses Chebotarev’s theorem;

Hasse, the use of the Brauer group in CFT, the first local CFT, local-to-global aspects;
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Explicit GCFT

Post-cohomological and cohomologically-free theories: explicit and algorithmic,

Tate–Dwork, Hazewinkel, Neukirch, F

These theories:

� clarified and made explicit some of the key structures of CFT

� they are less dependent on torsion and they do not use the Brauer group

� they are explicit and algorithmic

� they are easy

� they really explain CFT.
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CFT mechanism

CFT mechanism discovered by Neukirch.

Start with an abelian topological group A endowed with a continuous action by a profinite group
G .

Think of G as the absolute Galois group Gk of a field k.

Assume (a) that there is a surjective homomorphism

deg: Gk → Ẑ.

Denote its kernel by Gk̃ .

Then for an open subgroup GK of Gk we get a surjective homomorphism

degK = |Gk : GKGk̃ |
−1deg: GK → Ẑ.

Any element of GK which is sent by degK to 1 ∈ Ẑ is called a frobenius element w.r.t. degK .
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Denote its kernel by Gk̃ .

Then for an open subgroup GK of Gk we get a surjective homomorphism

degK = |Gk : GKGk̃ |
−1deg: GK → Ẑ.
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Ivan Fesenko Higher adelic theory Como School, September 27 2021 7 / 37



CFT mechanism

Assume (b) that there is a homomorphism

v : Ak → Ẑ, v(Ak ) = Z or v(Ak ) = Ẑ

such that for open subgroups GK of Gk

v(NK/kA
GK ) = |Gk : GKGk̃ |v(Ak ).

Denote
AK := AGK , vK := |Gk : GKGk̃ |

−1v ◦NK/k : AK → Ẑ.

Extensions of K inside Kk̃ can be viewed as ’unramified’ extensions wrt (deg,v).

Call πK ∈ AK such that vK (πK ) = 1 a prime element of AK .

For a finite extension K of k and a finite Galois extension L/K and σ in its Galois group
choose any σ̃ ∈ G(Lk̃/K) such that

deg(σ̃) ∈ N≥1 and σ̃ |L = σ .
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such that for open subgroups GK of Gk

v(NK/kA
GK ) = |Gk : GKGk̃ |v(Ak ).

Denote
AK := AGK , vK := |Gk : GKGk̃ |

−1v ◦NK/k : AK → Ẑ.
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CFT mechanism

The pair (deg,v) defines an explicit reciprocity map for GL E GK ≤ Gk , G(L/K) = GK /GL,

ΨL/K : G(L/K)→ AGK /NL/KA
GL , σ 7→NΣ/KπΣ mod NL/KAL

where Σ is the fixed field of σ̃ and πΣ is a prime element of AΣ.

If appropriate axioms for A under the action of G (axioms of CFT) are satisfied, then

� ΨL/K is well defined, and it induces an isomorphism G(L/K)ab→ AK /NL/KAL,

� ΨL/K satisfies all standard functorial properties of CFT.

This CFT mechanism is purely group theoretical and does not depend on ring structures.

However, to verify the CFT axioms for concrete fields one has to use ring structures.
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CFT mechanism

In CFT of local fields with finite residue field one takes the maximal unramified extension of Qp

or the maximal constant extension as k̃/k; ΨK : K×→ G ab
K .

In CFT of global fields one takes the only Ẑ-subextension of the maximal abelian extension of Q
or the maximal constant extension as k̃/k; ΨK : A×K /K

×→ G ab
K .

Classical study of class formations aimed to derive CFT from as few axioms as possible.

The long term search for class formations can be interpreted as distinguishing purely monoid
theoretical aspects of CFT (CFT mechanism) from its ring theoretical aspects (proving axioms of
CFT).

Remark. In his explicit GCFT Neukirch was partially motivated by his work in anabelian geometry
of number fields.

Remark. Explicit GCFT does not involve H2 or the Brauer group.
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Anabelian geometry and IUT

Early work in anabelian geometry used CFT (or closely related theories) in

1D theory for global fields (Neukirch, Iwasawa, Ikeda, Uchida),

Neukirch’s CFT mechanism was influenced by his previous work in anabelian geometry.

Anabelian geometry for hyperbolic curves over number fields was proposed by Grothendieck and
pioneered by Nakamura, Tamagawa, Mochizuki.

Anabelian geometry includes

bi-anabelian geometry (restoring isomorphism classes of scheme theoretic objects) and

mono-anabelian geometry (restoring scheme theoretic objects).

These theories are group theoretical, algorithmic and explicit, features similarly to CFT
mechanism.

Powerful restoration results in absolute mono-anabelian geometry were established by Mochizuki
and applied in the IUT theory.

Watch Porowski’s talk for basic anabelian geometry.

Watch many talks of the 4 recent RIMS workshops on anabelian geometry and IUT
https://www.kurims.kyoto-u.ac.jp/~motizuki/project-2021-english.html.
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‘Pre-Takagi’ LC

Currently, the main arithmetic achievements in arithmetic LC are of special type only.

100 years after Takagi’s pioneering work that started GCFT and 50 years after the beginning of
LC we are still awaiting for results of general type in arithmetic LC.

Despite some partial success, most fundamental problems in arithmetic LC remain open.

In particular,
Shimura–Taniyama conjecture over arbitrary number fields is open,
functoriality is open,
purely local presentation of the local LC, even for GL(n) for all n, is open,
the full GL2(Q) case is open.

L. Lafforgue proved the equivalence between functoriality in LC and the existence of a certain
non-additive Fourier transforms satisfying a Poisson formula.

This reformulation asks for a definition of the Fourier transform on functional spaces for a general
reductive algebraic group where one cannot use the obvious relation of the general linear group to
matrix ring.

This group theoretical aspect in the absence of ambient ring structure reminds some aspects of
anabelian geometry.
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Linearity of LC

One can view LC as a linear theory over abelian CFT. Since it is a representation theory, LC
inevitably misses various important features of the full absolute Galois group that are not of linear
representation type.

For example, anabelian geometry uses the following two group theoretical properties of the
absolute Galois group of a number field or of its nonarchimedean completion: each of its open
subgroups is centre-free, each nontrivial normal closed subgroup H of any open subgroup, with
the property that H is topologically finitely generated as a group, is open. These properties are
not used in LC.

Question. Can the use of non-linear theories, HCFT and anabelian geometry, help with new
understanding of LC, including its expected development of general type?
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2D objects of HAT

There are several types of data associates to an integral normal 2D scheme S flat over Z or Fp

(surface):

� 2D global field: the function field K of S ;

� 2D local fields Kx ,y , x ∈ y ⊂ S , finite separable extensions of Qp((t)), R((t)), C((t)), Qp{{t}},
Fp((t1))((t2));

� 2D (semi-)local-global fields: the function field Ky of the completion of the local ring of a curve
y ⊂ S , Ky is a cdvf with global residue field and with a local parameter ty ;

� 2D (semi-)local-global rings Kx , the tensor product of K and the completion Ox of the local
ring of a point x ∈ S.

From these objects one produces 2D geometric adèles A⊂∏Kx,y, 2D subadèles B = ∏Ky ∩A and
2D subadèles C = ∏Kx ∩A.
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2D subadèles C = ∏Kx ∩A.

Ivan Fesenko Higher adelic theory Como School, September 27 2021 14 / 37



2D objects of HAT

Higher adelic theory (HAT) operates with six adelic objects on surfaces:

A A

C B B

K

Geometric adelic structure A is related to rank 1 local integral structure.

Self-duality of its additive group, endowed with appropriate topology, is stronger than Serre
duality and it implies the Riemann–Roch theorem on surfaces.

See talks by Czerniawska and Dolce on properties of 2D geometric adèles.

Another analytic/arithmetic adelic structure A is related to rank 2 local integral structure. It is
reflexive and not self-dual.

See below.
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HCFT

HCFT in characteristic zero was first produced by Kato and Kato–Saito, working with higher
Kummer theory for Milnor K -groups. These higher GCFT are not explicit.

A generalisation of Neukirch’s CFT mechanism and explicit higher GCFT was produced by F.

HCFT uses Milnor Kn-groups or even better their quotients K t
n = Kn/∩m≥1 mKn

One of key difficulties: for a finite Galois extension L/F of higher fields the homomorphism

Kn(F )→ Kn(L)G(L/F )

is in general neither injective nor surjective.

2D reciprocity maps: local ΨF : K t
2 (F )−→ G ab

F , global ΨK : K t
2 (A)/(K t

2 (B) +K t
2 (C))−→ G ab

K .

All known HCFT are GCFT.

Remark. Unlike 1D CFT, where geometry and arithmetic are essentially the same, HCFT is
separated from various geometrical issues.
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Zeta functions

The zeta function of a scheme X of finite type over Spec(Z)

ζX (s) = ∏
x∈X0

(1−|k(x)|−s)−1,

x runs through closed points of X , k(x) is the finite residue field of x .

The zeta function ζX (s) factorizes into the product of some auxiliary factors and several L-factors
or their inverses.

When the function field of X is of characteristic zero and X is two- or higher dimensional, very
little is understood about ζX (s).

Remark. One can compare the zeta function to a macro/commutative object and its L-factors to
a micro/non-commutative object.

HAT studies zeta functions via higher commutative zeta integrals unlike the study of L-functions
via non-commutative 1D zeta integrals in LC.
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Zeta functions of elliptic surfaces

Let E be an elliptic curve over a global field k,
and let E be a regular model: E → B proper flat, where B is the spectrum of the ring of integers
of k or a proper smooth curve over a finite field with function field k.

Then

ζE (s) = nE (s)ζE (s), ζE (s) =
ζk (s)ζk (s−1)

LE (s)
.

(where

nE (s) = ∏
b∈B0,1≤i≤nb

(1−|k(b)|ni ,b(1−s))−1

is the product of zeta functions of affine lines over finite fields, nb + 1 is the number of irreducible
componens of the fibre Eb, ni ,b are positive integers such that 1 + ∑1≤i≤nb ni ,b equals the number
mb of irreducible components in the geometric fibre of E over b.)
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Zeta functions of elliptic surfaces

The function ζE (s) was invented by Hasse and is sometimes called the Hasse–Weil zeta function
of E , it does not depend on the choice of a model E .

The numerator of ζE (s) is the product of the zeta functions in dimension one.
Its denominator is the L-function of E .

HAT studies the zeta function ζE directly, using commutative 2D methods which universally work
over any ground field k.

The Galois group at the background is Gal(K ab/K), K is the field of function of E , a 2D global
field.
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Re: 1D zeta function

Let k be a global field
(number field or function field of a curve over finite field)

The zeta function

ζk (s) = ∑
n≥1

an
ns

= ∏
p

(1−|k(p)|−s)−1.

The completed zeta function

ζ̂k (s) = ζk (s)Γk (s)

has an integral representation which in its adelic form is

∫
A×k

f (x)|x |sdµA×k
(x)

where f is a Bruhat–Schwarz function and | | is the module function on idèles.
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Re: 1D zeta function

Using adelic duality and 1D theta-formula (summation formula) Iwasawa and later Tate got

ζ̂k (s) = ξ (f ,s) + ξ (F (f ),1− s) + ω(f ,s),

where F (f ) is the transform of f , with the entire function ξ (f ,s) and the boundary term (in
characterstic 0)

ω(f ,s) =
∫ 1

0

∫
A1
k /k

×

∫
∂k×

(
−f (xγβ)xs +F (f )(x−1

γβ)xs−1
)
dµ(β)dµ(γ)dx/x .

The weak (the weakest topology in which every character is continuous) boundary ∂k× = k \k× is
just one point 0 and

ω(f ,s) = µ(A1
k/k

×)
∫ 1

0

(
−f (0)xs +F (f )(0)xs−1

)
dx/x

a rational function of x symmetric with respect to f →F (f ),s→ 1− s.

This 1D adelic method proves the compactness of A1
k/k

×, i.e. the finiteness of the class number,
and easily implies Dirichlet’s unit theorem.
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HAT and elliptic curves

Aims of HAT in the case of arithmetic surfaces E :

understand ζE (and hence LE ) via working with a higher zeta integral on 2D adelic spaces using
adelic dualities, and then apply to the study of main open problems about ζE . Some of the

difficulties:

(1) 2D local fields Kx ,y are not locally compact spaces, there is no nontrivial real valued
translation invariant measure on them,

(2) the structure of K t
2 (Kx ,y ) is not known in general.

(3) arithmetic and geometric issues are separated from each other.

Ways to address them:

→ (1) locally compactness is not so important, we can work with R((X ))-valued translation
invariant measure on Kx ,y and K×x ,y ;

→ (2) we can work with (K1×K1)(Ox ,y ) from which there is a surjective homomorphism to
K t

2 (Kx ,y ).

→ (3) arithmetic and geometry adelic structures are intertwined at the level of their multiplicative
groups and the zeta integral provides a bridge between them.
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Two integral structures of 2D local fields

Let F be a 2D local field whose residue field is a 1D nonarchimedean local field.

Denote by O the ring of integers of F with respect to its discrete valuation of rank 1 and by t2 a
local parameter of F .

E.g. OQp((t2)) = Qp [[t2]].

Denote by O the ring of integers with respect to any of its discrete valuations of rank 2.

O equals the preimage of the ring of integers of the residue field.

E.g. OQp((t2)) = Zp + t2Qp [[t2]].

This integral structure O is very much different from the integral structure O.

O is crucial for analysis on 2D local fields and for the study of zeta integrals.

Denote by t1 a lift of a local parameter of the residue field.

Then O = ∪j∈Zt j1O.
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Two integral structures of 2D local fields

We have the following 2D picture of O-submodules of F :

∪j t2t
j
1O = t2O · · · ⊃ t2t

−1
1 O ⊃ t2O ⊃ t2t1O ⊃ ·· ·

∪j t j1O = O · · · ⊃ t−1
1 O ⊃ O ⊃ t1O ⊃ ·· ·

∪j t−1
2 t j1O = t−1

2 O · · · ⊃ t−1
2 t−1

1 O ⊃ t−1
2 O ⊃ t−1

2 t1O ⊃ ·· ·
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Measure and integration on 2D local fields

Let A be the ring of sets generated by distinguished sets a+ t i2t
j
1O.

Define a function
µ(a+ t i2t

j
1O) = X iq−j , q = |O : t1O|.

Theorem

µ is extended to a well defined finitely additive translation invariant map on A taking values in
R((X )).

Moreover, for countably many disjoint An ∈A such that ∪An ∈A and such that µ(An)
absolutely converges in R((X )) we get µ(A) = ∑ µ(An).

Unlike the classical case, this measure is not compatible with 2D topology, and various classical
methods are not applicable.

This higher Haar measure and integration theory is compatible with the measure and integration
on the residue field.

Extensions of this theory to algebraic groups: Morrow (GLn), Waller (GLn, SLn), and a model
theoretical work of Hrushovski–Kazhdan in some partial cases.
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Two adelic structures in dimension 2

For a curve y define OAy as a subring of ∏x∈y Ox ,y such that for every positive integer r the
(x ,y)-component is in Ox +Ox ,y t

r
y for almost all closed points x of y .

Define OAy = ∪n∈Ztny OAy .

Define OAy = OAy ∩∏x∈y Ox ,y .

In equal characteristic,

Ay , OAy , OAy can be identified with

Ak(y)((ty )), Ak(y)[[ty ]], OAk(y) + tyAk(y)[[ty ]] respectively,

where OAk(y) are integral adèles.

Define geometric adèles A as the restricted product of Ay , for all curves y , with respect to OAy .

For all fibres and finitely many horizontal curves of E , define analytic adèles A as the restricted
product of OAy , for all curves y , with respect to OAy .
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2D Fourier transform

Duality. Fix a nontrivial continuous character ψ : F → C1.
Then every nontrivial continuous character of F is of the form x → ψ(ax) for some a ∈ F .

For an integrable function f on F define its Fourier transform

F (f ) =
∫

f (α)ψ(αβ)dµ(α).

Then
F 2(f )(α) = f (−α).

Remark. The Fourier transform on 2D local fields R((t)), C((t)) has various features similar to
those of the Feynman path integral.

Higher Haar measure, integration and Fourier transform extends from 2D local fields to analytic
adèles but not to geometric adèles.

Remark. However, there is a way to run selective integration on geometric adèles, see
Czerniawska’s talks.
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Remark. However, there is a way to run selective integration on geometric adèles, see
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Local triangle diagramme

In the explicit HCFT a major role is played by a surjective homomorphism

tx ,y : O×x ,y ×O×x ,y → K t
2 (Kx ,y ),

(t i1u,t
j
1v) 7→ (i + j){t1,t2}+{t1,u}+{v ,t2}, u,v ∈O×x ,y .

Denote by VK t
2 (Kx ,y ) the image of O×x ,y ×O×x ,y . We have a commutative diagramme

O×x ,y ⊗K×x ,y/O
×
x ,y

�� ))
O×x ,y ×O×x ,y/O

×
x ,y

// K t
2 (Kx ,y )/VK t

2 (Kx ,y ).

The surjective diagonal map is induced by the symbol map; the vertical map sends (α,tm2 ) to
(αm,1); the composition of the first and second horizontal maps is induced by tx ,y .
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Adelic triangle diagramme

We get the following adelic version of the commutative diagramme above

A×⊗A×S ′/VA×S ′

�� ))
A××A×/VA× // K t

2 (A)/VK t
2 (A).

Here VA× = A× ∩∏O×x ,y , VA× = A× ∩∏O×x ,y , and VK t
2 (A) is the image of VA××VA×.

This diagramme intertwines the multiplicative groups of the adelic structures A and A.
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Zeta integral

The general form of 2D zeta (unramified) integral is

ζ (f , | |s) =
∫
A××A×

f (α) |α|s dµ(α)

where f is a 2D Bruhat–Schwartz function (such as ⊗charOx ,y×Ox ,y ),

µ is the (appropriately normalised) measure (tensor product of the local measures),

| | is the module function associated to µ (|a|= µ(aD)/µ(D)).

Theorem

On Re(s) > 2 the zeta integral ζ (f , | |s) equals the product of ζE (s)2

times an exponential factor which takes into account the conductor of the model E ,
times finitely many horizontal zeta integrals.

The zeta integral is a holomorphic function on that half plane.

This theorem essentially gives an integral representation of ζE (s)2.
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2D theta formula

Define analytic adèles B as the intersection of the product of semi-local-global fields Ky with A.

One gets translation invariant measure and integration on B××B× and its weak boundary
∂B××B×.

These measure are not the lifts of the discrete measures on the product of the function fields of
the curves, there are rescaled versions, in some analogy to Tamagawa measure.

Theorem

For a centrally normalized f its transform can be written

F (f )(α) = f (ν
−1

α), |ν |= 1.

We get ∫
B××B×

(
f (αβ)−|α|−1 f (ν

−1
α
−1

β)
)
dµ(β)

=
∫

∂ (B××B×)

(
|α|−1 f (ν

−1
α
−1

β)− f (αβ)
)
dµ(β).
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Radial coordinates computation of the zeta integral

Using the filtration A××A× > (A××A×)1 > B××B× where (A××A×)1 is the kernel of the
module on A××A×, and the 2D theta formula we obtain

Theorem

On the half plane Re(s) > 2 the zeta integral is the sum of three terms

ζ (f , | |s) = ξ (s) + ξ (2− s) + ω(s).

The function ξ (s) extends to an entire function on the complex plane.

The boundary term (in characteristic 0) is

ω(s) =
∫ 1

0
h(x)xs−2dx/x

where

h(x) =
∫

(A××A×)1/B××B×

(∫
∂ (B××B×)

(
x2 f (xγβ)− f (x−1

ν
−1

γ
−1

β)
)
dµ(β)

)
dµ(γ).

The function h satisfies h(x−1) =−x−2h(x).
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HAT and meromorphic continuation and FE of the zeta function

Which analytic shape should take the function h so that its transform has meromorphic
continuation and FE?
For which odd functions their Laplace transform is a symmetric function?

Definition

Let X be a space of complex valued functions on the real line in which the Hahn-Banach theorem
holds.

A function g ∈ X is called X -mean-periodic if it satisfies one of the equivalent conditions:

there exists a closed proper linear subspace of X which contains all translates of g ;

g is a solution of a homogeneous convolution equation g ∗ τ = 0 where τ is a non-zero element in
the dual space of X .

If every translation invariant subspace of X is generated by its finite dimensional translation
invariant subspaces, then every mean-periodic function g can be approximated by an appropriately
grouped series of exponential polynomials each of which belongs to the closure of the space
generated by translations of g . Such series of exponential polynomials generalise Fourier series.

X -mean-periodic functions were studies by Delsarte, Schwartz, Kahane, Lax, Platonov and others.
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Which analytic shape should take the function h so that its transform has meromorphic
continuation and FE?
For which odd functions their Laplace transform is a symmetric function?

Definition

Let X be a space of complex valued functions on the real line in which the Hahn-Banach theorem
holds.

A function g ∈ X is called X -mean-periodic if it satisfies one of the equivalent conditions:

there exists a closed proper linear subspace of X which contains all translates of g ;

g is a solution of a homogeneous convolution equation g ∗ τ = 0 where τ is a non-zero element in
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HAT and meromorphic continuation and FE of the zeta function

Theorem

Assume that the function
H(t) = h(e−t)

is mean-periodic in the space Xexp of smooth functions on R of exponential growth (when K is of
characteristic zero).

Then the boundary term and the zeta integral and hence ζE (s) and LE (s) have meromorphic
continuation and satisfy the functional equation wrt s→ 2− s.

Remark. In a joint work with Ricotta and Suzuki it is shown that if the zeta function ζE (s)
extends to a meromorphic function on the complex plane with the expected (conjectural in
general) analytic shape and satisfies the functional equation, then H(t) is mean-periodic in the
space Xexp.
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HAT and GRH

Assuming mean-periodicity of H, the study of the poles of the zeta integral is the study of the
Carleman spectrum of H.

Theorem

Assume that H is Xexp-mean-periodic.

If the fourth derivative of H keeps its sign near infinity
and if the zeta function does not have real poles in the strip Re(s) ∈ (1,2)

then the zeta function does not have complex poles in the same strip.

Remark. Suzuki proved that if LE has a meromorphic continuation and functional equation, the
GRH holds for LE , and all nonreal zeros of L on the critical line are of multiplicity not greater
than 1+ the multiplicity of the real zero of L at s = 1, plus some expected technical condition
holds, then H ′′′′(t) keeps it sign near infinity.

Remark. Note the fundamental difference with the 1D case. It is easier to study analytically the
location of poles (in 2D) than the location of zeros (in 1D).
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HAT and the Tate–BSD conjecture

To compute the local behaviour of ζE (s) at s = 1 assume that the zeta function has a
meromorphic continuation and FE.

Information about
∫

∂ (B××B×) helps to compute the order of the pole of the boundary term ω(s)

(and hence the zeta function) at s = 1.

Partial information about ∂ (B××B×) modulo units can be obtained from the adelic triangle
diagramme (motivated by explicit HCFT) and the object B×⊗B×/(B× ∩VA×) in its vertex.

The quotient of B×/(B× ∩VA×) by the image of K× and by p∗Pic(B), where p : E → B, is a
finitely generated group with the number of its generators closely related to the rank of E(k).

From the study of geometric adèles related to adelic Riemann–Roch theorem, including
topological properties of geometric adèles,

one obtains a factorisation of the boundary term near s = 1 into the product of finitely many
(their number is related to the geometric rank) squares of 1D zeta integrals each of which has a
pole of order 1 as s = 1,

thus getting new tools to link analytic ords=1ζE (s) with geometric χ(O×E ).
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From the study of geometric adèles related to adelic Riemann–Roch theorem, including
topological properties of geometric adèles,
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List of open problems in HAT

List of open problems in HAT is available from

https://ivanfesenko.org/wp-content/uploads/2021/10/prad-1.html

Ivan Fesenko Higher adelic theory Como School, September 27 2021 37 / 37

https://ivanfesenko.org/wp-content/uploads/2021/10/prad-1.html

	CFT and its generalisations
	Back to the root: CFT
	Back to the root: CFT
	CFT mechanism
	CFT mechanism
	Anabelian geometry
	`Pre-Takagi' LC
	2D objects of HAT
	HCFT
	Zeta functions
	Classical 1D theory of Iwasawa and Tate
	HAT and elliptic curves
	Measure and integration on 2D local fields
	Two adelic structures in dimension 2
	The triangle diagrammes
	Higher zeta integral
	HAT and meromorphic continuation and FE of the zeta function
	HAT and GRH
	HAT and the Tate–BSD conjecture

