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The first Chapter is a fast introduction into basic features of algebraic number fields.

The second Chapter is the study of complete discrete valuations fields. The material is more
detailed in several aspects than in other textbooks. Included are topics on Artin—Schreier exten-
sions of local fields, a different approach the Hasse—Herbrand function that uses the behaviour of
the norm map, and Fontaine—Wintenberger’s theory of fields of norms. This Chapter ends with a
property of local fields that leads to abstract class field theory applicable not only to local fields
but to global fields and higher fields as well.

Class field theory is the main achievement of algebraic number theory of the 20th century. The
third Chapter presents abstract class field theory and its applications to derive class field theory
for local fields with finite residue field and for global fields of characteristic zero and of positive
characteristic. This presentation is believed to be the shortest and easiest among many exposi-
tions of class field theory. Such tools in other presentations as central division algebras or Galois
cohomology groups or formal Lubin—Tate groups are not used. The approach to abstract class
field theory in this part follows Neukirch’s approach. The Chapter also includes a presentation of
Iwasawa-Tate’s theory of zeta integrals and its applications. The reader can find remarks on more
recent theories, three generalisations of class field theory: anabelian geometry, higher class field

theory and Langlands correspondences.

Spotted mistakes in several main previous textbooks on class field theory are corrected when

the relevant statement and its proof is included in this text.

Exercises are included in the fourth Chapter.

A reference in Chapter n to an assertion in Chapter m does not state the number m explicitly
if and only if m = n.

This course was delivered in Tsinghua University in 2022-2023 and in Westlake University in
2024-2025.

The prerequisites for the first Chapter are very basic number theory and basic commutative
algebra.

This work is licensed under a
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CHAPTER 1

Algebraic Number Fields

This chapter presents basic features of algebraic number fields. Chapter 3 contains further

results obtained via the adelic method.

A prerequisite introductory course on commutative algebra is available from

1. Algebraic Prerequisites

1.1. Some basics.

1.1.1. DEFINITION. For a field F define the ring homomorphism Z — F by n+ n- 1p. Its
kernel [ is an ideal of Z such that Z /I is isomorphic to the image of Z in F. The latter is an integral
domain, so / is a prime ideal of Z, i.e. I = 0 or I = pZ for a prime number p. In the first case F' is

said to have characteristic 0, in the second — characteristic p.

DEFINITION. Let F be a subfield of a field L. An element a € L is called algebraic over F if
one of the following equivalent conditions is satisfied:

(i) f(a) = 0 for a non-zero polynomial f(X) € F[X];

(ii) elements 1,a,a>,... are linearly dependent over F;

(iii) F-vector space F[a] = {Y a;a’ : a; € F} is of finite dimension over F;

(iv) Fla] = F(a).

Proof. (i) implies (if): if f(X) =¥Lo ciX', co,cn # 0, then Y. c;a’ = 0.
(ii) implies (iii): if Y cja’ = 0, ¢, # 0, then @" = — Y ¢, 'cid,

n—1 n—2 n—1
a'=a-a"=-Y ¢;'cia ==Y ¢, cid +¢; et Y ¢ eid

etc.

(iii) implies (iv): for every b € F[a] we have F[b] C F|[a], hence F[b] is of finite dimension
over F. Soif b ¢ F, there are d; such that Y.d;b' = 0, and dy # 0. Then 1/b = —d, ' Y7 d;b'~!
and hence 1/b € F[b] C Fla].

(iv) implies (i): if 1/a is equal to ¥ e;d’, then a is a root of ¥ e;X 1 —1. 0O

For an element a algebraic over F denote by

fa(X) € FIX]

the monic polynomial of minimal degree such that f,(a) = 0.
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This polynomial is irreducible: if f, = gh, then g(a)h(a) =0, so g(a) =0 or h(a) = 0, con-
tradiction. It is called the monic irreducible polynomial of a over F .

For example, f,(X) is a linear polynomial if and only if a € F.

LEMMA. Define a ring homomorphism F[X| — L, g(X) — g(a). Its kernel is the principal
ideal generated by f,(X) and its image is F (a), so

FIX]/(fa(X)) = F(a).

Proof. The kernel consists of those polynomials g over F which vanish at a. Using the division
algorithm write g = f,h + k where k = 0 or the degree of k is smaller than that of f,. Now
k(a) = g(a) — fu(a)h(a) = 0, so the definition of f, implies k = 0 which means that f, divides
g Il

DEFINITION. A field L is called algebraic over its subfield F if every element of L is algebraic

over F. The extension L/F is called algebraic.

DEFINITION. Let F be a subfield of a field L. The dimension of L as a vector space over F' is
called the degree |L : F| of the extension L/F.

If a is algebraic over F then |F(a) : F| is finite and it equals the degree of the monic irreducible
polynomial f;, of a over F.

Transitivity of the degree |L: F| = |L: M||M : F| follows from the observation: if o; form a
basis of M over F and f; form a basis of L over M then ¢;f3; form a basis of L over F.

Every extension L/F of finite degree is algebraic: if B € L, then |F(B) : F| < |L: F| is finite,
so by (iii) above f3 is algebraic over F'. In particular, if ¢ is algebraic over F then F(c) is algebraic
over F.

If a, B are algebraic over F then the degree of F(a, ) over F does not exceed the product
of finite degrees of F(a)/F and F(fB)/F and hence is finite. Thus all elements of F(a, ) are
algebraic over F.

In particular, for two algebraic over F non-zero elements ¢, 3 the elements o+ 3, o« — 3, o3,
af~! are algebraic over F.

An algebraic extension F({a;}) of F is the composite of extensions F(a;), and since g; is

algebraic |F(a;) : F| is finite, thus every algebraic extension is the composite of finite extensions.

1.1.2. DEFINITION. An extension F of Q of finite degree is called an algebraic number field,
the degree |F : Q)| is called the degree of F.

EXAMPLES.
1. Every quadratic extension L of Q can be written as Q(y/e) for a square-free integer e.

Indeed, if 1, « is a basis of L over QQ, then 0% = a; + apo with rational a;, so « is a root of
the polynomial X% — a,X — a; whose roots are of the form ay/2 ++/d/2 where d € Q is the

discriminant. Write d = f/g with integer f,g and notice that Q(v/d) = Q(v/dg?) = Q(/fg).
Obviously we can get rid of all square divisors of fg without changing the extension Q(/fg).
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2. Cyclotomic extensions Q" = Q(&,,) of Q where {,, is a primitive mth root of unity. If p is
prime then the monic irreducible polynomial of §, over Q is XP ! +---+1= (X’ —1)/(X — 1)
of degree p — 1.

One way to show the irreducibility over Q of this polynomial is to make change of variable
Y = X + 1 and show that the polynomial in Y is irreducible over Q (applying the Eisenstein’s
criteria of irreducibility).

1.1.3. DEFINITION. Lettwo fields L,L’ contain a field F. A homo(iso)morphism ¢: L — L’
such that |F is the identity map is called an F-homo(iso)morphism of L into L’.

The set of all F-homomorphisms from L to L’ is denoted by Homg (L, L’). Notice that every
F-homomorphism is injective: its kernel is an ideal of " and 1 does not belong to it, so the ideal
is the zero ideal. In particular, o (L) is isomorphic to L.

The set of all F-isomorphisms from L to L’ is denoted by Isog(L,L").

Two elements a € L,a’ € L are called conjugate over F if there is a F-homomorphism & such
that 6(a) = d'. If L, L’ are algebraic over F and isomorphic over F, they are called conjugate over
F.

LEMMA.

(1) Any two roots of an irreducible polynomial over F are conjugate over F.

(2) An element d' is conjugate to a over F if and only if fy = f,.

(3) The polynomial f,(X) is divisible by [[(X — a;) in L|X|, where a; are all distinct conjugate
to a elements over F, L is the field F ({a;}) generated by a; over F.

Proof. (1) Let f(X) be an irreducible polynomial over F' and a,b be its roots in a field extension
of F. Then f, = f;, = f and we have an F-isomorphism

F(a) = F[X]/(fu(X)) = FIX]/(/s(X)) = F(b), a—b
and therefore a is conjugate to b over F.

(2) 0=o0f,(a) = fu(ca) = fu(d"), hence f, = fy. If f, = fu, use (i).
(3) If a; is a root of f, then by the division algorithm f,(X) is divisible by X —@; in L[X]. O

DEFINITION. For a field F define the ring homomorphism

7 — F, n—n-lf.

Its kernel [ is an ideal of Z such that Z/I is isomorphic to the image of Z in F. The latter is an
integral domain, so / is a prime ideal of Z, i.e. I = 0 or [ = pZ for a prime number p. In the first

case F is said to have characteristic 0, in the second — characteristic p.

1.1.4. DEFINITION. A field is called algebraically closed if it does not have algebraic exten-

sions.

THEOREM. (without proof) Every field F has an algebraic extension C which is algebraically
closed. The field C is called an algebraic closure of F. Every two algebraic closures of F are

isomorphic over F.
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EXAMPLE. The field of rational numbers Q is contained in algebraically closed field C. The
maximal algebraic extension Q“ of Q is obtained as the subfield of complex numbers which con-
tains all algebraic elements over Q. The field Q is algebraically closed: if a € C is algebraic
over Q¢ then it is a root of a non-zero polynomial with finitely many coefficients, each of which
is algebraic over Q. Therefore « is algebraic over the field M generated by the coefficients. Then
M(a)/M and M /Q are of finite degree, and hence « is algebraic over Q, i.e. belongs to Q“. The
degree |Q“ : Q| is infinite, since

Q" QI >1Q(5): Ql=p—1

for every prime p.
The field Q is is much smaller than C, since its cardinality is countable whereas the cardinal-

ity of complex numbers is uncountable).

Everywhere below we denote by C an algebraically closed field containing F.
Elements of Homg(F(a),C) are in one-to-one correspondence with distinct roots of f,(X) €
F[X]: for each such root a;, as in the proof of (i) above we have o: F(a) — C, a — a;; and

conversely each such 6 € Homp (F (a),C) maps a to one of the roots a;.
1.2. Galois extensions.

1.2.1. DEFINITION. A polynomial f(X) € F[X] is called separable if all its roots in C are
distinct.

Recall that if @ is a multiple root of f(X), then f'(a) = 0. So a polynomial f is separable if
and only if the polynomials f and f’ don’t have common roots.

LEMMA. Irreducible polynomials over fields of characteristic zero and irreducible polynomi-

als over finite fields are separable polynomials

Proof. 1f f is an irreducible polynomial over a field of characteristic zero, then its derivative f” is
non-zero and has degree strictly smaller than f; and so if f has a multiple root, than a g.c.d. of f
and f’ would be of positive degree strictly smaller than f which contradicts the irreducibility of f.

For the case of irreducible polynomials over finite fields see section 1.3. U

DEFINITION. Let L be a field extension of F'. An element a € L is called separable over F if
fa(X) is separable. The extension L/F is called separable if every element of L is separable over
F.

EXAMPLE. Every algebraic extension of a field of characteristic zero or a finite field is sepa-

rable.

1.2.2. LEMMA. Let M be a field extension of F and L be a finite extension of M. Then every
F-homomorphism ¢ : M — C can be extended to an F-homomorphism ¢’: L — C.

Proof. Leta € L\M and f,(X) =Y. c;X' be the minimal polynomial of @ over M. Then (o f,)(X) =
Y o (c;)X"is irreducible over oM. Let b be its root. Then 6 f, = f;,. Consider an F-homomorphism
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¢: M[X] — C, ¢(Ya;X') = Y o(a;)b'. Its image is (6M)(b) and its kernel is generated by
fa- Since M[X]/(fo(X)) = M(a), ¢ determines an extension 6”: M(a) — C of o. Since |L:
M(a)| < |L: M|, by induction 6" can be extended to an F-homomorphism ¢’: L — C such that
o'lu=o. O

1.2.3. THEOREM. Let L be a finite separable extension of F of degree n. Then there exist
exactly n distinct F-homomorphisms of L into C, i.e. |Homp(L,C)| = |L: F]|.

Proof. The number of distinct F'-homomorphisms of L into C is < n is valid for any extension of
degree n. To prove this, argue by induction on |L : F| and use the fact that every F-homomorphism
0: F(a) — C sends a to one of roots of f,(X) and that root determines ¢ completely.

To show that there are n distinct F-homomorphisms for separable L/F consider first the case
of L = F(a). From separability we deduce that the polynomial f,(X) has n distinct roots a; which
give n distinct F'-homomorphisms of L into C: a — a;.

Now argue by induction on degree. For a € L\ F consider M = F(a). There are m = |M : F|
distinct F-homomorphisms o; of M into C. Let 6/: L — C be an extension of o; which exists
according to 1.2.2. By induction there are n/m distinct F(0;(a))-homomorphisms 7;; of o](L)
into C. Now T;;j 0 0] are distinct F-homomorphisms of L into C. O

1.2.4. PROPOSITION. Every finite subgroup of the multiplicative group F* of a field F is

cyclic.

Proof. Denote this subgroup by G, it is an abelian group of finite order. From the standard theorem

on the stucture of finitely generated abelian groups we deduce that
G=Z/mZLZ&- - -&L/mL

where m divides m,, etc. We need to show that r =1 (then G is cyclic). If » > 1, then let a prime
p be a divisor of m. The cyclic group Z/m;Z has p elements of order p and similarly, Z/m,Z has
p elements of order p, so G has at least p? elements of order p. However, all elements of order p
in G are roots of the polynomial X? — 1 which over the field F' cannot have more than p roots, a

contradiction. Thus, r = 1. O

1.2.5. THEOREM. Let F be a field of characteristic zero or a finite field. Let L be a finite field

extension of F. Then there exists an element a € L such that L = F (a) = Fa].

Proof. If F is of characteristic 0, then F is infinite. By 1.2.3 there are n = |L : F| distinct F-
homomorphisms 6;: L — C. Put V;; = {a € L: c;(a) = 6j(a)}. Then V;; are proper F-vector
subspaces of L for i # j of dimension < n, and since F is infinite, there union U, ;V;; is different
from L. Then there is a € L\ (UV;;). Since the set {o;(a)} is of cardinality n, the minimal
polynomial of a over F has at least n distinct roots. Then |F(a): F| > n = |L: F| and hence
L=F(a).

If F is finite, then L* is cyclic by 1.2.4. Let a be any of its generators. Then L = F(a). 0
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1.2.6. DEFINITION. An algebraic extension L of F (inside C) is called the splitting field of
polynomials f; if L= F({a;;}) where g;; are all the roots of f;.
An algebraic extension L of F is called a Galois extension if L is the splitting field of some

separable polynomials f; over F.

EXAMPLE. Let L be a finite extension of F such that L = F (a). Then L/F is a Galois extension
if the polynomial f,(X) of a over F has deg f, distinct roots in L.

So quadratic extensions of Q and cyclotomic extensions of (Q are Galois extensions.

1.2.7. LEMMA. Let L be the splitting field of an irreducible polynomial f(X) € F[X]. Then
o (L) = L for every o € Homg(L,C).
Proof. o permutes the roots of f(X). Thus, 6(L) = F(o(a1),...,0(a,)) = L. O

1.2.8. THEOREM. A finite extension L of F is a Galois extension if and only if 6(L) = L
for every 6 € Homg(L,C) and |Homp(L,L)| = |L: F|. The set Homp(L,L) equals to the set
Isor (L,L) which is a finite group with respect to the composite of field isomorphisms. This group
is called the Galois group Gal(L/F) of the extension L/F.

Proof. Sketch. Let L be a Galois extension of F'. The right arrow follows from the previous
proposition and properties of separable extensions. On the other hand, if L = F({b;}) and 6(L) =
L for every o € Homg(L,C) then o(b;) belong to L and L is the splitting field of polynomials
fv;(X). If |[Homp(L,L)| = |L : F| then one can show by induction that each of f;, (X) is separable.

Now suppose we are in the situation of 1.2.5. Then L = F(a) for some a € L. L is the
splitting field of some polynomials f; over F, and hence L is the splitting field of their product.
By 1.2.7 and induction we have 6L = L. Then L = F(a;) for any root g; of f,, and elements of
Hompg (L, L) correspond to a — a;. Therefore Homp(L,L) = Isog(L,L). Its elements correspond

to some permutations of the set {a;} of all roots of f,(X). 0

1.2.9. THEOREM. (without proof) Let L/ F be a finite Galois extension and M be an interme-
diate field between F and L. Then L/M is a Galois extension with the Galois group

Gal(L/M) = {c € Gal(L/F) : o[y = idy}.

For a subgroup H of Gal(L/F) denote
"={xeL:o(x)=x forallocH}.
This set is an intermediate field between L and F.

1.2.10. THEOREM. Main theorem of Galois theory (without proof)

Let L/F be a finite Galois extension with Galois group G = Gal(L/F).

Then H « L™ is a one-to-one correspondence between subgroups H of G and subfields of L
which contain F. The inverse map is given by M — Gal(L/M) = H.

Normal subgroups H of G correspond to Galois extensions M /F and

Gal(M/F) = G/H.
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1.3. Finite fields.

Every finite field F' has positive characteristic, since the homomorphism Z — F' is not injec-
tive. Let F' be of prime characteristic p. Then the image of Z in F can be identified with the finite
field F,, consisting of p elements. If the degree of F/IF, is n, then the number of elements in F
is p". By 1.2.4 the group F* is cyclic of order p” — 1, so every non-zero element of F is a root
of the polynomial X”"~! — 1. Therefore, all p" elements of F are all p" roots of the polynomial
fu(X) = XP" —X. The polynomial f, is separable, since its derivative in characteristic p is equal
to p"XP'~! —1 = —1. Thus, F is the splitting field of f, over F,. We conclude that F/F, is a
Galois extension of degree n = |F : F,|.

LEMMA. The Galois group of F /F, is cyclic of order n: it is generated by an automorphism
¢ of F called the Frobenius automorphism:

O(x)=x" forallx€eF.

Proof. ¢"(x) = x”" = x for all x € F if and only if n|m. O

On the other hand, for every n > 1 the splitting field of f, over I, is a finite field consisiting
of p" elements. Thus,

THEOREM. For every n there is a unique (up to isomorphism) finite field ¥ ,;» consisting of p"
elements; it is the splitting field of the polynomial f,(X) = X?" — X. The finite extension Iy [T p
is a Galois extension with cyclic group of degree m generated by the Frobenius automorphism
O x> xP".

LEMMA. Let g(X) be an irreducible polynomial of degree m over a finite field F . Then g(X)
divides fum(X) and therefore is a separable polynomial.

Proof. Let a be aroot of g(X). Then Fp:(a)/F is of degree m, so F,n(a) = Fm. Since a is a
root of f,,(X), g divides f,. The latter is separable and so is g. O

2. Integrality

2.1. Integrality over rings.
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2.1.1. DEFINITION—PROPOSITION. Let B be a ring and A its subring.

An element b € B is called integral over A if it satisfies one of the following equivalent condi-
tions:

(i) there exist a; € A such that f(b) = 0 where f(X) = X" +a, (X" ' +---+ao;

(ii) the subring of B generated by A and & is an A-module of finite type;

(iii) there exists a subring C of B which contains A and b and which is an A-module of finite

type.

Proof. ()=(ii): note that the subring A[b] of B generated by A and b coincides with the A-module
M generated by 1,...,b""!. Indeed,

bn+j — —Clobj—“'—b’1+j_l

and by induction b/ € M.

(i1)=- (iii): obvious.

(iii)=(i): let C = cjA+---+cpA. Then be; = ¥ a;jcj, so ¥ ;(6;b — a;j)c; = 0. Denote by d
the determinant of M = (8;;b —a;;). Note that d = f(b) where f(X) € A[X] is a monic polynomial.
From linear algebra we know that dE = M*M where M* is the adjugate matrix to M and E is the
identity matrix of the same order of that of M. Denote by ¢ the column consisting of ¢;. Now we
get M€ = 0 implies M*M % = 0 implies dE¢ = 0 implies d¢" = 0. Thus dc; =0 forall 1 < j <m.
Every c¢ € C is a linear combination of ¢;. Hence dc = 0 for all ¢ € C. In particular, d1 = 0, so
f(b)=d=0. O

EXAMPLES.

1. Every element of A is integral over A.

2. If A, B are fields, then an element b € B is integral over A if and only if b is algebraic over
A.

3. Let A=7, B= Q. A rational number r/s with relatively prime r and s is integral over
Z if and only if (r/s)" +a,_1(r/s)" ' +--- +ag = 0 for some integer @;. Multiplying by s" we
deduce that s divides ", hence s = 1 and r/s € Z. Hence integral in Q elements over Z are just
all integers.

4. If B is a field, then it contains the field of fractions F of A. Let 6 € Hompg (B, C) where C is
an algebraically closed field containing B. If b € B is integral over A, then o (b) € 6(B) is integral
over A.

5. If b € Bis aroot of a non-zero polynomial f(X) = a,X" +--- € A[X], then @~ ! f(b) = 0 and
gla,b) =0 for g(X) =X"+a, (X" ' +---+aay, g(a,X) = a* ' f(X). Hence a,b is integral
over A. Thus, for every algebraic over A element b of B there is a non-zero a € A such that ab is

integral over A.

2.1.2. COROLLARY. Let A be a subring of an integral domain B. Let I be a non-zero A-
module of finite type, I C B. Let b € B satisfy the property bl C 1. Then b is integral over A.
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Proof. Indeed, as in the proof of (iii) = (i) we deduce that dc = 0 for all ¢ € I. Since B is an
integral domain, we deduce that d =0, so d = f(b) = 0. O

2.1.3. PROPOSITION. Let A be a subring of a ring B, and let b; € B be such that b; is integral
over Alby,...,bi_1| for all i. Then A[by,...,by] is an A-module of finite type.

Proof. Induction on n. The case of n = 1 is the previous proposition. If C = A[by,...,b,_1] is an
A-module of finite type, then C = Y | ¢;A. Now by the previous proposition C[b,] is a C-module
of finite type, so C[b,] = Y:_, d;C. Thus, C[b,] = Y. jdjciA is an A-module of finite type. O

2.1.4. COROLLARY 1. Ifby,b; € B are integral over A, then by +by,by —by,b1b; are integral

over A.

COROLLARY 2. The set B' of elements of B which are integral over A is a subring of B

containing A.

DEFINITION. B’ is called the integral closure of A in B. If A is an integral domain and B is its
field of fractions, B’ is called the integral closure of A.

A ring A is called integrally closed if A is an integral domain and A coincides with its integral
closure in its field of fractions.

A ring B is said to be integral over A if every element of B is integral over A. If B is of
characteristic zero, its elements integral over Z are called integral elements of B.

Let F be an algebraic number field. The integral closure of Z in F is called the ring OF of
(algebraic) integers of F.

From Example 5 in 2.1.1 it follows that the fraction field of OF is F.

EXAMPLES.

1. A UFD is integrally closed. Indeed, if x = a/b with relatively prime a,b € A is a root of
polynomial f(X)=X"+---+ag € A[X], then b divides ", so b is a unit of A and x € A.
In particular, the integral closure of Z in Q is Z.

2. OF is integrally closed (see below in 2.1.6).

2.1.5. LEMMA. Let A be integrally closed and F be its fraction field. Let B be a field. Let
b € B be algebraic over F. Then b is integral over A if and only if the monic irreducible polynomial
fp(X) € F[X] over F has coefficients in A.

Proof. Let L be a finite extension of F which contains B and all 6(b) for all F-homomorphisms
from B to an algebraically closed field C. Since b € L is integral over A, 6(b) € L is integral over A
for every 6. Then f,(X) = [[(X — o (b)) has coefficients in F which belong to the ring generated
by A and all 6(b) and therefore are integral over A. Since A is integrally closed, f,(X) € A[X].

If f,(X) € A[X] then b is integral over A by 2.1.1. O

EXAMPLES.

1. Let F be an algebraic number field. Then an element b € F is integral if and only if its

monic irreducible polynomial has integer coefficients.
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For example, v/d for integer d is integral.

Ifd =1 mod 4 then the monic irreducible polynomial of (1+4+/d)/2 over Q is X*> — X + (1 —
d)/4 € Z[X], so (1 ++/d)/2 is integral. Note that v/d belongs to Z[(1++/d) /2], and hence Z[v/d]
is a subring of Z[(1++/d)/2].

Thus, the integral closure of Z in Q(v/d) contains the subring Z[+/d] and the subring Z[(1 +
Vd)/2]if d =1 mod 4. We show that there are no other integral elements.

An element a + b+/d with rational a and b # 0 is integral if and only if its monic irreducible
polynomial X? —2aX + (a® — db?) belongs to Z[X]. Therefore 2a,2b are integers. If a = (2k+1) /2
for an integer k, then it is easy to see that a®> — db* € Z if and only if b = (21 + 1) /2 with integer
[ and (2k+1)? —d (21 +1)? is divisible by 4. The latter implies that d is a quadratic residue mod
4,ie. d=1 mod4. In turn, if d = 1 mod 4 then every element (2k 4+ 1)/2 + (21 + 1)V/d /2 is
integral.

Thus, integral elements of Q(v/d) are equal to

Z[Vd| ifd#1 mod4
Z[(1+Vd)/2] ifd=1 mod4

2. Ogr is equal to Z[(,] (see section 2.4).

2.1.6. LEMMA. If B is integral over A and C is integral over B, then C is integral over A.

Proof. Let ¢ € C be a root of the polynomial f(X) = X" +b, 1 X" ! +-..4 by with b; € B. Then
c is integral over A[by,...,b,—1]. Since b; € B are integral over A, proposition 2.1.3 implies that
Albo,...,by—1,c] is an A-module of finite type. From 2.1.1 we conclude that ¢ is integral over
A. O

COROLLARY. OF is integrally closed.

Proof. An element of F integral over O is integral over Z due to the previous lemma. U

2.1.7. PROPOSITION. Let B be an integral domain and A be its subring such that B is integral
over A. Then B is a field if and only if A is a field.

Proof. If A is a field, then A[b] for b € B\ 0 is a vector space of finite dimension over A, and the
A-linear map ¢@: A[b] — A[b], ¢(c) = bc is injective, therefore surjective, so b is invertible in B.
If Bis a field and @ € A\ 0, then the inverse a~! € Bsatisfiesa ™" +a,_ja "' +---+ap=0

1

with some ¢; € A. Thena ' = —a,_1 —---—apd" !, soa" ! € A. O

2.2. Norms and traces.

2.2.1. DEFINITION. Let A be a subring of a ring B such that B is a free A-module of finite
rank n. In this situation, similarly to the situation of finite dimensional vector spaces over fields,
for a b € B one has the operator m;, of multiplication by b € B, m,: B— B, my(c) = bc. One can
work with its matrix M}, with respect to a specific basis of B over A, its characteristic polynomials
gp(X) = det(XE — M), trace Trg 5 (b) = Tr M}, and norm N 4 (b) = detM,.
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If g5(X) = X"+ a, 1 X"' +--- +ap then the definitions imply a, | = —Trp/a(b), ap =

(—=1)"Np/a (D).
2.2.2. We have

Tr(b+b") = Tr(b) + Tr(b'), Tr(ab) = aTr(b), Tr(a) = na,
N(bb') =N(b)N(b'),N(ab) = a"N(b),N(a) = a"
for a € A.

2.2.3. Everywhere below in this section F is either a finite field of a field of characteristic

zero. Then every finite extension of F' is separable.

PROPOSITION. Let L be an algebraic extension of F of degree n. Let b € L and by,...,b,
be roots of the monic irreducible polynomial of b over F each one repeated |L : F(b)| times.

Then the characteristic polynomial g,(X) of b with respect to L/F is [1(X — b;), and Try jp(b) =
Y.bi,Ny (D) =I1b:.

Proof. If L = F (b), then use the basis 1,b,...,b" ! to calculate g. Let f,(X) = X" +c,_( X" ' +

-+ -+ ¢o be the monic irreducible polynomial of b over F, then the matrix of m; is

0 1 0o ... 0
0 0 1 ... 0
My, =
—Ccp —C1 —Cr ... —Cup-

Hence g,(X) = det(XE —M,,) = fp(X) and detM;, = [[b;, TrM;, = ¥ b;.

In the general case when |F(b) : F| = m < n choose a basis @y,...,®,, of L over F(b) and
take @;,..., 00", ...,@nb™ !, ... as a basis of L over F. The matrix M, is a block matrix
with the same block repeated n/m times on the diagonal and everything else being zero. Therefore,
2(X) = f,(X)EF O where f;,(X) is the monic irreducible polynomial of b over F. O

EXAMPLE. Let F = Q, L = Q(v/d) with square-free integer d. Then
8urpvaX) = (X —a—bVd)(X —a+bVd) = X* —2aX + (a* — db?),
SO
TrQ(ﬂ)/Q(a+b\/c§) =2a, NQ(\/E)/Q(ava\/E) =a* —db*.

In particular, an integer number ¢ is a sum of two squares if and only if ¢ € Now=1)/0 ﬁ(@( V=)
More generally, ¢ is in the form a? — db? with integer a, b and square-free d not congruent to

1 mod 4 if and only if
¢ € Ngya)gZIVd
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2.2.4. COROLLARY 1. Let o; be distinct F-homomorphisms of L into C. Then Tryp(b) =
Y. 0ib, Nyjr(b) =I10i(D).
Proof. In the previous proposition b; = c;(b). O

COROLLARY 2. Let A be an integral domain, and let F be its field of fractions. Let L be
an extension of F of finite degree. Let A’ be the integral closure of A in F. Then for an integral
element b € L over A g,(X) € A'[X] and Try /p (b), Ny /p (b) belong to A,

Proof. All b; are integral over A. 0

COROLLARY 3. If, in addition, A is integrally closed, then Tty ;p(b),Ny/p(b) € A.

Proof. Since A is integrally closed, A'NF = A. O

2.2.5. LEMMA. Let F be a finite field of a field of characteristic zero. If L is a finite extension
of F and M /F is a subextension of L/F, then the following transitivity property holds

Trp/r = Tryr o Trp u, Np/rF =Ny/roNL/y-

Proof. Let 0y, .., 0, be all distinct F-homomorphisms of M into C (m = |[M : F|). Let 1y,...,T, /m
be all distinct M-homomorphisms of L into C (n/m = |L : M|). The field 7;(L) is a finite extension
of F, and by 1.2.5 there is an element a; € C such that 7;(L) = F(a;). Let E be the minimal
subfield of C containing M and all a;. Using 1.2.3 extend o; to 6/ : E — C. Then the composition
ojoTj: L — C is defined. Note that 6] 0 7; = 0 o 7;, implies 6; = 6] o Tj|y = 0] o Tj, |y =
0;,, so i = i1, and then j = j;. Hence Gi’orj for 1 <i<m,1< j<n/mare all n distinct F-
homomorphisms of L into C. By Corollary 1 in 2.2.4

Nuy/r(Npm(b)) = NM/F(HTj(b)) = HG;(HTj<b)> = H(Gi/o 7;)(b) = Ny jr (b).

Similar arguments work for the trace. g

2.3. Integral basis.

2.3.1. DEFINITION. Let A be a subring of a ring B such that B is a free A-module of rank .
Let by,...,b, € B. Then the discriminant D(by,...,by) is defined as det(TrB/A (bibj)).
2.3.2. PROPOSITION. Ifc; € Band c; =Y a;jbj, a;j € A, then

D(cy,...,c,) = (det(a;;))? D(by,...,by,).

Proof. (ci)' = (a;)(b;)', (cker) = (cx)' (cr) = (awi) (bibj)(au;)'s
(Tr(exer)) = (ari)(Tr(bibj))(ar))'- O
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2.3.3. DEFINITION. The discriminant 94 of B over A is the principal ideal of A generated
by the discriminant of any basis of B over A.

By Proposition 2.3.2 every basis of B over A generates the same principal ideal of A, since
(det(a;;))? is invertible in A for the matrix (a;;) relating two bases.

For the discriminant in finite extensions of fields of characteristic zero see 2.3.5.

2.3.4. PROPOSITION. Let Dgs # 0. Let B be an integral domain. Then a set by,...,by is a
basis of B over A if and only if D(by, ...,by)A = D4

Proof. Let D(by,...,by)A = Dp4.

Letcy,...,c, beabasis of Bover A andletb; =Y ;a;jc;. Then D(by,...,b,) = det(a;;)*D(cy, ...

Denote d = D(cy,...,cy).

Since D(by,...,b,)A = D(cy,...,cn)A, we getaD(by,...,b,) =d for some a € A. Thend(1—
adet(a;;)?) = 0 and det(a;;) is invertible in A, so the matrix (a;;) is invertible in the ring of matrices
over A. Thus by,...,b, is a basis of B over A. O

2.3.5. PROPOSITION. Let F be a finite field or a field of characteristic zero. Let L be an
extension of F of degree n and let ©y,...,0, be distinct F-homomorphisms of L into C. Let
bi,...,b, be a basis of L over F. Then

D(by,...,b,) = det(c;(b;))* #O0.

Proof. det(Tr(bib;)) = det(¥ 0 (by)0i(b)) = det((01 (b)) (0 (b)) = det(oi(5,))*

The rest is more difificult to prove, unless one uses Artin’s trick. If det(o;(b;)) = 0, then there
exist a; € L not all zero such that };a;0;(b;) = 0 for all j. Then };a;0;(b) = 0 for every b € L.

Let Y a}o;(b) = 0 for all b € L with the minimal number > 1 of non-zero a} € A. Assume
ay; #0.

Let ¢ € L be such that L = F(c) (see 1.2.5), then o (c) # o;(c) fori > 1.

We now have Y a.0;(bc) = Y. d,0i(b)oi(c) = 0. Hence oy(c)(Xd;0i(b)) — Y a.0i(b)oi(c) =
Y1 di(o1(c)—0i(c))oi(b) =0. Putd =d}(0oi(c) — 0i(c)), so ¥ a! 0;(b) = 0 with smaller number

of non-zero &/ than in a/, a contradiction. O

Thus, for fields the discriminant measures the behaviour of elements of a basis with respect to
Galois automorphisms action.

COROLLARY. Under the assumptions of the proposition the linear map L — Homp (L, F):
b — (¢ = Try/p(bc)) between n-dimensional F-vector spaces is injective, and hence bijective.
Therefore for a basis by, . ..,b, of L/F there is a dual basis cy,. . . ,c, of L/ F such that Try/p (bicj) =
0jj.

Proof. Ifb=Y a;b;, a; € F and Tr /p (bc) = 0 for all ¢ € L, then we get equations Y. a; Try /p (bib;) =
0. This is a system of linear equations in a; with nondegenerate matrix Try /z(b;b;), so the only
solution is ¢; = 0. Elements of the dual basis c¢; correspond to f; € Homg (L, F), fi(b;) = &;. O
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2.3.6. THEOREM. Let A be an integrally closed ring and F be its field of fractions. Let L be
an extension of F of degree n and A’ be the integral closure of A in L. Let F be of characteristic 0.
Then A is an A-submodule of a free A-module of rank n.

Proof. Let ey,...,e, be a basis of F-vector space L. Then due to Example 5 in 2.1.1 there is
0 # a; € A such that a;e; € A’. Then for a = []a; we get b; = ae; € A’ form a basis of L/F.

Let cy,...,c, be the dual basis for by,...,b,. Claim: A’ C ¥ c;A. Indeed, let c = Y a;c; € A'.
Then

TrL/F(Cbi) = ZajTrL/F(Cjbl’) =da; GA
J
by 2.2.5. Now Y. ¢;A = @c;A, since {c¢;} is a basis of L/F. O

2.3.7. THEOREM. Let A be a principal ideal ring and F be its field of fractions of charac-
teristic 0. Let L be an extension of F of degree n. Then the integral closure A" of A in L is a free
A-module of rank n.

In particular, the ring of integers Or of a number field F is a free Z-module of rank equal to
the degree of F.

Proof. The description of modules of finite type over PID and the previous theorem imply that A’
is a free A-module of rank m < n. On the other hand, by the first part of the proof of the previous

theorem A’ contains n A-linear independent elements over A. Thus, m = n. 0

DEFINITION. The discriminant dr of any integral basis of OF is called the discriminant of F .
This is a non-zero integer.
Since every two integral bases are related via an invertible matrix with integer coefficients

(whose determinant is therefore 1), 2.3.2 implies that dg is uniquely determined.

2.3.8. EXAMPLES.

1. Let d be a square-free integer. By 2.1.5 the ring of integers of Q(\/Zi ) has an integral basis
1,00 where & =+/difd #1 mod4and a = (1++d)/2ifd=1 mod4.
The discriminant of Q(/d) is equal to

4d ifd#1 mod4, andd ifd=1 mod4.

To prove this calculate directly D(1, @) using the definitions, or use 2.3.9.
2. Let F be an algebraic number field of degree n and let a € F be an integral element over

n=1 is a basis of OF

7. Assume that D(1,a,...,a"") is a square free integer. Then 1,q,...,a
over Z, so Op = Zla]. Indeed: choose a basis by,...,b, of Op over Z and let {cy,...,c,} =
{1,a,...,a"'}. Let ¢; = Ya;jb;. By 2.3.2 we have D(1,a,...,a" ') = (det(a;;)*D(b1,...,by).
Since D(1,qa,...,a" ") is a square free integer, we get det(a;;) = %1, so (a;;) is invertible in

M, (Z), and hence 1,a,...,a" ! is a basis of O over Z.
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2.3.9. EXAMPLE. Let F be of characteristic zero and L = F(b) be an extension of degree n

over F. Let f(X) be the minimal polynomial of b over F whose roots are b;. Then
fX)=TIx=b)), f(b)= I;(bi —bj),
j#i
Npf'(b) = Hf/(Gib) = Hf/(bi)'
Then
D(1,b,...,0"") = det(b!)?

= (—1)”(”_1)/2_1;1(191' —bj) = (=1 VN (F (D))

Let f(X) = X" +aX +c. Then
b'=—ab—c, b '=—a—cb!

and
e=f'(b)=nb""'+a=n(—a—chb ') +a,
)
b=—ncle+(n—1)a)"".
The minimal polynomial g(Y) of e over F corresponds to the minimal polynomial f(X) of b; it is
(Y + (n—1)a)" times ¢~ f(—nc(Y + (n—1)a) 1), i.e.
g =X +(n—-1Da)"—na(Y +(n—1Da)" '+ (=1)"n"c"L.
Hence
Nie(f' (b)) = g(0)(=1)"
— nncnfl + (_l)nfl (I’l . l)nflan’

SO

D(1,b,....b" ")
— (_l)n(n—l)/Z(nncn—l —I—(—l)n_l(l’l— 1)"_161 )

For n = 2 one has a® — 4c, for n = 3 one has —27¢* — 4a°.
For example, let f(X) = X? + X + 1. It is irreducible over Q. Its discriminant is equal to
(—31), so according to example 2.5.3 O = Z[a] where a is a root of f(X) and F = Q|a].

2.4. A little about cyclotomic fields.

2.4.1. DEFINITION. Let {, be a primitive nth root of unity. The field Q({,) is called the (nth)
cyclotomic field.
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2.4.2. THEOREM. Let p be a prime number. The cyclotomic field Q(C,) is of degree p — 1

over Q. Its ring of integers coincides with Z[{)).

Proof. Denote z={,. Let f(X)=(XP—1)/(X—1)=XP"'+..- 4 1. Recall that z—1is a
root of the polynomial g(Y) = f(1+Y) =YP~! 4... 4 pis a p-Eisenstein polynomial, so f(X) is
irreducible over Q, |Q(z) : Q| = p—1and 1,z,...,z°~? is a basis of the Q-vector space Q(z).
Let O be the ring of integers of Q(z). Since the monic irreducible polynomial of z over Q has
integer coefficients, z € O. Since z~! is a primitive root of unity, z~! € O. Thus, z is a unit of O.
Thenz' € Oforalli€ Z (7' =z""). Wehave | =7/ = (1 —2)(14---+z" 1) € (1 -z)O.
Denote by Tr and N the trace and norm for Q(z)/Q. Note that Tr(z) = —1 and since z' for

1 <i< p— 1 are primitive pth roots of unity, Tr(z') = —1; Tr(1) = p — 1. Hence

Tr(1—7)=p forl1<i<p—1.

Furthermore, N(z — 1) is equal to the free term of g(¥) times (—1)?~!, so N(z—1) = (—1)?~1p
and
Nl-z= [] (1-2Z)=p,
1<i<p-1
since 1 — 7' are Galois conjugate to 1 —z over Q. Therefore pZ is contained in the ideal / =
(1-2)0NZ.
If I = Z, then 1 — z would be a unit of O and so would be its Galois conjugates 1 — z', which

then implies that p as their product would be a unit of O. Then p~! € 0NQ = Z, a contradiction.
Thus,

I=(1-2)0ONZ=pL.
Now we prove another auxiliary result:
Tr((1—-z)0) C pZ.

Indeed, every Galois conjugate of y(1 —z) for y € O is of the type y;(1 —z') with appropriate
Yi € 0,50 Tr(y(1 —2)) = Lyi(1 = 2') €1 = pLZ.

Now let x = Yo<i<p—2 a;7' € O with a; € Q. We aim to show that all a; belong to Z. From the
calculation of the traces of Z' it follows that Tr((1 —z)x) = ao Tr(1 —2) + Yo<icp 2 a: Tr(Z =2 =
agp and so app € Tr((1 —z)O) C pZ; therefore, ap € Z. Since z is a unit of O, we deduce that
x1 =27 Yx—ap) =ar+ayz+-- —i-ap_zzpf3 € 0. By the same arguments a; € Z. Looking at
xi =7 '(xi_1 —a;_1) € O we conclude a; € Z for all i. Thus O = Z[z]. O

2.4.3. The discriminant of Q({,) is D(1,z,...,2772).

By 2.3.9 it is equal (—1)(P~D(P=2/2N(f'(z)). We have f'(z) = pz~' /(z—1) = pz ' /(z—1)
and N(f'(z)) = N(p)N(z) ' /N(z—1) = pP~1(=1)P"1/((=1)P~ ! p) = pP~2. Thus, the discrimi-
nant of Q(&,) is (—1)(P~D(P=2)/2 pp=2,
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2.4.4. In general, the extension Q({,)/Q is a Galois extension and elements of the Galois
group Gal(Q(&,,)/Q) are determined by their action on the primitive mth root &, of unity:
ori:o(l)=C (i,m)=1.

This map induces a group isomorphism

Gal(Q(Gn)/Q) — (Z/mZ)”.

One can prove that the ring of integers of Q(,,) is Z(y)-

3. Dedekind Rings

3.1. Noetherian rings in brief.

3.1.1. Recall (see the commutative algebra course linked to at the beginning of this text) that
a module M over a ring is called a Noetherian module if one of the following equivalent properties
is satisfied:

(i) every submodule of M is of finite type;

(ii) every increasing sequence of submodules stabilises;

(iii) every nonempty family of submodules contains a maximal element with respect to inclu-
sion.

A ring A is called Noetherian if it is a Noetherian A-module.

EXAMPLE. A PID is a Noetherian ring, since every ideal of it is generated by one element.

LEMMA. Let M be an A-module and N is a submodule of M. Then M is a Noetherian A-
module if and only if N and M /N are.

COROLLARY 1. If N; are Noetherian A-modules, so is ®'_|N;.

COROLLARY 2. Let A be a Noetherian ring and let M be an A-module of finite type. Then M
is a Noetherian A-module.

3.1.2. PROPOSITION. Let A be a Noetherian integrally closed ring. Let K be its field of
fractions and let L be a finite extension of K. Let A’ be the integral closure of A in L. Suppose that
K is of characteristic 0. Then A’ is a Noetherian ring.

Proof. According to 2.3.6 A’ is a submodule of a free A-module of finite rank. Hence A’ is a
Noetherian A-module. Every ideal of A’ is in particular an A-submodule of A’. Hence every

increasing sequence ideals of A’ stabilises and A is a Noetherian ring. U
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3.1.3. EXAMPLE. The ring of integers OF of a number field F is a Noetherian ring. It is a

free Z-module of rank n where n is the degree of F.

LEMMA. Every nonzero element of O \ {0} is either a unit or factorises into a product of

prime elements and units (not uniquely in general).

Proof. Indeed, assume the family of proper principal ideals (a) where a cannot be factorised
into a product of prime elements is nonempty. Choose a maximal element (a) in this family. The
element a is not a unit, and a is not prime. Hence there is a factorisation a = bc with both b,c & 0.
Then (b), (¢) are strictly larger than (a), so b and ¢ are products of prime elements. Then a is, a
contradiction. O

3.2. Definition of Dedekind rings.

3.2.1. DEFINITION. An integral domain A is called a Dedekind ring if
(i) A is a Noetherian ring;
(i) A is integrally closed;

(iii) every non-zero prime ideal of A is maximal.

LEMMA. Every principal ideal domain A is a Dedekind ring.

Proof. For (i) see 3.1.1 and for (ii) see 2.1.4. If (a) is a non-zero prime ideal and (a) C (b) # A,
(a) # (b). Then b isn’t a unit of A, b divides a and a does not divide b. Write a = bc. Since (a)
is prime, either b or ¢ belongs to (a). If b does then (a) = (b). If b doesn’t, then ¢ must belong to
(a), so ¢ = ad for some d € A, and a = bc = bda which means that b is a unit of A, a contradiction.
Thus, property (iii) is satisfied as well. O

3.2.2. LEMMA. Let A be an integral domain. Let K be its field of fractions and let L be a
finite extension of K. Let B be the integral closure of A in L. Let P be a non-zero prime ideal of B.
Then PNA is a non-zero prime ideal of A.

Proof. Let P be a non-zero prime ideal of B. Then PN A # A, since otherwise 1 € PN A and hence
P=B.

If c,d € A and cd € PNA, then either c € PNA ord € PNA. Hence PNA is a prime ideal of
A.

Let b € P, b # 0. Then b satisfies a polynomial relation »" + a, b"' 4 - +ao = 0 with
a; € A. We can assume that ag # 0. Then ap = —(b" +---+a;b) € ANP, so PNA is a non-zero
prime ideal of A. U

3.2.3. THEOREM. Let A be a Dedekind ring. Let K be its field of fractions and let L be a
finite extension of K. Let B be the integral closure of A in L. Suppose that K is of characteristic 0.
Then B is a Dedekind ring.

Proof. B is Noetherian by 3.1.2. It is integrally closed due to 2.1.6. By 3.2.2 if P is a non-zero

proper prime ideal of B, then PNA is a non-zero prime ideal of A. Since A is a Dedeking ring, it is
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a maximal ideal of A. The quotient ring B/P is integral over the field A/(PNA). Hence by 2.1.7
B/P is a field and P is a maximal ideal of B. g

3.2.4. EXAMPLE. The ring of integers O of a number field F is a Dedekind ring.

3.3. Factorisation in Dedekind rings.

3.3.1. LEMMA. Every non-zero ideal in a Dedekind ring A contains some product of maximal

ideals.

Proof. If not, then the set of non-zero ideals which do not contain products of maximal ideals
is non-empty. Let I be a maximal element with this property. The ideal / is not A and is not a
maximal ideal, since it doesn’t contain a product of maximal ideals. Hence / is not a prime ideal.
Therefore there are a,b € A such that ab € I and a,b ¢ I. Since I + aA and I + bA are strictly
greater than /, there are maximal ideals P; and Q; such that [TP; C1+aA and [[Q; C 1+ DA. Then
[TRI1Q; C (I+aA)(I+bA) C I, a contradiction. O

3.3.2. LEMMA. Let a prime ideal P of A contain I, ...1,,, where I; are ideals of A. Then P

contains one of I;.

Proof. If I, ¢ P for all 1 < k < m, then take a; € I \ P and consider the product a; ... a,,. It belongs

to P, therefore one of a@; belongs to P, a contradiction. O

3.3.3. The next proposition shows that for every non-zero ideal I of a Dedekind ring A there
is an ideal J such that 1/ is a principal non-zero ideal of A. Moreover, the proposition gives an
explicit description of J.

PROPOSITION. Let I be a non-zero ideal of a Dedekind ring A and b be a non-zero element
of I. Let K be the field of fractions of A. Define

J={ae€K:al CbA}.
Then J is an ideal of A and 1J = bA.

Proof. Since b € I, we get bA C I.

If a € J then al C bA C I, so al CI. Now we use the Noetherian and integrality property of
Dedekind rings: Since I is an A-module of finite type, by Remark in 2.1.1 a is integral over A.
Since A is integrally closed, a € A. Thus, J C A.

The set J is closed with respect to addition and multiplication by elements of A, so J is an
ideal of A. It is clear that IJ C bA. Assume that IJ # bA and get a contradiction.

The ideal b~'1J is a proper ideal of A, and hence it is contained in a maximal ideal P. Note
that b € J, since bl C bA. So b*> € 1J and b € b~'1J, bA C b~'1J. By 3.3.1 there are non-zero
prime ideals P; such that P, ... P, C bA. Let m be the minimal number with this property.

We have

P..P,CbACH 'IJCP

By 3.3.2 P contains one of P;. Without loss of generality we can assume that P, C P. Since P is

maximal, P, = P.



22 1. ALGEBRAIC NUMBER FIELDS

Ifm=1,then P C bA C b~'IJ C P,so P =bA. Since bA C I we get P C I. Since P is maximal,
either / = P or I = A. The definition of J implies in the first case J = {a € K : al = aP C bA =
P} =A and IJ = bA and in the second case b € J implies PA CJ={a € K:aA CbA} C{a€K:
a € bA} = bA and so J = bA and 1J = bA.

Let m > 1. Note that P;...P,, ¢ bA due to the definition of m. Therefore, thereisd € P,... P,
such that d € bA. Since b~'1J C P, db='1J C dP C PP,...P,, C bA. So (db~'J)I C bA, and the
defining property of J implies that db~'J C J. Since J is an A-module of finite type, by 2.1.1 db™!
belongs to A, i.e. d € bA, a contradiction. O

3.3.4. COROLLARY 1. (Cancellation property)
Let 1,J,H be non-zero ideals of A, then IH = JH implies I = J.

Proof. Let H' be an ideal such that HH' = aA is a principal ideal. Then al = aJ and [ = J. O

3.3.5. COROLLARY 2. (Factorisation property)
Let I and J be ideals of A. Then I C J if and only if I = JH for an ideal H.

Proof. If I C J and J is non-zero, then let J' be an ideal of A such that JJ' = aA is a principal ideal.
Then IJ' C aA, so H = a~'IJ is an ideal of A. Now

JH=Ja 'l =a'1JJ =a 'al = 1.
O

3.3.6. THEOREM. Every proper ideal of a Dedekind ring factorises into a product of maximal

ideals whose collection is uniquely determined.

Proof. Let I be a non-zero ideal of A. There is a maximal ideal P; which contains /. Then
by the factorisation property 3.3.5 I = P;Q; for some ideal Q;. Note that I C Q; is a proper
inclusion, since otherwise AQ; = Q1 = I = P10, and by the cancellation property 3.3.4 P, =A, a
contradiction. If Q| # A, then there is a maximal ideal P, such that Q; = P,Q;. Continue the same
argument: eventually we have I = P;...P,Q, and [ C Q| C --- C Q, are all proper inclusions.
Since A is Noetherian, Q,, = A for some m and then/ = P, ... P,,.

IfP...Py,=0Q1...0n then P D Q;...0, and by 3.3.2 P| being a prime ideal contains one
of Q;, so P = Q;. Using 3.3.4 cancel P; on both sides and use induction. O

3.3.7. REMARK. A maximal ideal P of A is involved in the factorisation of / if and only if
I C P. Indeed, if I C P, then I = PQ by 3.3.5.

THEOREM. Let I =[]P,J =[IP" be factorisations of non-zero ideals I,J of a Dedekind

ring, with non-negative integer r;,s; such that r;i +s; > 0 for all i. Then
INnJ= HP_maX{rhSi} J4+J= HP_mi“{rhSi}
14 ) i

and

I =(INJ(I+J).
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Proof. For the first equality, P, O the LHS, so the previous Remark implies that the LHS =
[1P" with non-negative integer m;. Then m; > max{r;,s;}, so the LHS C the RHS. The opposite
inclusion is obvious.

For the second equality, if the LHS =[] Q?j with positive n; then the previous Remark implies
Q; equals to one of P. Then the LHS = []P", n; < min{r;,s;}, so the LHS D the RHS. The
opposite inclusion is obvious.

The last equality follows immediately from the first two. O

3.3.8. EXAMPLE. Let A = Z[/—5]. This is a Dedekind ring, since —5 # 1 mod 4, and A is
the ring of integers of Q(y/—5).

We have the norm map N(a+ b+/—5) = a® + 5b>. If an element u is a unit of A then uv = 1
for some v € A, and the product of two integers N(u) and N(v) is 1, thus N(u) = 1. Conversely, if
N(u) = 1 then u times its conjugate ' is one, and so u is a unit of A. Thus, u € A* if and only if
N(u) e Z*.

The norms of 2,3,14+/—5 are 4,9,6. It is easy to see that 2,3 are not in the image N(A).

If, say, 2 were not a prime element in A, then 2 = 7y, and 4 = N(7; )N(m,) with both norms

being proper divisors of 4, a contradiction. Hence 2 is a prime element of A, and similarly 3,1 &+

v/ —5 are.
Now 2,3,1++/—5 are prime elements of A and

6=2-3=(1+v=5)(1-V-5).

Note that 2,3,1 £+/—5 are not associated with each other (the quotient is not a unit) since their
norms differ not by a unit of Z. Thus A isn’t a UFD.
The ideals

(27 1+ v _5)7(371+ \ _5)7(37 l—v _5)
are maximal.
For instance, |A/(2)| =4, and it is easy to show that A # (2,14++v/—=5) # (2), so |A/(2,1+
v —5)| =2, therefore A/(2,1++/—5) is isomorphic to Z/27Z, i.e. is a field.

We get factorisation of ideals
(2) = (2,1+V=5)%,
(3)=03,1+v-=5)(3,1 =Vv-5),
(1+v-=5)=(2,1+vV-5)(3,1+v-5),
(1—v/=5) = (2,1+V=5)(3,1 —V/=5).
To prove the first equality note that (14+1/—5)? = —4 +2/—5 € (2), so the RHSC the LHS;
we also have 2 = 2(1 ++/—5) — 22 — (1 4++/—=5)? € the RHS, so the LHS= the RHS.
For the second equality use (14+v/—5)(1—v/=5)=6¢€(3),3=32—(1+v/-5)(1-v/-5) €
the RHS.

For the third equality use 6 € (1 ++/—5), 1 +v/—=5=3(1++v—5) —2(1 ++/—5) € the RHS.
For the fourth equality use conjugate the third equality and use (2,1++v/—5) = (2,1 —v/=5).
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e (2)-(3) = (2,14+V=5)(3,1+V=5)(3,1 -V-5)
= (2,1+vV=5)(3,1+V=3)(2,1 +v—=5)(3,1 —V/=5)
= (1+V=35)(1—V-5).
3.3.9. LEMMA. LetI+J =A. Then I"+J" = A for every n,m > 1.
Proof. Wehave A= (I+J)...(I+J) =I(...)+J" CI+J",sol+J" =A. Similarly I" +J" = A.
O

PROPOSITION. Let P be a maximal ideal of A. Then there is an element © € P such that
P=mnA+P"

foreveryn = 2.

Hence the ideal P/P" is a principal ideal of the quotient ring A/P". Moreover, it is the only
maximal ideal of that ring.

Every ideal of the ring A/ P" is principal of the form P" /| P" = (& A+ P")/P" for some m < n.

Proof. TIf P = P?, then P = A by cancellation property, a contradiction. Let £ € P\ P?. Since
A + P" C P, factorisation property implies that 7A + P" = PQ for an ideal Q.

Note that Q ¢ P, since otherwise 7 € P2, a contradiction.

Therefore, P+ Q = A. The Lemma implies P"~! +Q = A. Then

P=P(Q+P""YCPQ+P" =7A+P" CP,

so P=mA+P".

For m < n we deduce P" C A+ P" C P",so P" = n""A + P".

Let I be a proper ideal of A containing P". Then by factorisation property P* = IK with some
ideal K. Hence the factorisation of / involves powers of P only, so I = P", 0 < m < n. Hence
ideals of A/P" are P™/P" with m < n. O

3.3.10. COROLLARY. Every ideal in a Dedekind ring is generated by 2 elements.
Proof. Let I be a non-zero ideal, and let a be a non-zero element of /. Then aA = P} ... Pl with
distinct maximal ideals P..

By Lemma 3.3.9 we have P/ 4+ P;* = A if [ # k, so we can apply the Chinese remainder
theorem which gives

AJaA=A/P" x--- xA/Py".
For the ideal /aA of A/aA we get
I/aA= (I+P")/P" x---x (I+Ppm) /Py

Each of ideals (I +P")/P/" is of the form (A + P")/P/" by 3.3.9. Hence I/aA is isomorphic to
H(nl.l"A + P")/P". Using the Chinese remainder theorem find b € A such that b — nl.l" belongs to
P for all i. Then I/aA = (aA+bA)/aA and I = aA + bA. O
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3.3.11. THEOREM. A Dedekind ring A is a UFD if and only if A is a PID.

Proof. Let A be not a PID. Since every proper ideal is a product of maximal ideals, there is a
maximal ideal P which isn’t principal. Consider the family .% of non-zero ideals I such that PI is
principal. It is nonempty by 3.3.3. Let I be a maximal element of this family and PI = aA, a # 0.

Note that [ isn’t principal, because otherwise I = xA and PI = xP = aA, so a is divisible by x.
Put y = ax™!, then (x)P = (x)(y) and by 3.3.4 P = (y), a contradiction.

Claim: a is a prime element of A. First, a is not a unit of A: otherwise P D PI =aA =A, a
contradiction. Now, if a = bc, then bc € P, so either b € P or ¢ € P. By 3.3.5 then either bA = PJ
or cA = PJ for an appropriate ideal J of A. Since PI C PJ, we getal =IPI CIPJ=aJand I CJ.
Note that J € .%#. Due to maximality of / we deduce that / = J, and hence either bA or cA is equal
to aA. Then one of b, c is asociated to a, so a is a prime element.

P ¢ aA, since otherwise aA = PI C al, so A = I, a contradiction.

I ¢ aA, since otherwise aA C I implies aA = I, I is principal, a contradiction.

Thus, there are d € P and e € I not divisible by a. We also have ed € PI = aA is divisible by
the prime element a. This can never happen in UFD. Thus, A isn’t a UFD.

O

Using this theorem, to establish that the ring Z[+/—5] of 3.3.8 is not a unique factorisation

domain it is sufficient to indicate a non-principal ideal of it.

3.4. The norm of an ideal.

In this subsection F' is a number field of degree n, OF is the ring of integers of F.

3.4.1. PROPOSITION. For a non-zero element a € Of

|OF : aOF| = |Ng jg(a)].

Proof. We know that OF is a free Z-module of rank n. The ideal aOF is a free submodule of O
of rank n, since if xi,...,x, are generators of a0F, then a'xi,...,a" 'x, are generators of Op,
so m = n. By the theorem on the structure of modules over principal ideal domains, there is a
basis aj,...,a, of OF such that ejay,...,eya, is a basis of a0 with appropriate 1| ...|e,. Then
Or /a0 is isomorphic to [[Z/e;Z, so |OF : aOr| =] |e;|. By the definition Ny /g (a) is equal to
the determinant of the matrix of the linear operator f : Oy — O, b — ab. Note that a0f has
another basis: aay,...,aay, so (aay,...,aa,) = (e1ay,...,e,a,)M with an invertible matrix M with

integer entries. Thus, the determinant of M is +-1 and Ny g (a) is equal to +[Te;. |

3.4.2. COROLLARY. |Op :aOF| = |a|" for every non-zero a € L.

Proof. Ngg(a) = a". O
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3.4.3. DEFINITION. The norm N(I) of a non-zero ideal I of Op is its index |OF : I|.

Note that if  # 0 then N(I) is a finite number.
Indeed, by 3.4.1 N(a0F) = |Npg(a)| for a non-zero a which belongs to /. Then a0 C I and
N(I) < N(a0F) = [Ny g(a).

3.4.4. PROPOSITION. If1,J are non-zero ideals of OF, then N(I1J) = N(I)N(J).

Proof. Since every ideal factors into a product of maximal ideals by 3.3.6, it is sufficient to show
that N(IP) = N(I)N(P) for a maximal ideal P of 0.

The LHS = |0F : IP| = |Op : I||I : IP|. Recall that P is a maximal ideal of OF, so OF /P is a
field.

The quotient //IP can be viewed as a vector space over O /P. Its subspaces correspond to
ideals between /P and I according to the description of ideals of the quotient ring. If I[P C J C I,
then by 3.3.5 J = IQ for an ideal Q of OF.

By 3.3.3 there is a non-zero ideal I’ such that /I’ is a principal non-zero ideal afp. Then
IP C 1Q implies aP C aQ implies P C Q. Therefore either Q = P and then J =[P or Q = OF
and then J = I. Thus, the only subspaces of the vector space I/IP are itself and the zero subspace
IP/IP. Hence I /IP is of dimension one over O /P and therefore |I : [P| = |OF : P)|. O

REMARK. If I is a non-zero ideal of OF and N(I) is prime, then [ is a maximal ideal. Indeed,

O /I is a finite commutative ring with a prime number of elements, hence a field.

3.5. Splitting of prime ideals in field extensions.

In this subsection F is a number field and L is a finite extension of F. Let F and & be their

rings of integers.

3.5.1. PROPOSITION-DEFINITION. Let P be a maximal ideal of 0 and Q a maximal ideal
of 0. Denote by POy, the ideal of &} generated by its subset P.

Then Q is said to lie over P and P is said to lie under Q if one of the following equivalent
conditions is satisfied:

(i) POL C Q;

(i) P C Q;

(iii) QN Op = P.
Proof. (i) is equivalent to (ii), since 1 € &}. (ii) implies QN OF contains P, so either QN OF = P
or QN O = OF, the latter is impossible since 1 ¢ Q. (iii) implies (ii). O

3.5.2. PROPOSITION. Every maximal ideal of Oy lies over a unique maximal ideal P of OF.
For a maximal ideal P of O the ideal POy is a proper non-zero ideal of Or. Let POp =[] Q; be
the factorisation into a product of prime ideals of O;. Then Q; are exactly those maximal ideals
of O which lie over P.

Proof. The first assertion follows from 3.2.2.
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Choose a b € P\ P2, it exists by 3.3.9. By 3.3.3 for b € P\ P? there is an ideal J of OF such
that PJ = bOp. Then J ¢ P, since otherwise b € P2, a contradiction. Take an element ¢ € J \P.
Then cP C bOF.

If PO, = Oy, then ¢cO = cPO, C b0y, socb™' € O, NF = Op and ¢ € bOp C P, a contra-
diction. Thus, PO} is a proper ideal of 0.

According to 3.5.1 a prime ideal Q of &7 lies over P if and only if PO, C Q which is equivalent
by 3.3.7 to the fact that Q is involved in the factorisation of PO7. (|

3.5.3. LEMMA. Let P be a maximal ideal of O which lie under a maximal ideal Q of O7.
Then the finite field O /P is a subfield of the finite field Oy / Q.

Proof. 01,/Q is finite by 3.4.3. The kernel of the homomorphism &y — €0/Q is equal to
QN Op = P, so Of /P can be identified with a subfield of &, /Q. O

3.5.4. COROLLARY. Let P be a maximal ideal of Op. Then PNZ = pZ for a prime number
p and N(P) is a positive power of p.
Proof. PNZ = pZ for a prime number p by 3.2.2. Then OF /P is a vector space over Z/pZ of

finite positive dimension, therefore |OF : P| is a power of p. U

3.5.5. DEFINITION. Let a maximal ideal P of OF lie under a maximal ideal Q of &;. The
degree of 01 /Q over OF /P is called the inertia degree f(Q|P). If PO, =] Q{" is the factorisation
of PO, with distinct prime ideals Q; of &}, then e; is called the ramification index e(Q;|P).

3.5.6. LEMMA. Let M be a finite extension of L and P C Q C R be maximal ideals of OF, O
and Oy correspondingly. Then f(R|P) = f(Q|P)f(R|Q) and e(R|P) = e(Q|P)e(R|Q).

Proof. The first assertion follows from 1.1.1. Since PO, = Q°QIP) . we get POy = 0°9P) ¢
(QOW)P) ... = (Re(RIQNe(QIP) 50 the second assertion follows. O

3.5.7. THEOREM. Let Qy,...Qy, be different maximal ideals of O which lie over a maximal
ideal P of Op. Letn=|L: F|. Then

™=

e(Q:|P)f(Qi|P) = n.

Il
—

Proof. We consider only the case F = Q. Apply the norm to the equality p&;, = []Qf". Then by
342,344

pn_ pﬁL HN ez _Hp (QilP) (Q1|P)

g

3.5.8. EXAMPLE. One can describe in certain situations how a prime ideal (p) factorises in
finite extensions of QQ, provided the factorisation of the monic irreducible polynomial of an integral
generator (if it exists) modulo p is known.

Let the ring of integers OF of an algebraic number field F be generated by one element «:

Or =Z]al, and f(X) € Z[X] be the monic irreducible polynomial of ¢ over Q.
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Let fi(X) € Z[X] be monic polynomials such that

m

f(X) = HE(X)” € Ip[X]

is the factorisation of f(X) where f;(X) is an irreducible polynomial over F,. Since O =
Z[X]/(f(X)), we have

Or [pOp = Z[X]/(p, f(X)) = F,[X]/(£(X)),
and

Or/(p, fi(a)) 2 ZX]/(p, f(X), fi(X)) = F,[X]/ (fi(X)).

Putting P = (p, fi(at)) we see that O /P is isomorphic to the field F,[X]/(f:(X)), hence P; is a
maximal ideal of O dividing (p). We also deduce that

N(P) = plFo XV GX)F,| — pdefi,

Now [TP7 =TI(p, fi(a))¥ C pOF, since [] fi(@)% — f(at) € pOp. We also get N([TP) =
prei deg fi — p" = N(pOF). Therefore from 3.5.7 we deduce that p&p =[]/~ P is the factorisation
of pOp.

So we have proved

THEOREM. Let the ring of integers OF of an algebraic number field F be generated by one
element o.: Op = Z]al, and f(X) € Z[X] be the monic irreducible polynomial of @ over Q. Let
fi(X) € Z[X] be irreducible polynomials such that

700) = [[A00% € By x]

is the factorisation of f(X) where f;(X) is an irreducible polynomial over T,
Then in OF

m

pOr =[]F"

i=1

where P, = (p, fi(at)) is a maximal ideal of O with norm p3ee/:,

EXAMPLE. Let F=Qand L = Q(\/c?) with a square free integer d.

Then one can take v/d ford 1 mod 4 and (1++/d)/2ford =1 mod4 as a. Then f(X) =
X% —dand f(X)=X?>—X+(1—d)/4 resp.

Let p be a prime in Z and let p&y =[]/~ Qf". Then there are three cases:

()ym=2,e; =e=1, f(Qi|P) = 1. Then pOy = 0102, Q1 # Q». We say that p splits in L.
From 3.5.8 we know that Q; = (p, fi(«)).

(i) m=1, e; =2, f(Q1|P) = 1. Then p&y, = Q%. We say that p ramifies in L. From 3.5.8 we
know that Q; = (p, fi(«)).

(iii)y m=1, ey =1, f(Q1|P) = 2. Then pO; = Q. We say that p remains prime in L. Here
Q1 = (p) as ideal of 0}
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Using the previous theorem we see that p splits (pOr = Py ... PB,,) if and only if f is separable
and reducible, p ramifies (pOr = P¢) if and only if f is a power > 1 of an irreducible polynomial
over F,, p remains prime in O if and only if f is irreducible over F,.

3.5.9. We have X — X + (1 —d)/4 = 1/4(Y? —d) where Y = 2X — 1, so if p is odd (so
the image of 2 is invertible in F,), the factorisation of f(X) corresponds to the factorisation of
X? — d independently of what d is. The factorisation of X — d certainly depends on whether d is
a quadratic residue modulo p, or not. If d = ¢> mod p, then

X*—d=fif modp, fi=X—c,fr=X+c
X?-X+(-d)/d=fifp modp, fi=X—(14+¢)/2,p=X—(1—¢)/2.
Letp=2.1fd #1 mod 4 then
fX)=X*-d=X*>4+d*=(X—d)*> mod2.
Ifd =1 mod4 then f(X)=X>+X+(1—d)/4. So,ifd =1 mod 8 then
X2+ X+(1—-d)/4=X(X+1) mod2,

if d#1 mod8,d=1 mod4 then X>+X + (1—-d)/4 =X>+X +1 mod 2 is irreducible in
[F»[X]. Thus, we get

THEOREM. If p is odd prime, then

(1) p splitsin L = @(\/Zl) if and only if d is a quadratic residue mod p. Then fi=X +c,a =
Vdifd#1 mod4and fi=X — (1£c)/2,a=(1++d)/2ifd=1 mod 4.

(2) p ramifies in L if and only if d is divisible by p. Then fy =X ifd#%1 mod4and fi =X —a,
2a=1 modpifd=1 mod4.

(3) p remains prime in L if and only if d is a quadratic non-residue mod p.

If p =72 then

(1)ifd =1 mod 8, then 2 splits in Q(\/d). Then fi =X, o =X+ 1,0 = (1++/d)/2.

(2)ifd #1 mod 4 then 2 ramifies in Q(V/d). Then fi =X —d, o =+/d.

(3)ifd=1 mod4,d #1 mod 8 then 2 remains prime in Q(/d).

COROLLARY. Only finitely many primes ramify in Q(v/d).
The only quadratic extension of Q in which no primes ramify is Q(v/—1).

See Proposition 22.6 of Chapter 3 for a much more general property.

3.5.10. Let p be an odd prime. Recall from 2.4.2 that the ring of integers of the pth cyclo-
tomic field Q(&,) is generated by {,. Its irreducible monic polynomial is f(X) =X?"!+..-+1=
(XP —1)/(X —1). Since X” —1 = (X — 1)? mod p we deduce that (f(X),p) = ((X —1)?~1 p).

Therefore by 3.5.8 pOgc ) = (§, —1)P~' O, and p ramifies in Q(&,)/Q.

For any other prime / one can show that the polynomial f(X) modulo [ is the product of
distinct irreducible polynomials over ;. Thus, no other prime ramifies in Q(,)/Q.

3.6. Finiteness of the ideal class group.

In this subsection OF is the ring of integers of a number field F.
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3.6.1. DEFINITION. For two non-zero ideals / and J of OF define the equivalence relation
I ~ J if there are non-zero a,b € OF such that al = bJ. In other words, I and J are proportional to
each other. Classes of equivalence are called ideal classes. Define the product of two classes with
representatives I and J as the class containing 1J. Then the class of &F (consisting of all nonzero
principal ideals) is the identity element. By 3.3.3 for every non-zero ideal [ there is a non-zero
ideal J such that IJ is a principal ideal, i.e. every ideal class is invertible. Thus ideal classes form
an abelian group which is called the ideal class group Cr of the number field F.

The ideal class group shows how far from PID the ring O is. Note that Cr consists of one
element if and only if OF is a PID if and only if OF is a UFD.

DEFINITION. One can also consider fractional ideals of F,i.e. Or-submodules of the &r-module
F that are proportional to ideals of O, i.e. such that al is an ideal of & for some non-zero a € OF.

Principal fractional ideals are bOF with b € F.

Proposition 3.3.3 immediately implies that for every non-zero fractional ideal / there is a
non-zero fractional ideal J such that IJ = O and J = {b € F : bl C Of}. The fractional ideal
J is called the inverse /! of the fractional ideal I. Theorem 3.3.6 implies that every non-zero
fractional ideal is the product [TP;" of maximal ideals P; with non-zero integers n;, uniquely up to
permutation. The quotient of the group of non-zero fractional ideals by its subgroup of non-zero
principal fractional ideals is isomorphic to the class group of OF.

3.6.2. PROPOSITION. There is a positive real number ¢ such that every non-zero ideal I of

O contains a non-zero element a with

INFjq(@)] < eN(I).

Proof. Let n = |F : Q|. According to 2.3.7 there is a basis a1, . . .,a, of the Z-module OF which is
also a basis of the Q-vector space F. Let o1, ..., 0, be all distinct Q-homomorphisms of F into C.
Put

n n

C:H(Z \oiajl).

i=1 j=1

Then ¢ > 0.
For a non-zero ideal I let m be the positive integer satisfying the inequality m" < N(I) <
(m+1)". In particular, |OF : I| < (m+1)". Consider (m+1)" elements }}_;m;a; with 0 <
mj < m, m; € Z. There are two of them which have the same image in OF /1. Their difference

0+#a=Y/_ nja;belongs to I and satisfies |n;| < m.
Now |Nrq(a)| =ITL |oial = T2 | )=y njoia;| <TT, <Z’,’~—1 \nch,-aj]) <m'c < eN(I).
O

Thus every non-zero ideal I of O contains a non-zero principal ideal a0y whose index in [
does not exceed c.
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3.6.3. COROLLARY. Every ideal class of O contains an ideal J with N(J) < c.

Proof. Given ideal class, consider an ideal I of the inverse ideal class. Let a € I be as in the
theorem. By 3.3.3 there is an ideal J such that IJ = aOF, so (I)(J) = (a0F) =1 in Cp. Then
J belongs to the given ideal class. Using 3.4.1 and 3.4.4 we deduce that N(I)N(J) = N(1J) =
N(a0r) = |Npg(a)| < cN(I). Thus, N(J) < c. O

3.6.4. THEOREM. The ideal class group Cr is finite. The number |Cg| is called the class

number of F.

Proof. By 3.5.4 and 3.5.2 for each prime p there are finitely many maximal ideals P lying over
(p), and N(P) = p™ for m > 1. From N(ITP‘") < ¢ we have bounds ¢; < log,c.
Hence there are finitely many ideals [T P satisfying N([TP/") < c. O

EXAMPLE. The class number of Q(1/—19) is 1, i.e. every ideal of the ring of integers of
Q(+/—19) is principal.

Indeed, by 2.3.8 we can take a; = 1, ap = (1 +1/—19)/2 as an integral basis of the ring of
integers of Q(/—19). Then

c=(1+|14+v=19)/2))(1+](1—v-19)/2|) =104....

So every ideal class of O, /—g) contains an ideal J with N(J) < 10.

Let J = [P be the factorisation of J, then N(P;) < 10 for every i.

By Corollary 3.5.4 we know that N(P,) is a positive power of a prime integer, say p;, and so
pi < 10.

From 3.5.2 we know that P, is a prime divisor of the ideal (p;) of ﬁ(@( J/=T19)- So we need to look
at prime integer numbers not greater than 7 and their prime ideal divisors as potential candidates
for non-principal ideals. Now prime number 3 has the property that -19 is a quadratic non-residue
modulo them, so by Theorem 3.5.9 it remains prime in 6’@( V=T9)"

Odd prime numbers 5, 7 have the property that -19 is a quadratic residue module them, so
by Theorem 3.5.9 they split in ﬁQ(\/_—w). By 3.5.8 and 3.5.9 we have —19 =12 mod 5, so f; =
X-1,$=X,-19=3> mod7,s0 fi=X—-2,fr=X+1, and

50 =(5,(1+ \/—719)/2— D(5,(1+v=19)/2) = (5,(1—v—19)/2)(5,(1+ vV —19)/2)
70 =(7,(1+ \/—719)/2—2)(7,(1-1- V=19)/241)=(7,3—vV—-19)/2)(7,(3++V—19)/2).
Now we have
5=(1+v-19)/2-(1-vV-19)/2, 7=03+v-19)/2-(3—V—19)/2,
50=((1-v-19)/2)(1++v—19)/2), 70=((3—+vV—19)/2)((3+vV—19)/2)

and the prime ideal factors of 50,70 are principal.
Finally, 2 remains prime in 6"@( J/=T9)» @S follows from 3.5.9.
Thus, ﬁQ( J/=19) is a principal ideal domain.
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REMARKS. 1. The bound given by c is not good in practical applications. A more refined
estimation is given by Minkowski’s Theorem 3.6.6.

2. For adelic proofs of the finiteness of the class number see Remark 1 of 22.7 Ch. 3 and
Remark 2 of 23.6 Ch. 3.

3.6.5. DEFINITION. Let F be of degree n over Q. Let oy, ...,0, be all Q-homomorphisms
of F into C. Let

7:.C—C

be the complex conjugation. Then 7o g; is a Q-homomorphism of F' into C, so it is equal to certain
o;. Note that 6; = To 0; if and only if o;(F) C R. Let r; be the number of Q-homomorphisms
of this type, say, after renumeration, oy,...,0,,. For every i > r; we have To G; # 0;, so we can
form couples (0}, 7o 0;). Then n—ry is an even number 2r», and r| + 2r, = n.

Renumerate the o;’s so that 6;;,, = To0; for ri +1 <i < ry +r. Define the canonical
embedding of F by

c:a— (o1(a),...,0r4n(a)) e R xC?, a€cF.
The field F is isomorphic to its image 6(F) C R x C™. The image ¢ (F) is called the geometric

image of F and it can be partially studied by geometric tools.

3.6.6. THEOREM. (Minkowski’s Bound Theorem)
Let F be an algebraic number field of degree n with parameters ry,ry. Then every class of Cr

contains an ideal I such that its norm N(I) satisfies the inequality

N(I) < (4/7)*n!\/|dr|/n"

where dp is the discriminant of F.

Proof. One of the proofs uses the geometric image of F and some geometric combinatorial con-
siderations. In particular, one can use Minkowski’s Lattice Point Theorem:

Let L be a free Z-module of rank 7 in an n-dimensional vector space V over R (then L is called
a complete lattice in V). Denote by Vol (L) the volume of the set

{aie1 +---+aye, : 0 < a; < 1},

where ey, ..., e, is a basis of L. Notice that Vol (L) does not depend on the choice of basis. Let X
be a centrally symmetric convex subset of V. Suppose that Vol (X) > 2"Vol (L). Then X contains
at least one nonzero point of L.

Details can be found in many textbooks. O

REMARK. In relation to an adelic proof of MBD see Remark 2 in 22.7 of Ch.3.
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3.6.7. EXAMPLES.
1. Let F = Q(+/5). Thenry =2, =0,n =2,
(4/7)2n!/|dp| /0" = 21V/5/22 = 1.1...,
so N(I) = 1 and therefore I = Op. Thus, every ideal of OF is principal and Cr = {1}.

Similarly, the class groups of Q(v/—1), Q(v/=2), Q(v/—3), Q(v/—7) are trivial, since their
discriminants are —4, —8,—3,—7,, =1, r; =0 and (2/7) v/8 < 2.

2.Let F =Q(v/=5). Thenry =0, = 1,n =2, |dr| =20, (2/7)+/]20] < 3. Hence, similar
to Example in 3.6.4 we only need to look at prime numbers 2 (< 3) and prime ideal divisors of the

dr| =5.

ideal (2) as potential candidates for non-principal ideals.

From 3.3.8 we know that 20 = (2,1 ++/=5)% and 2 = N(2,1++/=5). So the ideal (2,1 +
v/—5) is maximal by 3.4.5.

Alternatively, from 3.5.9 we get 20 = (2,5 —+/—5)?> = (2,1 ++v/=5)% and (2,1 ++/=5) is
maximal.

The ideal (2, 1+ +/—5) is not principal: Indeed, if (2,1 ++/—5) = a0}, then

2=N(2,1+V—5)=N(a0r) = [Ny )g(a)|.
If a = c+d+/—5 with ¢,d € Z we deduce that ¢> + 5d*> = +2, a contradiction.

We conclude that CQ( V=3) is a cyclic group of order 2.

3. Let F=Q(V/14). Thenr; =2, =0, n=2, |dp| =56 and (1/2) /56 = 3.7... < 4. So
we only need to inspect prime ideal divisors of (2) and of (3).
By 3.5.8 and 3.5.9 we get 20 = (2,v/14)%. Note that (4 ++/14) C (2,1/14) and

2=(4+V14)(4—V14) e (4+V14), VI4=4+V14—4€(4+V14),

hence (2,v/14) = (4++/14) is principal.
14 is quadratic non-residue modulo 3, so by Theorem 3.5.9 we deduce that 3 remains prime

in Op. Thus, every ideal of the ring of integers of Q(+/14) is principal, Coryiay = {1}.

4. Let F = Q(+/—13).

The discriminant of F is —52. We have 4 < 2/ /52 < 5.

Hence we only need to look at primes 2 and 3 (< 5) and prime ideal divisors in OF of the
ideals (2) and (3) as potential candidates for non-principal ideals of 0.

By 3.5.9 the ideal (3) remains prime in F' since —13 is quadratic non-residue modulo 3.

By 3.5.9 2 ramifies in . By 3.5.8 we get the following factorisation into maximal ideals:

(2) = (2,7/—13 —13)? = (2,1 +vV/—13)>.
The ideal (2,1 ++/—13) is not principal: indeed, if (2,1++/—13) = a0 then
2=N(2,1+v—13) =N(a0F) = |[Np g(a)|.

If a = ¢ +d+/—13 with ¢,d € Z we deduce that ¢? + 13d? = +2, a contradiction.
Thus, the class group of F is cyclic of order 2 and is generated by the class of the ideal

(2,14+v/—13).
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5. It is known that for negative square-free d the only quadratic fields Q(+/d) with class
number 1 are the following:

Q( _19)7 Q( \ 3)7 Q( v _67)7 @( v _163)

For d > 0 there are many more quadratic fields with class number 1. Gaul} conjectured that
there are infinitely many such fields, but this is still unproved.
3.7. On Fermat’s Last Theorem.
3.7.1. Already Euler noticed that for an infinitely differentiable function f(x) one has
fla+1) =€ f(x)

where D is the operator d /dx.
If we denote g(x) = f(x+1) — f(x) = (1 —€P) f(x), then

f@)=(1-e’)""g(x) = (@D +ag+aD+aD’ +...) g(x)

where the coefficients are of the Taylor expansion of = at x = 0. This is how one comes for
what Euler called (Jacob) Bernoulli numbers

t > b;
— E .—ll‘l’
e—1 =
i=0

bo=1,by=—1/2,b,=1/6,b; =0 forodd i > 1.

Now we can state one of the main achievements of Kummer.

THEOREM. (Kummer’s Theorem)
Let p be an odd prime. Let F = Q((,,) be the pth cyclotomic field.
If p doesn’t divide |Cr

numbers by, by, ... ,b,_3, then the Fermat equation

, or, equivalently, p does not divide numerators of (rational) Bernoulli

XP+YP =27P
does not have positive integer solutions, i.e. Fermat’s Last Theorem (FLT) holds in this case.

Among primes < 100 only 37, 59 and 67 don’t satisfy the condition that p does not divide |Cr|,
so Kummer’s theorem implies that for any other prime number smaller 100 the Fermat equation

does not have positive integer solutions.
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3.7.2. Full proofs of FLT.
1. In 1995 A. Wiles and R. Taylor published a proof of modularity of elliptic curves over

rational numbers with semi-stable reduction, this is part of activity in the Langlands program.

Using the previous theorem of Ribet, this result implies FLT.

2. Entirely independent proof of FLT from the method of Wiles, by S. Mochizuki, A. Mi-
namide, Y. Hoshi, W. Porowski, I. Fesenko was produced in their published in 2022 paper. It is
based on IUT theory of S. Mochizuki and its slightly enhanced version contained in this paper,
which enables the first proof of effective abc inequalities. FLT follows as one of the first applica-
tions of the established effective abc inequalities. In this application one uses some old computer
verifications of FLT, classical results of H. Vandiver and new lower bounds for positive integer
solutions of the Fermat’s equation when their product is divisible by p obtained by P. Mihdilescu.

3.8. On Dirichlet’s Unit Theorem.

3.8.1. THEOREM. Let F be a number field of degree n, r1 +2ry = n. Let OF be its ring of
integers and U be the group of units of Op. Then U is the direct product of a finite cyclic group T
consisting of all roots of unity in F and a free abelian group U\ of rank r| +ry — 1:

UXTxU =T x7zn+21

A basis of the free abelian group U, is called a fundamental system of units in OF.
Proof. Consider the canonical embedding o of F into R x C™2. Define
f: Op\{0} — R"1T72,

f(x) = (log|or(x)],....,log|oy, (x) ], log (|6, 1 (x) ), .., log(| 6y (1) ) ).
The map f induces a homomorphism g: U — R 172,

Let Z be a bounded set of R "2, If u € g~!(Z) then there is ¢ such that |6;(u)| < ¢ for all i. The
coefficients of the characteristic polynomial g,(X) =[], (X — 0;(u)) of u over F being functions
of o;(u) are integers bounded by max(c",nc"~!,...), so the number of different characteristic
polynomials of g~!(Z) is finite. So g~!(Z) and ZNg(U) is finite. Thus g(U) is a discrete group.

Every finite subgroup of the multiplicative group of a field is cyclic by 1.2.4. Hence the kernel
of g, being the preimage of 0, is a cyclic finite group. On the other hand, every root of unity
belongs to the kernel of g, since mg(z) = g(z") = g(1) = 0 implies g(z) = 0 for the vector g(z).
We conclude that the kernel of g consists of all roots of unity 7 in F.

Since for u € U the norm Ng g (u) = [106;(u), as the product of units, is a unit in Z, it is equal
to +1. Then []|o;(u)| =1 and

log|o1 ()| + -+ +10g|0y, (1) +10g (|6, 1 () |*) + - +10g(| Oy, 4, (w)]*) = 0.
We deduce that the image g(U) is contained in the hyperplane H C R" "2 defined by the equation
it + Y4 =0.

Since g(Z) is discrete, by 3.7.2 g(U) has a Z-basis {y;} consisting of m < r; +ry — 1 linearly
independent vectors over Z. Denote by U; the subgroup of U generated by z; such that g(z;) = y;;
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it is a free abelian group, since there are no nontrivial relations among y;. From the main theorem
on group homomorphisms we deduce that U/T = g(U) and hence U = TU,. Since U; has no
nontrivial torsion, T NU; = {1}. Then U as a Z-module is the direct product of the free abelian
group Uj of rank m and the cyclic group T of roots of unity.

It remains to show that m = r; +r, — 1, i.e. g(U) contains r; +r, — 1 linearly independent
vectors. Put / = r; 4+ r;. As an application of Minkowski’s geometric method one can show that

for every integer k between 1 and [ there is ¢ > 0 such that for every non-zero a € OF \ {0}
with g(a) = (oy,. .., 04) there is a non-zero b = hy(a) € OF \ {0} such that

INp/@(b)| < ¢ and g(b) = (B1,...,B;) with B; < a; for i # k.
(for the proof see Marcus, Number Fields, 2nd edition, Th. 38 of Ch. 5)

Fix k. Start with a; = a and construct the sequence a; = hi(aj_1) € OF for j > 2. Since

N(a;jOF) = |Nrg(a;)| < c, in the same way as in the proof of 3.6.4 we deduce that there are only

finitely many distinct ideals a;0F. So a;0r = a,0F for some j < g <I. Then u; = aqajf1 isa
unit and satisfies the property: the ith coordinate of g(ux) = f(aq) — f(a;) = (Ot](k), e, Otl(k)) is
negative for i # k. Then (x,Ek) is positive, since Y, Ocl.(k) =0.

This way we get [ units u,...,u;. We claim that there are / — 1 linearly independent vectors

among the images g(u;). To verify the claim it suffices to check that the first / — 1 columns of the
(k)

matrix (o; ) are linearly independent.

If there were not, then there would be a non-zero vector (¢, ...,#_1) such that Zf;ll tioci(k) =0
for all 1 < k < [. Without loss of generality one can assume that there is iy between 1 and [ — 1
such that#;, = 1 and 7; < 1 fori # iy, 1 <i<I—1. Thent, Oti(oio) = l.(oi(’) and for i # iy t,-(xl.(i(’) > Oci(iO)

since t; < 1 and (xl-(lo)

< 0. Now we would get
-1 , ,
0= Zt,-a,.("’) >y ol > Y al™ =0,
i=1 '

a contradiction.
Thus,m=r; +r,—1. Il

REMARK. For a full and very different proof of Dirichlet’s unit theorem see 5.4 Ch.3.

3.8.2. EXAMPLE. Let F = Q(+/d) with a square free non-zero integer d.

If d > 0, then the group of roots of 1 in F is {£1}, since F C R and there are only two roots
of unity in R.

Let OF be the ring of integers of F. Wehaven=2and r; =2, =0ifd >0;r; =0, =1
ifd < 0. If d <0, then

U(Or)=T

is a finite cyclic group consisting of all roots of unity in F. It has order 4 ford = —1, 6 ford = -3,
and one can show it has order 2 for all other negative square free integers.

If d >0, U(OF) is the direct product of (+1) and the infinite group generated by a unit u

(fundamental unit of OF):

U(OF) = (£1) x (u) = {xu* 1 k € Z}.
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Here is an algorithm how to find a fundamental unit if d Z 1 mod 4 (there is a similar algo-
rithm for an arbitrary square free positive d):

If a+b+/d > 1 is a unit of O then Nrq(a+bv/d) = a> —db* = +1. Let b be the minimal
positive integer such that either db*> — 1 or db® + 1 is a square of a positive integer, say, a.

Let u = e+ f+/d be a fundamental unit. Changing the sign of e, f if necessary, we can assume
that e, f are positive. Due to the definition of u there is an integer k such that a + b/d = +uX.
The sign is +, since the left hand side is positive; k > 0, since # > 1 and the left hand side is > 1.
From a+bv/d = (e + f/d)* we deduce that if k > 1 then b = f+ some positive integer > f, a
contradiction. Thus, k = 1 and a + b\/d > 1 is a fundamental unit of .

For example, 14 /2 is a fundamental unit of Q(+/2) and 2 + /3 is a fundamental unit of
Q(V3).

3.8.3. Now suppose that d > 0, and for simplicity, d # 1 mod4. Let u=e+ f\/d be a

fundamental unit. From the previous we deduce that all integer solutions (a,b) of the equation
X2 —dy?=+1

satisfy a+b+/d = £(e+ f/d)™ for some integer m, which gives formulas for a and b as functions

of e, f,m.

4. p-adic Numbers

This section introduces first features of p-adic numbers. Chapter 2 contains a more general
presentation of local fields and its readers can essentially skip this section.

4.1. p-adic valuation and p-adic norm.

4.1.1. Fix a prime p.

For a non-zero integer m let
k=vp(m)

be the maximal integer such that p* divides m, i.e. k is the power of p in the factorisation of m.
Then v, (mimy) = v,(my) +v,(my).

Extend v, to rational numbers putting v, (0) := e and

vp(m/n) = vy (m) — v, (n),

this does not depend on the choice of a fractional representation: if m/n = m'/n’ then mn' = m'n,

hence v, (m) +v,(n") = v,(m') +v,(n) and v,(m) —v,(n) = v,(m’) —v,(1').
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Thus we get the p-adic valuation v,,: Q — Z U {+oco}. For non-zero rational numbers a =
m/n,b=m'/n" we get
vy(ab) = v,(mm'/(nn')) = v,(mm') —v,(nn")
( ) = vp(n')
vp(m) = vp(n) +vp(m') —v,(n)
( )
(

(
vp(m) +vp(m') —vp(n

vp(m/n) +vy(m' /0’
vp(a) +vy(b).

Thus v, is a homomorphism from Q™ to Z.

4.1.2. p-adic norm. Define the p-adic norm of a rational number ¢ by
o], = p @, 0], =0.
Then
laBl, = |alplBlp-

If o = m/n with integer m,n relatively prime to p, then v,(m) =v,(n) =0 and |ot|, = 1. In
particular, | — 1|, = |1], = 1 and so | — a|, = ||, for every rational .

4.1.3. Ultrametric inequality. For two integers m,n let k = min(v,(m),v,(n)), so both m and

n are divisible by p*. Hence m + n is divisible by p¥, thus
vp(m -+ n) > min(v, (m), v, (m)).
For two nonzero rational numbers o = m/n, f =m' /n’
vp(ot+B) =v,(mn' +m'n) —v,(nn')
> min(vy,(m) +vp(n'),vp(m') +v, (1)) = vp(n) —vy(n')
> min(vy(m) —vy(n),vy(m') —v,(n))
=min(v,(a),v,(B)).
Hence for all rational o, 8 we get
vp(o+B) = min(vy (), v, (B)).
This implies
o+ B, < max(|exp, [B]p)-

This inequality is called an ultrametric inequality.
In particular, since max(|c/|,, |B|,) < |et|,+|B]p, we obtain

la+ Bl < lafp+ By,

so | |, is a metric (p-adic metric) on the set of rational numbers Q and

dp(a7ﬁ) = |a_ﬁ’17

gives the p-adic distance between rational @, 3.
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4.1.4. All norms on Q. In general, for a field F anorm | |: F — R is a map which sends
0 to 0, which is a homomorphism from F* to RZ and which satisfies the triangle inequality:
|oc+ B| < |ot| +|B]. In particular,
1=11=1]=|(-1)(=D=|-1P,
so | — 1] =1, and hence
| —al=|=1]la| =al.
A norm is called nontivial if there is a nonzero a € F such that |a| # 1.

In addition to p-adic norms on Q we get the usual absolute value on (Q which we will denote
by | |-
A complete description of norms on Q is supplied by the following result.

THEOREM. (Ostrowski’s Theorem) A nontrivial norm | | on Q is either a power of the absolute
value | |, with positive real c, or is a power of the p-adic norm | |{, for some prime p with positive

real c.
Proof. For an integer a > 1 and an integer b > 0 write

b=byd"+by,_1d" "+ +b

with 0 < b; < a,ad” < b. Then

|61 < (|ba] + [bn—1] + -+~ + |bo[) max(1, [a]")
and
bl < (log,b+1)d max(1, |al="),

with d = max (|0}, |1[,...,|a—1|).

Substituting b* instead of b in the last inequality, we get

b°| < (slog, b+ 1)d max(1, |a|*'°%?),
hence
b < (slog, b+ 1)"°d" max(1,|a|'%").
When s — 40 we deduce
b] < max(1, |a]=").
There are two cases to consider.
(1) Suppose there is an integer b such that |b| > 1. We can assume b is positive. Then
1< [b] < max(1,]a[="),
and so |a| > 1, |b| < |a|'°%? for every integer a > 1. Swapping a and b we get |a| < |b['°%4, thus,
jal = [p[&

for every integer a and hence for every rational a.

Choose ¢ > 0 such that |b| = |b|S, then we obtain |a| = |alS, for every rational a.
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(2) Suppose that |a| < 1 for all integer a. Since | | is nontrivial, let ag be the minimal positive
integer such that |ag| < 1. If ap = aja, with positive integers aj, ay, then |a;||az| < 1 and either
a; = 1 or ap = 1. This means that ap = p is a prime. If ¢ ¢ pZ, then pp; +gq; = 1 with some
integers pi, g; and hence 1 = |1| < [p||p1| +|q||q1] < |p| + |g|. Writing ¢° instead of g we get
lg|* >1—|p| >0and |q| > (1—|p|)'/. The right hand side tends to 1 when s tends to infinity. So

we obtain |g| = 1 for every ¢ prime to p. Therefore, |t| = |p|*»(*), and | | is a power of the p-adic

norm. O

4.1.5. LEMMA. (Product formula) For every nonzero rational o

H |OC|,':1.

i prime or o

Proof. Due to the multiplicative property of the norms and factorisation of integers it is sufficient
to consider the case when o a prime number p. Then |p|, = p~!, |ple = p and |p|; = 1 for all
other i. U

4.2. The field of p-adic numbers Q,.

4.2.1. DEFINITION. Similarly to the definition of real numbers as the completion of Q with
respect to the absolute value | |.. define Q, as the completion of Q with respect to the p-adic norm
| |- So Q) consists of equivalences classes of all fundamental sequences (with respect to the p-
adic norm) (a,) of rational numbers a,: two fundamental sequences (a,), (b,) are equivalent if
and only if |a, — by|, tends to 0.

The field Q,, is called the field of p-adic numbers and its elements are called p-adic numbers.

4.2.2. p-adic series presentation of p-adic numbers. As an analog of the decimal presentation
of real numbers every element o of (@, has a series representation: it can be written as an infinite

convergent (with respect to the p-adic norm) series

Z aip'
i=n
with coefficients a; € {0,1,...,p—1} and a, # 0.

4.2.3. The p-adic norm and p-adic distance. We have an extension of the p-adic norm from
Q to Q,, by continuity: if & € Q,, is the limit of a fundamental sequence (a,) of rational numbers,
then ||, :=lim|a,|,. Since two fundamental sequences (a,), (b,) are equivalent if and only if
|a, — by|p tends to 0, the p-adic norm of « is well defined.

If we use the series representation o = Y'i° , a;p' with coefficients a; € {0,1,...,p — 1} and
a, # 0, then |a|, = p~".

The p-adic norm on Q, satisfies the ultrametric inequality: let o = lima,, = limb,, (a,),
(b,) are fundamental sequences of rational numbers, then o + 8 = lim(a, + b,). Suppose that

|et|, < |B|p, then |ay,|, < |y, for all sufficiently large n, and so

|a+ B, = lim|ay, + by|, < limmax(|ap|p, |balp) = lim |b,|, = |B|, = max(|a|,,|B],)-
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For a, such that |a|, < |B|, we obtain B = Y+ « where Yy = B — a. By the ultramet-
ric inequality |B|, < max(|y|,,|c|,), so |B|, < |7|, and by the ultrametric inequality |y|, <
max(|t] | — B,) = max(|t],[B],) = |B,- Thus if |at], < B, then |ot — B, = B]-

Using the p-adic distance d), we have shown that for every triangle with vertices in 0, o, 8
if the p-adic length of its side connecting O and ¢ is smaller than the p-adic length of its side
connecting 0 and B then the p-adic length of the third side connecting & and 8 equals to the
former. Thus, in every triangle two sides are of the same p-adic length!

4.2.4. The ring of p-adic integers Z,. Define the set Z, of p-adic integers as those p-adic
numbers whose p-adic norm does not exceed 1, i.e. whose p-adic series representation has ng = 0.
For two elements o, € Z, we get |af|, < 1,|a =+ B|, < 1. Hence Z, is a subring of Q,,.

The units Z; of the ring Z, are those p-adic numbers u whose p-adic norm is 1.

Every nonzero p-adic number ¢ can be uniquely written as p"»(®)y with u € Z, . Thus

Q, =(p)xZ,

where (p) is the infinite cyclic group generated by p.

Let I be a non-zero ideal of Z,,. Let n = min{v, (@) : & € I'}. Then p"u belongs to I for some
unit u, and hence p" belongs to I, so p"Z, C I C p"Z,,i.e. I = p"Z,. Thus Z, is a principal ideal
domain and a Dedekind ring.

4.2.5. Note that Z, is the closed ball of radius 1 in the p-adic norm.

Let o be its internal point, so |a|, < 1. Then for every B on the boundary of the open ball,
i.e. |B], =1 we obtain, applying 4.2.3, we obtain |&t — |, = |B|, = 1. Thus, the p-adic distance
from o to every point on the boundary of the ball is 1, i.e. every internal point of a p-adic ball is

its centre.

4.3. Henselian properties.

Let f(X) =Y a;X' € Z,[X], and leta,b € Z,,a—b € p"Z,, n > 0. Then
fl@)=fb)=Y aid =b) =Y ala—b)(@ "' +---+b"") € p'Z,.

i>0

THEOREM. (Henselian property)

Let f(X) € Zy[X].

Let a € Z,, such that v,(f'(a)) = r,v,(f(a)) > 2r for a non-negative integer r.

Define a sequence o, € Q, as oy = a,

an+1:an—M n=0.

f(o)’

Then this sequence converges to o, € Z,, such that
fla)=0, v,(x—a)>r+1.
Proof. By induction on n > 0 we prove that &, € Z,, f(o,) € p2r“+”Zp forn>0, o4, — Q1 €

p'"Z, for n > 1. Then the sequence o, indeed converges, and passing to the limit we obtain that
its limit & € Z, satisfies f(@) =0and o —a € p"™Z,.
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Base of induction: n = 0 is clear. Induction step (n = n+1): o, — 04, = — j]:,((‘z;')) Since by

the induction hypothesis &, — & € p""'Z, and v,(f'(0%)) = r, using the property stated before
the Lemma, we obtain v, (f’(¢,)) = r. Then by the induction hypothesis

f(OCn) r+1+4n *
Flo) 7T ()

SO Qi1 — Oy € "7, and @1 is in Z,.

Finally, represent f(X) as a polynomial of X — a,;:
FX) = flow) + f' (o) (X = 0) + (X — 0t,) g (X)

for a polynomial g(X) € Z,[X]. Substitute X = . Using the definition of &, € Z, we obtain

2
o) = (o) o)
hence by (*) we obtain f(a,.1) € p>U 1407, O

REMARK. Often, a different property which implies this Theorem is called Hensel Lemma:
Let f(X),g0(X),ho(X) be monic polynomials with coefficients in Z, such that for their residue
images in F,[X] the equality f(X) = g,(X)ho(X) holds. Suppose that gy(X),ho(X) are relatively
prime in F,[X]. Then there exist monic polynomials g(X ), (X) with coefficients in Z,, such that

f(X) =g(X)h(X), g(X) =go(X), h(X) = ho(X).

COROLLARY 1. Let f(X) € Z,[X), a € Z, such that f(a) € pZ, and f'(a) & pZ,. Then the
polynomial f has a root o € Z,, such that @ —a € pZ,,.

Proof. r =0. U

COROLLARY 2. The polynomial XP~' — 1 has p — 1 distinct roots in the field Qp ifp>2.

Proof. Choose any of p — 1 elements of I, denote it by b. Let a € Z, whose image in F)
with respect to the surjective homomorphism Z, — Z,/pZ, = F, is b. Then the image of
aP~! — 1 with respect to the same homomorphism is 0, i.e. v,(a?~! —1) > 1. Since (X! — 1)/ =
(p—1)XP~2 and the image of (p — 1)a?~% in F,, is not zero, we can apply Corollary 1 to deduce
the existence of a root o € Z,, of XxP~1 -1, o —a € pZp. O

COROLLARY 3. If p > 2, the group Z; is the product of the cyclic group of order p — 1 and

the group 1+ pZ,. The group 75 is the product of the cyclic group of order 2 and the group
1+47Z,.

Proof. If pis odd, let B € Z,;, let b € F; be its image with respect to the homomorphism of the
previous proof and let & € Z, be a root of XP~! —1suchthat B — o € pZ,. Then y= Ba~!e
1 + pZ,. The intersection of the group of roots of X?~! — 1 and the group 1 + pZ, is {1}: indeed
for 8 € pZ, we have 1 = (1+8)P"! =1+ (p— 1)+ terms whose p-adic valuation is at least
>2v,(8) >vp((p—1)8) =v,(8), hence § = 0.
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If p =2 then +1 are roots in Q,. We can write —1 = 1+2+22+... in Z,. Hence, every
element of Z2X = 1427, is the product of =1 and an element of 1+ 4Z,. The intersection of the
group 1+ 4Z, and the cyclic group of order 2 is {1}. O

COROLLARY 4. The group Q; contains p — 1 roots of unity if p > 2 and 2 roots of unity if
p=2

Proof. Let y € Q, satisty " =1, m > 0. If s = v,(y), then ms = v,(y") =v,(1) =0,s0 s =0
and y € Z;. Using Corollary 3 we only need to show that 1+ pZ, does not have nontrivial roots
of unity if p > 2 and 1+ 4Z; does not have nontrivial roots of unity.

Write an element of 1+ pZ, as 1+ p"a with a € Z}, r > 1. If m is prime to p, then (1 +
pay"=1+mpa+-+p™a" =1+mp'azl modp'Z, so (1+ p"a)™ # 1. Hence we
only need to look at elements of order p. If p is odd, we have (1+p'a)? =1+ ptla# 1
mod p**17Z,, hence (1+ p’a)? # 1 and 1 + pZ, does not have elements of order p. If p =2
then (1+27a)? = 1+2"*1a+2%a> =1+2"a# 1 mod2%7Z, and (1+2a)*> # 1if r > 2,
a € 75, hence 1447, does not have elements of order 2. O

COROLLARY 5. 1+ pZ, = (1+ pZ,)™ for every positive integer m prime to p.

Proof. Let y € 14 pZ,. Put f(X) = X" —7, a =1 and apply the Hensel Lemma. O

COROLLARY 6. The fields Q, and Q,, p # q, are not isomorphic.

Proof. Consider 1+ pg € 1+ pZ,. By the previous corollary 1+ pgq is a gth power in Q,,. On the
other hand, 1+ pq € 1+ gZ, cannot be a gth power. Indeed, if 1 + pg = (¢"a)? with o € Z;, then
comparing v, on the LHS and RHS we deduce n = 0. Looking at the images of the LHS and RHS
in Z,/qZ%, = F, we deduce & € 1+ qZ, so o = 1+ qy with y € Z,. Since (1+qy)? € 1 +¢*Z,
and p & gZ,, we get a contradiction. O

REMARK. For much more about p-adic fields see Ch.2.

5. A Little about Class Field Theory

This section introduces first features of cyclotomic class field theory in a way quite different
from the general presentation of class field theory in Chapter 3.

First, we need to talk a little about projective limits of algebraic objects.

5.1. Projective limits.

Let A,, n > 1 be a set of groups/rings, with group operation, in the case of groups, written
additively. Suppose there are group/ring homomorphisms ¢y, : A, — A,, for all n > m such that
Qnn =1d4,, Pnr = Qur © @y foralln >m > r.
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The inverse/projective limit @An of (A,, un) is the set
{(an) : an € Ay, Qum(an) = ay, for all n > m}

with the group/ring operation(s) (a,) + (b,) = (a, + by) and (a,)(b,) = (aby)
For every m one has a group/ring homomorphism ¢, : lér_n Ap — Ap, (an) — ap.

EXAMPLES.

1. If A, = A for all n and ¢@,,,, = id then ILmAn =A.

2.1fA, =7Z/p"Z and @,,(a+ p"Z) = a+ p"Z then (a,) € lim 7./ p"7Z means p™irtm)|(q, —
an) for all n,m.

The sequence (a,) as above is a fundamental sequence with respect to the p-adic norm, and
thus determines a p-adic number a = lima, € Z,. For its description, denote by r,, the integer
between 0 and p™ — 1 such that r,,, = a,, mod p™. Then r,, =a, mod p™ forn >mand r, =ry,,
mod p™ for n > m. Denote ¢y = rg and ¢,y = (rm — rm_1)p "+, s0 ¢,y €{0,1,...,p—1}. Then
a=Y,>oCmp" =limry, € Z,.

We have a group and ring homomorphism

FiUmZ/p"% — Ly, (an) > a=lima, € Z,.

" then define r,, by the inverse procedure to the above, then a is the

Itis surjective: ifa =Y, ~oCnp
image of (r,) € lim Z /p"; and its kernel is trivial, since @ = 0 implies that for every k p* divides
a,, for all sufficiently large n, and so p* divides ay.

Thus,

@ Z/p"L =27,

This can be used as another (algebraic) definition of the ring of p-adic integers.

In particular, we have a surjective homomorphism Z, — Z/p"7Z whose kernel equals to
P"ZLp.

From the above we immediately deduce that if A, = (Z/p"Z)* and @Qy,(a+ p"Z) = a+ p"Z,
(a,p) = 1, then similarly we have a homomorphism

f:lim (Z/p"2) —Z,, (an) > limr, €Z,
(note that (r,,, p) = 1 and hence limr,, & pZ,). Thus, there is an isomorphism
lim (Z/p"Z)* = Z.;.

3. One can extend the definition of the projective limit to the case when the maps ¢, are
defined for some specific pairs (n,m) and not necessarily all n > m.

Let A, =7Z/nZ and let @,,,: A, — A, be defined only if m|n and then @,,(a +nZ) = a+mZ.
Define, similarly to the above definition of the projective limit the projective limit lgn A,

By the Chinese Remainder Theorem Z/nZ = Z/p"' Z x --- x ./ p& Z, where n = pi' ... pkr is
the factorisation of n. The maps ¢, induce the maps already defined in Example 2 on Z/p'Z,
and we deduce

UmZ/nZ =imZ/2"Zx ym Z/3L x ... 2 Lo x Ly % -+~ = [ [ Zy.
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The group L m Z/nZ is denoted Z and is called the procyclic group (topologlcally it is gener-
ated by its unity 1). This group is uncountable. We have a surjective homomorphism 7—17 /nZ
whose kernel is nZ.

4. Similarly we have

X ZI'LIH(Z/HZ)X :@(Z/er)X X@(Z/3rZ)X x,..%HZX.

5.2. Infinite Galois theory.

As described above,
Gal(Fyn/F,) = Z/mZ,

where g = p" and the isomorphism is given by ¢, — 1 +mZ. The algebraic closure Fg of Fy is the
compositum of all Fyn. It is natural to define the infinite Galois group Gal(Fg /T, ) as the projective
limit lim Gal(Fg» /F,) with respect to the natural surjective homomorphisms Gal(Fgn/Fg) —
Gal(F, /F,), r

Hence we get

defined in Example 3 above.

Gal(Fg /F,) = im Z,/nZ = .

Similarly, for the maximal cyclotomic extension Q%°!, the composite of all finite cyclotomic

extensions Q({,,) of Q, we have

Gal(Q™/Q) = lim (Z/nZ)* =

The Main Theorem of extended (to infinite extensions) Galois theory (one has to add a new
notion of closed subgroup for an appropriate extension of the finite Galois theory), can be stated
as follows:

Let L/F be a (possibly infinite) Galois extension, i.e. L is the composite of splitting fields of
separable polynomials over F. Denote G = Gal(L/F) = lim Gal(E /F) where E/F runs through
all finite Galois subextensions in L/F. Call a subgroup H of G closed if H = @ Gal(E/K)
where K runs through a subfamily of finite subextensions in E /F, and surjective homomorphisms
Gal(E" /K") — Gal(E'/K’) are induced by Gal(E" /F) — Gal(E'/F).

There is a one-to-one correspondence (H — L) between closed subgroups H of G and fields
M, F CM C L, the inverse map is given by M — H = lim Gal(E/K) where K = ENM. We have
Gal(L/M) =

Normal closed subgroups H of G correspond to Galois extensions M /F and Gal(M /F) =
G/H.

5.3. Cyclotomic extensions of QQ.

We have already seen the importance of cyclotomic fields in Kummer’s theorem 3.6.8.

Another very important property of cyclotomic fields is given by the following theorem
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THEOREM. (Kronecker—Weber)
Every finite abelian extension of Q is contained in some cyclotomic field Q(&,). Therefore
the maximal abelian extension Q¥ of Q coincides with the cyclotomic field Q% which is the

compositum of all cyclotomic fields Q(&,).

For a finite abelian extension F /Q the minimal positive integer n such that F C Q({,) is called
the conductor of F'.

For example, let F = Q( Vd ) with square free integer d. Then one can prove that the conductor
of F is equal to |dp| where dF is the discriminant of F.

According to 2.4.4 the Galois group Gal(Q({,)/Q) is isomorphic to (Z/nZ)*. So the infinite
group Gal(Q#/Q) is isomorphic to the limit of (Z/nZ)* which by 5.1.2 coincides with the group
of units of Z = Jim Z./nZ.

The isomorphism

Y: Z° = Gal(Q*/Q)

can be described as follows: if a € Z* is congruent to m modulo n via
Z / nZ —s17. /nZ,

then Y(a) (&) = 7.
Using 5.1 we have an isomorphism

w: ]z = Z" > Gal(Q™/Q).

On the left hand side we have an object Z* which is defined at the ground level of @, on the right
hand side we have an object which incorporates information about all finite abelian extensions of
Q.

The restriction of the isomorphism to quadratic extensions of Q is related with the Gaul3
quadratic reciprocity law.

Abelian class field theory generalises the Kronecker—Weber theorem for an algebraic number
field K to give a reciprocity homomorphism which relates an object (idele class group) defined at

level of K and the Galois group of the maximal abelian extension of K over K.

5.4. Ideles and reciprocity map.

5.4.1. Recall (see 4.2.4) that Q, = (p) X Z,, a+> (n,u) where n=v,(a) and u =ap™",
v, is the p-adic valuation.

Denote Q.. = R and include o in the set of “primes” of Z. Form the so called restricted
product

Jo = H/Q; = {(@e, a2,03,...) 12, €Q,'}

of R* = QZ, Q5,Q5,... such that almost all components a,, are p-adic units. Elements of Jg are
called ideles of Q.

Define a homomorphism

f: J@:HIQ; — Q* xRX x[]Z;,

(ooyaz,a3,...) = (a,ama” " ara™ " aza™',...)
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where a = sign(a..) [T p*»(%) € Q* and sign(a) is the sign of a.
It is easy to verify that f is an isomorphism.

5.4.2. Define a homomorphism
¥o: [T Q) — Gal(Q®/Q)

by the following local-global formula:

Yo (e, az,a3,...) = H‘PQp(ap).

Here the local reciprocity map W, is described as follows: if a, = p"u where n =v), (a), then for
a ¢"th primitive root { with prime ¢ and ¢" > 2,
¢, ifp#q
Yo, (ap)(E) =49 .
¢, ifp=gq.

In particular, if p # g, then Wq, (p) sends ¢ to {7, the latter is kind of similar to the pth Frobenius
automorphism defined in 1.3. So the local reciprocity map ¥, (p) sends prime p to the pth
Frobenius automorphism.
For p = o put
W (a)(§) = £,

The homomorphism W is called the global reciprocity map.
THEOREM.
1. Reciprocity Law: for every non-zero rational number a one has
Yol(a,a,a,...)=1.
2. For units u, € Z,; one has
‘PQ(I,uz,u%...)*l =W¥(up,u3,...).

3. Using f define

g:Jo — Q@ xR x[]z; —[]7;,

(a,bup,us,...)— (ug,u3,...). Then
Yo(a)' =Pog(a).

4. The kernel of the reciprocity map Wq equals to g '(1,1,1,...) = the product of the di-
agonal image of Q* in Jy and of the image of R’} in Jg with respect to the homomorphism
o (a,1,1,...). It induces an isomorphism

Jo/Q R’} = Gal(Q™/Q).
Proof. To verify the first property, due to the multiplicativity of Wy it is sufficient to show that for
a primitive ¢"'th root §, ¢" > 2,
Wo(p,p,...)(§) = for all positive prime numbers p



From the definition of Wg we deduce that

¢, ifl#ql#p
P, ifl£ql=
W (p)(Q) =4 HFel=r
¢r, ifl=ql#p

¢, ifl=qg=p.

So (IT;Wq,(p))(&) = ¢ for g # p and for g = p. Similarly one checks the second assertion.

The second property is easy: due to multiplicativity it suffices to show that
W1, up, 1, ) P =0g(1,. 0 up, 1,

and this follows immediately from the definition of ¥, ¥q.
The third property follows from the definition of f and the first and second properties. The
fourth property follows from the third. U

5.4.3. The previous description is part of cyclotomic class field theory of QQ, where one can
use the Galois action on roots and roots generate the maximal abelian extension of Q (Kronecker—
Weber theorem).

For an algebraic number field F' one can define, in a similar way, the idele group Jr as a
restricted product of the multiplicative groups Fp* of completions Fp of F with respect to non-zero
prime ideals P of the ring of integers of F, and of real or complex completions of F' with respect
to real and complex embeddings of F into C.

Except the case of (Q, imaginary quadratic fields and totally imaginary quadratic extensions of
totally real fields, one does not have an explicit description of the maximal abelian extension by
appropriate torsion elements, as in the Kronecker—Weber Theorem. Thus, one needs to directly
define a global reciprocity map

Wr: Jp — Gal(F®/F)
for all number fields F' and study its properties. This is done in a completely different way from
cyclotomic class field theory, in general class field theory. The Kronecker—Weber theorem plays
no role in general class field theory and this theorem will be the last statement to include, as a
corollary of general class field theory, at the end of Chapter 3.

The global reciprocity map uses certain local reciprocity maps Fp* — Gal(F3 /Fp) and ho-
momorphisms Gal(Fi®/Fp) — Gal(F /F). The local reciprocity maps are defined and studied
in local class field theory.

The local reciprocity maps and global reciprocity maps satisfy a number of important proper-
ties, including functorial properties which do not play any role in special class field theorists such
as the cyclotomic class field theory.

The analog of the reciprocity law is that the kernel of W contains the image of F* in Jp.

A key part of class field theory is the existence theorem: every open subgroups N in Jp /F*
corresponds to its class field L, the unique finite abelian extension of F such that Ny /p (J)F* = N
and N = ¥ ! (Gal(F*/L)).



CHAPTER 2

Complete Discrete Valuation Fields

Chapters 2 and 3 do not include references to specific sections of Chapter 1.

In Chapter 2 we will go relatively slow in sections 1-13 in order to build a good understand-
ing of and intuition about complete discrete valuation fields. This Chapter includes less known
but important topics such as the group of principal units as a topological Z,-module, the norm
map behaviour in cyclic extensions of prime degree, Artin—Schreier extensions of local fields, an
approach to the Hasse—Herbrand function that uses the behaviour of the norm map, and Fontaine—
Wintenberger’s theory of fields of norms, studying the latter might be a good place to test the
knowledge of local fields.

1. Valuation Fields

1.1. DEFINITION. Let I" be an additively written totally ordered abelian group. Add toI" a
formal element +oo with the properties a < 4o, 400 400, a+ (+00) = +o00, (+400) 4 (F00) = 400,
for each a € T'; denote I = ["'U {+-o0}.

For a field F a map v: F — I" with the properties

v(a) =+ a=0
v(aB) =v(a)+v(B)
v(ee+B) > min(v(a),v(B))

is said to be a valuation on F.

The map v induces a homomorphism of F* to I" and its value group v(F*) is a totally ordered
subgroup of I

If v(F*) = {0}, then v is called the trivial valuation.

A field F which has a nontrivial valuation is said to be a valuation field.

It is immediate that if v(a) # v(B), then v(o + B) = min(v(a),v(B)).

1.2. Denote 0, ={acF:v(a) >0}, #,={acF:v(a)>0}.

Then ., coincides with the set of non-invertible elements of &,. Therefore, 0, is a local ring
with the unique maximal ideal #,,.

O, is called the ring of integers (with respect to v), and the field F, = 0,/ .#, is called the
residue field, or residue class field.

The image of an element & € O, in F,, is denoted by @, it is called the residue of o in F,,.

49



50 2. COMPLETE DISCRETE VALUATION FIELDS

The set of invertible elements of &, is a multiplicative group U, = 0, — ., it is called the
group of units.
A valuation is called discrete if the totally ordered group v(F*) is isomorphic to the naturally

ordered group Z.

1.3. Examples.
1. The p-adic valuation on Q and Q,,.

2. Let K be a field. Let p(X) € K[X] be a monic irreducible polynomial over K. For a polyno-
mial f(X) € K[X] denote by v,x)(f(X)) the largest integer k such that p(X)* divides polynomial

f(X). For two polynomials f,g put v,ux(f/g) = vpx)(f) = Vpx)(&)- Putv,x)(0) = +eo.
The map v, is a discrete valuation of K(X). Its the ring of integers

f(X) . . .
Oy, x) = {g(X) 1 f(X),g(X) € K[X],g(X) is relatively prime to p(X)
and the residue field is K[X]/(p(X)).

Another discrete valuation of K(X) is —deg with the ring of integers K[X '] and maximal
ideal X 'K[X~1].

3. LetI'y,... I, be totally ordered abelian groups. One can order the group I'y x --- X I,
lexicographically, namely setting (ay,...,a,) < (b1,...,b,) ifand only if a; = by,...,a;—1 = b1,
a; < b; for some 1 < i < n. A valuation v on F is said to be discrete of rank n if the value group

F*) is isomorphic to the lexicographically ordered group (Z)" =Z % --- X Z.
v(F™) rp graphically group (Z)

n times
Note that the first component v; of a discrete valuation v = (vy,...,v,) of rank n is a discrete

valuation (of rank 1) on the field F.

4. Let F be a field with a valuation v. For f(X) = Y o;X’ € F[X] put
V' (f(X))=min (i,v(a;)) € Zxv(F™).

One can naturally extend v* to F(X). If we order the group Z x v(F*) lexicographically, we obtain
the valuation v* on F(X) with the residue field F,.

Similarly, it is easy to define a valuation on F(Xj)...(X,) with the value group (Z)"~' x
v(F*) ordered lexicographically. In particular, for F = Q, v = v, we get a discrete valuation of
rank n on Q(X)...(X,—1) and for F = K(X), v =v,(x) we get a discrete valuation of rank n on
K(X)(X1) .. (Xn—1).

5. Let v be a discrete (surjective to Z) valuation of F. Fix an integer c¢. For f(X) =Y X' €
F[X] put

we(£(X)) = min {v(cz) +ic}.

Extending w, to F(X) we obtain the discrete valuation w, with residue field F,(X) (make substi-
tution X =Y 3 with v(3) = ¢ to reduce to the case ¢ = 0).

6. Let F,v be as in Example 4. For f(X) = Y 0;X’ € F[X] put

v (F(X)) = min (v(04),i) € v(F*) X Z, 1.(0) = (oo, +o0)

]
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for v(F*) x Z ordered lexicographically. Extending v, to F(X), we obtain the valuation v,. The

residue field of v, is F,.

2. Discrete Valuation Fields

2.1. Afield F is said to be a discrete valuation field if it admits a nontrivial discrete valuation
v. An element & € 0, is said to be a prime element (uniformising element, a uniformiser) if
v(m) > 0 generates the group v(F*). Without loss of generality we shall often assume that the
homomorphism
vi F* —17Z

is surjective.

2.2. LEMMA. Assume that char(F) # char(F,). Then char(F) = 0 and char(F,) = p > 0.

Proof. Suppose that char(F) = p # 0. Then p = 0 in F and therefore in F,. Hence p = char(F,).
U

2.3. LEMMA. Let F be a discrete valuation field, and © be a prime element. Then the ring of
integers O, is a principal ideal ring, and every proper ideal of O, can be written as ©" O, for some
n > 0. In particular, ./, = n0O,. The intersection of all proper ideals of O, is the zero ideal.
Proof. Let I be a proper ideal of &,. Then there exists n = min{v(@) : & € I} and hence n"¢ € [
for some unit €. It follows that 70, C I C "0, and I = 7" 0. If o belongs to the intersection
of all proper ideals "0, in 0, then v(at) = +oo, i.e., & = 0. O

2.4. LEMMA. Any element @ € F* can be uniquely written as "€ for some n € Z, and € € U,

Proof. Letn =v(a). Then an™" € U, and o0 = "¢ for € € U,. If "¢} = n'"¢&,, then n+v(g;) =
m+v(&). As €,& € U,, we deduce n =m, € = &. O

2.5. Letvbe adiscrete valuation on F, 0 < d < 1. The mapping d, : F X F — R defined by

dy(o, B) = d"®PB) is a metric on F. Therefore, it induces a Hausdorff topology on F. For every

o € F the sets @ + 1" 0, n € Z, form a basis of open neighbourhoods of . This topology on F
is called the discrete valuation topology.

2.6. LEMMA. The field F with the above-defined topology is a topological field.
Proof. As
v((a—B)— (a0 — o)) = min(v(a — ), v(B — o)),
v(af —aofo) = min(v(e — o) +v(B),v(B — Po) +v(w)),
v —ap ) = via— o) —v(a) —v(ap),

we deduce the statement. O
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2.7. LEMMA. The topologies on F defined by two discrete valuations vy, v, coincide if and
only if vi = vy (recall that vi(F*) = vy (F*) = Z).

Proof. Let the topologies induced by v1,v;, coincide. Observe that " tends to 0 when n tends to
+o0 in the topology defined by a discrete valuation v if and only if v(ot) > 0. Therefore, vi(a) > 0
if and only if vo () > 0. Let 71, T be prime elements with respect to v and v,. Then we conclude
that vo () > 1 and vy (m2) > 1. If vo(m;) > 1 then vo(m 7, ') > 0. Consequently, vy (m 7, ') > 0,
i.e., vi(m) < 1, a contradiction. Thus, v2(7;) = 1 and this equality holds for all prime elements
m; with respect to vi. This shows the equality vi = v,. O

2.8. PROPOSITION. (Approximation Theorem) Let v1,...,v, be distinct discrete valuations
on F. Then for every ,...,0, € F, ¢ € Z, there exists & € F such that vi(a; — a) > ¢ for
1<i<n

Proof. If v(a) > 0 then v(o™(14 o)1) — +o0 as m — oo, and if v(er) < 0 then v(a™ (1 +
a™) ™! —1) — +oo as m — +oo. We proceed by induction to deduce that there exists an element
Bi1 € F such that vi (1) <0, v;(B;) >0for2 <i<n.

Towards that aim for n = 2, one can first verify that there is an element y; € F such that
vi(71) 20, v2(71) < 0. Using the proof of the previous Lemma, find elements 7;, 1, € F with
Vz(ﬂ'l) 75 1= Vl(ﬂl), V1(7l'2) 75 1= Vz(TL’z). IfVZ(ﬂ,'l) <Oputy =m.If V2(7l'1) > 0, then Vz(p) 75
0=vi(p) forp = ﬂgnfv‘(ﬂz). Put 1 =p or 71 = p~—!. Now let 15 € F be such that v2() > 0,
vi() < 0. Then B =7, ' is the desired element for n = 2.

Let n > 2. Then, by the induction assumption, there exists 8; € F with v;(8;) <0, v;(d1) >0
for2<i<n-—1and & € F with v{(&) <0, v,(8) > 0. One can put ff, = §; if v,(6;) > 0,
B =88 if v,(81) =0, and B = 885" (1 + 85") ' if v, (1) < O for a sufficiently large m.

To complete the proof we take fBi,...,B, € F with v;(B;) <0, v;(B;) > 0 for i # j. Put ot =

" 0B (14 BM)~!. Then a is the desired element for a sufficiently large m. O

3. Completion

3.1. Let F be a field with a discrete valuation v (as usual, v(F*) = Z). As F is a metric
topological space one can introduce the notion of a fundamental (Cauchy) sequence. A sequence
(04)n>0 of elements of F is called a Cauchy sequence if for every real c there is ny > 0 such that
V(0 — 04y) = ¢ for myn > ny.

If (o) is a fundamental sequence then for every integer r there is n, such that for all n,m > n,
we have v(oy, — @) > r. We can assume ny < np < .... If for every r there is n). > n, such
that v(0, ) # v(0y 1), then limv(a;,) = +oo. Thus, every fundamental sequence (¢,) has limit
limv(a,) € Z'.

LEMMA. The set A of all Cauchy sequences forms a ring with respect to component-wise

addition and multiplication. The set of all Cauchy sequences (0;),>0 with ¢, — 0 as n — oo
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forms a maximal ideal M of A. The field A/M is a discrete valuation field with its discrete valuation
v defined by v((a,)) = limv(e,) for a Cauchy sequence (0,)n>0.

Proof. A sketch of the proof is as follows. It suffices to show that M is a maximal ideal of A. Let
(04,)n>0 be a Cauchy sequence with o, - 0 as n — +o0. Hence, there is an ny > 0 such that o, # 0
for n > ng. Put B, = 0 for n < ng and B, = @, ' for n > ng. Then (B,),>0 is a Cauchy sequence
and (ot,)(Bn) € (1) + M. Therefore, M is maximal. O

3.2. A discrete valuation field F is called a complete discrete valuation field if every Cauchy
sequence (o, ),>0 is convergent, i.e., there exists a@ = lima,, € F with respect to v. A field F witha
discrete valuation v is called a completion of F if it is complete, V| = v, and F is a dense subfield

in F with respect to 7.

PROPOSITION. Every discrete valuation field F has a completion which is unique up to an

isomorphism over F.

Proof. We verify that the field A/M with the valuation v is a completion of F. F is embedded in
A/M by the formula o — (o) mod M. For a Cauchy sequence (a,),>0 and real ¢, let ng > 0 be
such that v(oy, — @) = ¢ for all m,n > ng. Hence, for a,, € F we have v((a,,) — (0:)n>0) = ¢,
which shows that F is dense in A/M. Let ((a,E’"))n) m be a Cauchy sequence in A/M with respect
to v. Let n(0), n(1),...be an increasing sequence of integers such that v(a,g;") - ('l"))

n
ny > n(m). Then (a}i?"ni)) is a Cauchy sequence in F and the limit of ((a,ﬁ’")),,) m With respect to v
m

> m for ny,

in A/M. Thus, we obtain the existence of the completion A/M, V.

If there are two completions ﬁ, v and 1?2 V2, then we put f(o) = o for o € F and extend
this homomorphism by continuity from F, as a dense subfield in F,to Fy. Itis easy to verify that
the extension f: F| — B is an isomorphism and v; o f: V1. O

We shall denote the completion of the field F' with respect to v by F,orF.

3.3. LEMMA. Let F be a field with a discrete valuation v and F its completion with the
discrete valuation v. Then the ring of integers O, is dense in Uy, the maximal ideal M/, is dense
in M, and the residue field F, coincides with the residue field of F with respect to V.

Proof. It follows immediately from the construction of A/M in 3.1 and Proposition 3.2. U

3.4. Examples.

1. Embeddings of Q in @, for all prime p and in R is a tool to solve various problems over
Q. An example is the Minkowski—Hasse Theorem: an equation ) a;;X;X; = 0 for a;; € Q has a
nontrivial solution in Q if and only if it admits a nontrivial solution in R and in Q,, for all prime
p- A generalisation of this result is the so-called Hasse local-global principle which is of great
importance in algebraic number theory. It is interesting that, from the standpoint of model theory,

the complex field C is locally equivalent to the algebraic closure of QQ, for each prime p.

2. The completion of K(X) with respect to vy is the formal power series field K((X)) of all

formal series ¥ "% o, X" with o, € K and o, = 0 for almost all negative n. The ring of integers
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with respect to vy is K[[X]], that is, the set of all formal series ¥ ;* o, X", &, € K. Its residue field
may be identified with K.

3. Let F be a field with a discrete valuation v, and F its completion. Then the valuation v* on
F(X) defined in Example 4 of 1.3 can be naturally extended to F((X)). For f(X) = Ym0 X",
o, € F, 0y # 0, put v*(f(X)) = (m,7(0ty)). The ring of integers of v* on F((X)) is &5 + X F[[X]].

4. Let F be the same as in the previous Example. Then the valuation v, on F(X) defined in
Example 6 of 1.3 can be naturally extended to the field

~+oo
FUXY ={) aX": o, € F,inf{¥(0t,)} > —e0, V(@) — +o0 as n — —oo}.

For f(X) =Y 20, X" € F{{X}} put
v(f(X)) = min(v(et,), n).

The ring of integers of v, is 4 {{X }} + 0;[[X]] and the maximal ideal is .Z;{{X }} + X ;[[X]],
where #,{{X}} = M:0:{{X}}, O {{X}} = {2 a0 X" : oy € Op,0(qty) — +o0asn — —oo},
and the residue field is F,.

3.5. DEFINITIONS.

1. A complete discrete valuation field with perfect residue field is called a local field.

For example, Q, and F((X)) are local fields where F is a perfect field (of positive or zero
characteristic). Local fields with finite residue field are sometimes called local number fields if
they are of characteristic zero and local functional fields if they are of positive characteristic.

2. Local fields are sometimes called 1-dimensional local fields. An n-dimensional local field
(n > 2) is a complete discrete valuation field whose residue field is an (n — 1)-dimensional local
field.

For example, Q,((X2))...((Xy)), F((X1))...((Xn)) (F is aperfect field), K{{X; }} ... {{Xu—1}}
(K is a 1-dimensional local field of characteristic zero) are n-dimensional local fields.

4. Filtrations of Discrete Valuation Fields

In this section we study natural filtrations on the multiplicative group of a discrete valuation
field F'; in particular, its behaviour with respect to raising to the pth power. For simplicity, we will
often omit the index v in notations U,, O,, .#,, F,. We fix a prime element 7 of F.

4.1. A set Ris said to be a set of representatives for a valuation field F if RC €,0 € Rand R
is mapped bijectively on F under the canonical map & — & /.# = F. Denote by rep: F — R
the inverse bijective map. For a set S denote by (), the set of all sequences (a;)in, a; € S. Let

(S)*2 denote the union of increasing sets (S)," where n — —oo.
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4.2. The additive group F has a natural filtration
omrooatloo ...

The factor filtration of this filtration is easy to calculate: '@ /10 = F.

PROPOSITION. Let F be a complete field with respect to a discrete valuation v. Let w; € F for
each i € Z be an element of F with v(m;) = i. Then the map

—+oo
Rep: (F)'2—F, (a)iez — ) rep(a)m

is a bijection. Moreover, if (a;)icz, # (0)icz then v(Rep(a;)) = min{i : a; # 0}.
Proof. The map Rep is well defined, because for almost all i < 0 we get rep(a;) = 0 and the series
Y rep(a;)m; converges in F. If (a;)icz # (bi)icz and

n=min{i € Z: a; # b;},
then v(a,m, — b,m,) = n. Since v(a;m; — b;m;) > n for i > n, we deduce that

v(Rep(ai;) —Rep(b;)) =n.

Therefore Rep is injective.

In particular, v(Rep(a;)) = min{i : a; # 0}. Further, let o € F. Then o0 = 7€ with n € Z,
€ € U. We also get o = m,¢’ for some € € U. Let a, be the image of € in F; then a, # 0
and oy = o —rep(a,) 7, € 7" ¢. Continuing in this way for ¢, we obtain a convergent series
o = Y rep(a;)m;. Therefore, Rep is surjective. O

COROLLARY. We often take m, = ©t". Therefore, by the preceding Proposition, every element
Qa € F can be uniquely expanded as

+OO .
a=Y 6 6,cR and 6;=0 foralmostalli<O.

DEFINITION. If @ — B € "0, we write o = 3 mod 7"

4.3. DEFINITIONS. The group 1+ & is called the group of principal units U; and its ele-
ments are called principal units. Introduce also higher groups of units as follows: U; = 1+ '€
fori > 1.

4.4. The multiplicative group F* has a natural filtration F* DU DU, DU D ....

PROPOSITION. Let F be a discrete valuation field. Then

(1) The choice of a prime element © (1 € Z — 1 € F*) splits the exact sequence

v

1-U—F*—7Z—0.

The group F* is isomorphic to U X 7.
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(2) The canonical map & — O | .# = F induces the surjective homomorphism
X:U—F", e—FE
Ao maps U /Uy isomorphically onto F .
(3) The map
Ai: Uy — F, l+ar — o

for o € O induces the isomorphism A; of U; /Uiy onto F fori > 1.

Proof. The statement (1) follows for example from Lemma 2.4.
(2) The kernel of Ay coincides with U; and Ay is surjective.
(3) The induced map U; /Uy — F is a homomorphism, since

(1+oum)(14+or') =1+ (o + )7’ + oy o™,

This homomorphism is bijective, since A;(1 +rep(®)n’) = @. O

4.5. COROLLARY. Let | be not divisible by char(F). Raising to the lth power induces an
automorphism of U; /Ui fori > 1.

If F is complete, then the group U; for i > 1 is uniquely l-divisible.
Proof. If € = 1 + o’ with o € 0, then €/ = 1 +lax’ mod 7't!. Absence of nontrivial /-torsion
in the additive group F implies the first property. It also shows that U; has no nontrivial /-torsion.

For an element n = 1 + Bx’ with B € 6% we have n = (1 +1~'Bx’)'n; with n; € Uy, 4.
Applying the same argument to 17; and so on, we get an /th root of 1 in F in the case of complete
F. O

4.6. Letchar(F)= p > 0. Lemma 2.2 tells that either char(F) = p or char(F) = 0. We shall

study the operation of raising to the pth power. Denote this homomorphism by
Tp:o—al.
The first and simplest case is char(F) = p.

PROPOSITION. Let char(F) = char(F) = p > 0. Then the homomorphism Tp maps U injec-

tively into Uy, for i > 1. For i > 1 it induces the commutative diagram

N
Ui/Uis1 —2— Upi/Upin

S

F -, F

Proof. Since (1+€n')? = 1+ &P " and there is no nontrivial p-torsion in F ™ and F*, the assertion

follows. O

COROLLARY. Let F be a field of characteristic p > 0 and let F be perfect, i.e F = F'. Then
T p maps the quotient group U; /Ui isomorphically onto the quotient group U,; /Uiy fori > 1.
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4.7. We now consider the case of char(F) = 0, char(F) = p > 0. As p = 0 in the residue
field F, we conclude that p € .# and, therefore, for the surjective discrete valuation v of F we get
v(ip)=e> 1.

DEFINITION. The number e = e(F) = v(p) is called the absolute ramification index of F.

Let 7 be a prime element in F. Let R be a set of representatives, and let 8y € F be the element

of F uniquely determined by the relation p —rep(6¢)7¢ € 71 0.

PROPOSITION. Let F be a discrete valuation field of characteristic zero with residue field of
positive characteristic p. Then the homomorphism T p maps U to Uy fori < e/(p—1), and U; to

Uite fori>e/(p—1). This homomorphism induces the following commutative diagrams
(1) ifi<e/(p—1)
Ui/Ui1 ., Upi/Upi+1

F — F
(2) ifi=e/(p—1) is an integer,

Ui/Uis1 STAN Upi/Upit1

/l,l lpzi

— a—al+0oa —=
F —/— F

(3) ifi>e/(p—1),

Ui/Uis SN Uite/Uiyet1

%l Ai+el
F o208 F
The horizontal homomorphisms are injective in cases (1), (3) and surjective in case (3).
If a primitive pth root {,, of unity is contained in F, then v(1 — {,) = e/(p — 1) and the kernel
of the horizontal homomorphisms in case (2) is of order p.
Ife/(p—1) €Z, Upe/(p—1)+1 C ng/(pfl)ﬂ and there is no nontrivial p-torsion in F*, then the

homomorphism is injective in case (2).

Proof. Let v(at) = i. Writing

-1
(1+a)p—1+pa+p(pz)a2+-~+pap1+a”

. o . P(P—l) 2 _ . p—l o . P\ — i
and calculating v(pa) = e+1i, v —5 =e+2i,...,v(pa’ ") =e+(p—1)i,v(a?) = pi,
we get

v((T+a)? —1) =v(a’ + pa), if v(a?) #v(pa),

v((l+a)?—1) 2 v(a? + pa), otherwise.
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These formulas reveal the behaviour of T p acting on the filtration in U, because v(at?) <

v(pa) if and only if i < e/(p — 1). Moreover, for a unit & we obtain

(1+an')? =1+ a’7” mod P!, ifi<e/(p—1),
(14 an')? =1 +rep(6g)an’™ mod et ifi>e/(p—1),
(1+an’)? =1+ (af +rep(6p)a)x” mod P+, ifi=e/(p—1)€Z.

Thus, we conclude that the diagrams in the Proposition are commutative. Further, the homomor-
phism T p is an isomorphism in case (3) and injective in case (1).

Assume that §, € F. The assertions obtained above imply that v(1 —{,) =e/(p —1) and
e/(p—1) € Z. Therefore, the homomorphism @ +— @ + 8o« is not injective. Its kernel "3/ —0oF,,
in this case is of order p.

Now let ¢/(p — 1) be an integer and let Uy, /(,—1)+1 C U? Assume that the horizontal

e/(p—1)+1° -
homomorphism in case (2) is not injective. Let 0 € F satisfy the equation Hg + 6¢p = 0. Then
(1 +rep(0o)x®/P~D)P € U; for some j > pe/(p—1). Therefore (1 + rep(ap)ne/P~1))P = ¢l
for some & € U,/(,—1)41- Thus, (1 +rep(ao) /P~ D)e ! € U,/(p—1) is a primitive pth root of

unity. O

4.8. COROLLARY 1. Let char(F) = 0 and let F be a perfect field of characteristic p > 0.
Then Tp maps the quotient group U; /Uiy isomorphically onto Up;/Upiy1 for 1 <i<e/(p—1)
and isomorphically onto Uiy, /Ui, ey fori>e/(p—1).

COROLLARY 2. Let F be a complete field. Let i > pe/(p—1). Then U; C U . Therefore, if
F* has no nontrivial p-torsion then the homomorphism is injective in case (2).

In addition, if the residue field of F is finite and F contains no nontrivial pth roots of unity,
then U; C UP , fori> pe/(p—1).

Proof. Use the completeness of F'. Due to the surjectivity of the homomorphisms in case (3) we
getU; CUi U, CcUpUP ,C---CUL,.
If the residue field of F is finite, then the injectivity of the homomorphism in case (2) implies

its surjectivity. g

4.9. PROPOSITION. Let F be a complete discrete valuation field.
If char(F) = 0, then F*" is an open subgroup in F* forn > 1. If char(F) = p > 0, then F*"

is an open subgroup in F* if and only if n is relatively prime to p.

Proof. 1f char(F) = 0, then by Corollary 4.5 we get U; C F*" for n > 1. It means that F*" is
open. If char(F) = p, then by Corollary 4.5 U; C F*" for (n,p) = 1 and F*" is open. In this
case, if char(F) = p, then by Proposition 4.6 1+ 7z’ ¢ F*? for (i, p) = 1. Then F*? is not open. If
char(F) = 0, then using Corollary 2 of 4.8 we obtain U; C F*?" when i > pe/(p—1) + (m—1)e.

Therefore F*" is open for n > 1. U
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This Proposition demonstrates that topological properties are closely connected with the alge-
braic ones for complete discrete valuation fields of characteristic O with residue field of character-

istic p. This is not the case when char(F) = p.
4.10. Finally, we deduce a multiplicative analog of the expansion in Proposition 4.2.

PROPOSITION. (Hensel) Let F be a complete discrete valuation field. Let R be a set of repre-
sentatives and let 7; be as in 4.2. Then for oo € F* there exist uniquely determined n € 7., 6; € R,
6y € R* fori > 0, such that o can be expanded in the convergent product

a=7n"0y H(l + 9,'71'1').
i>1
Proof. The existence and uniqueness of n and 6y immediately follow from Proposition 4.4. As-
sume that € € Uy, then, using Proposition 4.2, one can find 6,, € R with (1 + anm)_l € Upt1.
Proceeding by induction, we obtain an expansion of ¢ in a convergent product. If there are
two such expansions [](1+ 6;7;) = [I(1 + 6/,), then the residues 6;, 6] coincide in F. Thus,
6, =6 g

5. Group of Principal Units as Z,-module

We study Z,-structure of the group of principal units of a complete discrete valuation field F
with residue field F of characteristic p > 0 by using convergent series and results of the previous
section. Everywhere in this section F is a complete discrete valuation field with residue field of
positive characteristic p.

Let A be a Z,-module endowed with a topology compatible with the structure of the Z,-
module and the p-adic topology of Z,,. A set {a;}ic; of elements of A is called a set of topological
generators of A if every element of A is a limit of a convergent sequence of elements of the Z,-
submodule of A generated by this set. A set of topological generators is called a topological basis
if for every j € I and every non-zero ¢ € Z, the element ca; is not a limit of a convergent sequence

of elements of the submodule of A generated by {a; : i # j}.

5.1. Propositions 4.6, 4.7 imply that €”" — 1 as n — oo for € € Uj. This enables us to write

€’ = lim g™ if lima,=acZ, a,cZ.
n—oo Nn—soo

LEMMA. Let € € Uy, a € Zy,. Then €° € Uy is well defined and €*™0 = g€, % = (g9)’,
(en)* = en® for e,n € Uy, a,b € Z,. The multiplicative group Uy is a Z,-module under the
operation of raising to a power. Moreover, the structure of the Z,-module U is compatible with

the topologies of 7., and U,.

Proof. Assume that lima, = limb,,; hence a, — b, — 0 as n — +oo and lim g~

" = 1. Proposi-
tions 4.6, 4.7 show that a map Z, x Uy — U, ((a,€) — €%) is continuous with respect to the p-adic
topology on Z, and the discrete valuation topology on Uj. This argument can be applied to verify

the other assertions of the Lemma. O
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5.2. PROPOSITION. Let F be of characteristic p with perfect residue field. Let R be a set of
representatives, and let Ry be a subset of it such that the residues of its elements in F form a basis
of F as a vector space over F,. Let an index-set J numerate the elements of Ry. Assume that T;
are as in 4.2. Let v, be the p-adic valuation.

Then every element oo € Uy can be uniquely represented as a convergent product

o= H H(] + an-l,)aij
(ip)=1j&J
i>0

where 0; € Ry, a;j € 7, and the sets J;. = {j € J : vp(aij) < c} are finite for all ¢ > 0, (i,p) = 1.

Proof. We first show that the element & can be written modulo U, for n > 1 in the desired form
with a;; € Z. Proceeding by induction, it will suffice to consider an element € € U, modulo
Upt1. Lete=1+06m, modU,;1, 6 € R. If (n,p) = 1, then one can find 6y,...,6,, € Ry and
bi,...,by € Z such that 1 + 07, = [, (1 + 6;7,)” mod U, for some m. If n = p*n’ with an
integer n/, (n', p) = 1, then using the Corollary 4.6, one can find 6y,...,6,, € Ry and by, ..., b, € Z
such that 1 +0m, =]}, (1+ Okn',,/)l’sbk mod U, for some m. Now due to the continuity we get
the desired expression for o € U; with the above conditions on the sets J; ..

Assume that there is a convergent product for 1 with 6, a;;. Let (ip, p) = 1 and jo € J be such
that n = p"(%i)iy < p*»(@i); for all (i,p) = 1, j € J. Then the choice of Ry and 4.5, 4.6 imply
[1(1+ 6;m;)“ ¢ U,.1, which concludes the proof. O

COROLLARY. The Z,-module group U, has a topological basis 1+ 0;7; where where 0; € Ry,
(i,p)=1.

5.3. Let’s have an additional look at the horizontal homomorphism
v:F—F, a—a’+60a

of case (2) in Proposition 4.7.
Suppose that a primitive pth root of unity {, belongs to F' and

$p = 1+1ep(6,)n¢/ P~ mod ¢/ (P~1+1,

(v(§, — 1) = e/(p— 1) according to Proposition 4.7. As 6 € kery, we conclude that y(a@) =
0”(n? — 1) where = 00, . The homomorphism 1 — n” — 1 is usually denoted by . In this
terminology we get w(F) = 6 o(F).

The theory of 10.6 extensions sets a correspondence between abelian extensions of exponent
p and subgroups of F/(F). In particular, if F is finite, then the cardinalities of the kernel of y
and of the cokernel of ¥ coincide. In this simple case y(F) = F if and only if there is no nontrivial
p-torsion in F*, and y/(F) is of index p if and only if {, € F* (see 4.7). The homomorphism £

plays an important role in class field theory.
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5.4. PROPOSITION. Let F be of characteristic O with perfect residue field of characteristic p.
Let 7; be as in 4.2. If e = v(p) is divisible by p— 1, let y: F — F be the map introduced in 5.3.
Let R be a set of representatives and let Ry (resp. Rj) be a subset of it such that the residues
of its elements in F form a basis of F as a vector space over F, (resp. form a basis of F /y(F) as

a IF,-module). Let the index-set J (resp. J') numerate the elements of Ry (resp. R6). Let
I={i:i€eZ,1<i<pe/(p—1),(3i,p)=1}.

Let v, be the p-adic valuation.

Then every element oo € Uy can be represented as a convergent product

a=TTTT0+6;m)™ [T +nmpe 1)

i€l jeJ jeJ’

where 0; € Ry, Nj € R}, aij,a; € Z, (the second product occurs when e/(p — 1) is an integer) and

the sets
Jie={j€J:vpla;)<c}, J.={jet vy(a;)<c}
are finite forall c > 0, i € I.

Proof. We shall show how to obtain the required form for € € U,, modulo U, . Put m, = #"* for
n=pe/(p—1). Lete =1+ 06m, modU,., O € R. There are four cases to consider:
(1) nel. Onecanfind 6y,...,60,, € Rgand by,...,b,, € Z satisfying the congruence 1+ 07, =
I, (1+ 6 7,)% mod U, for some m.
(2)n < pe/(p—1), n=p*n’ with n’ € I. Corollary 1 in 4.8 and 4.5 show that there exist
6:,...,6,, €Ro, by,...,b, € Z such that
m
14+06m, = H(l + Okﬂn/)psb" mod U,,; for some m.
k=1
(3)e/(p—1) € Z,n=pe/(p—1). Proposition 4.7 and 4.5 and the definition of R{, imply that
if n = p°n’ with n’ € I, then there exist 0,...,6,, € Ry, N1,...,N €R{, bi,..., by, C1,...,c;r €L
such that

m r

1+6m, = H(l + ann/)pxbk H(l +nm,) modU,;, forsomem,r.
k=1 I=1
(4)n> pe/(p—1). Proposition 4.7 and Corollary 1 in 4.8 imply that if d = min{d : n —de <
pe/(p—1)} and ' = n —de, then
1+0m,=(1+ O’nn/)pd mod U, for some 8’ € R.

Now applying the arguments of the preceding cases to 1 + 6'r,,, we can write 1 + 67, mod U,

in the required form. U
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5.5. From Proposition 4.7 we deduce that F' contains finitely many roots of unity of order a

power of p.

COROLLARY. Let F be of characteristic 0 with perfect residue field of characteristic p.

(1) If F does not contain nontrivial pth roots of unity then the representation in Proposi-
tion 5.4 is unique. Therefore the elements 1+ 0;m;,1 + N;7,,/(,—1) of Proposition 5.4
form a topological basis of Z,-module U, .

(2) If F contains a nontrivial pth root of unity let r be the maximal integer such that F con-
tains a primitive p"th root of unity. Then the numbers a;;,a; of Proposition 5.4 are deter-
mined uniquely modulo p". Therefore the images of the elements 1+ 6;7;, 1+ 1T, /(1)
of Proposition 5.4 form a topological basis of Z/ p” Z-module U, r | Uf ;

(3) If the residue field of F is finite then U, is isomorphic to the direct sum of a free Z,-

module of rank e f and its torsion part, where f is the dimension of F over I,

Proof. (1) All horizontal homomorphisms of the diagrams in Proposition 4.7 are injective when
{» ¢ F. Repeating the arguments for uniqueness from the proof of Proposition 5.2, we get the first
assertion of the Corollary.
(2) We can argue by induction on r and explain the induction step. Write a primitive p"th root
¢, in the form of Proposition 5.4
S =TT +6m) % TT(1+1mpe /(1)
i€l jeJ jeJ'
and raise the expression to the p”th power which demonstrates the non-uniqueness of the expansion
in Proposition 5.4.
Now if
1=TTIT0+6;m)® TT(+nmpesp1)) "
i€l jeJ jeJ'
then by the same argument as in the proof of Proposition 5.2 we deduce that a;; = pb;;,a; = pb;
with p-adic integers b;;,b;. Then
TTITC+6;m)% [T +107pep-1))™
i€l jeJ jeJ'
is a pth root of unity, and so is equal to

r—1

(TTTTC -+ 65m) (1 +npe 1)) ©

i€l jeJ jes’

for some integer ¢. Now by the induction assumption all b;; — P e ibj— p!

cc; are divisible
by p"~!. Thus, all a;j,a; are divisible by p".

(3) If the residue field of F is finite then U is a module of finite type over the principal ideal
domain Z,. Note that the group £ (F) is of index p in F because F is finite (see 5.3). If the
p-torsion of F* is of order p", we replace 1 + 17, /(,—1) With a primitive p”th root of unity. The

cardinality of I is equal to e = [pe/(p—1)] — [[pe/(p — 1)]/p]. O
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6. Set of Multiplicative Representatives

We shall introduce a special set % of multiplicative representatives which is closed with re-
spect to multiplication. We will describe coefficients of the sum and product of convergent power
series with multiplicative representatives.

6.1. Assume that char(F) = p > 0.

Leta € F. Anelement o € € is said to be a multiplicative representative (Teichmiiller repre-
sentative) of a if @ =aand a € N FP". This definition is justified by the following Proposition.

m>=0

— —pnn
PROPOSITION. An element a € F has a multiplicative representative if and only if a € ﬂOF P
mz

A multiplicative representative for such a is unique. If a and b have the multiplicative representa-

tives o and B, then a3 is the multiplicative representative of ab.

Proof. We need the following Lemma.

6.2. LEMMA. Let a,3 € O andv(a— ) > m, m > 0. Then

v(a” —BP") = n+m.

Proof. Put a = B+ 1t"y; then a” = BP + pBP~'a"y+---+ pB(x™y)P~' + PP, and as v(p) >
1 (recall char(F) = p), we have v(pBP~'z"y) > m+1,... v(&Z""y*) > m+1, and a” — B? €

n"*1 ¢ . Now the required assertion follows by induction. O

To prove the first assertion of the Proposition, suppose that a € ﬁofp . Since F has no
mz

nontrivial p-torsion, there exist unique elements a,, € F satisfying the equations a, =a. Let 3, €

0 be such that B,, = a,. Then 7, = B, and v(B. ., — B,) > 1. Lemma 6.2 implies v( nli:ll —

B2") = n+ 1. Hence, the sequence (B )msn is Cauchy. It has the limit o, = lim B, € . We
see that o - ap forn > 0 and &y = a, i.e., 0p is a multiplicative representative of a. Conversely,

if a € F has a multiplicative representative o, then @ € N F’ .

m>=0
Furthermore, if & and 8 are multiplicative representatives of a € F, then writing & = o, ,f =
., for some 0, B, € O, we have ﬁﬁm = Bﬁl and @, = Bm because of the injectivity of T p"in

F . Now Lemma 6.2 implies v(a — ) > m+ 1, hence o = f3.
Finally, if o and 8 are the multiplicative representatives of a and b, then af = ab and a8 €

ﬂOF P"  Therefore, af3 is the multiplicative representative of ab. (|
mz

6.3. Denote the set of multiplicative representatives in & by Z.

COROLLARY 1. If F is perfect (i.e. F is a local field) then every element of F has its multi-
plicative representative in %. The map r: F — % induces an isomorphism F~ =% 2\ {0}. The
correspondence r: F — Z is called the Teichmiiller map.

If F is finite then % \ {0} is a cyclic group of order equal to |F|— 1.
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COROLLARY 2. Let char(F) = p. If @, are the multiplicative representatives of a,b € F,
then oo+ B is the multiplicative representative of a+ b.

Proof. Leta = o, ,B =B5 . Then &+ B = (Gt + Bn)” , hence o+ f € QOFpm and o+ f8 =
mz
a-+b. O

6.4. Consider the case where char(F) = 0 and char(F) = p. Suppose that we have two
elements a, 8 € 0, and (7 is a prime element)
a=Y 61, B=) nr,
i>0 i>0
with 6;,1; € Z. Suppose also that & + 3 and af8 are written in the form
atp=Yp'7.  ap=Yp"n
i>0 i>0

and p;(*), p;¥) € 2.

Corollary 4.2 implies that pl.(ﬂ,pi(x) are uniquely determined by 6;,7;. Let’s find out the
dependence of p,gf), p,g ) on 0;, n,, i < n. In order to obtaln a polynomial relation we introduce
elements 6; = sipn_l, i = Spn ; pl /’Li(*)pn for &, &, A, e Zand =+ or* = x,i >0,

Then we deduce that

L —i L . n—i " . %) ph—i
(Y a'e” )« (Y7 ) =()] A7) mod 2, (%)
i=0 i=0 i=0
for * = + or x = x. We see that if the residues 8,,5 forO0<i<n and k( forO<i<n—1are

known, then by using Lemma 6.2 we can calculate 7 sip , T éip LT /’Lf mod 71'”*1. Hence,

AL are uniquely determined from (x).

6.5. LetA=Z[Xo,X1,...,Y,Y1,...] bethering of polynomials in variables Xy, X, ..., Yo, Y1,...
with coefficients from Z. Introduce polynomials

Wo(Xo,...,X Zp'xp"’, n>0.

In particular, Wo(Xo) = Xo, W1 (Xo,X1) = X + pXi, and
Wo(Xo, ..., Xn) = P"Xn + Wi (X5 ..., X ).
PROPOSITION. There exist unique polynomials
o) (Xo,. .. Xn Yo, ..., Y,) €A, n >0
satisfying the equations
Wo(Xo, ..., X)) % Wo(Yo, ... %) = Wo(o”,..., 0")

forn >0, where x = + or x = X.

Moreover, the polynomial

o8 (Xo, .. X Yo, Yo) — oS (XD, XP YD, YD)

n

belongs to pA.
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Proof. We get
wé*) = Xo+ Yo, (Dl(ﬂ =X+ 1+ (X +Y§ — (Xo+Y0)")/p,

(Déx) :X()Y(), (DI(X) :leop—i-Yng-l-pX]Yl,

Assume now that a)i(*)

and proceed by induction.

€ A and the second assertion of the Proposition holds for O <i<n—1,

For a suitable polynomial f, € A we get

Pt =W, (XD, XP )« Wy (YL, ¥ )

(5)P (+) P ()

—Wai(@y o0, )+ Py
For example, f,” = X, + Y.
For any g € A we get
8(X0,Yo,... )P —g(X§.YL,...) € pA
and
g(Xo,Yo,... )" —g(XL.¥P,.. )" € pmA

form > 0.

Using the second assertion of the Proposition for i < n and Lemma 6.2 we now deduce that

Wy (007, 0,5 =W, (0 (XD, YD), 0 (XD,... YD) € p"A.

)
From it and from
Wn,l(Xé’,...,X,f)*Wn,l(Yop,...,Y’il)

n

=W, (0l (X2.¥D),... 0" (XD,....YD))

using (xx) we conclude that ™) e A

The last assertion of the Proposition now follows from the first congruence for g above. [

(),

6.6. We now return to the original problem to find an expression for p,

PROPOSITION. Let (Y. 6;p') x (L nip') = Zpi(*)pi with Gi,n,-,pi(*) € X and x = + or x = Xx.
Then

—i+1

pi<*)Ewi(*)(e(fi:elpiiﬂw-'79i7n(1))7ianf 7"'7ni) IIlOdp, l>0>

where ") are defined in 6.5.

1

Proof. Assume that the assertion of the Proposition holds for i < n — 1. Using the notations of 6.4

this means that

—i

AT =l e e Y modp, i<n—1.

1 ] 1

From Proposition 6.5 we obtain that fori <n—1

(*) pn—i pn—i pn—i pn—
o (g ....e" & ..

i n—i

)Ewi(*)(g()v'"agiaé()v"'?éi)p mOdp
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Hence

2 =0 .. €00 &) modp, i<n—1.

From (*) in 6.4 we know
W,I()Lé*), . ,/'L,S*)) =Wal(eo,. .., &) *Wu(&o,..., &) mod p"“.

By Lemma 6.2 we have

n—i n—i

P07 =pe (e, .. 880, &) mod ptl i<n—1.

1

Therefore

()

pn)LrE*) = inn n+1

(807"'78117&07"”511) mOdp

which implies the assertion. g

COROLLARY 1. Let ():Gilfip") * (Zn{f"p") = Zpi(*”’fip" with e,-,n,-,p}*) ER, x=+ or
x = X. Then

(%)

p; )

=w; '(6,...,6;,M0,...,m;) mod p.

Proof. In fact, this has already been shown in the proof of the Proposition. O

COROLLARY 2. If (L 6;p') x (¥ mip') = Zpi(*)pi then (£,67p') + (E0Fp') = Zpi(*)ppi-

Proof. This follows immediately from the Proposition and the last assertion of Proposition 6.5. [

7. Witt Ring

Witt vectors over a perfect field K of positive characteristic p form the ring of integers of a
local field with prime element p and residue field K.

7.1. Let B be an arbitrary commutative ring with unity. Let the polynomials
Wo(Xo,..., Xp) = i"pixf"_', n>0
i=0

over B be the images of the polynomials W, € Z[X,...,X,| defined in 6.5 under the natural ho-
momorphism Z — B.

For (a;);>0, put

(a') = (Wo(ao), Wi (a0, a1),...) € (B)§™.

The sequences (a;) € (B){™ are called Witt vectors (or, more generally, p-Witt vectors), and the
a) for i > 0 are called the ghost components of the Witt vector (a;).

The map (a;) — (a'?)) is a bijection of (B)J* onto (B){™ if p is invertible in B.

Transfer the ring structure of (a)) € (B)§ under the natural componentwise addition and
multiplication on (a;) € (B)4*. Then for (a;), (b;) € (B)j™ we get

(@) * (i) = (0 (a0, bo), ®\ (ag, ar,bo, b1, ...
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for * = + or * = X, where the polynomial a)i(*) is the image of the polynomial

(Dl(*) EZ[XQ,Xl,...,Yo,Yl,...]

under the canonical homomorphism Z — B.

If p is invertible in B, then the set of Witt vectors is clearly a commutative ring under the
operations defined above. In the general case, when p is not invertible in B, the property of the
set (B)ar “ of being a commutative ring under the operations +, x defined above can be expressed
via certain equations for the coefficients of the polynomials wi(*) € B[Xo,X1,...,Yy,Y1,...]. This
implies that if a ring B satisfies these conditions, then the same is true for a subring, quotient ring
and the polynominal ring. Since every ring can be obtained in this way from a ring 4 in which p
is invertible, one deduces that under the image in B of the above defined operations for 4 the set
(B)y~ is a commutative ring with the unity (1,0,0,...). This ring is called the Witt ring of B and
is denoted by W (B). It is easy to verify that if B is an integral domain, then W (B) is an integral

domain as well.
7.2.  Assume from now on that p =0 in B.
LEMMA. Define the maps
ro: B— W(B),
V:W(B) — W(B) (the “Verschiebung”, i.e. "shift" map),
F: W(B) — W(B) (the “Frobenius” map)

by the formulas
ro(a) = (a,0,0,...) € W(B),
V(ao,al,...) = (O,ao,al,...),
F(ag,ai,...) = (ah,al,...).
Then

ro(ab) = ro(a)ro(b),

F(a+p) =F(a) +F(B),F(ap) =F(a)F(B),

V(ie+B)=V(x)+V(B), VF(a)=FV(a)=pa
for a,B € W(B).

Proof. All these properties can be deduced from properties of a)i(*). 0

The map F —id is often denoted by g: W(B) — W (B).
Put W,(B) = W(B)/V"W (B). This is a ring consisting of finite sequences (ao, ...,a,—1).

7.3. The following assertion is of great importance, since it provides a construction of a local

field of characteristic zero with prime element p and given perfect residue field K.

PROPOSITION. Let K be a perfect field of characteristic p. For a Witt vector o, = (ag,ay, . ..) €
W(K) put
via)=min{i:a; #0} if o #0, v(0) = +oo.
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Let Fy be the field of fractions of W(K) and v: Fy — 7 the extension of v from W(K)
(1) = v(e) —v(B)).

Then v is a discrete valuation on Fy and Fy is a complete discrete valuation field of character-
istic 0 with ring of integers W (K), prime element p, and residue field isomorphic to K. The set of
multiplicative representatives in Fy coincides with ro(K) and the map ry with the Teichmiiller map
K — W(K).

Proof. If oo = (0,...,0,...), B =(0,...,0,...), then using the properties of the polynomials a)l.(*),
m times n times
we get
o+p=(0,...,0,...), af=(0,...,0,...)
——
[ times n-+m times

with [ > min(m,n). Hence, the extension of v to Fy is a discrete valuation.

Note that p = (0, 1,0,...) € W(K) and p" — 0 as n — +oo with respect to v. Since K is perfect,
by Lemma 7.2 one can write an element & = (ag,ay,...) € W(K) as the convergent sum

o = (ap,0,0,...)+(0,a1,0,...)+--- = Zro(aff’)pi (%)
i=0

Moreover, such expressions for Witt vectors are compatible with addition and multiplication in
W(K).

We also obtain that W (K) is complete with respect to v, and if v(a) = 0 for o« € W(K), then
a~! € W(K). Consequently, v(a) > v(B) for o, B € W(K) implies a3~ € W(K), i.e., the ring
of integers coincides with W (K) and Fp is complete. The maximal ideal of W(K) is VW (K) and
the residue field is isomorphic to K.

Finally, ro(K) = ngo Fy ", and hence, using Proposition 6.1, we complete the proof. O

8. The Hensel Lemma and Henselian Fields

Let F be a valuation field with the ring of integers ¢, the maximal ideal .# , and the residue
field F. For a polynomial f(X) = a,X" +---+ap € O[X]| we will denote the polynomial @,X" +
-+-+dp by f(X) € F[X]. We will write

f(X)=g(X) mod.#"

if f(X) —g(X) € A™X].

8.1. Let A be a commutative ring. For two polynomials f(X) = a,X" +...ao, g(X) =
by X™ + -+ -+ by their resultant their resultant is the determinant of a matrix of order (n+m) x
(n+ m) formed by m rows of a; and n rows of b, appropriately inserted.

This determinant R(f,g) is zero if and only if f and g have a common root; in general
R(f.8) = ffi +gg1 for some polynomials fi,g1 € OX]. If £(X) = a,IT", (X — &), g(X) =
b IT}21 (X — B;), then their resultant R(f, g) is a;' b}, IT; j(e; — B;). In particular, R(X —a,g(X)) =
g(a).
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If f,g € O[X] then R(f,g) € €. We shall use the following properties of the resultant: if f = f
mod .#[X] then R(f,g) = R(f1,g) mod .#; if R(f,g) € M*\ A" then .4°[X] C fO[X]+
8oX].

PROPOSITION. Let F be a complete discrete valuation field with the ring of integers € and
the maximal ideal # . Let go(X),ho(X),f(X) be polynomials over O such that deg f(X) =
deggo(X) +degho(X) and the leading coefficient of f(X) coincides with that of go(X )ho(X). Let
R(go,ho) & 4" and f(X) = go(X)ho(X) mod .#*F! for an integer s > 0.

Then there exist polynomials g(X),h(X) such that

fX) = g(X)h(X),

degg(X) =deggo(X), g(X)
degh(X) =degho(X), h(X)

go(X) mod .2,
ho(X) mod .2t

Proof. We first construct polynomials g;(X),h;(X) € ¢'[X] with the following properties: deg(g; —
go) < deggo, deg(h; —ho) < deghg

gi=gio1 mod.Z™, hi=hi; mod.#™, f=gh; mod. .4

Proceeding by induction, we can assume that the polynomials g;(X),h;(X), for j < i— 1, have
been constructed. For a prime element 7 put

(X)) =gi1(X)+7Gi(X), hi(X) =hi_(X)+ 7 H;(X)
with Gi(X),H;(X) € 0[X], degGi(X) < deggo(X), degH;(X) < degho(X). Then
gihi —gi—thi1 = ' (gio1Hi + hi-1G;) mod .7+

Since by the induction assumption f(X) —g;_1(X)h;_1(X) = &2 f1(X) for a suitable fi(X) €
O[X] of degree smaller than that of f, we deduce that it suffices for G;(X), H;(X) to satisfy the
congruence 7* f1(X) = gi_1(X)H;(X) +h;i_1(X)G;(X) mod .+

However, R(g;_1(X),h_1(X)) =R(go(X),ho(X)) Z0 mod .#**+'. Then the properties of the
resultant imply the existence of polynomials H;, G; satisfying the congruence. Now put g(X) =
limg;(X),h(X) = limh;(X) and get f(X) = g(X)h(X). O

The following statement is often called Hensel Lemma. It was proved by Hensel for p-adic
numbers and by Rychlik for complete discrete valuation fields.

8.2. COROLLARY 1. Let F be as in the Proposition and F the residue field of F. Suppose
that f(X),g0(X),ho(X) are monic polynomials with coefficients in € and f(X) = go(X)ho(X).
Suppose that gy(X),ho(X) are relatively prime in F[X|. Then there exist monic polynomials
g(X),h(X) with coefficients in O, such that

f(X) =g(X)h(X), 8(X) =Zo(X), h(X) = ho(X).
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Proof. We have R(fo(X),g0(X)) ¢ .# and we can apply the previous Proposition for s = 0. The
polynomials g(X) and 4(X) may be assumed to be monic, as it follows from the proof of the

Proposition. 0

Valuation fields satisfying the assertion of Corollary 1 are said to be Henselian. Corollary 1

demonstrates that complete discrete valuation fields are Henselian.

COROLLARY 2. Let F be a Henselian field and f(X) a monic polynomial with coefficients in
O. Let f(X) € F[X] have a simple root B in F. Then f(X) has a simple root o € O such that

@ =B.

Proof. Let vy € O be such that 7 = 3. Put go(X) = X — v in Corollary 1. O

8.3. COROLLARY 3. Let F be a complete discrete valuation field. Let f(X) be a monic
polynomial with coefficients in 0. Let f(0g) € M>*", f'(0) & M*" for some ap € O and
integer s > 0. Then there exists o € O such that & — g € A" and f(o) = 0.

Proof. Put go(X) = X — o and write f(X) = f1(X)(X — o) + & with § € . Then § € .2**!. Put
ho(X) = f1(X) € O[X]. Hence f(X) = go(X)ho(X) mod .#*"! and f'(ap) = ho(o) & A+,
This means that R(go(X),ho(X)) ¢ .#*"!, and the Proposition implies the existence of polynomi-
als g(X),h(X) € O[X] such that g(X) =X — o, = g mod .Z*"!, and f(X) =g(X)h(X). O

COROLLARY 4. Let F be a complete discrete valuation field. For every positive integer m

whose image in F is not zero there is n such that 1 + .#4" C F*™.

Proof. Put f,(X) = X" —a witha € 1 +.#4". Letm € 4°\ #4*". Then fi(1) € M*\ 4"
Therefore for every a € 1 + .4 *! due to Corollary 3 the polynomial f,(X) has a root @ = 1
mod .#Z**!. O

8.4. The following assertion is useful.
LEMMA. Let F be a complete discrete valuation field and let

fX)=X"+ 0 X"+
be an irreducible polynomial with coefficients in F. Then the condition v() = 0 implies v(0;) > 0
for0<i<n—1.
Proof. Assume that o € ¢ and that j is the maximal integer such that v(a;) = ming<icn—1 v( ).
If oj ¢ O, then put
X)

fl( aj_lf(X)’
go(X) =X/ +o; a1 X7+ o,
o —lyn—j
We have f(X) = go(X)ho(X), and gy(X),ho(X) are relatively prime. Therefore, by Proposi-
tion 8.1, f1(X) and f(X) are not irreducible. O
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9. Extensions of Valuation Fields

9.1. Let F be a field and L an extension of F with a valuation w: L — I"". Then w induces
the valuation wg = w|,: F — I" on F. In this context L/F is said to be an extension of valuation
fields. The group wo(F*) is a totally ordered subgroup of w(L*) and the index of wo(F*) in
w(L*) is called the ramification index e(L/F,w). The ring of integers 0, is a subring of the ring
of integers 0, and the maximal ideal .Z,, coincides with .#,, N O),,. Hence, the residue field
FWO can be considered as a subfield of the residue field L,,. Therefore, if ¢ is an element of Oy
then its residue in the field fWO can be identified with the image of @ as an element of &), in the
field L,,. We shall denote this image of a by @. The degree of the extension L,,/F,, is called the

inertia degree or residue degree f(L/F,w). An immediate consequence is the following Lemma.

LEMMA. Let L be an extension of F and let w be a valuation on L. Let L D M D F and let wy

be the induced valuation on M. Then
e(L/F,w)=e(L/M,w)e(M/F,wy),

9.2. Assume that L/F is a finite extension and wy is a discrete valuation. Let elements
o,...,0, € L* e < e(L/F,w) be such that w(oy) +w(F*),...,w(o,) +w(F*) are distinct in
w(L*)/w(F*). If ¥¢_, c;o; = 0 holds with ¢; € F, then, as w(c;0;) are all distinct, we get

e
W(Z ¢i0;) = min w(c;;) and ¢;=0 forl <i<e.
=1 1<i<e

This shows that ¢, ..., @, are linearly independent over F and hence e¢(L/F,w) is finite. Let 7
be a prime element with respect to wyg. Then we deduce that there are only a finite number of
positive elements in w(L*) which are < w(7x). Consider the smallest positive element in w(L*). It
generates the group w(L* ), and we conclude that w is a discrete valuation. Thus, we have proved

the following result.

LEMMA. Let L/F be a finite extension and wy discrete for a valuation w on L. Then w is

discrete.

9.3. Hereafter we shall consider discrete valuations. Let F' and L be fields with discrete
valuations v and w respectively and F* C L. The valuation w is said to be an extension of the
valuation v, if the topology defined by wy is equivalent to the topology defined by v. We shall
write w|v and use the notations e(w|v), f(w|v) instead of e(L/F,w), f(L/F,w). If o« € F then
w(o) =e(w|v)v(a).

LEMMA. Let L be a finite extension of F of degree n; then

e(wpy)f(wy) <n.
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Proof. Let e = e(w|v) and let f be a positive integer such that f < f(w|v). Let 6;,...,0; be
elements of &, such that their residues in L,, are linearly independent over F,. It suffices to show

that {Bin'{;} are linearly independent over F for 1 <i < f,0 < j < e—1. Assume that
ZC,’ j Qiifvj‘; =0
i?j

for ¢;j € F and not all ¢;; = 0.

Multiplying the coefficients c¢;; by a suitable power of 7,, we may assume that ¢;; € ), and
not all ¢;; € .#,. Note thatif ¥, ¢;;0; € #,,, then ¥, ¢;;0; = 0 and ¢;; € .#,,. Therefore, there exists
an index j such that };¢;;6; ¢ .#,,. Let jo be the minimal such index. Then jo = w(Y ¢; jGim];),
which is impossible. We conclude that all ¢;; = 0. Hence, ef < n and e(w|v) f(w|v) < n. O

For instance, let F be the completion of a discrete valuation field F' with the discrete valuation
V. Then e(v) = 1, f(¥|v) = 1. Note that if F is not complete, then |F : F| # e(v|v) f(¥]v). On the

contrary, in the case of complete discrete valuation fields we have

9.4. PROPOSITION. Let L be an extension of F and let F,L be complete with respect to dis-
crete valuations v,w. Let w|v, f = f(w|v) and e = e(w|v) < eo. Let T,, € L be a prime element with
respect to w and 0y,...,0y elements of O, such that their residues form a basis of L,, over F,.
Then {9,‘7#;} is a basis of the F-space L and of the O,-module O\, with 1 <i< f,0< j<e— 1.
If f < oo, then L/F is a finite extension of degree n = ef.

Proof. Let R be a set of representatives for F'. Then the set

f
R = {Zaiei :a; € R and almost all a; =0}
i=1

is the set of representatives for L. For a prime element 7, with respect to v put 7, = nf m{, where
m=ek+ j,0 < j <e. Using Proposition 4.2 we obtain that an element o € L can be expressed as

a convergent series

0=y Nultn with 7, €R.

m
Writing

f .

N = Z nmyie,‘ with Mm,i € R,

i=1

we get
o= Z(Z nek+j7i7r\];€) 67/,
ij k

Thus, o can be expressed as }_ p; Gin}]; with

Pij =Y NesjiTy €F, 1<i<f0<j<e—1.
k

By the proof of the previous Lemma this expression for o is unique. We conclude that {Blm{}
O

form a basis of L over F and of 0, over O,.
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9.5. Further we shall assume that v(F*) = Z for a discrete valuation v. Then e(w|v) =

|Z : w(F*)| for an extension w of v.

THEOREM. Let F be a complete field with respect to a discrete valuation v and L a finite
. . . . . 1
extension of F. Then there is precisely one extension w on L of the valuation v and w = 7\1 oNp/F

with f = f(w|v). The field L is complete with respect to w.

Proof. Let w' = vo Ny /p. First we verify that w' is a valuation on L. It is clear that w'(a) = oo if
and only if @ =0 and w'(a8) = w'(@) +w'(B). Assume that w'(a) > w'(B) for a,f € L*, then
a

w'(a+B)=w(B)+w(l +E)

and it suffices to show that if w/(7y) > 0, then w'(1+7y) > 0. Let
FX) = X"+ X+ a

be the monic irreducible polynomial of y over F. Then we get (—1)"ap = Nr(y) /F(}/) and if
s =|L:F(y)|, then ((—1)"ap)’ = Ny /r(y). We deduce that v(aop) > 0, and making use of 8.4, we
getv(a;) > 0 for 0 <i < m— 1. However,
(_l)mNF(y)/F(l + Y) = f(_l) = (_1)m +am—1 (_1)m71 =+ +ao,
hence
V(Ne(pr(147)) 20 and  v(Nyp(1+7)) >0,
i.e., w'(1+47) > 0. Thus, we have shown that w' is a valuation on L.

Letn=|L: F|; then w'(ct) = nv() for o € F*. Hence, the valuation (1/n)w’ is an extension
of v to L (note that (1/n)w/(L*) # Z in general). Let e = e¢(L/F,(1/n)w’). By Lemma 9.3 e is
finite. Put w = (e/n)w': L* — Q, hence w(L*) = w(m,,)Z = Z with a prime element 7,, with
respect to w. Therefore, w = (e/n)vo Ny p is at once a discrete valuation on L and an extension of
V.

Let y1,...,%, be a basis of the F-vector space L. By induction on r, 1 < r < n, we shall show

that

Zafm)yi -0, m—)oo<:>a§m)

i=1

—0 m—o fori=1,...,r

where o™ € F.

i
The left arrow and the case r = 1 are clear. For the induction step we can assume that agm) 4 0.

Therefore we can assume that v(a(lm)) is bounded. Hence

nr S = @) T
i=2

"y -0,

-

i=1

where 5" = (a!™) @™, Then ¥1_, (5™ —b" ")y, — 0, and the induction hypothesis shows
that bl(.m) - bEmH) — 0 for i =2,...,r. Thus, each (bl(m))m converges to, say, b; € F. So the
sequence ¥ + Y. bfm)}/i converges both to 0 and to y; + Y./, b;¥;, so

0=7+Y by
i=
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which contradicts the choice of .

(m)

a(m)y,- is fundamental if and only if aim

Similarly one shows that a sequence )./, a; is funda-
mental foreachi=1,...,r.
Thus, the completeness of F implies the completeness of its finite extension L with respect to

any extension of v. We also have the uniqueness of the extension. (|

9.6. Now we treat extensions of discrete valuations in the general case.

THEOREM. Let F be a field with a discrete valuation v. Let F be the completion of F, and
V the discrete valuation of F. Suppose that L = F(ct) is a finite extension of F and f(X) the
monic irreducible polynomial of o over F. Let f(X) = [1_, &/(X)* be the decomposition of
the polynomial f(X) into irreducible monic factors in F [X]. For a root a; of the polynomial
gi(X) (o = @) put L; = F(at). Let w; be the discrete valuation on L;, the unique extension of v.

Then L is embedded as a dense subfield in the complete discrete valuation field L; under
F—F , Ot — O, and the restriction w; of w; on L is a discrete valuation on L which extends v. The
valuations w; are distinct and every discrete valuation which is an extension of v to L coincides

with some w; for 1 <i< k.

Proof. First let w be a discrete valuation on L which extends v. Let L, be the completion of L
with respect to w. By Proposition 3.2 there exists an embedding o : F—L,overF. Asa € Ly,
we get 6(F)(a) C L. Since o(F)(ct) is a finite extension of o(F), Theorem 9.5 shows that
o (F)() is complete. Therefore, L,, C o(F)(a) and, moreover, L,, = ¢(F)(c). Let g(X) be the
monic irreducible polynomial of o over 6(F). Then o~ 'g(X) divides f(X) and ¢~ 'g(X) = g;(X)
forsome 1 <i<k,w=w,.

Conversely, assume that g(X) = g;(X) and w; is the unique discrete valuation on L; = F (o)
which extends . Since F is dense in F , we deduce that the image of L is dense in L; and w; extends
V.

If w; = w; for i # j then there is an isomorphism between F(o;) and F (aj) over F which

sends @; to o, but this is impossible. U

COROLLARY. Let L/F be a purely inseparable finite extension. Then there is precisely one

extension to L of the discrete valuation v of F.

Proof. Assume L = F(a). Then f(X) is decomposed as (X — &)”" in the fixed algebraic closure
F32 of F. Therefore, k = 1 and there is precisely one extension of v to L. If there were two distinct
extensions wy,wy of v to L in the general case of a purely inseparable extension L/F, we would
find o € L such that wi (@) # wa (@), and hence the restriction of w; and w, on F (o) would be

distinct. This leads to contradiction. |

9.7. REMARKS.
1. More precisely, the Theorem should be formulated as follows.
The tensor product L Qp F may be treated as an L-module and F -algebra. Then the quotient

of Lop F by its radical decomposes into the direct sum of complete fields which correspond
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to the discrete valuations on L that are extensions of v. Under the conditions of the Theorem
L®pF = F[X]/(f(X)), and we have the surjective homomorphism

k k
LorF =FX]/(f(X)) — DFIX]/(3i(X)) = DF (o) = DL,
i=1 i=1 W,‘|V
with the kernel (TTL, (X ))F\ [X]/f(X)F[X], where L,, = F(c;). Note that this kernel coincides
with the radical of L&y F. Under the conditions of the previous Theorem, if L/F is separable,
then all ¢; are equal to 1 and the kernel is trivial.

2. Assume that L/F is as in the Theorem and, in addition, L/F is Galois. Then F (o) /F is
Galois. Let G = Gal(L/F). Note that if w is a valuation on L, then wo o is a valuation on L for
0 € G. Put

H={ceG:woo=w;} forl<i<k.

Then it is easy to show that G is a disjoint union of the H; and H; = H, o; for 6; € H;. Theorem 9.6
implies that H; coincides with {oc € G: 0g;(X) = g1(X)}, whence {c € G: 0g;(X) =g/(X)} =
o, 'H,0;. Then degg;(X) = degg(X), e; = 1. The subgroup H; is said to be the decomposition
group of wy over F. The fixed field M = L is said to be the decomposition field of w; over F.
Note that the field M is obtained from F by adjoining coefficients of the polynomial g;(X). We
get L=M(a), and g;(X) € M[X] is irreducible over F = M. Theorem 9.6 shows that w) is the

unique extension to L of wy|,,; there are k distinct discrete valuations on M which extend v.

EXAMPLE. Let E = F(X). Recall that the discrete valuations on E which are trivial on F are
in one-to-one correspondence with irreducible monic polynomials p(X) over F: p(X) — v, x),
v — py(X) and there is the valuation v., with a prime element % If a, is the leading coefficient of
f(X), then
FX) = ay T pu(x)0.
VF Voo
Let F; be an extension of F. Then a discrete valuation on E; = F;(X), trivial on Fj, is an
extension of some discrete valuation on E = F(X), trivial on F. Let p(X) = p,(X) be an irre-
ducible monic polynomial over F. Let p(X) be decomposed into irreducible monic factors over
Fi: p(X) =TI, pi(X)“". Then one immediately deduces that the w; = Wp(x), | <i<k, are all dis-
crete valuations, trivial on F1, which extend the valuation v, x). We also have e (Wp,-(x) |vp(X)) =e;.
There is precisely one extension w. of v... Thus, for every v
po(X) = [T pw, (X))
wilv
and we have the surjective homomorphism F(a) @r Fi — @ Fi(¢;), where « is a root of p(X)
and @; is a root of p;(X). Here the kernel of this homomorphism also coincides with the radical of

F (OC ) ®r Fi.
9.8. Finally we treat extensions of Henselian discrete valuation fields.

LEMMA. (Gauf) Let F be a discrete valuation field, O its ring of integers. Then if a polyno-
mial f(X) € O[X] is not irreducible in F[X|, it is not irreducible in O[X].
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Proof. Assume that f(X) = g(X)h(X) with g(X),h(X) € F[X]. Let
:fmﬂhm:fmﬂfmzﬁ%ﬁ
i=0 i=0 i=0
Let
J1= min{i :v(b;) = min v(bk)} o= min{i :v(¢;) = min v(ck)}.

0<k<n 0<k<m
Then v (bicj,+j,—i) > v(bj,cj,) for i # ji; hence v(aj +j,) =v(bj)+v(cj,). f c=v(bj) <O,

then we obtain v(cj,) > —v(b;, ), and one can write f(X) = (7 °g(X)) (n°h(X)), as desired. [

THEOREM. Let v be a discrete valuation on F. The following conditions are equivalent:

(1) F is a Henselian field with respect to v.
(2) The discrete valuation v has a unique extension to every finite algebraic extension L of
F.

(3) If L is a finite separable extension of F of degree n, then
n=e(w)f(wl),

where w is an extension of v on L.

(4) F is separably closed in F.

Proof.

(1)=-(2). Using Corollary 9.6, we can assume that L/F is separable. Moreover, it suffices
to verify (2) for the case of a Galois extension. Let L = F(a) be Galois, f(X) be the irreducible
polynomial of & over F. Let f(X) = g1(X)...gr(X) be the decomposition of f(X) over F as in
9.6. Let Hy and M = L*! be as therein. Put w} = w;|;, for 1 <i < k and suppose that k > 2
Since w is the discrete valuation on L, which is the unique extension of w}, we conclude that the
topology induced by w/ is not equivalent to the topology induced by w/ for 2 < i < k. We get
wﬁ = wj o0y, for 01,...,0; € G,0; = 1. Taking into account the proof of Proposition 2.8, one
can find an element 3 € M such that

—c=wi(B) <0, wy(B)>c,..., wi(B)>c.
Let 7y,...,7, (71 = 1) be the maximal set of elements of G = Gal(L/F) for which the elements

B.%(B),...,7(B) are distinct. Then s,...,7, ¢ Hy, and wi (B) = —c, wi (T:(B)) > cfor2 <i<r.
Let h(X) = X"+b, X"~ +-.-+ by be the irreducible monic polynomial of 8 over F. Then

wi(bo) = Yo

Similarly one checks that wy (b;) > 0 for i < r— 1. We also obtain that

wi(byr—1) = 1m_iil wi (:(B)) = —c <0.

X
Hence, v(b;) > 0 for 0 <i <r—1 and v(b,—1) < 0. Put h(X) =b,"h(b,_1X). Then hi(X)
is a monic polynomial with integer coefficients. Since /;(X) = (X + 1)X"~!, by the Hensel
Lemma 8.2, we obtain that /; (X) is not irreducible, implying the same for #(X), and we arrive at

a contradiction. Thus, k = 1, and the discrete valuation v is uniquely extended on L.
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(2)=(3). Let L = F(a) be a finite separable extension of F and let L/F be of degree n. Since
v has the unique extension w to L, we deduce from Theorem 9.6 that f(X) = g;(X) is the decom-
position of the irreducible monic polynomial f(X) of ¢ over F in F[X]. Therefore, the extension
F(a)/F is of degree n. We have also e(w|v) = e(Ww[v), f(w|v) = f(iW[?), because e(w|w) = 1,
Fwlw) =1, e(vlv) =1, f(V]v) = 1; see 9.3. Proposition 9.4 shows that n = e(w|v) f(w|v). Hence
n=e(wy)f(wv).

(3)=(4). Let o € F be separable over F. Put L = F (o) and n = |L : F|. Let w be the discrete
valuation on L which induces the same topology on L as V|, . Then e(w|v) = f(w|v) = 1, and hence
n=1,a€ekF.

(4)=(1). Let f(X),g0(X),ho(X) be monic polynomials with coefficients in &. Let f(X) =
30(X)ho(X) and go(X), ho(X) be relatively prime in F,[X]. The field F is Henselian according to
8.1. Then there exist monic polynomials g(X), 2(X) over the ring of integers 0 in F, such that
f(X) =g(X)h(X) and g(X) = go(X),h(X) = ho(X). The polynomials go(X),ho(X) are relatively
prime in &'[X | because their residues possess this property. Consequently, they are relatively prime
in F[X] by the previous Lemma. The roots of the polynomial f(X) are algebraic over F, hence the
roots of the polynomials g(X),/n(X) are algebraic over F and the coefficients of g(X),h(X) are
algebraic over F. Since F is separably closed in F, we obtain that g(X)”" ,h(X)?" € F[X] for some
m > 0. Then f(X )”m is the product of two relatively prime polynomials in F[X]. We conclude
that g(X)”" = g;(X)?" and h(X)"" = h;(X)"" for some polynomials g;(X),h(X) € F[X] and,
finally, the polynomial g(X) coincides with g;(X) € &[X], the polynomial 2(X) coincides with
hi(X) € O[X]. O

9.9. COROLLARY 1. Let F be a Henselian discrete valuation field and L an algebraic exten-
sion of F. Then there is precisely one valuation w: L* — Q (not necessarily discrete), such that
the restriction w| p coincides with the discrete valuation v on F. Moreover, L is Henselian with

respect to w.

Proof. Let M/ F be a finite subextension of L/F, and let, in accordance with the previous Theorem,
wy: M* — Q be the unique valuation on M for which wy|, = v. For o € L* we put w(at) =
wy (o) with M = F(a). It is a straightforward exercise to verify that w is a valuation on L and
that w|, = v. If there were another valuation w’ on L with the property w'|, = v, we would find
o € L with w(a) # w/(a), and hence w| Fo) @nd w| F(q) Would be two distinct valuations on
F (o) with the property w|. = w'|. = v. Therefore, there exists exactly one valuation w on L for
which w|, = v. To show that L is Henselian we note that polynomials f(X) € 0,,[X],g0(X) €
O X],ho(X) € 0,]X] belong in fact to &;[X]|, where ) is the ring of integers for some finite
subextension M/F in L/F. Clearly, the polynomials g,(X),o(X) are relatively prime in M,,,, [X],
hence there exist polynomials g(X),(X) € 0;[X], such that f(X) = g(X)h(X), g(X) = go(X)
and h(X) = ho(X). O

COROLLARY 2. Let F be a Henselian discrete valuation field, and let L/F be a finite sepa-

rable extension. Let v be the valuation on F' and w the extension of v to L. Let e, f, T, 01,...,0f
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be as in Proposition 2.4. Then 9-7:{@ is a basis of the F-space L and of the O,-module ©,, with
< f,0< j<e— 1. Inparticular, if e = 1, then

Ow=0,[{6}], L=F({6}),

and if f =1, then
Oy,=0,[n,], L=F(m,).

Proof. One can show, similarly to the proof of Lemma 2.3, that the elements 6], for 1 <i <
f,0 < j <e—1 are linearly independent over F. As n = ef, these elements form a basis of 7,
over O, and of L over F. O

COROLLARY 3. Let F be a Henselian discrete valuation field, and L/F a finite separable
extension. Let w be the discrete valuation on L and ¢: L — F¥¢ an embedding over F. Then

wo o~ is the discrete valuation on 6L and My =0M;, 051, =00].

COROLLARY 4. If F is a Henselian discrete valuation field, then Proposition 8.1, Corollary 3
and 4 of 8.3, and Lemma 8.4 hold for F.

Proof. In terms of Proposition 8.1 we obtain that there exist polynomials g,/ € 720 [X] (where 0 is
the ring of integers ofF) such that f = gh, g = go mod .Z°*', h=hy mod .Z*!, degg = deg g,
degh = degho (where A is the maximal ideal of & ). Proceedlng now analogously to the part
(4)=(1) of the proof of Theorem 2.8, we conclude that g”" and #”" belong to ¢'[X] for some
m = 0. As go(X), ho(X) are relatively prime in F[X| because R (go(X),ho(X)) # 0, we obtain that
g(X) =go(X),h(X) = ho(X) and Proposition 8.1 holds for F. Corollary 3 of 8.3 and Lemma 8.4
for F are formally deduced from the latter. O

The separable closure of F in F is called the Henselisation of F (this is a least Henselian field
containing F). For example, the separable closure of Q in Q, is a Henselian countable field with

respect to the p-adic valuation.

10. Unramified and Ramified Extensions

The field F has the unique surjective discrete valuation F* — 7Z with respect to which it is
Henselian; we shall denote it from now on by vg.

Let L/F be an algebraic extension. If vy is the unique discrete valuation on L which extends
the valuation v = vy on F, then we shall write e(L|F), f(L|F) instead of e(v.|vr), f(vr|vr). We
shall write & or Op,.# or My, U or Up,T or mp,F for the ring of integers &,, the maximal
ideal .#,, the group of units U,, a prime element 7, with respect to v, and the residue field F,,
respectively.

10.1. LEMMA. Let L/F be a finite extension. Let oo € Oy, and let f(X) be the monic irre-
ducible polynomial of a. over F. Then f(X) € Or|[X]. Conversely, let f(X) be a monic polynomial
with coefficients in Op. If o € L is a root of f(X), then o € 0.
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Proof. It is well known that 8 = or”" is separable over F for some m > 0. Let M be a finite Galois
extension of F with B € M. Then, in fact, B € 0); and the monic irreducible polynomial g(X) of

B over F can be written as

r

gX)=[][x—-0B), oicGa(M/F), o=1.
i=1

Since B € Oy we get 0;3 € Oy using Corollary 3 of 9.9. Hence we obtain g(X) € Op[X] and
f(X) =g (X"") € Or[X]. If & € Lis aroot of the polynomial f(X) =X"+a,1 X" '+---+ap €
Op[X]and o ¢ Oy, then 1 = —a, (o' —--- —apo™ € .4, contradiction. Thus, & € ;. [

A finite extension L of a Henselian discrete valuation field F is called unramified if L/F is a
separable extension of the same degree as L/F. We deduce from 9.4 that if L/F is unramified then
e(LIF)=1,f(L|F)=|L:F]|.

A finite extension L/F is called totally ramified if f(L|F) = 1.

A finite totally ramified extension L/F is called wildly ramified if p|e(L|F) where p = char(F) >

A finite extension L/F is called tamely ramified if L/F is a separable extension and pte(L|F)
where p = char(F) > 0.

Unramified extensions are tamely ramified.
10.2. First we treat the case of unramified extensions.

PROPOSITION.

(1) Let L/F be an unramified extension, and L = F(0) for some 0 € L. Let & € Oy, be such
that o = 6. Then L= F (o), and L is separable over F, 01, = Op|a]; 0 is a simple root of
the polynomial f (X) irreducible over F, where f(X) is the monic irreducible polynomial
of a over F.

(2) Let f(X) be a monic polynomial over Op, such that its residue is a monic separable
polynomial over F. Let o be a root of f(X) in F¥¢, and let L = F (). Then the extension
L/F is unramified and L = F(0) for 6 = Q.

Proof. (1) By the preceding Lemma f(X) € O0x[X]. We have f(at) = 0 and f(a) =0, deg f(X) =
deg f(X). Furthermore,

IL:F|>|F(a): F|=degf(X)=degf(X)>|F(0):F|=|L:F|.

It follows that L = F(a) and 0 is a simple root of the irreducible polynomial f(X). Therefore,
F(6)#0and /(&) #0, i.e., o is separable over F. It remains to use Corollary 2 of 9.9 to obtain
0L, = Of|a].

(2) Let f(X) =TT, fi(X) be the decomposition of f(X) into irreducible monic factors in F[X].
Lemma 9.8 shows that f;(X) € Or[X]. Suppose that ¢ is a root of fi(X). Then g;(X) = f,(X) is a
monic separable polynomial over F. The Henselian property of F implies that g1 (X) is irreducible
over F. We get @ € € by Lemma 10.1. Since 6 = @ € L, we obtain L D F(0) and

deg fi(X)=|L:F|>|L:F|>|F(0):F|=degg(X)=degfi(X).
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Thus, L = F(0), and L/F is unramified. O

COROLLARY.

(1) If L/F,M /L are unramified, then M /F is unramified.

(2) If L/F is unramified, M is an algebraic extension of F and M is the discrete valuation
field with respect to the extension of the valuation of F, then ML/M is unramified.

(3) If L /F,L, /F are unramified, then LiL,/F is unramified.

Proof. (1) follows from Lemma 9.1.

To verify (2) let L = F(a) with o € 01, f(X) € OF[X] as in the first part of the Proposition.
Then a ¢ .4, because L = F(a). Observing that ML = M(ct), we denote the irreducible monic
polynomial of & over M by f1(X). By the Henselian property of M we obtain that f,(X) is a
power of an irreducible polynomial over M.However, f,(X) divides f(X), hence f,(X) is irre-
ducible separable over M. Applying the second part of the Proposition, we conclude that ML/M
is unramified.

(3) follows from (1) and (2). O

An algebraic extension L of a Henselian discrete valuation field F is called unramified if
L/F,L/F are separable extensions and e(w|v) = 1, where v is the discrete valuation on F, and w is
the unique extension of v on L. For finite extensions this is compatible with the previous definition.

The third assertion of the Corollary shows that the compositum of all finite unramified ex-
tensions of F in a fixed algebraic closure F3¢ of F is unramified. This extension is a Henselian
discrete valuation field. It is called the maximal unramified extension F"" of F. Its maximality
implies cF"" = F"" for any automorphism of the separable closure F*P over F. Thus, F'"/F is

Galois.

10.3. PROPOSITION.
(1) Let L/F be an unramified extension and let L/F be a Galois extension. Then L/F is

Galois.

(2) Let L/F be an unramified Galois extension. Then L/F is Galois. For an automorphism
o € Gal(L/F) let G be the automorphism in Gal(L/F) satisfying the relation 5& = G
for every o € Oy. Then the map ¢ +— G induces an isomorphism of Gal(L/F) onto
Gal(L/F).

Proof. (1) It suffices to verify the first assertion for a finite unramified extension L/F. Let L = F(6)
and let g(X) be the irreducible monic polynomial of 6 over F. Then

n

g(X)=T1x-8),

i=1
with 6; € L,0; = 6. Let f(X) be a monic polynomial over & of the same degree as g(X) and
f(X) = g(X). The Henselian property (Corollary 2 in 8.2) implies

n

fX) =T]x — ),

i=1
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with o; € O, @; = 6;. Proposition 10.2 shows that L = F(q; ), and we deduce that L/F is Galois.

(2) Note that the automorphism G is well defined. Indeed, if B € ¢} with B = @, then (o —
B) € #; by Corollary 3in 9.9 and cor = o . It suffices to verify the second assertion for a finite
unramified Galois extension L/F. Let ¢, 0, f(X) be as in the first part of Proposition 10.2. Since
all roots of f(X) belong to L, we obtain that all roots of f(X) belong to L and L/F is Galois. The
homomorphism Gal(L/F) — Gal(L/F) defined by o — C is surjective because the condition
60 = 0; implies oo = @; for the root ¢; of f(X) with &; = 6;. Since Gal(L/F), Gal(L/F) are of
the same order, we conclude that Gal(L/F) is isomorphic to Gal(L/F). O

COROLLARY. The residue field of F* coincides with the separable closure F*¥ of F and
Gal(F¥"/F) = Gal(F*" /F).

Proof. Let 0 € F*P, let g(X) be the monic irreducible polynomial of 6 over F, and f(X) as in the
second part of Proposition 10.2. Let {¢;} be all the roots of f(X) and L = F({e;}). Then L C F*"
and 6 = @; € F™ for a suitable i. Hence, F* = F"". O

10.4. Let L be an algebraic extension of F, and let L be a discrete valuation field. We will
assume that F¥¢ = 1212 ip this case.

PROPOSITION. Let L be an algebraic extension of F and let L be a discrete valuation field.
Then L™ = LF", and Ly = LN F™ is the maximal unramified subextension of F which is contained

in L. Moreover, L/Ly is a purely inseparable extension.

Proof. The second part of Corollary 10.2 implies L*" D LF"". Since the residue field of LF"" con-
tains the compositum of the fields L and "', which coincides with L™ because L/F is algebraic,
we deduce L' = LF". An unramified subextension of F in L is contained in Lo, and Lo /F is
unramified. Let 6 € L be separable over F, and let g(X) be the monic irreducible polynomial of 6
over F. Let f(X) be a monic polynomial with coefficients in & of the same degree as g(X), and
f(X) = g(X). Then there exists a root @ € O, of the polynomial f(X) with & = 6 because of the
Henselian property. Proposition 10.2 shows that F () /F is unramified, and hence 6 € L. O

COROLLARY. Let L be a finite separable (resp. finite) extension of a Henselian (resp. com-
plete) discrete valuation field F, and let L/F be separable. Then L is a totally ramified extension
of Lo, L*" is a totally ramified extension of F*', and |L : Lo| = |L*" : F""|.

Proof. Theorem 9.8 and Proposition 9.4 show that f(L|Ly) = 1, and e(L|Ly) = |L : Ly|. At the
same time, Lemma 9.1 implies
e(LY|F") = e(L"|F) = e(L|Ly).

Since |L: Lo| > |L* : F"'|, we obtain that |L : Ly| = |[L" : F"|, e(L""|F") = |[L* : F"|, and
FL|FY) = 1. O
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10.5. We treat the case of tamely ramified extensions.

PROPOSITION.

(1) Let L be a finite separable (resp. finite) tamely ramified extension of a Henselian (resp.
complete) discrete valuation field F and let Ly/F be the maximal unramified subexten-
sion in L/F. Then L = Lo(x) and O, = Oy, [7] with a prime element T in L satisfying
the equation X¢ — my = 0 for some prime element my in Ly, where e = e(L|F).

(2) Let Ly/F be a finite unramified extension, L = Ly(at) with a¢ = B € Ly. Let pfe if
p = char(F) > 0. Then L/F is separable tamely ramified.

Proof. (1) The Corollary of Proposition 10.4 shows that L/Ly is totally ramified. Let m; be a
prime element in Ly, then 7 = 77 € for a prime element 77 in L and € € U, according to 9.3. Since
L = Ly, there exists 1 € Oy, such that 7 = €. Hence mn~! = nfp for the principal unit p =
en~! € Oy. For the polynomial f(X) = X¢— p we have f(1) € .#;, f'(1) = e. Now Corollary 2
of 8.2 shows the existence of an element v € &} with v¢ = p, v = 1. Therefore, myp = nm*I,
7 = ;v are the elements desired for the first part of the Proposition. It remains to use Corollary 2

of 9.9.

(2) Let B = m{'e for a prime element 7; in Ly and a unit € € Uy,. The polynomial g(X) =
X¢ — € is separable in Ly[X] and we can apply Proposition 10.2 to f(X) = X¢ — € and a root
n € F5P of f(X). We deduce that Ly(n)/Lo is unramified and hence it suffices to verify that
M /My for M = L(n),My = Lo(n), is tamely ramified. We get M = My(0) with o = an !,
of = m{. Putd = g.c.d.(e,a). Then
M C Mo(0n, §)

e/d

with o’ = ﬂf/

4 and a primitive eth root { of unity. Since the extension My (§) /My is unrami-
fied (this can be verified by the same arguments as above), 7; is a prime element in M ({). Let
v be the discrete valuation on My (02, §). Then (a/d)v(m) € (e/d)Z and v(m) € (e/d)Z, be-
cause a/d and e/d are relatively prime. This shows that e(Mo(05,$) | Mo($)) = e/d. However,
Mo (&, ) : Mo(8)| < e/d, and we conclude that My(&, 0n)/Mp(&) is tamely and totally ramified.
Thus, My (€, o) /My and M /M are tamely ramified extensions. O

COROLLARY.
(1) If L/F,M/L are separable tamely ramified, then M/ F is separable tamely ramified.
(2) If L/F is separable tamely ramified, M /F is an algebraic extension, and M is discrete,
then ML/M is separable tamely ramified.
(3) If L1 /F,L, /F are separable tamely ramified, then L|L, /F is separable tamely ramified.

If F is complete, then all the assertions hold without the assumption of separability.

Proof. 1t is carried out similarly to the proof of Corollary 10.2. To verify (2) one can find the
maximal unramified subextension Ly/F in L/F. Then it remains to show that ML/ML is tamely
ramified. Put L = Lo(m) with 7€ = mp. Then we get ML = MLy(x), and the second part of the

Proposition yields the required assertion. g
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10.6. Finally we treat the case of totally ramified extensions. Let F be a Henselian discrete

valuation field. A polynomial
fX)=X"4+a, (X" '4+.--4ay overO
is called an Eisenstein polynomial if ay, ... ,a,—1 € M, ao ¢ A 2,

PROPOSITION.

(1) The Eisenstein polynomial f(X) is irreducible over F. If o is a root of f(X), then
F(a)/F is atotally ramified extension of degree n, and . is a prime element in F (@), Op(q) =
Orlal.

(2) Let L/F be a separable totally ramified extension of degree n, and let w be a prime

element in L. Then T is a root of an Eisenstein polynomial over F of degree n.

Proof. (1) Let o be aroot of f(X), L=F (), e =e(L|F). Then

n—1
nvg (o) :vL<;)a,~ai) > min (evr(a;)+ivi(a)),

0o<igsn—1

where vg and v, are the discrete valuations on F and L. It follows that v, (&) > 0. Since evp(ag) <
evr(a;) +ive(a) for i > 0, one has nvi(a) = evp(ag) = e. Lemma 9.3 implies v (o) = 1,n =
e,f =1, and 0 = Of|a] similarly to Corollary 2 of 9.9.

(2) Let & be a prime element in L. Then L = F(x) by Corollary 2 of 9.9. Let

fX)=X"+a, 1 X" '+ +a
be the irreducible polynomial of 7w over F'. Then

n=e, n(T)= 0<Iin<ir111_1 (nve(a;) +i),

hence vr(a;) >0, and n = nvr(agp), vr(ao) = 1. O

11. Galois Extensions and Ramification Groups

Ramification theory was first studied by Dedekind and Hilbert. In this section F is a Henselian
discrete valuation field.

11.1. LEMMA. Let L be a finite Galois extension of F. Then vo o = v for the discrete val-
uation v on L and 6 € Gal(L/F). If & is a prime element in L, then o7 is a prime element and
00, =0y, cM; =M.

Proof. It follows from Corollary 3 of 9.9. (]

PROPOSITION. Let L be a finite Galois extension of F and let Ly /F be the maximal unramified
subextension in L/F. Then Ly/F and Ly/F are Galois, and the map ¢ + G defined in Proposi-
tion 10.3 induces the surjective homomorphism Gal(L/F) — Gal(Ly/F) — Gal(Ly/F). If, in
addition, L/F is separable, then L = Ly and L/F is Galois, and L/L is totally ramified.
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The extension L""/F is Galois and the group Gal(L"" /L) is isomorphic with Gal(L" /L) x
Gal(L*""/F"), and

Gal(L" /F"™) = Gal(L/Ly), Gal(L"/L) = Gal(F"/Ly).

Proof. Recall that in 10.4 we got an agreement F&!2 = [¥2, Let ¢ € Gal(L/F). Corollary 3 of 9.9
implies that 6Ly is unramified over F, hence Ly = 6Lg and Ly /F is Galois. The the surjectivity
of the homomorphism Gal(L/F) — Gal(Lo/F) follows from Proposition 10.3. Since L/F and
F" /F are Galois extensions, we obtain that LF""/F is a Galois extension. Then L' = LF"" by

Proposition 10.4. The remaining assertions are easily deduced by using Galois theory. 0

Thus, a Galois extension L/F induces the Galois extension L' /F"". The converse statement

can be formulated as follows.

11.2. PROPOSITION. Let M be a finite extension of F'" of degree n. Then there exist a finite
unramified extension Ly of F and an extension L/Ly of degree n such that LOF" = Ly, LF"" = M.
If M/F" is separable (Galois) then one can find Ly and L, such that L/Ly is separable (Galois).
Proof. Assume that Ly is a finite unramified extension of F, L is a finite extension of Ly of the
same degree as M /F" and M = LF"". Then for a finite unramified extension Ny of Ly and N = NyL
we get |[M : FY| <IN : No| < |L: Lo, hence [N : No| = |L: Lo| and [N : L| = |Np : Lo|. This shows
LNF" =Ly and Ly, L are such as desired. Moreover, Ny, N are also valid for the Proposition.
Therefore, it suffices to consider a case of M = F" ().

Let f(X) € F"[X] be the irreducible monic polynomial of & over F'. In fact, its coefficients
belong to some finite subextension Ly/F in F"/F. Put L = Ly(ct). Then f(X) is irreducible over
Ly, L is the finite extension of Ly of the same degree as M/F"" and M = LF". This proves the
first assertion of the Proposition. If « is separable over F', then it is separable over Ly. If M /F""
is a Galois extension, then M = F"(¢) for a suitable a and o;(@) for o; € Gal(M/F"") can be
expressed as polynomials in & with coefficients in F'*". All these coefficients belong to some finite
extension L{, of Lo in F"". The pair Lj, L' = Lj,(t) is the desired one. O

COROLLARY. If M = F", then L/Ly and M /F*" are totally ramified.

Proof. 1t follows from Proposition 10.4. U

11.3. Let L be a finite Galois extension of F, G = Gal(L/F). Put
Gi={ceG:oo—ac.# " forallac o}, i>—1.

Then G_; = G by Lemma 11.1 and Gy, is a subset of G;.
Let v;, be the discrete valuation of L. For a real number x define

Gr={oceG:v(oa—a)>x+1forallac 0.}
Certainly each of G, is equal to G; with the least integer i > x.

LEMMA. G; are normal subgroups of G.
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Proof. Let 6 € G;,a € Oy. Then 6 — a € #]™". Hence a — o~ ' (a) € o~ (i) = i
by Lemma 11.1, i.e., o~ ! € G,. Let 6,7 € G;. Then

ot(a)—a=o(t(a)—a)+o(a)—ac.#

i.e., 67 € G;. Furthermore, let o € G;,7 € G. Then t(a) € O for o € 0} and 6(TQ) — TO0 €
At ot(a) —a e T, T 0T EG; O

The groups Gy are called (lower) ramification groups of G = Gal(L/F).

PROPOSITION. Let L be a finite Galois extension of F, and let L be a separable extension of F.
Then Gy = Gal(L/Ly) and the ith ramification groups of Gy and G coincide for i > 0. Moreover,

Gi={oc€eGy:on—ne.uf"}
for a prime element 7 in L, and G; = {1} for sufficiently large i.
Proof. Note that ¢ € G if and only if 6 € Gal(L/F) is trivial. Then Gy coincides with the kernel
of the homomorphism Gal(L/F) — Gal(L/F). Proposition 11.1 and Proposition 10.3 imply that

this kernel is equal to Gal(L/Ly). Since G; is a subgroup of Gy for i > 0, we get the assertion about
the ith ramification group of Gy. Finally, using Corollary 2 of 9.9 we obtain & = 0y, [n]. Let

be an expansion of & € & with coefficients in Jy,. As ca,, = a,, for o € Gy it follows that

ocou—o= i am (o(n™) — ™).

m=0
Now we deduce the description of G, since o(n™) — ™ € 4, L‘H. Now we deduce the description
of G;, since o(n') — 7' € G;. If i > max{v,(6mw — ) : 0 € G}, then G; = {1}. O

The group Gy is called the inertia group of G, and the field Ly is called the inertia subfield of
LJF.

11.4. PROPOSITION. Let L be a finite Galois extension of F, L a separable extension of F,

and 7 a prime element in L. Introduce the maps
Wvo: Go— L, w:G—1L (i>0)
by the formulas y;(c) = A;(om/x), where the maps
Ao:U,—L", XN:l+.4f —L
were defined in Proposition 4.4. Then y; is a homomorphism with the kernel Gy fori > 0.

Proof. The proof follows from the congruence

ot(m T\ ONT TN OFN
(7) :G(—>-—z—-— mod Uy
T T T T T
for o, 7 € G; and Proposition 4.4. The kernel of y; consists of those automorphisms ¢ € G;, for

which on/m € 1+.4i ie,on—mc. 4™ O
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COROLLARY 1. Let L be a finite Galois extension of F, and L a separable extension of F.
If char(F) = 0, then Gy = {1} and G is cyclic. If char(F) = p > 0, then the group Gy/G is
cyclic of order relatively prime to p, G;/Gi1 are abelian p-groups if i > 0, and G is the maximal
p-subgroup of Gy.

Proof. The previous Proposition permits us to transform the assertions of this Corollary into the
following: a finite subgroup in L™ is cyclic (of order relatively prime to char(L) when char(L) # 0);
there are no nontrivial finite subgroups in the additive group of L if char(L) = 0; if char(L) = p > 0
then a finite subgroup in L is a p-group. O

COROLLARY 2. Let L be a finite Galois extension of F and L a separable extension of F. Then
the group Gy coincides with Gal(L/Ly), where Ly /F is the maximal tamely ramified subextension

in L/F.

Proof. The extension L; /Ly is totally ramified by Proposition 11.1 and is the maximal subexten-

sion in L/Ly of degree relatively prime with char(F). Now Corollary 1 implies G| = Gal(L/L;).
O

COROLLARY 3. Let L be a finite Galois extension of F and L a separable extension of F.
Then Gy is a solvable group. If, in addition, L/F is a solvable extension, then L/F is solvable.

Proof. It follows from Corollary 1. U

11.5. DEFINITION. Let L/F be a finite Galois extension with separable residue field exten-
sion; let G = Gal(L/F). Integers i such that G; # G, are called ramification numbers of L/F or
lower ramification jumps of L/ F.

One of the first properties of ramification numbers if supplied by the following

PROPOSITION. Let L/F be a finite Galois extension with separable residue field extension.
Let 6 € Gi\ Giy1 and t € Gj\ Gji1 withi,j > 1. Then cto 171l e Giyj+1 andi= j mod p.

Proof. Let m; be a prime element of L. Then

oT, N 19 ; ,
—L:1+a7r£, —L:1+[37r£ with a, B € 0.
Y79 Y78

Therefore _
OTn, = O+ (GB)(G?TL)j+l

=m+ornt + B/ + G+ Dapx T mod .
Hence (07— 10)m. = (j—i)af 77:2” ' mod ., L"H 2 Substituting instead of 7, the other prime
element 61777, of L we deduce that

—1 -1
oto 't !n o L .
—F = 1+(j—i)afr ™’ mod .///Llﬂﬂ.

L
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Now if j is the maximal ramification number of L/F, then G, = {1}. Therefore the last
formula in the previous paragraph shows that every positive ramification number i of L/F is con-
gruent to j modulo p. Therefore every two positive ramification number of L/F are congruent to

each other modulo p. Finally, from the same formula we deduce that 6to~'77! € G, - g

12. Structure Theorems for Complete Discrete Valuation Fields

Lemma 2.2 shows that there are three cases: two equal-characteristic cases, when char(F) =
char(F) = 0 or char(F) = char(F) = p > 0, and one unequal-characteristic case, when char(F) =
0,char(F) = p > 0.

12.1. LEMMA. The ring of integers O contains a nontrivial field M if and only if char(F) =
char(F).

Proof. Since MN.#. = (0), M is mapped isomorphically onto the field M C F, therefore char(F) =

char(F). Conversely, let A be the subring in OF generated by 1. Then A is a field if char(F) = p,
and AN .4y = (0) if char(F) = 0. Hence, the quotient field of A is the desired one. O

A field M C Op, that is mapped isomorphically onto the residue field F = M is called a coeffi-
cient field in Op. Such a field, if it exists, is a set of representatives of Fin Op,see4.1. Proposition
4.2 implies immediately that in this case F' is isomorphic (algebraically and topologically) with
the field M((X)): a prime element 7 in F corresponds to X. Note that this isomorphism depends
on the choice of a coefficient field (which is sometimes unique, see below) and the choice of a
prime element of F'.

We shall show below that a coefficient field exists in an equal-characteristic case.

12.2. The simplest case is that of char(F) = char(F) = 0.

PROPOSITION. Let char(F) = 0. Then there exists a coefficient field in Op. A coefficient field

can be selected in infinitely many ways if and only if F is not algebraic over Q.

Proof. Let M be a maximal subfield in O, in other words, M be not properly contained in any
other larger subfield of 0. We assert that M = F, i.e., M is a coefficient field. Indeed, if 8 € F
is algebraic over M, then 0 is separable over M and we can apply the arguments of the proof of
Proposition 10.4 to show that there exists an element & € O which is algebraic over M and such
that @ = 6. Since M (o) = M by the maximality of M, we get o« € M, 6 € M.

Furthermore, let 8 € F be transcendental over M. Let & € OF be such that @ = 6. Then « is
not algebraic over M, because if Y ,a;0' = 0 with a; € M, then Y. ,@;0" = 0. Hence, @; = 0 and
a; = 0 (M is mapped isomorphically onto M). By the same reason M[o] N.# = (0). Hence, the
quotient field M(a) is contained in & and M # M (o), contradiction.

Thus, a coefficient field exists.

If F is not algebraic over Q, choose an element o € OF transcendental over Q. Then the
maximal subfield in O, which contains Q(o + €) with € € 4, is a coefficient field and it will
be different from the coefficient field containing Q (o) if € # 0.
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If F is algebraic over Q, then M is algebraic over Q and is uniquely determined by the previous

constructions. O

12.3. To treat the case char(F) = p we consider the following notion: elements 6; of F are

called a p-basis of F if
F:Fp[{el}] and |Fp[917"'>6n] :Fp|:pn

for every distinct elements 0y, ..., 6,. The empty set is a p-basis if and only if F is perfect. For an
imperfect F, a p-basis ® = {6;} exists by Zorn’s Lemma, because every maximal set of elements
0; satisfying the second condition possesses the first property. The definition of a p-basis implies
that F = F” [{6;}] forn > 1.

LEMMA. Let F be a complete discrete valuation field with the residue field F of characteristic
p, and ©® = {6;} be a p-basis of F. Let o; € O be such that &; = 6;. Then there exists an extension
L/F with e(L|F) = 1, such that L is a complete discrete valuation field, L= \J F’  and ; are

n=0
the multiplicative representatives of 0; in L.

Proof. Let I be an index-set for ®. One can put F, = F,_;({¢;,}) with afn = Wi,—1,1 €1, and
Fy=F, oo = o;. Then e(F,|F) = 1 and the completion of L' = (J,~ F; is the desired field. Since

a; €N L”", we obtain that ¢ is the multiplicative representative of 6;. O
n=0

12.4. Now we treat the case char(F) = char(F) = p.
If F is perfect, then Corollaries 1 and 2 of 6.3 show that the set of the multiplicative represen-
tatives of F in O forms a coefficient field. Moreover, this is the unique coefficient field in O

because if M is such a field and o € M, then, as M is perfect, o € () MP" is the multiplicative
n=0
representative of Q..

Note that in general there are infinitely many maximal fields similarly to the case of char(F) =

0, therefore in general when char(F) = p and F is perfect a maximal field is not a coefficient field.

PROPOSITION. Let char(F) = p. If F is perfect then a coefficient field exists and is unique; it
coincides with the set of multiplicative representatives of F in Or. If F is imperfect then there are

infinitely many coefficient fields.

Proof. If F is imperfect we apply the construction of the previous Lemma. Then L is perfect and
there is the unique coefficient field N of L in ;. Let M be the subfield of N corresponding to F.

Let ® = {6;} be a p-basis of F. Let a; € OF be such that @; = 6,. Let o, be as in the proof
of Lemma 12.3.

If y€ M then y € F” ' [©] and there exists an element B, € Or[{c;,}] such that B, = %
It follows that B, = ¥ " mod .#,, and by Lemma 6.2 we deduce y = 8/ " mod AP Since
BY e ﬁ,{-’n [{0;}] C OF, we obtain y = lim 87 " € Op. This proves the existence of a coefficient
field of F in Op.

—n
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If we apply this construction for another set of elements &/ € OF with O, = @;, then we get a
coefficient field M’ containing ¢. Since 4, "M = .# "M’ = (0) we deduce M # M'. O

12.5. We conclude with the case of unequal characteristic: char(F) = 0, char(F) = p. For
the discrete valuation vp such that vp(F*) = Z recall that e(F) = vp(p) is called the absolute
index of ramification of F, see 4.7. The preceding assertions show that in equal-characteristic case
for an arbitrary field K there exists a complete discrete valuation field F with the residue field F

isomorphic to K. Here is an analog:

PROPOSITION. Let F be a complete discrete valuation field of characteristic 0 with residue

field K of characteristic p. Let K| be any extension of K. Then there exists a complete discrete
valuation field Fy which is an extension of F, such that e(Fi|F) =1 and F1 = K;.

Proof. 1t is suffices to consider two cases: K; = K(a) is an algebraic extension over K and K| =
K(y) is a transcendental extension over K. If, in addition, in the first case K; /K is separable, then
let g(X) be the monic irreducible polynomial of a over K, and let f(X) be a monic polynomial
over the ring of integers of K such that f(X) = g(X). By the Hensel Lemma 8.2 there exists a root
o of f(X) such that @ = a. Then F| = F(a) is the desired extension of F. Next, if > =b € K
and f is an element in the ring of integers of F such that § = b, then F; = F(a) is the desired
extension of F for a” = . Finally, in the second case let w be the discrete valuation on F(y)
defined in Example 5 in 1.3. Then completion of F(y) is the desired extension Fj of F. g

COROLLARY. There exists a complete discrete valuation field of characteristic 0 with any

given residue field of characteristic p and the absolute index of ramification is equal to 1.

Proof. One can set F' = Q,, and apply the Proposition. U

12.6. PROPOSITION. Let L be a complete discrete valuation field of characteristic O with the
residue field L of characteristic p. Let F be a complete discrete valuation field of characteristic 0
with p as a prime element. Suppose that there is an isomorphism ®: F — L. Then there exists a
field embedding ®: F — L, such that v, o @ = e(L)vp and the image of o(a) € O for o € OF
in the residue field L coincides with @ (Q).

Proof. Assume first that F is perfect. By Corollary 1 of 6.3 any element 6 € F has the unique
multiplicative representative rx(0) in F and rz(®(0)) in L. Put

® (ZrF(ei)Pi) = ZI’L(E(G,-))pi.

Proposition 4.2 shows that the map o is defined on F, Proposition 6.6 shows that  is a homo-
morphism of fields. Evidently v; o ® = e(L)vy and o(o) = @(a) for o € Op.

Next, assume that F is imperfect. Let @ = {6;};c; be a p-basis of F. Let A = {0 }c; be a set
of elements o; € OF with &; = 6;, and let B = {3;}c; be a set of elements f3; € &} with Bl- = 0;.
For a map

v:I—{0,1,...,p" -1}
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such that v(i) = 0 for almost all i € I, put
v _ v(i)

C) g 0.
The same meaning will be used for AY,BY. By Lemma 12.3 there exist complete discrete valuation
fields F',L’ for F,L, such that e(F’|F) = e(L'|L) = 1, and F’ is perfect and isomorphic to L/,
and o (resp. ;) are multiplicative representatives of 6; in Op (resp. of @(6;) in &y/). The
previous arguments show the existence of a homomorphism @’: F' — L' with vjy o @' = e(L)vps
and o' () = ®(@) for o € Opr. Moreover, @ maps @; to f3;, since they are the multiplicative
representatives of 6; and @(6;). Let y € OF and 7 = Zaen @V with ay € F. Let b, be an element
of O with the property by = ay, and ¢, an element of &} with the property ¢, = m Then
y=Y b0 A mod pOp, ie.,

Y=Y b5 A +pr
with 1 € OF. We get @' (AY) =B and using Lemma 6.2 we have
o' (b)) =cl mod. 4.
Therefore,
o' (7)=Y 4 BY +pa'(n) mod.4".

Repeating this reasoning for y;, we conclude that ®'(y) = §, mod .#, L”,“ for some 6, € 0. Then
®'(y) =lim§, and since &, is complete, we deduce @'(y) € 0. Thus, @ maps OF in O}, and
we finally put @ = @'| to obtain the desired homomorphism. (|

COROLLARY 1. Let Fi,F, be complete discrete valuation fields of characteristic 0 with p as
a prime element. Let there be an isomorphism @ of the residue field F to F>. Then there exists a

field embedding ®: Fi — F, such that o(a) = o() for a € UF,.

Proof. Apply the Proposition for F = F,L=F, and F = F,,L = F}. U

COROLLARY 2. The image ®(F) is uniquely determined in the field L if and only if F is
perfect ore(L) = 1.

Proof. If F is perfect then its multiplicative representatives are uniquely determined in F and in
L, and this is compatible with @, hence @(F) is uniquely determined and its image is equal to the
image of the fraction field of the Witt vectors over F in L. If e(L) = 1 then o(F) = L.

Assume that F is imperfect and e(L) > 1. If w(F) were uniquely determined in L then in the
proof of the Proposition we could have replaced ; by B; + 7, to obtain f; € w(0F), Bi+ 7 €
®(OF) and hence 1, € ®(OF); the latter is impossible because v, o @ = e(L)vp. O
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13. Cyclic Extensions of Prime Degree

Let F be a complete discrete valuation field and L its Galois extension of prime degree n. Then
there are four possible cases:
L/F is unramified;
L/F is tamely and totally ramified;
L/F is totally ramified of degree p = char(F) > 0;
L/F is inseparable of degree p = char(F) > 0.
The fourth case is very interesting for higher local class field theory. Here we discuss the first

three cases.

The following results were first proved by Hasse.
13.1. LEMMA. Let L/F be a finite Galois extension of prime degree n, vy € .#;. Then

Npp(L+7Y) = 1+Npyp(y) +Trpp(y) + B

with some B € Oy, such that vi.(B) = 2v(y).
If n equals positive characteristic of the residue field of F, then

Npp(14+7) =1+ Npp(y) + Trpp(y) +Trp(0)
with some 8 € Oy, such that vi(8) = 2vi(y).

Proof. If n = 2, the assertions are obvious. When n > 2, we get

n

Nyr(1+7) =[]0 +0i(v)

i=1

:Hfo,-(y)ﬂﬁloi(yw ) Y oo,

i=1 l<m<n1<i|<-<ip<n

Then
n n n
Myel1e9) =14 Y a0+ [Tom + (L) 8
i—1 i=1 i=1
where .
=3 —oi(y) Y 0, (1) 0, (7).
1<m<n ™ 1<ji< < jmr1<n
When n > 2 equals positive characteristic of the residue field of F, v.(8) > 2v. (7). O

Below A;z, Air (i > 0) will be as in Proposition 4.4 for the specific choice of 7 and 7 as
stated below. We denote U;; = 1 + niﬁL, Ur=1+ ﬁ;;—ﬁ[:.

13.2. PROPOSITION. Let L/F be a Galois unramified extension of degree n. Then a prime
element ©p in F is a prime element in L, so we take ; = Tp.

Then the following diagrams are commutative :

_ Ai,
L 57 Uy, L L Ui =,

L
Ny/F l l xn Ni/F l JNZ/f Nijr l lTTZ/f

_ MF —
F* X 7 UFLFX Ui7F;F>F
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i1

Proof. Proposition 10.3 implies that Ny /(o) = Np /(@) for & € 01, i.e., the second diagram is

commutative. By the preceding Lemma we get
Npyp(1+6075) = 1+ (Tryp 0) 7 + (N 0) 7 + p
with p € F, vy (p) > 2i and, consequently vg(p) > 2i. Thus, we obtain
Npjr(1+6m) = 1+ (Try)r 0)7p mod

and the commutativity of the third diagram. O

COROLLARY. In the case under consideration NppUiL=U F.

13.3. PROPOSITION. Let L/F be a totally and tamely ramified cyclic extension of degree n.
Then for some prime element 7y, in L, the element T = 7} is prime in F and F = L. Then the

following diagrams

LX %3 Z UL A(),L ZX
Nir l lid Nyyp l l Tn
X VF MF  —=x
F* —— 7 Ur s F

Upp —— L=F

NL/FJ/ J{xﬁ

AiF —
Ui,F e F

are commutative, where id is the identity map, Tn takes an element to its nth power, X7 is the
multiplication byn € F, i > 1.

Moreover, Ny jpUi; 1. = Ny jpUiy1 1 if nti.

Furthermore, U; p = NL/FU,”‘VLforpositive i
Proof. Since n} = mp and L/F is Galois, then Gal(L/F) is cyclic of order n and o () = . for
a generator ¢ of Gal(L/F), where { is a primitive nth root of unity, { € F. The first diagram is
commutative in view of Theorem 9.5. Proposition 11.1 shows that () = @ for ¢ € Gal(L/F),
o € 01, and we get the commutativity of the second diagram.

We have .
o(l+6m)
1+ 0m

If nti then the residue of {’ — 1 is non-zero and so Uir C Ui LkerNyp and Ny pU;p =

=14+6(f'—1)x, modx™.

NpjpUis1L '
If j = ni, then 1 —|—97r£ € F for 6 € OF, and

Nyp(1+0m)) = (1+6m:)" = 1 +n0x; mod m"'
by Proposition 4.4. Applying Corollary 4.5, we deduce

Uir =U/'r CNrjpUniL,
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and U; r = Np/pUyi 1 follows from the previous paragraph.

COROLLARY. In the case under consideration N jpUy 1 = U, F.
If F is algebraically closed then Nyl =F~*.

13.4. Now we treat the most complicated case when L/F is a totally ramified Galois exten-
sion of degree p = char(F) > 0. Then Corollary 2 of 9.9 shows that 0, = Or[n|, L = F(m) for
a prime element 77, in L, and L =F..

Let o be a generator of Gal(L/F), then o(m)/m € Ur. One can write o () /7, = € with
0 € Up,€ € 1 +.#;. Then

o*(n)/n, = o(0g) - Oe = 0% - o (¢),
and
l=o"(n)/m, =67 -€-6(g)-----c” (¢).

This shows that 67 € 1 + .4, and 6 € 1 4 .#}, because raising to the pth power is an injective
homomorphism of F. Thus, we obtain o(7;)/7, € 1 + .#,. Put

o(m)
L

=1+nn with neUy, s=s(L|F)>1. (%)

Note that s does not depend on the choice of the prime element m; and of the generator o of
G = Gal(L/F). Indeed, we have

ol(r o
() =1+inx modmt! and olp) =1 modzt!

s P

for an element p € Ur. We also deduce that

o
LEU&;L
(04

for every element oo € L*. This means that G = Gy, Gsy1 = {1} (see 11.3). Thus, s is the lower
ramification number/jump of L/F.

We need the following auxiliary property.

LEMMA. Let f(X) be the irreducible polynomial of m; over F. Then

j ; <
Te mo\_J0 i 0sjsp-2,
L/F F(m) . .
L 1 if j=p-L

Proof. Since ¢’ () for 0 < i < p— 1 are all the roots of the polynomial f(X), we get

1 r] 1
T~ & Floim)) (X —o'm)
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Let f(X) =X?+a,_1 X"~ ' +---+ap. Putting ¥ = X! and performing the calculations in the
field L((Y)), we consequently deduce

fX)=v"7"(1 +ap_1Y + ot agY?),

p
! = r =Y” modY?"!,
fX) 14ap Y +---+ap?
1 Y
— = . o'(x))y/+!
X—oi(m) 1—oi(m)Y jg() L)

(because 1/(1—Y)=Y;5oY in F((Y))). Hence

J YJ—H

Z Z 71') —Yp mode“,

]>Ol O
or

717{ p—1 Gi(TCZ) 0 if 0<j<p—2,
Try/p () = Zf: : ;
S(m i:Of(G(TCL)) I if j=p-—1,

as desired. =

PROPOSITION. Let [a] denote the maximal integer < a. For an integer i > 0 put j(i) = s+
14[(i—1—5)/p|. Then
TTL/F(ﬂiﬁL) = ﬂ},;(i) OF.
Proof. One has f'(m) = [T, (m — 6'(m)) and o(m,) /7, = 1 +inm} mod w3 !, Then
F(m) = (p—1)1(=n)P'alr et
with some € € 1+///L(P*1)(S+l)+1

sentation 7y = 7} €' with €’ € Uy. The previous Lemma implies

. Since F = L, for a prime element 7y in F one has the repre-

. 0 if 0<j<p—1,
Tr/r (”iﬂﬂgjﬂﬁ) =Y el e

Ty, if j=p-—1
for €541 = (') /((p—1)!(—n)?"'€). Taking into consideration Tr; /z (7} 0t) = 7y Try /p(ct),

we can choose the units €;, 1, for every integer j > 0, such that Try /F(JIII{+S+18J~+S 1) =0if

pt(j+1)and = ff(”l /P i p|(j+1). Thus, since the &r-module 7} ;. is generated by 7/e;,
j>i, we conclude that Try /(7 O1) = 77:1];([) OF. O

13.5. PROPOSITION. Let L/F be a totally ramified Galois extension of degree p = char(F) >
0. Let 7, be a prime element in L. Then Tp = Ny p 7, is a prime element in F'.

Then the following diagrams are commutative:

L %7 w,lﬁﬁz

Ny/p l lid Ni/r l l?p

F* L) 7, UF Ao.r fx
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¥ A —
Ui,L — L=F

NL/Fl 1p if 1<i<s,
Aip —=
U,'7F E—— F

Z'YL ¥

Uy —* L=F
NL/FJ( l?ﬁ@p—ﬁ”_'g

l_s'.,F -
Urp —— F

A«H»pi.L - -

Usipin —2% L=F

NL/FJ/ lx(fﬁ”") if i>0.

)L.eri‘F =

!

Ustir
Moreover, NL/F(US-H',L) = NL/F(US+i+]7L)f0ri > O7p’h

Proof. The commutativity of the first and the second diagrams can be verified similarly to the
proof of Proposition 13.3.
In order to prove commutativity of the remaining diagrams, put € = 1 + 07} with 6 € Uy.
Then, by Lemma 13.1 we get
Npjp€ =1+Ny/p(0)7f + Trpjp(077) + Trp yp (08)
with vy (8) > 2i. The previous Proposition implies that

i—1—s

. 2i—1—
VF (TTL/F(”D) zs+1+ [ ] s VF (TTL/F(5)) Zs+1+ [zps]

and fori <s
VF (TrL/F(TCi)) >l+l, VF (TI'L/F(S)) >l+1

Therefore, the third diagram is commutative. Further, using () of 13.4, one can write

=N <

We deduce that Try /p (N7} ) = =Ny jp ()77 mod mt!. Since Ny/r(n) =n? mod 7 in view of
U C UrUi 1, we conclude that

o(m)

) = 1 My ) + o) moa

Nyp(1+00m) — 1 —nPx3(67 — 0) € nf* "' 00

for 6 € OF. This implies the commutativity of the fourth (putting 6 € OF) and the fifth (when
0 € nl.0F) diagrams. Finally, if p{i, 0 € OF, then

o(1+6x) o ,

Bt Sl i/ 7y | 0 7.L.l+s d n.l+s+l.

1+ 0n ionm s mod T,

This means that NL/F(l + 191‘[ ﬂ£+s) S NL/FUY+1'+1,L and NL/F(UY+i,L) = NL/F(UYJriJrl,L)' O

REMARK. Compare the behaviour of the norm map with the behaviour of raising to the pth

power in Proposition 4.7.
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COROLLARY. Ust1 r = NpjpUsti -
If F is algebraically closed then Nyl =F~.

Proof. It follows immediately from the last diagram of the Proposition, since the multiplication by

(—=17)7~! is an isomorphism of the additive group F. O

14. Artin—Schreier Extensions

A theorem of Artin and Schreier asserts that every cyclic extension of degree p over a field K
of characteristic p is generated by a root of the polynomial X” — X — o, @ € K. In this subsection
we show how to extend this result to complete discrete valuation fields of characteristic 0 with
residue field of characteristic p.

14.1. First we treat the case of unramified extensions. The polynomial X? — X is denoted by

2(X).

LEMMA. Let L/F be an unramified Galois extension of degree p = char(F ). Then L= F (1),
where A is a root of the polynomial X? — X — « for some o € Ur with O & (F)

Proof. Let L =F(0), where 6 is a root of the polynomial X” — X — 1 for some ) ¢ £ (F). Then
the polynomial X” — X — oo = 0, with a € U, such that @ = 1, has a root A in L, by Hensel
Lemma 9.2. Thus, L= F (). O

14.2. Now we study the case of totally ramified extensions.

Let L/F be a totally ramified Galois extension of degree p = char(F). Let o be a generator of
Gal(L/F),m a prime element in L and s = vy(7; 'o(m) — 1).

LEMMA. For B € L there exists an element b € F such that vi,(c3 — B) =vi.(B —b) +s.

Proof. Let B =ag+a .+ -+ —i—ap_]nf*l with @; € F (see Proposition 10.6). Then
c(B)—B=army+-+apm (1+y)P ' —1),
where Y= 7; 'o(m) — 1. Since v, (y) = s > 0, we get
(1+7)—1=iy modm"™ fori>0.

Hence, vy (aini((l +7y) - 1)) are distinct for 1 <i < p— 1. Put b = ag. Then
ve(o(B)—B)=ve((B—5b)y) =v.(B —b)+s, as desired. O
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14.3. PROPOSITION. Let F be a complete discrete valuation field with residue field of char-
acteristic p > 0. Let L be a totally ramified Galois extension of degree p of F. If char(F) = p then
pis. If char(F) =0, then s < pe/(p— 1), where e = e(F) is the absolute index of ramification of F.
In this case, if p|s, then a primitive pth root of unity belongs to F, and s = pe/(p—1),L=F({/a)
with some a € F*, o ¢ UpF*".

Proof. First let char(F) = p. Then (1+67.)? =1+ Bpngi for 6 € Ur. One can take T = Ny /7,
for a prime element 7; in L. Then it follows from 13.4 that 7y = ﬂf mod 7T£+1. Assume that
s = pi. Then Ny rUpiy1.L C Upir1r, and we get the congruence 1+ ornl = Npp(1+ or’)
mod nﬁ”l that contradicts the fourth diagram of Proposition 13.5. Hence, p1s.

Now let char(F) = 0. Assume that s > pe/(p—1). Let € = 1+ 0m), € U r with 0 € Up.
Corollary 2 of 4.8 shows that € = sf for some & =1+ 07wy ¢ € Ur with 6, € Up. Then
Np/pUp(s—ey € Us+1.r, but p(s —e) > s+ 1, which is impossible because of Corollary 13.5.
Hence, s < pe/(p —1). By the same reasons as in the case of char(F) = p, it is easy to ver-
ify that if s = pi < pe/(p — 1), then 1+ 677l = Ny /p(1+6x") mod mf' "', which is impossi-
ble. Therefore, in this case we get s = pe/(p —1). One can write o(m)7, ' = 1+ Gﬂ;/(p_l)
mod 727/*"V™ " Then, acting by Npp, we get 1= (1+ ors/ P~V mod /U But
Upe/(p-1)41,F C Ug(p—1)+1,F (see Corollary 2 of 4.8), so we can find an element { = 1+ Gir;/(pfl)

mod n;/ (P=D+1 " uch that {P =1; { is a primitive pth root of unity in F, hence L = F({/a) for

some o € F*, by Kummer theory. Writing o0 = 7f-€; with € € U and assuming p|a, we can re-

place o with g;. Since L = F we obtain €; € F” (otherwise L/F would not be totally ramified) and
€1 = €] mod 7 for some & € Up. Replacing & with &3 = 1€, ©, we get &3 € Uy p, L= F(13),
nY = &. Note that

a(l +P7_f£) _ 1+pinﬂz+pe/(pfl) mod ﬂIeriere/(pfl)
l+pm;
for p € Ur. Hence 5 'o(13) =1 mod 7TLl+p ¢/(P=1) byt n; 'o(n3) is a primitive pth root of unity.
This contradiction proves that a ¢ UpF*?. g

14.4. PROPOSITION. Let F be a complete discrete valuation field with residue field of char-
acteristic p > 0. Let L be a Galois totally ramified extension of degree p, s = s(L|F).

Suppose that s # pe/(p — 1) if char(F) = 0, where e = e(F). Then L =F (L), where A is a
root of some polynomial X —X — o with o € F, vp(at) = —s.

Proof. The previous Proposition shows that p{s. First consider the case of char(F) = p. Then,
by Artin—Schreier theory, L = F(A), where A4 is a root of a suitable polynomial X” — X — o with
o € F. Let ¢ be a generator of Gal(L/F). Then (0(A) —A)”? = oA —A. Since A ¢ F, we get
o(A)—A =awithae {1,...,p—1}. Then A" 'o(1) = 1+aA ™!, and hence Proposition 13.5
implies 1 +aA~! € Uy ;. This shows v, (1) < —s and vp(a) < —s. Putt = vp(a). Write A =

1 t+1
760 mod ;.

mod 7+, where 7p = Nppm, = @) mod 7! is a prime element in F. Replacing A by A’ =

A—nl6and aby o =a— 7l 07+ 100, we get AP — A’ = o’ and L = F(A'),vp (') > v ().

/
with 8 € Ur and a prime element 77, in L. If t = pt’, then o = 7' 67 = 1}’ 6P
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Proceeding in this way we can assume p+t¢ because vp(@') < —s. Then it follows from 13.4 that
vi(A'6(A) —1) =sand vp(a) = —s.

Now we consider the case of char(F) = 0.

First, we will show that there is an element A; € L, such that v, (4;) = —s and v, (o (A;) —
A1 —1) > 0. Indeed, put § = —x; *ps~! with p € Ur. Then

o(f)—B=-m"ps ' (1+nm)*—1)=pn modm;.

Hence, if we choose p =1 !, then v (c(B) — B —1) > 0. Put A; = .

Since s < pe/(p—1)=e(L)/(p—1), we get p),lp_l =0 mod 7z,

vi(o(AP)=AF —1)>0 and ve(o@p (M) — g (A1) > 0.

Second, we will construct a sequence {A,}, n > 0, of elements in L satisfying the conditions

forn > 0:
VL(A'n) = -, VL()Ln+1 _;Ln) = VL(A'n _)Lnfl) +1,

V(00 (Ani1) = 2 (Ani1)) Z VL (00 (An) — 2 (An)) + 1.
Then for A =lim A, we obtain 62 (A1) = £(A), orin other words A —A = a € F and v () = —s.
Put Ay = 0. Denote 6, = 6@ (A,) — #2(Ay). Then v (68,) > 0. If 6, = 0, then put A, = A, for
m > n. Otherwise, by Lemma 14.2, there exists an element ¢, € F such that
vi(02 (M) — 2(An)) = vi(@(An) — cn) +5.
Put u, = @A) — cny Aug1 = Ay + Uy Then oy, = iy + 8y, vi(6(Ays1) — Ay — 1) > 0 and
ve (W) > =5, vi(Ays1) = —s. So
VL (A1 = An) = vi(tn) = —s+vi(0 @2 () — 2(An))
2 —s+14+vi (0@ (A1) = 2 (A1) =vi(Ay — A1) +11
forn > 1.

For n = 1 from the previous arguments we get
vi(la—A) =—=s+vi(oph)—p (M) Zvi(M —A)+1=1—s.

Furthermore, oy, — W, = 6, and

GW(”ﬂ) - (W(/Jn) = (@(Hn + 6n) - p(un) =—0,+

M-
N

’7) urs),

1
Since vz () = v (Aps1 — An) = vi (A — o) = —s and v (pul ™) = pe— (p—1)s > 0, we get
V(02 () = 2 (Hn) +82) = vi(8n) + 1.

Moreover,

69 (1) = 9 (is1) = 52(0) — o(h)
p—l p Lo .
rop(u) = p(w)+ X (7) (o4 ) -2 )

and
(AL — APy = AP (80 (14 G, ') — 1),
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where A'oA, = ¢, € U, since p fs, and we also have v (St ') = vi(8,) +5 —vi(6,) = s.
Hence, for 1 <i< p—1 we get

v (O = AP H) > —(p—i)s+i(ve(8) —s) +5
> —(p—1)s+vr(6,) = —pe+vi(8,) + 1.
Thus,
V(00 (Ant1) = £ (Aus1)) = ve(8n) +1,
which completes the proof. O

14.5. The assertions converse to Propositions 14.1 and 14.4 can be formulated as follows.

PROPOSITION. Let F' be a complete discrete valuation field with a residue field of character-
istic p > 0. Then every polynomial X? — X —a with € F, vp(a) > —pe/(p—1) if char(F) =0
and e = e(F), either splits completely or has a root A which generates a cyclic extension L=F (1)
over F of degree p. In the last case vp (0(A) — A — 1) > 0 for some generator ¢ of Gal(L/F). If
a € Up, 0 ¢ @ (F), then L/F is unramified; if o € My, then A € F; if & ¢ O and ptvg(ct), then
L/F is totally ramified with s = —vp(Q).

Proof. Let a € My, f(X) =XP —X —a. Then f(0) € 4, f'(0) ¢ .4, and, by Hensel
Lemma 8.2, for every integer a there is A € .#} with f(1) =0, A —a € .#}. This means that
f(X) splits completely in F. If a € Up,@ ¢ f(F), then Proposition 10.2 shows that F(A)/F
is an unramified extension and Proposition 10.3 shows that F(1)/F is Galois of degree p. The
generator ¢ € Gal(L/F), for which 6& = o + 1, is the required one.
If a ¢ O, then let A be a root of the polynomial X” — X — & in F42 and L = F(1). Put
g¥)=(A+Y)P —(A+Y)—a=YP+ (’f)m” Foet (pf 1>AP1Y—Y.

If char(F) = p, then L/F is evidently cyclic of degree p when a ¢ @ (F). If char(F) = 0, then
v ((7)A)) > e(L|F)(e—ei/(p—1)) > 0fori< p—1andg(Y)=Y?—Y over L. Hence by Hensel
Lemma g(Y) splits completely in L. Therefore, L/F is cyclic of degree p if f(X) does not split
over F. Let ¢ be a generator of Gal(L/F), such that 6(A) — A4 is a root of g(¥) and is congruent
to 1 mod 7z. Then vy (o(A) —A —1) > 0. If pfvp (), then the equality pvy (1) = vi (o) implies
e(L|F) = p, and L/F is totally ramified. It follows from the definition of s in 13.4 that s =
vr(o(A)-A 71 —1), and consequently s = v (6(A) —A) —vr () = —vr (1) = —vp(@). O

COROLLARY. Let A be a root of the polynomial XP — X 4+ 6P« with 6 € Up, vp(a) = —s >
—pe/(p—1), pts. Let L=F (). Then ot € Ny jpL* and 1+ 6P p(Op) o™ +s o C Ny pL™,
where @2(Op) ={¢(B): B € OF}.

Proof. The preceding Proposition shows that L/F is a totally ramified extension of degree p and
that v, (o (7)), ' — 1) = s for a generator ¢ of Gal(L/F) and a prime element 7; in L. Put
f(X) =XP —X+6Pa. Then we get Ny jr(—A) = f(0) = 67a and & = N jr(—A6~'). For
B € OF put

g(¥)=f(B—Y)=(B—Y)" —(B—Y)+0a.
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Then
Npr(B—24)=g(0) = p(B)+6"a.
Therefore, 1 + o (B) 0P a~! C Np/pL*. It remains to use Corollary 13.5. O

15. Hasse—-Herbrand Function

In this section we associate to a finite separable extension L/F a certain real function hyr
which partially describes the behaviour of the norm map from arithmetical point of view. Then we
relate the function Ay /r which was originally introduced in a different way by Hasse and Herbrand
to properties of ramification subgroups.

We maintain the hypothesis of the preceding sections concerning F, and assume in addition
that all residue field extensions are separable.

15.1. PROPOSITION. Let the residue field F be infinite. Let L/F be a finite Galois extension,

N = Ny /. Then there exists a unique function
h= hL/F :N—N
such that h(0) = 0 and

NUyiyp CUir, NUpiyp € Uis1r,  NUpiyp1,L C U1 F-

Proof. The uniqueness of & follows immediately. Indeed, for j > h(i) NU ;.. C Uiy F, hence if h
is another function with the required properties, then A(i) < h(i), (i) < h(i), i.e., h = h.

As for the existence of &, we first consider the case of an unramified extension L/F. Then
Proposition 13.2 shows that in this case h(i) = i (because Ny /f(zx) # 1 and Try L = F). The
next case to consider is a totally ramified cyclic extension L/F of prime degree. In this case Propo-
sition 13.3 and Proposition 13.5 describe the behaviour of N /. By means of the homomorphisms
Ai L, the map Ny /r is determined by some nonzero polynomials over L. The image of L under the

action of such a polynomial is not zero since L is infinite. Hence, we obtain

h(i) = |L: Fl|i,
if L/F is totally tamely ramified, and

I i<,
h(i) =
s(1=p)+pi, i>s,
if L/F is totally ramified of degree p = char(F) > 0.
Now we consider the general case. Note that if we have the functions /iy /), and fy/p for the
Galois extensions L/M,M /F , then for the extension L/F one can put iy jp = hy jp; 0 hyy /. Indeed,

Ni/eUnypiy,r © NuypUny iy C UiF-
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Furthermore, the behaviour of Ny /r is determined by some nonzero polynomials (the composition
of the polynomials for Ny and Ny, the existence of which can be assumed by induction).

Hence
NpypUp, iy € Uik 1F-
Since
Ni/pUnpi+1,L © NuypUny piye1.m C Uivim,

we deduce that & = hy /p is the desired function.
In the general case we put iy /p = hy g, for Lo = LN F" and determine A7, by induction
using Corollary 3 of 11.4, which shows that L/L is solvable. U

15.2. To treat the case of finite residue fields we need

LEMMA. Let L/F be a finite separable totally ramified extension. Then for an element o € L

we get
Nyyr(@) = N (00)

where F is the completion of F", Lo = [Fu,

Proof. Let L = F(m) with a prime element 77, in L, and let o € L. Let
) n—1 )
(Xﬂ,'i = Zcijﬂ']{ Withcl‘j ceF0<i<n—1,n= |LF|
j=0
Then Ny /p (o) = det(c;j). Since L' = F" () and
|L" : FY| = e(L"|F") = e(L""|F) = e(L|F) = |L: F|,
we get
NLur/Fur(a) — det(cu) — NL/F(a)

Finally, let E /F" be a finite totally ramified Galois extension with £ D L"". Let G = Gal(E /F""),H =

Gal(E /L"), and let G be the disjoint union of 6;H with 0; € G,1 <i < |[L" : F*"|. Then
NLur/Fur(a) = H Gl(OC) == Nﬁ/ﬁr(a)7

because G and H are isomorphic to Gal(E /F") and Gal(E /L) by (4) in Theorem 9.8. O

This Lemma shows that for a finite totally ramified Galois extension L/F the functions A JF

and hLAu, JFir coincide. Now, if L/F is a finite Galois extension, we get

hiip = hijry = M e

So, if F is finite we put /; /F = hg JFir (the residue field of FY is infinite as the separable

closure of a finite field).
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It is useful to extend this function to real numbers. For an unramified extension, a tamely
totally ramified extension of prime degree, a totally ramified extension of degree p = char(F) > 0
put

X, x < s,
hpp(x) =x,  hyp(x)=I|L:Flx, hpp(x)=
s(l=p)+px, x=s
for real x > 0 respectively. Using the solvability of L/Ly (Corollary 3 of 11.4) and the equality
hy/p = hpjp 0 by define now hy p (x) as the composite of the functions for a tower of cyclic

subextensions in L/Lg.

PROPOSITION. Thus defined function hy g : [0,~+oc0) — [0, +o0) is independent on the choice
of a tower of subfields. The function hyp is called the Hasse~Herbrand function of L/F. It is

piecewise linear, continuous and increasing.

Proof. By induction on the degree of L/F it suffices to show that if M, /M, M, /M are linearly

disjoint cyclic extensions of prime degree, then

hE/Ml o hyy, /M= hE/M2 o th/M (*)

where E = M| M,.

Note that each of Ay, /pr(x), hpg, /i (x) has at most one point at which its derivate is not con-
tinuous. Therefore there are at most two points at which the function of the left (resp. right) hand
side of (x) has discontinuous derivative. By looking at graphs of the functions it is obvious that
at such points the derivative strictly increases and there is at most one such non-integer point for
at most one of the composed functions of the left hand side and the right hand side of (x). At this
point (if it exists) the derivative jumps from p to p?.

From the uniqueness in the preceding Proposition we deduce that the left and right hand sides
of (x) are equal at all nonnegative integers. Thus, elementary calculus shows that the left and right
hand sides of (x) are equal at all nonnegative real numbers. O

15.3. Let the residue field of F be perfect. For a finite separable extension L/F put

hyp = hE/]L ohg/p,

where E/F is a finite Galois extension with E O L. Then hy / is well defined, since if E'/F is a
Galois extension with E’ O L and E” = E'E, then

gty @ hiensp = (hprypr o hprn) ™ o (hienjpr o hier ) = higlyy 0 by
and, similarly, hg,} /L° hgnjp = hg/l 1 ©hg/r. We can easily deduce from this that the equality
hyp = hpm o hyyr (*)
holds for separable extensions.

PROPOSITION. Let L/F be a finite separable extension, and let F be perfect. Then hy jp(N) C

N and the left and right derivatives of hyjr at any point are positive integers.
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Proof. Let E /F be a finite Galois extension with E D L. Then from Lemma 15.2 we get
T — 31 —
hL/F = hE/LOhE/F = hiur/[u? Ohﬁr/fm = h[/,“\f/fu\f
Put G = Gal(E™ / ﬁr),H = Gal(E™ /Ij“\r ). Since G is a solvable group, there exists a chain of
normal subgroups
GDG(]) D I>G(m) = {1},
such that G(;) /G 1) is a cyclic group of prime order. Then we obtain the chain of subgroups
G2GyH>...2G, H=H,
for which G;, )H is of prime index or index 1 in G(;)H. This shows the existence of a tower of
fields
FU — My —---—M,_1 — M, = L",
such that M, /M; is a separable extension of prime degree. Therefore, it suffices to prove the
statements of the Proposition for such an extension.
If M1 1 /M, is a totally tamely ramified extension of degree /, then w = 71{ is a prime element in

M; for some prime element 7, in M;, 1. Since [ is relatively prime with char(F), we obtain, using
the Henselian property of M; and the fact that the residue field of M;" is separably closed, that a

—
ur

primitive /th root of unity belongs to M;". This means that MY, /M;" is a Galois extension and

hMi+l/Mi(x) = Ix.

If M;;1/M; is an extension of degree p = char(F) > 0, then let K/M; be the smallest Galois
extension, for which K D M;, . Let K| be the maximal tamely ramified extension of M; in K; then
I =e(K1|M;) = e(K|M;41) is relatively prime to p. Choose prime elements 7 and 7; in M, and
K such that 7 = 7. Let f(X) € M;[X] be the monic irreducible polynomial of 7 over M;. Then

where o is a generator of Gal(K/K;). Let s be defined for K/K; as in 13.4. Then v (7} —
oi(n})) =l+sfor1 <i<p—1,and (p—1)(I+s) = vk(f'(x)) is divisible by /. We deduce that
I|(p—1)sand

1
hM,»H/Mi (x) = th/Kl (Ix) =

These considerations complete the proof. U

COROLLARY. The function hy  is piecewise linear, continuous and increasing.
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15.4. The following assertion clarifies the relation between the Hasse—Herbrand function

and the norm map.

PROPOSITION. Let L/F be a finite separable extension.
Then for € € Oy,

hL/F (VF (NL/F(S) — 1)) = VL(S — 1)
If, in addition, L/F is totally ramified and if vi.(at — B) > 0 for a, B € O}, then

hi/p (VF (Npyp(or) — NL/F(B))) > v (a—p).

Proof. Let’s show that the second inequality is a consequence of the first one.
If vi(B) = vi(oo— B), then vy (@) > vi(or — B), and applying Theorem 9.5 we get

ve (Npyr(0t) = Npyp(B)) = min{ve (N/r(at)),ve (Nzyr(B))}

=min{v.(a),v.(B)} = vi(a—p).

Since i /r(x) > x, we obtain the second inequality.
If vi(B) < vi(ot — B), then put € = aff~!. Using the property of the derivatives of & in
Proposition 15.3 and the first inequality we obtain

hi/p (VF (Npyr(a) —NL/F(ﬁ))> =hyr <VF (Nyr(e)—1) +VL([3))
zvi(e—1)+v(B) =ve(a—p).

Now we verify the first inequality of the Proposition. By the proof of the previous Proposition,
we may assume that L/F is totally ramified and F is algebraically closed. It is easy to show that
if the first inequality holds for L/M and M /F, then it holds for L/F. The arguments from the
proof of the previous Proposition imply now that it suffices to verify the first inequality for a
separable extension L/F of prime degree. If L/F is tamely ramified, then L/F is Galois, and
the inequality follows from Proposition 13.3. If |L : F| = p = char(F) > 0, then we may assume
that € is a principal unit. Proposition 13.5 implies the required inequality for the Galois case.
In general, assume that E/F is the minimal Galois extension such that E D L, and let E; is the
maximal tamely ramified subextension of F in E. Let [ = |E : L| = |E, : F|. Then N /p(UiL) =
Nier(Uiig) C Ni, jp(Ujgy) with j > by (10). Hence, Npjp(Uir) C Ugr with Ik > by (1), e,

k> hZ/IF(i), as desired. O

15.5. We will relate the Hasse—Herbrand function to ramification groups which are defined
in 11.3.

If H is a subgroup of the Galois group G, then H, = H N G,. As for the quotients, the descrip-
tion is provided by the following

THEOREM. (Herbrand) Let L/F be a finite Galois extension and let M /F be a Galois subex-
tension. Let x,y be nonnegative real numbers related by y = hy (x).
Then the image of Gal(L/F ), in Gal(M/F) coincides with Gal(M /F),.
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Proof. The cases x < 1 or e(L|M) = 1 are easy. Due to solvability of Galois groups of totally
ramified extensions it is sufficient to prove the assertion in the case of a ramified cyclic extension
L/M of prime degree /.

If [ # p, then using Proposition 10.5 choose a prime element 7 of L such that my; = 7! is a
prime element of M. Then for every T € Gal(L/F); we have x,,'tmy = (7~'t7)" and therefore

vp(rler— 1) = v (o) — 1) = lop(my, Tmipr — 1),

Consider now the most interesting case [ = p, x > 1. Let @y be a prime element of L. Put
s =s(LIM), see 13.4.

The element Ty = Ny /7. is a prime element of M. Let 7 € Gal(L/F)y. We have T, Ty =
Npjw (7 o).

From Proposition 15.4 we get

hL/M(VM(”AQIT”M -1)= hL/M(VM(NL/M(”ZIT”L) —1)) >y,

so 7|y belongs to Gal(M /F ).

Conversely, if 7|y € Gal(M/F)y, then i = vy (my,' tmy — 1) > x. If i < s = s(L|M) then ap-
plying 13.5 we deduce that T € Gal(L/F); = Gal(L/F),. If i > s then Proposition 11.5 and 13.5
show that j = v (m; 't/ — 1) = s+ pr for some nonnegative integer r.

If > 0 then Proposition 13.5 implies that i = s+r and T € Gal(L/F); = Gal(L/F),. If j=s
then since i > s from the same Proposition we deduce that

% = % mod ./
for an appropriate generator ¢ of Gal(L/M). Then to~! belongs to Gal(L/F); for k > s. Due to
the previous discussions (view k as j > s above) k = h; /(i) and 7 belongs to Gal(L/F ), Gal(L/M),
as required. (|

COROLLARY. Define the upper ramification filtration of G = Gal(L/F) as
G(X) = Gal(L/F)hL/F(x).
Then for a normal subgroup H of G the previous Theorem shows that
(G/H)(x) = G(x)H/H.
DEFINITION. For an infinite Galois extension L/F define upper ramification subgroups of G =
Gal(L/F) as
G(x) = lim Gal(M/F)(x)

where M /F runs through all finite Galois subextensions of L/F. Real numbers x such that G(x) #
G(x+ &) for every 6 > 0 are called upper ramification jumps of L/ F .

For example, local class field theory for local fields with finite residue field implies that the
set of upper ramification jumps of the Galois group of the maximal abelian extension is the set of

natural numbers.
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15.6. The following Proposition is a generalisation of results of section 13.
Suppose that L/F is a finite totally ramified Galois extension and that |L : F| is a power of
p = char(F). Put G = Gal(L/F). For the chain of normal ramification groups

G=G12Gy>...2G, > Gy :{1}
let L,, be the fixed field of G,,; then we get the tower of fields
F=Li—-L,—--—L,—L,, 1 =L.

PROPOSITION. Let | < m < n. Then Gal(Ly+1/Ly) coincides with the ramification group

Gal(Lyy1/Lin)m> Gal(Liny1/Lin)ms1 = {1}, and by, 1, (m) = m.
Moreover , if i < m, then hy, /L,,,(i) = i and the homomorphism

UiLy.i /Uit Ly — UiL,/Uit1L,

induced by Ny, /1, Is injective;

if i > m, then the homomorphism

Unti)Loir / Un(iy£1,6ms1 — Ui /Uit1 L,

induC@d by NLm+1/Lm for h = hLerl/

Furthermore, the homomorphism

1, IS bijective.

Ui,/ Un(iy+1,L. — Uir /Uit F

induced by Ny for h = hyp, is bijective if h(i) > n.

Proof. Induction on m. Base of induction m = n. Since Gal(L/L,), is equal to the group
Gal(L/F),NGal(L/Ly,), we deduce that Gal(L/L,), = Gal(L/L,) and Gal(L/L,),+1 = {1}, and
hi, (x) = x for x < n. All the other assertions for m = n follow from Proposition 13.5.

Induction step m + 1 — m. The transitivity property of the Hasse—Herbrand function implies
that 2y ;. (x) = x for x < m~+ 1. Now from the previous Theorem

Gal(Ls 1 /L)e = Gal(L/ L)y, , (1) Gal(Lni1 /L) Gal (L1 /Ln)-

We deduce that Gal(L,,+1/Ly)m = Gal(Ly+1/Ly) and Gal(Ly41/Liy)m+1 = {1}. The rest follows
from Proposition 13.5.

To deduce the last assertion note that k = hy /¢ (i) > n implies j = hy /p(i) > m. O

COROLLARY. The word “injective” in the Proposition can be replaced by “bijective” if F is
perfect.
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15.7. PROPOSITION. Let L/F be a finite Galois extension, and let G = Gal(L/F), h = hy /p.
Let hy and h,, be the left and right derivatives of h. Then hj(x) = |Go : Gy,

W (x) = |Go : Gh(x)| if h(x) is not integer,
' |Go : Gpoy1| I h(x) is integer.

Therefore
hyp(x) /!Go G ldt.

Proof. Using the equality (x) of 15.3, we may assume that L/F is a totally ramified extension the
degree of which is a power of p = char(F) > 0. Then G = Gy = G1. We proceed by induction on
the degree |L: F|. Let L, be identical to that of 15.6; then |L, : F| < |L: F|. Since (G/G,)m =
G/ G, for m < n due to 15.6, we deduce the following series of claims.
If hy, /p(x) < n, then, by Proposition 15.6, hy /r(x) = hy, /p(x) and

hy(x) = [(G/Gn) : (G/ G| = |G+ G-

If by, /p(x) < nand by p(x) = hy, jp(x) is not integer, then A.(x) = |G : Gy(y)|-
If hy, /p(x) is an integer < n, then

(X)) = |(G/Gy) : (G/G)nx)+1| = 1G : Gpaysal-

Since the derivative (right derivative) of A, (x) for x > n (resp. x > n) is equal to |G, :
(Gu)n+1] = |Gul, we deduce that if h;, /r(x) > n, then

hy(x) = |Gl |G : Gu| = |G| = |G : G-
So if hy, p(x) = n, then )(x) = |G,| - |G : G,| = |G|. This completes the proof. O
REMARK. The function &/ often appears under the notation yz,r; in which case it is defined

in quite a different way by using ramification groups, not the norm map. This function is inverse

to the function @7 /r = Jo \Go G,

16. Norm and Ramification Groups

16.1. The following assertion is of general interest.

PROPOSITION. (Hilbert “Satz 90”) Let F be a field. Let L/F be a cyclic Galois extension,
and let Ny jp(a) = 1 for some & € L. Then there exists an element 3 € L such that o = Be1
where © is a generator of Gal(L/F).
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Proof. Let B(y) denote
y+alo(y)+alo(a Ho?(P)+--+alo(a™) - o 2(a Ho" L(y)

forye L, n=|L: F|. If B(y) were equal to O for all y, then we would have a nontrivial solution
La',a 'o(a™!),... for the n x n system of linear equations with the matrix (Gi(yj))ogi,jgn—l’
where (7¥j)o<j<n—1 is a basis of L over F. This is impossible because L/F is separable. Hence

B(y) # 0 for some y € L. Then B = () is the desired element. O

COROLLARY. If L is a cyclic unramified extension of F and NL/F((X) =1 for o € L, then
o = v°~! for some element y € Uj.

Proof. In this case a prime element 7 in F is also a prime one in L. By the Proposition, o =
B~ 'o(B) with B = 7’e, € € Ur. Then a = €' 5 (). O

Below in this section F is a complete discrete valuation field.
Recall that in section 11 we employed the homomorphisms

Vi: Gi— Ui /Ui L

(we put Upz, = Up), where G = Gal(L/F), m, is a prime element in L, i > 0. Obviously these
homomorphisms do not depend on the choice of 7y if L/F is totally ramified. The induced homo-
morphisms G;/Gj;1 — U; 1/Uiy1 1 Will be also denoted by ;.

16.2. THEOREM. Let L/F be a finite totally ramified Galois extension with group G. Let
h = hyp. Then for every integer i = 0 the sequence

Whi) N;
1 — Gy /Gpiyr1 —— Uny.o/Untiye1. — Uir /Uit F

is exact (the right homomorphism N; is induced by the norm map).
Proof. The injectivity of ;) follows from the definitions. It remains to show that if Ny /ro €
Uis1r fora € Uh(i),L’ then

o(m)
T

mod Uy 111

for some 0 € Gy;).

If L/F is a tamely ramified extension of degree /, then the fourth commutative diagram of
Proposition 13.3 shows that ; is injective for i >> 1, and the kernel of Ny coincides with the group
of [th roots of unity which is contained in F. Since m; = /7 is a prime element in L for some
prime element 7x in F, we get ker(Ny) C im(yp), and in this case the sequence of the Theorem is
commutative.

If L/F is a cyclic extension of degree p = char(F) > 0, then the fourth commutative diagram
of Proposition 13.5 shows that ker(N,) C im(y;) for s = v (n; 'o(m)) and a generator G of
Gal(L/F). Other diagrams of Proposition 13.5 show that N, is injective for i # s.
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We proceed by induction on the degree |L : F|. Since we have already considered the tamely
ramified case, we may assume that the maximal tamely ramified extension L; of F in L does not

coincide with L. Since |L : L] is a power of p, the homomorphism induced by N /1,
Uor /Ui — Upr, /Ui L

is the raising to this power of p, and ker(Ny) is equal to the preimage under this homomorphism
of the kernel of Uy 1, /Uy 1, — Uy, /U, . In other words ker(Ny) coincides with the group of all
Ith roots of unity for / = |L; : F| which is contained in F. Hence the kernel of Ny is contained in
the image of yp, since Yy is injective and |Gy : G1| = 1.

Now suppose i > 1. In this case we may assume L; = F because the homomorphism N;
induced by Ny, /r is injective for i > 1. Let L, be as in Proposition 15.6. Then one can express N;

as the composition

N/ NII
Un(iy.£/Un(iy+1.L — Uny i),/ Uny(iy+1,2, — Uir [Uis1F,

where N" and N” are induced by Ny /;, and Ny, /r respectively, and k(i) = hy, jp(i). If hi (i) > n,
then by Proposition 15.6 Gal(L,/F);, ;) = {1}, and we may assume that N” is injective. Then by
the induction assumption ker N; = ker N’ coincides with the set of elements 7, '6(m) mod Un(iy+1,L5
where o runs over Gal(L/L,), = G,. If hi (i) <nand Ny /p(a) € Ujy 1 F for some o € Uy, 1, then
h(i) = hy (i), and by the induction assumption,

mod U, (i) +1.1,

for a prime element 7, in L, and some o € Gal(L/F). We can take 7, = Ny /7, ;.. Hence

o(r
N'(a)=N <STLL)> mod Uy, (41,1,

The homomorphisms
Ujr/Ujpnie — Ui, /UjsL,
induced by Ny /., are injective for j < n by Proposition 15.6. Therefore, the element 7; lo(m)

belongs to Uy and so & € Gy,

o(m)
178

mod Uy (j)11,L-

16.3. Now we study ramification numbers of abelian extensions. We shall see that these
satisfy much stronger congruences than those of Proposition 11.5.

THEOREM. (Hasse-Arf) Let L/F be a finite abelian extension, and let the residue extension
L/F be separable. Let G = Gal(L/F). Then G; # G ;41 for an integer j > 0 implies j = hy jr(j')

for an integer j' > 0. In other words, upper ramification jumps of abelian extensions are integers.
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Proof. We may assume that j > 0 and that L/F is totally ramified. Let E/F be the maximal
p-subextension in L/F, and m = |L : E|. Let 7, be a suitable prime element in L such that 7" € E.
For 0 € Gj, 0 € G| we get m; "on' = 1+m67t£ for some 6 € Uy; therefore j = mj;, and
Olp € Gal(E/F);,, 0 ¢ Gal(E/F);,+1. If we verify that j; = hg/p(j') for some integer j', then
Jj = hyp(j'). Thus, we may also assume G = Gi.

If L/F is cyclic of degree p = char(F), then the required assertion follows from Proposi-
tion 13.5. In the general case we proceed by induction on the degree of L/F. In terms of Propo-
sition 15.6 it suffices to show that n € th/F(N) where G, # {1} = G,+1. Let 0 € G,,0 # 1.
Assume that there is a cyclic subgroup H of order p such that 6 ¢ H. Then denote the fixed
field of H by M. For a prime element 7 in L the element Ty = Ny y(7z) is prime in M, and
M = F(my) by Corollary 2 of 9.9. Then & = Ny (7, 'o(m)) = Npyw (") o (N (m)) # 1,
since 0(my) # my. Put n’ = vy (€ —1); then 6|, € (G/H)y, 6|, ¢ (G/H),y+1. By the induction
hypothesis, n’ = hy;/r(n") for some n” € N. Proposition 13.5 implies n < /i 3(n), and we obtain
n < hyp(n”). I n < hyp(n”), then, by Proposition 15.7 the left derivative of &/ at n” is equal
to |L: F|, and the left derivative of &y at n’ is equal to |L : M|. Therefore, the left derivative of
hyr at n”, which is equal to |(G/H) : (G/H ),y| by Proposition 15.7, coincides with |M : F|. This
contradiction shows that n = h - (n").

It remains to consider the case when there are no cyclic subgroups H of order p, such that
o ¢ H. This means that G is itself cyclic. Let T be a generator of G. The choice of n and
Theorem 16.2 imply that o = t/?""', where pti,p" =|G|. We can assume m > 2 because the
case of m = 1 has been considered above. Let ny = vL(nL’lfpmfz(nL) —1). Since |G : G,| = p"~!,
Proposition 15.7 shows now that it suffices to prove that p”~!|(n — ny). This is, in fact, a part of
the third statement of the following Proposition. U

PROPOSITION. Let L/F be a totally ramified cyclic extension of degree p™. Let 7 be a prime
element in L. For o € Gal(L/F) and integer k put

L

cr=ci(o) =L <

Then

(1) ci depends only on v,(k), where v, is the p-adic valuation (see section 1),

(2) there exists an element oy € L™ such that

vilow) =k, v (G(O"‘) - 1) — e

(3) ifvp(ky —ka) > 1, then vp(cy, —cx,) =141,

Proof.

(1) Note that ¢, does not depend on the choice of a prime element in L by the same reasons as s
in 13.4. Let k= ip/ with pti, j > 0. Thenc* — 1= (p— 1) uforp=c” ,u=p"~' +p 2 4. 41.
Since ¢, does not depend on the choice of a prime element in L and i is prime to p, we deduce

cr = ¢, We also have ¢ (07) = ¢ (0).
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(2) Put oy = Hf.‘;ol oi(m) fork >0, o = OC:kI for k < 0 and oy = 1. The elements o satisfy
condition (2) of the Proposition.

(3) Assume, by induction, that if v, (k; —kp) > [ forl <n—2, then v,(c, (0) —cx,(0)) > 1+1
for o € Gal(L/F).

First we show that all the integers ¢ ,u-1,k+cy for v, (k) <n— 1 are distinct. If v, (k1) = v, (k2),
ki # ky, then ¢, = ¢k, and ky +c, # ko +cx,. Let vy(ki),v,(k2) be distinct and < n — 1, then
vplki —ka) <n—2. Soif ki + ¢k, = ko +cx, then v, (ki —ks) = v, (e, —cr,) = vplki —k2) + 1,
and thus k; = kp. If v, (k) =n—1 then c,i1 # cx +k. If vy(k) <n—1 then vy(cp1 —cp) >
vp(P" k) +1 > v, (k) and 50 ¢ i1 # cx+ k.

Assume that vy (c,n-1(T) —¢pn(7)) < n for a generator 7 of Gal(L/F). Our purpose is to show
that this leads to a contradiction. Then, obviously, v,(ct, (6) —c,(0)) = 141 for v,(ki — k) >
LI<n—1.

Putd = c,n-1(7) — cn (7). Since

vp(d) = vp(cpa(TF) —cppi(Th)) 2 n—1,

we get v,(d) =n— 1. By (2), there exists an element o € L such that v, () =d,

vi (7 (o) — ) =d+cq(17) =d +cpn(T) = c )1 (7).

Put
Since v (TP (o) — &) = c,n1(7) >0, we get vy (T(a) — &) > vr(a) and v (B) > d. We also obtain
vi(T(B) = B) = vi (7P (@) — ) = cpi (7).

Note that any element oy as in (2) can be changed to 6o satisfying the same property (2),
with a unit 6 € U that has a given residue. Hence we deduce that  can be expanded as

ﬁ = Z ﬁka
kzvi(B)
with fB; € L possessing the same properties with respect to T as ¢ of (2). Then
tB)-B="Y @B)-B)+ Y (z(B)—PB)-

k>v(B) k>vi(B)
vp(k)<n vp(k)=n

The valuations of the elements of the first sum on the right-hand side are all distinct because
vi(T(Bk) — Bx) = k+cx(7) are all distinct and none of them coincides with ¢,,-1(7) = v.(7(B) —
B). Therefore,

e (T)=ve( Y, (2(Be) — Bo))-

k>vi(B)
vp(k)=n

In this sum

vi(T(Be) = Bi) = k+ () Z vi(B) +¢pr(T) > d +cpr(T) = i (T),

a contradiction. |
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REMARK. This Theorem can be naturally proved using local class field theory. In addition,
there is a converse theorem (Fesenko): a finite Galois totally ramified extension L/F is abelian if
and only if for every finite abelian totally ramified extension M /F the extension LM /F has integer
upper ramification jumps. It is not true that if a finite Galois totally ramified extension has integer

upper ramification jumps then it is abelian.

17. Field of Norms

The theory of a field of norms was started by Fontaine and Wintenberger 50 years ago. This
section may be more difficult than the other sections of Chapter 2, and it can be skept if useful.
In this section F is a local field with perfect residue field of characteristic p > 0.

17.1. DEFINITION. Let L be a separable extension of F with finite residue field extension
L/F. We can view L as the union of an increasing directed family of subfields L;, which are finite
extensions of F, i > 0. The extension L/F is said to be arithmetically profinite if the composite
w=ohyp, o+ ohy p(a)is areal number for every real a > 0.

In other words, taking into consideration Proposition 15.3, L/F is arithmetically profinite if
and only if its residue field extension is finite and for every real a > 0 there exists an integer j, such
that the derivative (left or right) of A,/ (x) for x <y r(a), i > j, is equal to 1. Equivalently, for
every real a > 0 the derivative (left or right) of i, /r (x) is bounded for x < @ and all i.

Define the Hasse—Herbrand function of L/F as

hL/F = "'OhLi/LH o "OhLO/F‘

PROPOSITION. The function hyp is well defined. It is a piecewise linear, continuous and
increasing function. If E /L is a finite separable extension, then E /F is arithmetically profinite. If
M /F is a subextension of L/ F, then M/ F is arithmetically profinite. If, in addition, M/ F is finite,
then L/M is arithmetically profinite and

hL/F = hL/M ° hM/F-

Proof. Let L. be another increasing directed family of subfields in L such that L = UL!. Leta be a
real number > 0. There exist integers j and k such that
hL,-/Lj(x):x forx<th/F(a),i>j

and
th/L;((x):x forx<hL;(/F(a),i>k.

Since there exists an integer m > j such that L;L; C L,,, we obtain by 15.3 that

hL_,-L;{/L,»(x) =X forx<th/F(a).
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Then
hye(x) = hpnF(x) forx <a
and similarly,
th{/F (x) = hL_/.L;(/F(x) for x < a.
Therefore,
hy, r(x) = hyyp(x) for x < a and sufficiently large i,
and the function /7 is well defined.

Let E = L(B), and let P = L(«) be a finite Galois extension of L with P D E. Using the same
arguments as in the proof of Proposition 11.2, one can show that L;(ot) N L = L; and L;()/L; is
a Galois extension of the same degree as P/L for a sufficiently large i. Then Gal(L;(¢t)/L;) and
Gal(L;(e)/Li(B)) are isomorphic with Gal(P/L) and Gal(P/E) for i > m, respectively.

Put E; = L; for i < mand E; = L;(B) for i > m. Then E = UE;. If the left derivative of /;,/r(x)
is bounded by d for x < a and ¢ = |E : L|, then the left derivative of A, /x(x) is bounded by cd for
x < a, i > m. This means that E /F is arithmetically profinite.

If M /F is a finite subextension of L/F, then we can take Lo = M. Therefore L/M is arithmeti-
cally profinite and

hL/F = hL/M ° hM/F-

If M/F is a separable subextension of L/F, then there exists an increasing directed family of
subfields M;,i > 0, which are finite extensions of F' and such that M = UM;. If L = UL;, then also
L =UL;M;, and the left derivative of hy . /r (x) for x < a is bounded. Hence, the left derivative of
ha,/r (x) for x < ais bounded, i.e., M/F is arithmetically profinite. O

REMARKS.

1. Translating to the language of ramification groups by using the two previous sections, we
deduce that a Galois extension L/F with finite residue field extension is arithmetically profinite
extension if and only if its upper ramification jumps form a discrete unbounded set and for every
upper ramification jump x the index of Gal(L/F)(x+ 8) in Gal(L/F)(x) is finite. Alternatively,
a Galois extension L/F is arithmetically profinite if and only if for every x the upper ramification
group Gal(L/F)(x) is open (i.e. of finite index) in Gal(L/F). More generally, a separable exten-
sion L/F is arithmetically profinite if and only if for every x the group Gal(F*°P /F)(x) Gal(F*P /L)
is open in Gal(F*P /F).

Since the Hasse—Herbrand function relates upper and lower ramification filtrations, we can
define lower ramification groups of an infinite Galois arithmetically profinite extension L/F as
Gal(L/F), = Gal(L/F )(hy . (x))-

2. Since upper ramification jumps of abelian extensions are subsets of natural numbers by
Theorem 16.3, every abelian extension of a local field with finite residue field and finite residue
field extension is arithmetically profinite, see Corollary of 21.3.

3. An important property of a totally ramified Z,-extension L/F in characteristic zero is that
its upper ramification jumps form an arithmetic progression with dif and only iference e = e(F)

for sufficiently large jumps.



114 2. COMPLETE DISCRETE VALUATION FIELDS

Maus—Sen’s theorem on ramification filtration of p-adic Lie extensions L/F in characteristic
zero with finite residue field extension states that the p-adic Lie filtration is equivalent to the upper
ramification filtration of the Galois group of such extensions. This theorem implies that every such
extension is an arithmetically profinite extension. In positive characteristic the analogous result

was proved by Wintenberger.

4. An important example of an arithmetically profinite extension is given by L = UL;, Ly = F,
L; = L;_;(m;) such that & = m;_; is a prime element of L;_;. The extension L/F is not Galois.

17.2. Let L/F be arithmetically profinite. Put
q(L|F) =sup{x>0: hL/F(x) =x}.

LEMMA.
(1) if M/F is a subextension in L/F, then q(L|F) < g(M|F).
(2) if M/F is a finite subextension in L/F, then q(L|M) > q(L|F).
(3) if L=UL; as in (17.1), then q(L;|L;) = +eo as j > i, i, j — oo.
(4) q(L|F) = oo if and only if L/F is unramified; q(L|F) = 0 if and only if L/F is totally
and tamely ramified, and q(L|F) < pve(p)/(p — 1) if L/F is totally ramified.

Proof. (1) Let L=UL;,M = UM; and L; = LiM;. As hy/p(x) < hyp(x) by 15.3, we get hyyjp(x) = x
for x < g(L|F), hence hy;,/r (x) = x for x < g(L|F ). Therefore, g(L|F) < g(M|F). (2) The previous
Proposition shows that
hy i (x) = x for x < hyy/p (q(L|F)).

This means that (L|M) > hy/p(q(L|F)). But by Proposition 15.3, h/p(x) > x, hence q(L|M) >
q(L|F). (3) It follows from the definition. (4) The first two assertions follow from Proposition 15.3.
Proceeding as in the proof of Proposition 15.3 and using (1), it suffices to verify the last assertion
for a separable totally ramified extension of degree p. Now the computations in the proof of

Proposition 15.3 and Proposition 14.3 lead to the required inequality. (|

17.3. Let L be an infinite arithmetically profinite extension of F, and let L;, i > 0, be an
increasing directed family of subfields, which are finite extensions of F', L = UL;. Let

N(LIF)* = lim L

be the inverse limit of the multiplicative groups with respect to the norm homomorphisms Ny, /,;,i >
Jj. Denote N(L|F) = N(L|F)* U{0}.

LEMMA. The group N(L|F)* does not depend on the choice of L;.
Proof. Let L be another increasing directed family of finite extensions of F and L = UL!. For

every i there exists an index j, such that L; C L; and Np;/r = Ny o Np,;jr;. This immediately
implies the desired assertion. U

Therefore
N(L‘F)X = @MESL/FMX7
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where Sy /p is the partially ordered family of all finite subextensions in L/F and the inverse limit is
taken with respect to the norm maps. If A = (0y) € N(L|F) with oy € M, then Ny, /1, 0ar, = Olar,
for M, C M,.

We will show that N(L|F) is in fact a field (the field of norms). Moreover, one can define a
natural discrete valuation on N(L|F), which makes N(L|F) a complete discrete valuation field of

characteristic p with residue field L.
17.4. The following statement plays a central role.

PROPOSITION. Let M' /M be totally ramified of degree a power of p. Then

o (V4 ) Mo ()~ N () > L=
for (X,ﬁ € Oy

For a € Oy there exists an element B € Oy such that
(p—1)g(M'|M)

M (NM’/M(ﬁ) —a) > -

Proof. To prove the first inequality, assume first that M’ /M is a cyclic extension of degree p. Then
we get g(M'|M) = s(M'|M) (see 13.4 and 15.1) and, by Proposition 13.4,
Tryr i (Omr) = Ty Om
withr=s+1+[(—1-s)/p] = (p—1)s(M'|M)/p. Then Lemma 13.1 shows that
p—1)gM'|M
vir (Nar g (1+9) = 1= Ny (7)) = ();’)

for y € Oyyp. Substituting y=af ' if vyy () = vyr(B) and B # 0, we obtain the desired inequality.

In the general case we proceed by induction on the degree of M'/M. Let E/M be a finite
Galois extension with E D M’, and let E; be the maximal tamely ramified extension of M in E.
Then E; and M’ are linearly disjoint over M, and

Ny (04 B) — Nagrypg (@) — Nagr jg (B) = Ny, (06 + B) — Ny /e, () — N e, (B)-

The group G = Gal(E/E)) is a p-group, and hence for H = Gal(E/E M) there exists a chain of

subgroups

such that G(;, ) is a normal subgroup of index p in G;. For the fields we obtain the tower
Ey=Eq—Eqp— - —Emw= EM’, in which E(;11) 1s a cyclic extension of degree p over E;.
i

Let E> be some E(;) for 1 <i < m. By the induction assumption,
N /e, (@ + B) = N/, (@) + N 6, (B) + 6
with vg, (8) = (p—1)q(E1M’|E) /p. We deduce also that

Ng,w /e, (004 B) = Ne /e, (@) + Ny, (B) + Ni, i, (8) + 6



116 2. COMPLETE DISCRETE VALUATION FIELDS

with vg, (8") > (p — 1)q(E2|E1)/p. Then

(p—Dg(EsM'|E2) _ (p—1)q(E:M'|EY)
P g P

VE| (NEZ/EI (6)) =

and
(p—1)q(E:M'|E,)
P

ve, (8') >
by Lemma 17.2. These two inequalities imply that

(p—1g(M'|M)
M (NM//M(a+ﬁ)_NM’/M(a)_NM’/M(ﬁ)) > "
as required.
To prove the second inequality of the Proposition, we choose a prime element 7’ in M’ and
put T = Ny /M7r’ . Then 7 is a prime element in M. Let n = M’ : M| (a power of p). Writing the

element o of M as

o = 9,'7'L'i
with multiplicative representatives 6;, put

B=Y 0/"n e M.
iza
Then Ny (Qil /np! ) = 6;. By the first inequality of the Proposition and passing to the limit, we
obtain
(p—1)g(M'|M)

v (N (B) — @) > T,

as required. 0

17.5. Let L/F be an arithmetically profinite extension. Let Ly be the maximal unramified
extension of F in L, and let L; be the maximal tamely ramified extension of F in L. Then Ly/F
is finite by the definition, and L, /F is finite because of the equality /; /1, (x) = |L; : Lo|x. So one
can choose L; for i > 2 as finite extensions of L; in L with L; C L;+1 and L = UL,.

For an element A € N(L|F) put

v(A) = v, (o).

Then v(A) = vy, (ay,) fori > 0.

Let a be an element of the residue field L = Ly, and 6 = r(a) the multiplicative representative
of a in Ly (see section 6). Put 6, = 01/1 where n; = |L; : Ly| fori > 1 and 8, = Ny, /1,,6. Then
® = (0y,) is an element of N(L|F). Denote the map a — © by R.

THEOREM. Let L/F be an infinite arithmetically profinite extension. Let A = (o) and B =
(Bu) be elements of N(L|F), M € S p. Then the sequence Ny p (0 + Byrr) is convergent in
M when M C M’ C L,|M’: M| — +oo. Let Yy be the limit of this sequence. Then T = () is an
element of N(L|F). PutT'= A +B.

Then N(L|F) is a field with respect to the multiplication and addition defined above. The map
v is a discrete valuation of N(L|F) and N(L|F) is a complete field of characteristic p. The map
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R is an isomorphism of L onto a subfield in N(L|F) which maps isomorphically onto the residue
field of N(L|F).

Proof. Let L; be as above in 17.5, in the context of Lemma 17.3.

Let a be a positive integer and let k be an integer such that (p —1)q(L;|L;)/p > afor j > i >k,
see Lemma 17.2. Let A = (ay,),B = (Br,) be elements of N(L|F) and ay,,Br, € O,- Then
Proposition 17.4 shows that

NLi/Lk(aLi +ﬁL,‘) = aLk+BLk mod '//Lak (*)
Let a; > 0 be a sequence of integers such that
ar < arv1, ar < (p—1)q(L|Ly)/p, limay = +oo

(the existence of the sequence follows from Lemma 17.2). Let an index k > 1 be in addition such
that @, > 1. Suppose that fB;, is a prime element in L. Proposition 17.4 and Lemma 17.2 show
that one can construct a sequence f;, € L;, i > k, such that

VL; (NLi+1/LiﬁLi+| - BL:’) 2 aj.

Then f, is prime in L;, and applying (*), we get
v, (Npy,Br, —Br) Z2ai - forj>izk.

Now Proposition 15.4 and Proposition 17.1 imply that

v, (Npy/i,Bry = Nyye,Br) = by, (ai) = hp ), (i)

for j>i>s>k. Since hL_/lLS (a;) — +o0asi— oo, we obtain that there exists ¥, = lim;, 1 Nz, /1, B,
and 7, is prime in L. Putting ¥, = Ny, 1,71, for j <k, we get the element I' = (y;,) € N(L|F)
with v(I') = 1.

Furthermore, by Proposition 15.4 and (*) we obtain:

vy (Noyjn, (0 + Br) = N, (0, +Br) ) = iy (@) > iy (@),

This means that the sequence Ny, /. (au, + fr,) is convergent. In the general case let ¢ = vy, (ay,),d =
vi,(Br,). Taking prime elements 7, in L; such that I = (77,) € N(L|F) with v(IT) = 1 and
replacing A = (ay,) by A’ = (ay,m;.*) and B = (Br,) by B’ = (B, *), where g = min(c,d),
we deduce that Nz, /; (0, + Bi,) is convergent. Put ¥, = limj— e Ny, /1, (04, + Pr;). Obviously,
(v,) =T € N(L|F) and N(L|F) is a field. As

v(r) - va(yLk) = iEvaLk (NLi/Lk(aLi +ﬁLi>)7

we get v(I') > min(v(A),v(B),a). Choosing a > max(v(A),v(B)), we obtain v(I") > min(v(A),v(B)).
Since 1 = (1z,), for p = (ay,) we get that
_ : _ : ‘L,‘IL" _
aLj - iETOONLi/Lj (p) - iglllocp 1=0.
Therefore, N(L|F) is a discrete valuation field of characteristic p.
To verify the completeness of N(L|F) with respect to v, take a Cauchy sequence A" =

(ch)) € N(L|F). We may assume v(A™) > 0. For any i there exists an integer n; such that
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v(A(") — A(’”)) > a; for n,m > n; (a; as above). One may assume that (n;); is an increasing se-
quence. Applying (x), we get

vLi(OCL(?) - Otém)) >aq; for n,m > n;.

Let o4, be an element in L; such that
vLi(aLi - agli)) 2 a;.
Then, by (),
v, (Np; /1,00, — 0,;) 2 a;.

Proposition 15.4 and Proposition 17.1 imply now that
VL, (Niyy1, 0, = Nijj1,01,) > hijy (aj) — oo

when i > j — +oo. Putting o = lim;, 1o Ny, /7, &7,, We obtain an element A" = (o) € N(L|F)
with A’ = lim A", Therefore, N(L|F) is complete with respect to the discrete valuation v.

Finally, R is multiplicative. If R(a) = ©®, R(b) = A, R(a+b) = Q, then it follows immediately
from 6.3, that @y, = 67, + Az, mod p. By the definition of a; we get v, (p) > a;. Then by (*) and
Proposition 15.4 we obtain

v (@, — Npjr, (6L + Ar;)) — +oo

as j — +oo. This means that Q = ® + A and R is an isomorphism of L onto a subfield in N(L|F).
The latter subfield is mapped onto the residue field of N(L|F), hence it is isomorphic to the residue

field N(L|F). O

COROLLARY. Let A = (ayr,),B = (Br,) belong to the ring of integers of N(L|F). Let I" =
A+B. Then v, = ar, + PBr, mod ., Z‘i’ where a; are those defined in the proof of the Theorem.
Moreover, for any o € Oy, there exists an element A = (ay,) in the ring of integers of N(L|F) such
that & = o, mod ///La]f

Proof. The first assertion follows from (x) and the second from Proposition 17.4. g

17.6. An immediate consequence of the definitions is that if M /F is a finite subextension of
an arithmetically profinite extension L/F, then N(L|F) = N(L|M). On the other hand, if E/L is a
finite separable extension, then, as shown in Proposition 17.1, E/F is an arithmetically profinite
extension. Let M be a finite extension of F' such that ML = E. Since Ny /L,M(O‘) =N, (@)
for o € Lj, j > i > m, and sufficiently large m, we deduce that N(L|F) can be identified with
a subfield of N(E|F): A = (ay,) — A’ € N(E|F) with A" = (0y7.,,), 07y = o, for i > m,
& v = Np,mjim(0,) for i < m. In fact the discrete valuation topology of N(L|F) coincides
with the induced topology from N(E|F), and N(E|F)/N(L|F) is an extension of complete dis-
crete valuation fields. For an arbitrary separable extension E/L denote by N(E,L|F) the direct
limit of N(E'|F) for finite separable subextensions E’/L in E /L. Obviously, N(E,L|F) = N(E|F)
if E/L is finite.
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Let L/F be infinite arithmetically profinite, and let L' /L be a finite separable extension. Let
7 be an automorphism in Gr = Gal(F**P /F) with (L) C L. There exists a tower of increasing
subfields L] in L' such that L}/ F is finite, T(L)L; = L', L' = UL}, and NL_’,./L,’.(TOC) = TNT—IL;/T—lL;((x)
for j > i,a € T'L; see the proof of Proposition 17.1. Let T: N(L|F) — N(L'|F) denote the
homomorphism of fields, which is defined for A = (ay,) € N(L|F) as T(A) = A’ = (oci;) with

oy, = 7(Q1p). Then A’ € N(L'|F). This notion is naturally generalized for N(E,L|F) and

N(E',L|F) with 7(E) C E'.

PROPOSITION. Let E| and E» be separable extensions of L. Then the set of all automorphisms
T € G with T(E1) C E; is identified (by T — T) with the set of all automorphisms T € Gy(yr)
with T(N(E1,L|F)) C N(Ey,L|F). In particular, if E/L is a Galois extension, then Gal(E /L) is
isomorphic to Gal(N(E,L|F)/N(L|F)).

Proof. First we verify the second assertion for a finite Galois extension E /L. Let T act trivially on
N(E|F). Then T acts trivially on the residue field of N(E|F), which coincides with E, and hence
7 belongs to the inertia subgroup Gal(E /F ). Let E = L(f3) and L; form a standard tower of fields
for L over F, as in (17.5). Since the coefficients of the irreducible polynomial of 8 over L belong
to some L,,, we deduce that L;(f)/L; is Galois and Gal(L;(f)/L;) is isomorphic to Gal(E /L) for
i > m. Let I1 = (7;,(p))i>m be a prime element of N(E|F). Then T(IT) = IT and t7;,(5) = 7;,(p)

for i > m. We obtain now that T = 1 because 7 acts trivially on the residue field L;(f) = E.
We conclude that Gal(E /L) can be identified with a subgroup of

Gal(N(E|F)/N(L|F)).

Since the field of the fixed elements under the action of the image of Gal(E /L) is contained in
N(L|F), these two groups are isomorphic.

From this we easily deduce the second assertion of the Proposition for an arbitrary Galois
extension E /L.

Finally, if E/L is a Galois extension such that E;, E; C E, denote the Galois groups of E/E;
and E /E, by H; and H;. These two groups H; and H, can be identified with Gal(N(E,L|F)/N(E;,L|F)),
and Gal(N(E,L|F)/N(E,,L|F)) respectively. Since the set of T € G, with T(E|) C E; coincides
with {T € G1 : tH;t~! D Ha}, the proof is completed. O

17.7. The preceding Proposition shows that the group Gal(F*P/L) can be considered as a
quotient group of Gal(N(L|F)%P/N(L|F)). We will show in what follows that the former group

coincides with the latter.

THEOREM. Let Q be a separable extension of N(L|F). Then there exists a separable extension
E /L and an N(L|F)-isomorphism of N(E,L|F) onto Q.
Thus, the absolute Galois group of L is naturally isomorphic to the absolute Galois group of
N(L|F):
GL= GN(L| F)-
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Proof. One can assume that Q/N(L|F) is a finite Galois extension. Using the description of Galois
extensions of 11.4 we must consider the following three cases: Q/N(L|F) is unramified, cyclic
tamely totally ramified, and cyclic totally ramified of degree p = char(F).

Let Og = Oy r)[T]. Let f(X) be the monic irreducible polynomial of I" over N(L|F). It
suffices to find a separable extension E’/L such that f(X) has a root in N(E',L|F). Let L; and a;
be identical to those in the proof of Theorem 17.5. By Lemma 10.1, we can write

f(X) :X”+A("—1)X"—1 4. .._|_A(0)

with A" = (ch_n)) € On(jr), n=|Q: N(L|F)|. Denote by fi(X) € Op,[X] the polynomial X" +
Otg_UX"*1 44 ag)). Let @; be a root of f;(X) and M; = L;i(;),E; = L( ;).
The following assertion will be useful in our considerations.

LEMMA. Let T, for 1 <m < nare all roots of f(X) and A = [1,y<;(Tn —T)? be the discrimi-
nant of f(X). Then A= (—1)@ [T}, Omf (L) where 01, ..., 0, are elements of Gal(Q/N(L|F)).
Let d; € L; be the discriminants of f;(X). Then there exists an index i\ such that vy, (d;) = v(A)

fori>i.

Proof. Let A = (8,), and let i; be such that a; > v(A) for i > i;. Then v(A) = v, (J,), and
Corollary 17.5 shows that vz, (0, —d;) > a;. Hence, vy, (d;) = vr,(6,) = v(A) for i > ij. O

This Lemma implies that M;/L; is separable for i > i;. Now we shall verify that in the three
cases under consideration, there exists an index ip, such that M;/L; and L/L; are linearly disjoint
and q(E;i|M;) > q(L|L;) for i > i.

If Q/N(L|F) is unramified, then the residue polynomial f; € L[X] is irreducible of degree n
and M;/L; is an unramified extension of the same degree. Hence, M;/L; and L/L; are linearly
disjoint and Az, /, (x) = hy /1, (x), so q(Ei|M;) = q(L|L;).

If Q/N(L|F) is totally and tamely ramified, then one can take f(X) = X" —II, where ITis a
prime element in N(L|F) (see 10.5). Hence, M;/L; is tamely and totally ramified of degree n for
i > 1. We deduce that LNM; = L; and hg, , (nx) = nhy;,(x), and hence q(E;|M;) > nq(L|L;) for
iz 1.

If Q/N(L|F) is totally ramified of degree n = p = char(F), then one may assume that f(X)
is an Eisenstein polynomial (see 10.6). Then f;(X) is a separable Eisenstein polynomial in L;[X],
and o is prime in M;. Let N; be the minimal finite extension of M; such that N;/L; is Galois, and
M the maximal tamely unramified extension of L; in N;. Then |N; : L;| < p!. One has N; = M/(¢o;)
and s; = s(N;|M!) = vn,(oca; — @;) — vy, () for a generator o of Gal(N;/M!) (see 13.4 and the
proof of Proposition 15.3). Note that

1 p!
p(p— I)VN"(di) Spp—1D)

for i > i. Furthermore, in the same way as in the proof of Proposition 15.3, we get hyy, /7, (x) =

v, (00 — o) = v, (di) = (p—2)v(A)

I hy, jpg (Ix), where | = e(M]|L;). Consequently,

g(Mi|Ly) = sil 7' < (p—2)v(A).
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Since hy (o) /m; © Mg/, = Py (o) /1, © i1, for j 2 i, we deduce that g (E;|M;) = by, (q(LILi)) =
g(LILy).

Now we construct the desired field E’. Let v: N(L|F)*P* — Q be the extension of the
discrete valuation v: N(L|F)* — Z (see Corollary 1 of 9.9). According to Corollary 17.5 there
is an element BU/) = (ﬁé{()aj))i2j € N(E;|F) such that vy, (ar; — BIS,I’J)) > bj, where b; is the maximal
integer < (p—1)q(E;|M;)/p.

Since g(E;|M;) > q(L|L;), we obtain b; > a;. We claim that v(f(B\/))) — +-oo as j — 4-oo.

Indeed, E;/M; is totally ramified. Therefore, if f(BY)) = (p,(q,))i>; then v(f(BU))) >
VM; (pM])/n

By using Corollary 17.5 we deduce

v, (Pm, — F5(BY)) = (p— Da(EjIM)) [p > aj.
This means that
v(fBY) ==L for j =i
Since a; — oo when j — o0, we conclude that v(f(BU))) — oo,
By the same arguments we obtain that for f'(B()) = (H(a))iz
VFBDY) < (), v (s, — F)) > s, v (1)) < mo(4)

for j > ip. This implies that for a sufficiently large j

v(F'(BU)) < m(&) < Jv(F(BY).

Corollary 3 of 8.3 shows the existence of a root of f(X) in N(E||F). Putting E’ = E; we complete
the proof of the Theorem. O

DEFINITION. The functor of fields of norms associates to every arithmetically profinite extension
L over F its field of norms N(L|F), to every separable extension E of L the field N(E,L|F) and
to every element of Gr the corresponding element of the group of automorphisms of the field

N(L|F)*P (so that elements of G, < Gr are mapped isomorphically to elements of Gy gr))-

REMARKS.

1. If L/F is an arithmetically profinite extension, one can show that for a separable ex-
tension E /L (not necessarily finite), £/F is an arithmetically profinite extension if and only if
N(E,L|F)/N(L|F) is arithmetically profinite. In this case the field N(E|F) can be identified with
N(N(E,L|F)|N(L|F)) and

hg/r = hyE L) NLF) © hyF-

If, in addition, E/F and E /L are Galois extensions, then
Gal(N(E, LIF) /N(LIF)) (. (x)) = Gal(E/F)(x) " Gal(N(E, L|F) /N(L|F))
where we identified Gal(N(E,L|F)/N(L|F)) with Gal(E/L).

2. Fields of norms are related to various rings introduced by Fontaine in his study of Galois

representations over local fields.
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3. Alocal field F' with finite residue field IF, has infinitely many wild automorphisms, i.e.,
continuous homomorphisms 6: F — F such that 7, ! o (mg) € Uy, if and only if F is of positive
characteristic. The group R of wild automorphisms of F has a natural filtration R; = {c € R :
T lony € U;} and R is isomorphic to LHBR /R;. Therefore the group R is a pro-p-group. It is
called the Nottingham group by group theorists. It has finitely many generators. One can check
that every nontrivial closed normal subgroup of an open subgroup of R is open; so R is a so-
called hereditarily just infinite pro-p-group. Those are of importance for the theory of infinite
pro-p-groups.

Every Galois totally ramified and arithmetically profinite p-extension of a local field with
residue field [, is mapped under the functor of fields of norms to a closed subgroup of R. Using
this functor and realisability of pro-p-groups as Galois groups of arithmetically profinite exten-
sions in positive characteristic one can easily show that every finitely generated pro-p-group is
isomorphic to a closed subgroup of R.

For integer r > 1 define a closed subgroup T = T'[r] of R
T[rl={c €R: nz'onr = f(mr) with f(X) € F[[X”]] }.

Fesenko proved that for p > 2,r > 1 the group T is hereditarily just infinite (i.e. every nontrivial
normal closed subgroup of every open subgroup is open), T does not have infinite subquotients
isomorphic to p-adic Lie groups, and the group 7' [r] for r > 1 can be realised as the Galois group

of an arithmetically profinite extension of a finite extension of Q,,.

4. General ramification theory of infinite extensions is far from being complete, despite many
deep investigations.

A satisfactory ramification theory of complete discrete valuation fields with imperfect residue
field is still missing. Such a theory is expected to have analogs of three key properties of rami-
fication theory of local fields: Herbrand’s theorem, Hasse—Arf’s theorem and compatibility with
local reciprocity map (see 21.3). There are several partial theories, each with its own merits and

drawbacks and none having analogs of all the three properties.

18. Local Fields with Finite Residue Fields

18.1. Let F be a local field with finite residue field F =F,, ¢ = p/ elements. The number
f is called the absolute residue degree of F. Since char(F,) = p, Lemma 2.2 shows that F is of
characteristic 0 or of characteristic p.

In the first case v(p) > 0 for the discrete valuation v in F, hence the restriction of v on Q is
equivalent to the p-adic valuation. Then we can view the field Q, of p-adic numbers as a subfield
of F'; another way to show this is to use the quotient field of the Witt ring of a finite field and
Proposition 12.6.

Let e = v(p) = e(F) be the absolute ramification index of F. Then by Proposition 9.4 we

obtain that F is a finite extension of Q, of degree n = ef. We call F a local number field.
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In the second case Propositions 12.4 and 12.1 show that F is isomorphic (with respect to the
field structure and the discrete valuation topology) to the field of formal power series F,((X)) with
prime element X. We call F a local functional field.

The topology of the multiplicative group F* of alocal field is the product of the discrete topol-
ogy on the infinite cyclic group generated by a prime element and the induced from F topology
on the group of units U. Equivalently, the topology of F* is induced from the topology of F x F
with respect to the embedding & +— (a, o).

LEMMA. F is alocally compact topological space with respect to the discrete valuation topol-
0gy. The ring of integers O and the maximal ideal .# are compact. The multiplicative group F*

is locally compact, and the group of units U is compact.

Proof. Assume that & is not compact. Let (V;);c; be a covering by open subsets in O, i.e.,
¢ = UV, such that & is not covered by a finite union of V;. Let & be a prime element of &.
Since 0'/n 0 is finite, there exists an element 6y € & such that the set 6y + & is not contained
in the union of a finite number of V;. Similarly, there exist elements 6y,...,6, € & such that
6+ 61T+ -+ 6,n" + "1 ¢ is not contained in the union of a finite number of V;. However,
the element & = lim,,_, . Y,,_ 0, " belongs to some V;, a contradiction. Hence, & is compact
and U, as the union of 6 4+ & with 6 # 0, is compact. O

18.2. LEMMA. The Galois group of every finite extension of F is solvable.

Proof. Follows from Corollary 3 of 11.4. U

PROPOSITION. For every n > 1 there exists a unique unramified extension L of F of degree n:
L=F(ug—1).
The extension L/F is cyclic and the maximal unramified extension F'" of F is a Galois exten-
sion.
The group Gal(F" /F) is isomorphic to 7 and topologically generated by an automorphism
OQF, such that
or(a)=0? mod Apw  fora € Opw.

The automorphism @ is called the Frobenius automorphism of F.

Proof. First we note that, by Corollary 1 of 6.3, F contains the group u,_1 of (g — 1)th roots of
unity which coincides with the set of nonzero multiplicative representatives of F in &. Moreover,
Proposition 4.4 and section 6 imply that the unit group U is isomorphic to ;1 X Uy f.

The field F, has the unique extension F .« of degree n, which is cyclic over IF,. Propositions
10.2 and 10.3 show that there is a unique unramified extension L of degree n over F' and hence
L=F(ug-1).

Now let E be an unramified extension of F and o € E. Then F(a)/F is of finite degree.
Therefore, F'" is contained in the union of all finite unramified extensions of F'. We have

Gal(F*"/F) = 1im Gal(Fy/F,) = Z.
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It is well known that Gal(F ;P /F,) is topologically generated by the automorphism ¢ such that
o(a) = a? for a € F;P. Hence, Gal(F""/F) is topologically generated by the Frobenius automor-
phism @F. 0

REMARK. If 6 € ys 1, then
or(0) =67 mod .,

and @F(0) € ug—1. The uniqueness of the multiplicative representative for 0'cF implies now
that ¢p(6) = 64.

18.3. In order to describe the group U; = Uj  of principal units we can apply assertions of
sections 4 and 5.

If char(F) = p, then Proposition 5.2 shows that every element o € U; can be uniquely written

a=[IT10+6;m)",
pti J€J
i>0
where the index-set J numerates f elements in OF, such that their residues form a basis of I, over

as the convergent product

IF,,, and the elements 6; belong to this set of f elements; 7; are elements of OF with v(m;) =i, and
a;j € Zp. Thus, U; has the infinite topological basis {1+ 6;;}.
If char(F) =0, 5.4 and 5.5 show that every element ¢ € U; can be written as a convergent

product

o=T]]J1+6m)% o

icl jeJ

where I = {1 <i<pe/(p—1), pti}, e = e(F); the index-set J numerates f elements in O, such
that their residues form a basis of I, over I, and the elements 6; belong to this set of f elements;
m; are elements of O with v(m;) = i, and a;; € Z,,.

If a primitive pth root of unity does not belong to F, then @, = 1,a = 0 and the above expres-
sion for « is unique; U, is a free Z,-module of rank n = ef = |F : Q,|.

If a primitive pth root of unity belongs to F, then @, = 1+ 6,7, /(,—1) is a principal unit such
that @, ¢ F*?, anda € Z p»- In this case the above expression for ¢ is not unique. Subsections 4.7
and 4.8 imply that U, is isomorphic to the product of n copies of Z, and the p-torsion group {,r,

where r > 1 is the maximal integer such that y,r C F.

LEMMA. If char(F) = 0, then F*" is an open subgroup of finite index in F* for n > 1. If
char(F) = p, then F*" is an open subgroup of finite index in F* for p{n. If a primitive nth root is
in F then |F* : F*"| = n2¢"™),

If char(F) = p and p|n, then F*" is not open and is not of finite index in F*.

Proof. Everything except the formula follows from Proposition 4.9 and the previous considera-
tions. To obtain the formula for |[F* : F*"|, first it is = n|U : U"|. Write n = p"m with integer
m prime to p. The integer r can be positive only when F is of characteristic zero. We have
|k F " = |Fy :F ™| =m;|Uy : Uy| =1 in characteristic p and = |U] : Ulpr| = p™*1in charac-
teristic 0, where d = |F : Q,|. Hence |F* : F*"| = n?p™ and p™ = ¢*("). O
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18.4. Now we have a look at the norm group N; zL* for a finite extension L of F. Recall
that the norm map
N]Fq//]Fq : Fq)f — qu
is surjective when Fy D [F,. Then the second and third diagrams of Proposition 3.2 show that
Np/rUr = Ur in the case of an unramified extension L/F. Further, the first diagram there implies
that
NpjpL™ = (7") x U,
where 7 is a prime element in F, n = [L : F|. This means, in particular, that F* /N jpL* is a cyclic
group of order n in the case under consideration. Conversely, every subgroup of finite index in F*
that contains Ur coincides with the norm group Ny /L™ for a suitable unramified extension L/F.
The next case is a totally and tamely ramified Galois extension L/F of degree n. Since L/F is

Galois, we get i, C F* and n|(q — 1). Proposition 13.3 and its Corollary show that
NypUip=Uip, ®E€NpL”,

for a suitable prime element 7 in F such that L = F(y/—7x), and 8 € N;, /pL* for 6 € Ur if and
only if 6 € F,". Since n|(q— 1), the quotient group F/F " is cyclic of order n. We conclude
that
NpjpL™ = (7) x (0) x U F

with an element 6 € U, such that its residue @ generates F A / F,". In particular, F* /Ny /pL™ is
cyclic of order n. Conversely, every subgroup of index n relatively prime to char(F) coincides
with the norm group Ny /pL* for a suitable cyclic extension L/F.

The last case to be considered is the case of a totally ramified Galois extension L/F of degree
p. Preserving the notations of 13.4 we apply Proposition 13.5. The right vertical homomorphism
of the fourth diagram

90" —7"'9

has a kernel of order p; therefore its cokernel is also of order p. Let 6, € Ur be such that 0, does
not belong to the image of this homomorphism. Since F is perfect, we deduce, using the third and
fourth diagrams, that 1 + 6,7y ¢ Ny /pU; 1. The other diagrams imply that F* /N /L™ is a cyclic
group of order p and generated by

14+ 6.m; mod N pL™.

If char(F) = 0, then, by Proposition 14.3, s < pe/(p — 1), where e = e(F). That Proposition
also shows that if p|s, then s = pe/(p — 1) and a primitive pth root of unity {, belongs to F, and
L = F({/x) for a suitable prime element 7 in F. In this case F* /N, /rL* is generated by o,
mod Ny /pL™.

Conversely, note that every subgroup of index p in the additive group [, can be written as
ng(F,) for some M € F,. Let N be an open subgroup of index p in F* such that some prime
element 7 € N and @, € N (if char(F) = 0). Then, in terms of the cited Corollary 14.5, if s is the
maximal integer relatively prime to p such that Us r ¢ N and Uy11 r C N, then 1 +ng@(OF) ° +
1O C N for some element 1 € Op. By that Corollary we obtain that 1+ 0@ (0F) ° +
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st Op C NyjpL*, where L= F(A) and 4 is a root of the polynomial X” — X + 6 a, with o =
6~Pn~ 'z~ for a suitable 6 € Ur. Since s = s(L|F) (the same notation as in 13.4), we get U; p C
Uit1,FNLrpUL for i < s, by Proposition 13.5. In terms of the homomorphism A; of section 4 we
obtain that

i (NNU;p)Uigrp /Uie1,p) = Ai (NpypL* NU;p) Uit p /Ui )

fori > 0. If @, ¢ N and char(F) = 0, then one can put L = F({/T) to obtain the same relations
for N and Ny /pL™ as just above.

When F is of positive characteristic p, the Artin—Schreier extension L/F generated by a root of
the polynomial X? — X + 67 ¢ with vp (o) = —s < 0 and not divisible by p has its ramification jump
is s (see section 14). Proposition 13.5 implies that U; r C Uit1,FNL UL fori <sand Usp 1 r C
NppUr. Since |Ur : Np/pUL| = p, and by Corollary 14.5 the units 1+ 0 P @(0r)o" are in
the norm group of L/F, we deduce that 1 + 8 Ppa~! ¢ Ny pUy for any unit p € U such that
p ¢ #(F). Hence every open subgroup of index p in F* is the norm group of the appropriate

Artin—Schreier extension.

Later we will show that every open subgroup N of finite index in F*, N = N pL* for a

suitable abelian extension L/F.

18.5. The following property will be useful in motivating the Neukirch’s approach to class
field theory.

PROPOSITION. Let L/F be a finite Galois extension and o € Gal(L/F). There is a finite
separable extension K /F such that M = KL is a finite unramified Galois extension of K and of L,
K" = L' = M", and the image of the Frobenius automorphism @k € Gal(L" /K) with respect to

the restriction on L is ©.

L Lur — Kul‘ — MUI'

e

F Fur
Proof. The restriction of 6 on Ly = LNF" is @}z, for some n > 0. Let ¢ € Gal(L"/F) be an

extension of @p. The product of ¢ and the restriction of ¢ " on L is an element of Gal(L/Ly), let
T € Gal(L"/F"") correspond to it via the canonical isomorphism with Gal(L/Ly). Then & = t¢"
has the property: 6|, = o (¢ "@")|L = C, §|pw = QF.

Let K by the fixed field of 6. Since F C K C L"" we deduce that F*" C K" C L"". The Galois
group of L' /K is topologically generated by G and is isomorphic to 2, therefore it does not have
nontrivial closed subgroups of finite order. The group Gal(L""/K"") being a subgroup of the finite
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group Gal(L" /F") is trivial, so L' = K"". Due to the latter, M /K is a subextension of K" /K and
M /L is a subextension of L' /L, hence those are unramified extensions.

The degree of the extension K/F is the product of the degree of the extension K /Ky, Ky =
KN F", whose Galois group is isomorphic to Gal(L" /F"") and the degree of Ky/F equal to n, so
it is finite.

In the unramified extension L' /K the automophism G is a power of @k and their restrictions
to F' are equal: @k |por = (pI‘VKO:F| |pur = Q| pur = &|pur, 50 6 = Q.

g






CHAPTER 3

Class Field Theory

This Chapter includes a very short and easy to follow presentation of class field theory of local
fields with finite residue field and of global fields, in characteristic zero and positive characteristic.
Algebraic topics such as central division algebras and Galois cohomology groups that are not nec-
essary for class field theory are not included. The presentation of global class field theory is based
on the use of abstract class field theory mechanism discovered by Neukirch. This mechanism is
natural from the point of view of the theory of local fields and local class field theory, as explained
in sections 19 and 20. Neukirch’s approach was partially motivated by anabelian geometry of
number fields. Zeta integrals, the theory of Iwasawa and Tate, is included in section 23, as well as
an application of zeta functions and their twists by characters to the computation of the index of
the norm map image of idele class group.

19. Main Results of Local Class Field Theory

19.1. Let k be a local field with finite residue field. The main results of local class field

theory in this case are

1. For every finite separable extension F'/k and finite Galois extension L/F there is a surjective
homomorphism
YL/F . Gal(L/F) — FX/NL/FLX
whose kernel is Gal(L/E), where E is the maximal abelian subextension of F' in L (hence Ny /pL* =

Ng/rE™), such that:
(a) if L/F is unramified then

YL/F((PL/F)ETCF I'rlOd]VVL/FL><

where @/ is the restriction of the Frobenius automorphism ¢@r on L, 7 is a prime element of F';

(b)if M/F,E/L, F /k, L/k are finite separable extensions, and L/F and E /M are finite Galois

extensions, then the diagram

Ye/m % «

1 P

Tyr % «

is commutative, where the left vertical map is the restriction of Galois automorphisms and the
right vertical map is induced by the norm map Ny /;

129
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(c) if M/k is a finite separable extension and L/M is a finite Galois extension, and o €
Gal (k%P /k), then the diagram

Yr/m

Gal(L/M) ]‘4></1VL/1‘4L><

& J
Yo'L/UM

Gal(oL/oM) —— (oM)* /Ns/om(OL)*

is commutative, where 6*(7) = ot~

2. Denote the maximal abelian extension of F by F.
For every finite separable extension F /k, passing to the inverse limit, we get

. : . b ab
Wp: F* —lim F* /Ny /pL* — lim Gal(L/F)® = Gal(F® /F)
where L runs through all finite Galois (or all finite abelian) extensions of F, and the second arrow
is the inverse isomorphism to Y7 /z. The homomorphism W is called the reciprocity map.
(a) W is injective and continuous, its image is dense in Gal(F/F).

(b) Compatibility with O-dimensional class field theory (for finite fields): the restriction of the

(@)

image of Wy on F" coincides with o — (p};F , 1.e. the diagram is commutative

F* —2r s Gal(F®/F)

K |
l—oF

z 2% Gal(FY/F)

-l

IH([)F

7z —%, Gal(F"/F,) =7
(c) Compatibility with ramification theory for abelian extensions for n > 0:
Wi Uy r = Gal(F™/F)(n).

Note that there is no analog of this property in class field theory of global fields or higher local
fields.

(d) For every finite separable extension F /k, if L is a finite separable extension of F, and o is
an automorphism of Gal (k%P /k), then the diagrams

L~y Gal(L®/L)

P

F* 2 Gal (F*/F)



19. MAIN RESULTS OF LOCAL CLASS FIELD THEORY 131

F* =2 Gal(F®/F)

J J(Ver
L~ Gal(L*/L)

L - Gal®/L)

K -
(6L)* — Gal ((oL)*™/oL)
are commutative, where 6*(7) = 6to !, the right vertical homomorphism of the second dia-
gram is the restriction and Ver: Gal(F®/F) = Gal(F*P/F)%® — Gal(F*?/L)® = Gal(L*®/L)
is induced by the transfer map Ver: G*®® — H? for a subgroup H of finite index in a group G.

3. Existence Theorem: the correspondence between open subgroups of finite index in F* and
the norm subgroups of finite abelian extensions L/F: N <> N ;pL*, N = Y. !(Gal(F®/L)), is an
order reversing bijection between the lattice of open subgroups of finite index in F* (with respect
to the intersection N; NN, and the product N1 N;) and the lattice of finite abelian extensions of F'
(with respect to the compositum L;L; and intersection L; N Ly).

19.2.  Neukirch’s method in class field theory constructs Y; /r by using desired properties 1a,
1b and Proposition 18.5. In other words, one uses desired functoriality with respect to the base
change to reduce to the case of finite unramified extensions, in order to get an explicit formula for
the map Yy /r.

For a finite Galois extension L/F one can try to define
YL/F: Gal(L/F) — F‘X/I\IL/I:‘L><

by finding for a ¢ € Gal(L/F) any 6 € Gal(L"/F) = ¢k as in the proof of Proposition 18.5, and
then applying 1b, 1a to deduce that Y /r(0) = Nkx/r(Ykz/k(@k)) = Ng/pixk mod Ny /pL*. So it
is natural to define Y7 /x (o) as Nk /pg mod Ny /L™ where Tk is any prime element of the field K
which is the fixed field of any lift & € Gal(L""/F) such that 6; = ¢ and G|pw is a positive integer
power of @g. There are two indeterminacies in relation to the choice of & and the choice of 7.

In order for everything to work fine, two axioms of class field theory have to be satisfied. Typ-
ically, for one dimensional fields they are: for cyclic extensions of prime degree with a generator
o the kernel of the norm map Ny r is the image of 1 — ¢ and the index of the norm group equals
the degree of L/F.

Neukirch’s mechanism derives Y7, and its properties in the situations when these two class
field theory axioms are satisfied for a specific class of fields and abelian groups associated to
them, such as the multiplicative group of local fields with finite residue field. This mechanism is
universal in the sense that it works for global fields and higher fields as well.

This explicit and clear mechanism is purely group theoretical, while to verify the two axioms

for a specific class of fields and associated abelian groups one has to use their ring structure.
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Thus, these class field theory axioms separate group theoretical part of class field theory from
its part that uses ring structures. Such separation is important in anabelian geometry, one of

generalisations of class field theory.

20. Neukirch’s Abstract Class Field Theory

This section does not depend on any of the other sections in this book. We will refer to
the previous theory of local fields for illustration and motivation, but the reader can skip such
references. A local field with finite residue field will be abbreviated in this section as LFF.

We would like to have a purely group-theoretical deduction of the main theorems of class field
theory from as few as possible as mild as possible restrictions (axioms). The key role will be played
by continuous homomorphisms deg and v and two class field theory axioms, first unramified and

then full axioms.

20.1. Let k be a field. It does not need to be related to algebraic number fields or to local
fields. Assume that the absolute Galois group Gy = Gal(k*P /k) of k is sufficiently large, namely

that there is a surjective continuous homomorphism of topological profinite groups
deg: Gy — Z.
Here Z is the additive group endowed with its profinite topology.

REMARK. Instead of the field k£ with its absolute Galois group Gy one can start with a profinite
group G which has a Z—quotient. All the following use of subfields of £*P in abstract class field
theory can obviously be rewritten in the language of closed subgroups of G.

Denote its kernel by G; = Gal (k*P /k).

For LFF k = k.

For any finite separable extension F of k, denote F' = Fk.
Extensions of F in F will be called unramified in this section.
Denote Fy = FNk and fr = |Fy : k.

For LFF fF is the inertia degree of F /k.

The morphism deg induces a surjective morphism
deg, :fgldeg: Gr — Z.

Then for a finite separable extension L/F the following diagram is commutative

deg
G, —=%»

7
l lfo,;l
GF & z

Call any element of Gr which is sent by deg, to 1 € Za frobenian of F.
The restriction of any frobenian of F on F is called the frobenius @r of F, it is uniquely

determined by F. So degy(7) =n € 7 where | = Qp.



20. NEUKIRCH’S ABSTRACT CLASS FIELD THEORY 133

For LFF the frobenius of F is the Frobenius automorphisms of F.

20.2. DEFINITION. For a finite Galois extension L/F put

Frob(L/F) = {t € Gal(L/F) : degx () is a positive integer}.

Compare the following Proposition with Proposition 18.5.

PROPOSITION. The set Frob(L/F) is closed with respect to multiplication; it is not closed
with respect to inversion, and 1 ¢ Frob(L/F).

The fixed field K of T € Frob(L/F) is a finite extension of F, T = ¢g, K = L.

The field M = KL is a finite unramified extension of K and of L.

The set Frob(L/F) consists of the frobeniuses Qx of finite extensions K of F in L.

The map Frob(L/F) — Gal(L/F), T~ t|, is surjective.

Proof. The first assertion is obvious.

Since F C K C L we deduce that £ C K C L. The Galois group of L/K is topologically
generated by 7 and isomorphic to Z therefore it does not have nontrivial closed subgroups of
finite order. So the group Gal(L/K) being a subgroup of the finite group Gal(L/F) is trivial. So
L =K. Due to the latter, M /K is a subextension of K/K and M /L is a subextension of L/L, hence
those are unramified extensions.

Put K = KN F. This field is the fixed field of 7|z = @, n > 0, therefore |[K° : F| = n i finite.
We deduce that

K:K°|=|K:F|=|L:F|=|L:L°

is finite. Thus, K /F is a finite extension.

Now ¢k |z = (pl‘,-KO:F‘ = @} | = 7|p. Therefore, T = @k.

Denote by ¢ an extension in Gal(L/F) of @f. Let ¢ € Gal(L/F), then o]y, is equal to @} for
some positive integer m. Let p € Gal(L/F) be such that p|; is @™, (it belongs to Gal(L/Ly)
since 6@~ acts trivially on Ly). Then for T = p¢™ we deduce that 7|z = ¢} and 7|, = 6. Then

the element T € Frob(L/F) is mapped to ¢ € Gal(L/F). O

REMARK. If instead of the Z-extension k/k one starts with a Z;-extension k/k for a prime
! and the corresponding surjective homomorphism deg™: Gy — Z;, then the assertions of the
Proposition for a finite Galois extension L/F of degree a power of / remain true, with exactly the
same proof.

20.3. Assume that there is an abelian (discrete topological) group A endowed with a contin-
uous action by the profinite group Gy. We will write the operation of A multiplicatively.

For LFF A = k%P~

For a closed subgroup Gr of Gy (i.e. F /k is a separable extension) denote by A the Gr-fixed
elements of A.
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For an open subgroup G, of a closed subgroup Gr of Gy denote by Ny r: AL — AF the

product of the action of right representatives of G in Gr:
NL/F((X):HG((X), GF:UGLG.

It is easy to check that Ny is a well defined map and is a homomorphism. Moreover, N /r =

Nt/ © Ny for a subextension M/F of L/F, Ngj/op © 6 = 6 0Ny /p for 6 € Gi.
Assume that there is a continuous homomorphism
v: Ay — 7
whose image is 7 or 7 and such that the equality
V(NpkAF) = frv(Ak)

holds for every finite separable extension F /k. The group 7 is endowed, as usual, with the discrete

topology.
Partially similarly to how deg, was defined in relation to deg, define v in relation to v as

VF ZfEIVONF/k: Ap — i,

then VF(AF) = V(Ak).

For LFF v is the discrete valuation of F.

The definition of v immediately implies that
fve = frvr ONL/F7 ver = Vr o0 for o € G;.
Similarly to the definition of frobenian we have

DEFINITION. An element 7y of Ap such that vp(mp) = 1 is called a prime element of F. Also
define

Ur = {u €AF: VF(I/I) = O}

So Ap is isomorphic to the direct product of Ur and the subgroup generated by 7x.

We note that if F = F then ng_l € Ur.

20.4. Everywhere below F is a finite separable extension of k.
Now we need two unramified axioms for the G-module A (unramified axioms of CFT):

A1™. For any unramified extension L/F of prime degree
ker NL/F :Ag_l,

where o is any generator of Gal(L/F).

A2"~. For any unramified extension L/F of prime degree
|AF :NL/FAL| = |L . F|

Equivalently, Ar /Ny jpAp = Gal(L/F).
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COROLLARY. For any finite unramified extension L/ F with a generator ¢ we have
ker Ny = A7, |Ap : NpjpALl = |L: F|,

and
ker Nyp =U™', NppUp = Up.

Proof. For any finite unramified extension L/F, 7y is a prime element of A7 and Ny JFTF = nILL:F‘.

Then AF/NL/FAL is the product of Z/|L : F|Z and UF/NL/FUL. Since 7 is a prime element of A,
for 0 = whu € A, we have a®~! = (mhu)° ! =u®~!, u € U.. Thus, the properties in the second
displayed formula hold for unramified extensions of prime degree.

We check the assertions by induction on the degree. Let M/F be a subextension of cyclic
unramified extension L/F such that |L : M| is a prime number. By the induction hypothesis,
NymUr = Uy, NyypUy = UF, so NpjpUp = Ur and then A /Ny jpAL = Z/|L: F|Z. If o €
ker Ny r then by the induction hypothesis Ny = B! for some B € Uy, so B = Ny mY for
some ¥ € Uz and ay'~ € ker Nyp/u» hence o0 = ¥°-189 -1 where 6’ = 6|, Hence o € ug .

O

DEFINITION. Let L/F be a finite Galois extension. Define
Y.L/F : Frob(L/F) — AF/NL/FAL, T NK/FTL'K mod NL/FAL7
where K is the fixed field of T € Frob(L/F) and 7k is any prime element of K.

LEMMA. The map Y’L/F is well defined. If ©|;, = idy, then YL/F(’L') =1

Proof. Let my, m be prime elements in K. Then 7 = m € with a € € Ug. Let M be the compositum
of K and L. Since the extension M/K is unramified, by the previous Corollary there is n € Uy
such that € = Ny k1. Hence

Nk/rm = Ni/r(m€) = Ng/pa - Ng/p(NpgjxM) = Niyp2 - Npje (Nagen)-

We obtain that Ng /p Ty = Ng/pm mod Ny pAL.
If 7|, =idy, then L C K and therefore Nk /p g € Ny /pAL. O

PROPOSITION. The map Y| /F sends the product of two of its elements to the product of their

images.

Proof. Denote by y an extension in Gal(L/F) of ¢r. Take three elements of Frob(L/F) such that
the third is the product of the first two. Let K; fori € {1,2,3} be their fixed fields, so these elements
are @k, by the previous results. Let @k|z = @, for positive integer m;, then 7; = Y™ O, Le
Gal(L/F).

Also introduce Ky = y"™K; then @,

P = WKy ™| p = ¢f'. Denote u = y" ! =
Y P, ! Y™, since m3 = my +my. From @g, = @k, Pk, we obtain T3 = T4 T.
Enlarge L by replacing it with a finite Galois extension of F in L which contains L and all K;.

Proving the Proposition for this enlarged field implies the Proposition in the general case.
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Denote by N the norm map Nj /.

For a finite extension R of F in L such that RF = L1et R® =RNF, |[R°: F| =m.

R R=L
F— R =RAF— F

Denote Ag: Ag — Az, 00— P
For a0 € Ag, B € Ago we have

Npjpo (@) = N(@),  Neoyp(B) = BUHO 491" = iz (B),
and

Nr/p(@) = Ngojp o Ngpo(0) = N o Ag(0t).
Let 7; be a prime element of K; for i = 1,2,3. Put 1y = y"2(m;). Then @k, m; = m; and
m;_ migl 1
M ()Y =gV = AL

|
i i - Tci
Now,

Ni, jr 3 Nigyp % Nigy ey = Nigy s Ny e Nigy ey = Np,

where p = Nk, (m3) Nk, (M) ~' Ak, (m4) =1 Then we have v (p) =m3 —my —m; =0,i.e. p €Uy.
Using the previous paragraph, we deduce p¥~' =«

‘L'3—1 -1 _1—-14
S, Cmy
Introduce three elements p, = M7, 1, p3 = M7, 1, Ps = n}rl of U;. Then we obtain

—1 -1 13—1 17u—1
pY =py P pyt

To complete the proof of the Proposition we will show that Np € Ny /pAL. It is convenient to
work with yet another field M which is the fixed field of ¢ where n = |L: F|.

/L |
F—I=LNF ——M'=MNF

Then M /L is an unramified extension of degree n. Hence by the previous Corollary there are

units v, v; € Uy such that their images with respect to Ny, are equal to p, p;. Then by the same
Corollary

y—1 _ -1, 53-1 1—1
Wi =vr vy g
where £ = £ ~! for some € € Uy,.

Applying N, we obtain

(NV)?r =l = (Nv)V~ ! = (Ne)?®~! = (Ne)?% ! = (4 Ne) P!

where r = |L° : F| and we use @ — 1 = (¢ — 1).47 on M. Thus, Nv = k- .47 N¢e with some
K EAFR.
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Applying Ny, and using Ny & = Ny /K, we conclude Np = Nyt NV = Ny /¢ (K)Ny /5 (€) €
NL/FAL- O

COROLLARY. For a finite Galois extension L/F the map Y, /r induces a well defined homo-
morphism

YL/F: Gal(L/F) —>AF/NL/FAL'

Proof. Let two frobeniuses @, , Pk, € Gal(L/F) have the same restriction on L. If their deg are
the same then their restriction on £ are also the same, so they are equal. If deg(@k,) — deg(¢x, )
is positive then @, ¢E21 is a frobenius whose restriction on L is the identity automorphism, with
fixed field K3. For prime elements m; of K; by the previous Proposition we obtain Nk, /pTi =
Ni, )r T2 Niy )p 13 = Nk, ) r T2 mod Ny /rAy since K3 D L.

O

We will denote th; ¢ Gal(L/F)* — Ap /Ny /pAL the induced map from the maximal abelian

quotient Gal(L/F)® of Gal(L/F).

REMARK. Let L/F be a finite Galois extension such that LNF = F. Let 6 € Gal(L/F), denote
by the same notation its restriction to L. Let ¢ = @r. Then Y, /r(0) = Ng/pix mod Ny /pAL
where 7k is a prime element of the fixed field K of ox = o, KNF = F. Let M be a finite
Galois extension of L inside L and containing K. Then for a prime element 7; of L there is € € Uy,
such that tx = mz€. Hence ¢! 79 = ¢! 709¢%0-¢ = ngq’*l(s"’)"_l = (m.€%)°!, so for the prime

element my; = 7.9 we have
1- ~1 _
) (p:ﬂ:A(; R YL/F(G):NM/MDFS mOdNL/FAL.

The equation

817<p — 71:13-]71

in the very special case of cyclotomic extensions of local fields with finite residue field plays the
key role in the theory of §—y modules, but, as we see, its role is much more significant in abstract
class field theory, and hence, in particular, in local class field theory and in global class field the-
ory. This equation also plays the key role in non-commutative class field theory of arithmetically

profinite extensions of local fields with finite residue field, see Remark 6 in 21.6.
20.5. Now we deduce some of the properties 1(a), 1(b), 1(c) of 19.1, and more.
LEMMA. Let L/F be a finite unramified extension of prime degree. Then

Yr/r(Qr|L) =mp mod Ny/pAL,

where Tt is any prime element of F, and Yy jr is an isomorphism of cyclic groups of order |L:F|.

Proof. The fixed field of @ € Frob(L/F) is F. O
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PROPOSITION. IfM/F,E/L, F /k, L/k are finite separable extensions, and L/F and E /M are

finite Galois extensions, then the diagram

Ye/m

l D

Yi/r
Gal(L/F) —_— AF/NL/FAL

is commutative, where the left vertical map is the restriction of Galois automorphisms and the

right vertical map is induced by the norm map Ny /r.

Proof. For a T € Frob(E /M) its restriction on L is & € Frob(L/F), since degp(0) = degy, () fur f7 |
is a positive natural number. The intersection of the fixed field K of T with L is the fixed field R

of o and for a prime element 7x of K its norm Nk g7k is a prime element of R. It remains to use

NM/FONK/M:NR/FONK/R‘ |:|

COROLLARY. Let M/F be a Galois subextension in a finite Galois extension L/F. Then the

diagram of maps

Gal(L/M) —— Gal(L/F) —— Gal(M/F) — 1

lrL/M PL/F lYM/F

N*
Am/NpmAL 2, Ap/NpjpAr —— Ap/NypAy —— 1

is commutative. Here the central homomorphism of the lower exact sequence is induced by the

identity map of Ar.

Proof. An easy consequence of the preceding Proposition. 0

PROPOSITION. If M /k is a finite separable extension and L/M is a finite Galois extension,
and o € Gal(k*P /k), then the diagram

Yr/m

G*J/ J/G
Yo'L/o'M
Gal(oL/oM) —— Asm/NorjomAoL

is commutative, where 6*(7) = 610\,

Proof. Let 7 € Gy be an extension of T € Frob(L/M), then deg,,, (670! 55) = degy, T is a
positive integer. If K is the fixed field of 7/ with a prime element 7 then 6K is the fixed field of
ot'07!,; with a prime element o 7. O
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20.6. Another functorial property involves the transfer map from group theory. Recall the
notion of rransfer (Verlagerung). Let G be a group and let G’ be its commutator subgroup (derived
group). Denote the quotient group G/G’ by G?; it is abelian. Let H be a subgroup of finite index
in G. Let

G =U;Hp;, pi€G, 1< ‘G H’

be the decomposition of G into the disjoint union of sets Hp;.

Define the transfer
Ver: G — H®, 6 mod G — Hp,-cp;(li) mod H',
i

where o (i) is determined by the condition p;6 € Hpg(;). So 6(1),...,0(|G : H|) is a permutation
of1,...,|G: H|.
We shall verify that Ver is well defined. Let pi’ = k;p; with k; € H. Then
[1eior o) =1 (plcrpc ) o0 = 1piopgl - T1x [1x5; modH’,
because H/H' is abelian. Hence

lecpol Hp,O'p mod H'.

Now we shall verify that Ver is a homomorphism. Let ¢, 7 € G; then

piGTp;Tl(i) = Pi0pP,, oli )pa( )Tpm;( /) mod H'

and, as p;op_, () €H, piotp,] () € H, we get p(,(,-)‘cp;;(l.) €H,ie., ot(i) =1(0(i)). Hence

Hp,cn'pm Hp,opc l—IplrpT mod H'.
If G is abelian then Ver(c) = ¢/¥|,

We need another description of Ver. Let ¢ be an element of G. For an element 7; € G let
g1 = g(o, 1) be the maximal integer such that all the sets Htj0,HT) o2,...,Ht 08" are distinct.
Then, take an element 7, € G such that all Ht,0,H7,0,...,Ht 08" are distinct and find g, =
g(o, 71, 72) such that all the sets

Hno,...,Hno® Hti0,...,Ht 0%

are distinct. Repeating this construction, we finally obtain that G is the disjoint union of the
sets Ht,0™, where 1 <n < k,1 <m, < g, =¢(0,7,7,...,T,). The number g; can also be
determined as the minimal positive integer, for which the element

o[t = rodit !
belongs to H. The definition of Ver shows that in this case

Ver(c mod G') =[] oln,] modH'.
n

Since the image of YL/F is in the abelian group, it defines a homomorphism

Y50 Gal(L/F)*™ — Ap /Ny /AL
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PROPOSITION. Let L/F be a finite Galois extension and let M /F be a subextension in L/F.
Then the diagram

Gal(L/F)® —L, i —s Ap/NprAL

v !

Gal(L/M)® 2, Vi —s Am/NyuAL

is commutative; here the right vertical homomorphism is induced by the embedding F — M.

Proof. Denote G = Gal(L/F),H = Gal(L/M). Let o € Gal(L/F), and let & € Frob(L/F) be its
extension. Let G be the disjoint union of A%,6™ for 1 <n < k,1 < m, < g, as above. Let G =
Gal(L/F) and H = Gal(L/M); then G is the disjoint union of Ht,0™ for 1, = %,| € Gal(L/F).
This means that

Ver(c mod G') = HG[T,,] mod H'.

Let S be the subgroup in G generated topologically by & and

H,=Hn%St !

Then H, is a subgroup in H, which coincides with the subgroup in H topologically generated by
&|%,]. Note that %, is the disjoint union of H,%,6™ for 1 < m, < g,.
Let A be the disjoint union of ¥, ;H, for V,,; € H,1 <1 <|H : Hy|. Then

G = UUV, H,%,0™ = UV, ,%,S.
If K is the fixed field of &, then it is the fixed field of S, and we obtain that
NK/F anlfn forx € K.
Let K, be the fixed field of &[%,] = %,6% %, !. Then (%,K)F = t,K = £,L =L, #,K C K,, and

K, /%,K is the unramified extension of degree g,. Hence, for a prime element 7 in K, the element

7,(m) is prime in K,,. Moreover, one can show as before that

o) = HV,,J(OC) for o € K,,.
!

‘We deduce that
Ni/r(m an 1T (1) = [ [Nk, m (Ba(m
n

Since 6(1,] € Frob(L/M) extends the element 6[t,] € Gal(L/M), we conclude that
YL/F( )= HYL/M( L/M HG 7))

and Y20

1r(0) =1;

L/M(Ver(c mod Gal(L/F)’). O



20. NEUKIRCH’S ABSTRACT CLASS FIELD THEORY 141

20.7. In order to prove that Tzl; F

module A (axioms of CFT), not just for unramified extensions:

is an isomorphism, we need two full axioms for the G-

Al. For any cyclic extension L/F of prime degree

ker N /p = A
where o is any generator of Gal(L/F).
A2. For any cyclic extension L/F of prime degree

|AF :NL/FAL‘ = ‘L . F’
Equivalently, Ar /Ny jpAp = Gal(L/F).

REMARK. Assume that Y; , is an isomorphism for a finite abelian extension L/M. Let
6 € G be such that 6L = L,oM = M and 6%t = 7 for every T € Gal(L/M). Then A ' C
Np/mAL. Indeed, since Y7 ) is an isomorphism, the last Proposition of 20.5 shows that the map
0: Ay /NpyAr — Ap/NpmAL is the identity map, i.e. AST Np/mAL.

THEOREM. For a finite Galois extension L/ F
Y;*;F: Gal(L/F)™ — Ap /Np/rAL

is an isomorphism.

Proof. First, let L/F be a cyclic extension of prime degree n. If L/F is unramified then Y /¢ is an
isomorphism by Lemma 20.5.

If LNF = F then, in the notation of Remark 20.4 let ¢ be a generator of Gal(L/F) and use
the same notation for its restriction on L. Let ¢ = ¢,. Let K be the fixed field of oc¢ with a
prime element 7mx. Then KN F = F. Assume that Y;/p(0) =Ng/pig =1 mod Ny /pAr and get a
contradiction. Let M be the composite of L and KX, it is a subfield of L. For a prime element 77, of

L there is a unit € € Uy, such that mxg = m; €. Using the notation in the proof of Proposition 20.4,
YL/F(O-)ENK/FTCKENM/MOS mOdNL/FAL.

If Ny/mo€ € NpjrAr, then since LNF=F, Ny1ymo€ = Ny yop for a unit p € Up, and axiom Al
implies p = ev°~! for some v € Ay;. Then

(”LP)671 _ (n.Lp)G(pfl _ (n.chfl)G(pfl _ <vc7(p71)6717

so & =mpv!=9¢ € M. Since vy (vo?~!) =0, we obtain 1 = vy (&) = nvy0 (&), a contradiction.
Thus, Y /F is injective and then by A2 it is also surjective.

Now, for a finite cyclic extension L/F of non-prime degree let M/F be a proper nontrivial
subextension of prime degree. By the previous Remark Af[l C Ny mAL and therefore Ny, IF in
injective in the diagram of Corollary of 20.5. Therefore Y7 x is injective by induction on the

degree. By induction on the degree, A2 and Corollary 20.5, Y /r is surjective.

Next, consider the case of a finite abelian extension L/F. Using the commutative diagram in
Corollary 20.5, the surjectivity of Y /5 follows by the induction on the degree, and if Y; z(0) = 1

then the restriction of ¢ on every cyclic quotient M /F is trivial, hence ¢ = 1.
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For a finite Galois extension L/F the same diagram now implies that the kernel of Y; /5 is the
commutator subgroup of G. For solvable extensions the surjectivity of Y /r follows by induction
on the degree. In the general case, the surjectivity follows if the image of Y, /r includes the p-
Sylow subgroup of Ar /Ny /pAL for every prime p. Let M be the fixed field of a p-Sylow subgroup
of Gal(L/F). Then by induction on the degree, Y} /M is surjective, so the p-Sylow subgroup of
Ap/Np /mAL 1s inits image. It remains to notice that Ny, /F Maps this subgroup isomorphically onto
the p-Sylow subgroup of Ar /Ny rAL, since |M : F| is prime to p and the inverse map is induced
by the inclusion Ap — Ay,. O

20.8. The inverse of Ya LJF provides the norm residue homomorphism
¥, r: Ap — Gal(L/F)™
its kernel is Ny /pAL.

PROPOSITION. Let H be a subgroup in Gal(L/F)™, and let M be the fixed field of H in
LOF®. Then ¥, ).(H) = NyrAu.
Let Ly, L, be abelian extensions of finite degree over F, and let Ly = LiL,, Ly = L1 N L. Then

Ni,/FAL; = Ny, jrpAL, ONL, jPAL,  NpyrpAL, = N, jrAL Np, /PAL, -

For finite abelian extensions, the field Ly is a subfield of the field L if and only if Ny, ;rAr, C
Ny, /rAL,; in particular; Ly = Ly if and only if Ni, jpAL, = Np, /rAL,-
If a subgroup N in A contains the norm subgroup Ny rAL for some finite Galois extension

L/F, then N itself is a norm subgroup.

Proof. The first assertion follows immediately from 20.5, 20.7. Put H; = Gal(L3/L;), i = 1,2.
Then
NL3/FALz ¥, I/F( ) \PL /F(Hl OHZ)

lP /F(Hl) ﬁlPL /F( ) NLl/FALl ﬂ]\/}42/1”4[427
NL4/FAL4 = /F(HIHZ) lPL /F( )lPZ /F( )
=Ny, /FAL, Np, /FAL, -

If Ly C L, then Ny, /pAr, C Np,/rAL,. Conversely, if Ny, /pAr, C Ny, pAL,, then Ny 1, )AL L,
coincides with Ny, /pAr,, and Theorem 20.7 shows that the extension Li L /F is of the same degree
as Lp/F, hence L; C L.

Finally, if N D Ny /pAr, then N = Ny /pAy, where M is the fixed field of Wy /r (N). O

REMARK. The question is how for a specific field k, when the axioms Al and A2 hold, to
characterise norm subgroups Ny /rA;. of finite Galois extensions L/F in terms of A, e.g. as open

subgroup of a certain intrinsic topology of Ar.
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20.9. Similarly to 2 of 19.1, passing to the inverse limit for ¥'; /r, using 20.5, one gets the

reciprocity map
Wr: Ap — lim Ap /Ny /pAr — lim Gal(L/F)® = Gal(F*/F)
where L runs through all finite Galois (or all finite abelian) extensions of F.

THEOREM. The reciprocity map is well defined.

Its image is dense in Gal(F® /F), and its kernel coincides with the intersection of all norm
subgroups Ny pAL in Af for all finite Galois (equivalently, all finite abelian) extensions L/F.

If L/F is a finite Galois extension and o € Af, then the automorphism W (o) acts trivially
on LNF™ if and only if o € Ny FAL-

The restriction of ¥r (@) on F coincides with (p;F(a) for a € Ar.

Let L be a finite separable extension of F, and let 6 be an automorphism of Gal(F*%® /F).
Then the diagrams

AL —2ty Gal(L®/L)

| |

Aot —2 Gal ((oL)™/oL)

AL —L 5 Gal(L*®/L)

[

Ap —* Gal (F*/F)

Ar —2 5 Gal(F™/F)

| Jver

A —“ Gal (L*®/L)
are commutative, where 6*(T) = 616, the right vertical homomorphism of the second diagram

is the restriction and

Ver: Gal(F*®P/F)® —; Gal(F*P/L)® = Gal(L®/L).

Proof. Let Ly /F,L,/F be finite Galois extensions and L; C L;. Then the first Proposition 20.5

shows that the restriction of the automorphism
IPLz/F(O‘) S Gal(Lz/F)ab

on the field L; N F® coincides with W, /r (o) for an element & € Ar. This means that Pr is well
defined.
The condition o € Ny /pAy is equivalent Wy /() = 1, i.e. Wr () acts trivially on LNF®,
Hence, the kernel of Wy is equal to (N, /rAL, where L runs through all finite Galois extensions
of F. Since Wr(Ar)|L = Gal(L/F) for a finite abelian extension L/F, we deduce that Wr(AF) is
dense in Gal(F® /F).
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Similarly to the proof of Lemma 20.5 we obtain Wr (77 )|z = @F for a prime element 7z in F.
Hence, ¥r ()| = (p;F(a) and Wr (Ur)|p = 1.
The commutativity of the diagrams follow from 20.5, 20.6, 20.7. 0

21. Local Class Field Theory and Generalisations

In this section k, F, L are a local fields with finite residue field.
Put A = k%P so Ap = F*.
21.1. The map deg;: Gy — 7 is the surjective homomorphism

deg,: Gy —> Gal(k" /k) 27, k=k".

The map v: Ay —> Z is the discrete surjective valuation v; of k. The required compatibility
with the norm map for finite separable extensions and their inertia degree follows from Theorem
9.5.

Al of 20.7, i.e. Hilbert Theorem 90, holds by 16.1.

A2 of 20.7, the index of the norm group for cyclic extensions of prime degree, holds by 18.5.

Thus, for a finite Galois extension L/F we have the homomorphism
YL/F : Gal(L/F) — FX/NL/FLX,

its kernel is [Gal(L/F),Gal(L/F)| and it is surjective, and all the properties proved in section 20
hold.

We also have the local reciprocity map
\PF P — G;‘rb

with the properties in 20.8 and 20.9 satisfied.

Its compatibility with O-dimensional class field theory for finite fields follows from Theorem
20.9.

To check all the properties stated in 19.1, it remains to check that W5 is continuous and injec-
tive, its compatibility with ramification theory and the existence theorem.

21.2. EXISTENCE THEOREM. The norm groups Ny ;L™ of finite Galois extensions are open
of finite index in F*.

The reciprocity map W is continuous and injective. Its image is dense in Gal(F®® /F) and the
cokernel is isomorphic to 7 /Z.

The correspondence between open subgroups of finite index in F* and the norm subgroups of
finite abelian extensions L/F: N < Ny jpL*, N = W' (Gal(F® /L)), is an order reversing bijec-
tion between the lattice of open subgroups of finite index in F* (with respect to the intersection
N1 NN, and the product N1 N,) and the lattice of finite abelian extensions of F (with respect to the

compositum LiL, and intersection Ly N Ly).

Proof. To show that the norm group Ny /rL* is an open subgroup of F*, note that the norm map for

cyclic extensions of prime degree maps open subgroups of the group of units to open subgroups,
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this follows from the explicit description of the norm map in section 13. Hence by induction on
the degree we deduce that the norm map Ny /r is open. In particular, Ny /L™ is open. By Theorem
20.7 it is of finite index.

The preimage W' (Gal(F®® /L)) of an open subgroup Gal(F®® /L) of Gal(F*®/F) is the norm
group Ny /rL* by Theorem 20.9, hence ¥ is continuous.

Since Ur is compact, its image with respect to W is closed, hence equals Gal(F®®/F"), so
the cokernel of W is isomorphic to Gal(F* /F) /g% = Z/Z.

We will verify that an open subgroup N of finite index in F* coincides with the norm sub-
group Ny /pL* of some finite abelian extension L/F. It suffices to verify that N contains the
norm subgroup Ny /M of some finite separable extension M /F. Indeed, in this case N contains
Ng/pE*, where E/F is a finite Galois extension, E O M. Then by Proposition 20.8 we deduce
that N = Ny;/pM™, where M is the fixed field of Wg/r(N) and M /F is abelian.

Denote by n the index of N in F*. First, assume that n is not divisible by characteristic of F.
If roots u, of order dividing » are in F, then consider the Kummer extension L = F (W ). By
Kummer theory Hom(Gal(L/F), u,) = F* /F*". Since the latter is finite by Proposition 4.9, L/F
is an abelian extension of exponent n. The index of its norm group in F* is the order of Gal(L/F)
equal to the index of F*", and the latter is included in the former, hence they are equal. Thus, in
this case N contains the norm group Ny /L™ If W, is not in F*, then put F; = F(i,). By the same
arguments, F," = Np,/r L™ for the finite abelian extension L; /Fi. Then Ny, /pL{* C F*" CN.

Assume now that char(F) = p. We will show by induction on m > 1 that any open subgroup
N of index p™ in F* contains a norm group. Let m = 1. If N D U, then N is the norm group
of the unramified extension of degree p. If N A Up, then it is the norm group by 18.5. Let
m > 1, and let N; be an open subgroup of index p"~! in F* such that N C N;. By the induc-
tion assumption, N1 O Ny, /pL;". The subgroup NN Ny, jpL{ is of index 1 or p in Ny, /pL{. In
the first case N D Ny, /FLIX, and in the second case let L/L; be a finite separable extension with
NL_]I/F (NONLI/FLT) D Ny, L, then N D Ny pL*. For an open subgroup N of index np™ in F*
with ptn we now take open subgroups N; and N, of indices n and p™, respectively, in F* such
that N C N;. Then N = N1 NN, D Ny, /pLi NNy, /pLy O Np, 1,/ (L1L2) ™ and we have proved the

desired assertion for N.

The kernel of Wr is the intersection of all norm groups Ny /L™ equal to the intersection of all
open subgroups of F*, hence W is injective.

Everything else follows from Proposition 20.8. g

PROPOSITION. Every finite abelian extension of Q, is contained in an appropriate finite cy-

clotomic extension Q(pn) = Q, (&) where §, is a primitive nth root of unity. Hence
b_ 1_ 1 (n)
Q¥ = Q9 = lig Q

and

Gal(Q¥/Q,) = limGal(Q}/Q,) = Z x Uy, .
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Proof. Let’s look at the extension M = Qgp ", p" > 2. We have vy () =0, s0 §m € Oy Let
X7 —1
Xt —1
Then §pn is a oot of f,,(X), and hence |M : Q,| < (p—1)p™ 1. The elements C[‘;m, 0<i<p™ pti,

are roots of f,,,(X). Hence

fm(X): H (X_C;;m) and p:fm(l): H (I_C;i’")'

pli i
o<i<p™ O<i<p™

f;n(X) = — X(pil)pmil _+_X(p72)pmil 4+ 1

Also,

(1= G (1= Epm) ™ =1k G o+ L
belongs to the ring of integers of M. For the same reason, (1 —,»)(1—{ [‘;m)*l belongs to the ring
of integers of M. Thus, (1 —&7.)(1— Cpm)~lisaunitand p=(1— Cpm)P'"*](
¢. Therefore, ¢(M|Q,) > (p—1)p™!, and M is a cyclic totally ramified extension with the prime

P=De for some unit

m—1

element 1 — {,», and of degree (p —1)p™ " over Q,. The polynomial f,,(X) is irreducible over

Qp of &y and p = Nyyyq, (1 = §pn). If p is odd then Uy, g, = U(g;_l)pmil 50 it is C Nyy/q, Um- If
p=2,m>1then U,q, = 22;&22 _ ézzm Pus? ZUéfm ’c Ny, Um, as 5 = NQ?)/Q2 2+ &).
Since the index of the norm group equals to the index of Uy, g,, they are equal. Thus, Ny /g, M X =
(P) X Un,,-

Let L/Q), be a finite abelian extension and N its norm group. Then (p") x Ug, N (p) X Un g, is
in N for some r and m. The first group on the left is the norm group of Q,(u,—1)/Q,, the second
group is the norm group of the extension Q, (i, )/Q,. Hence L C Q,(H(pr—1ypm)-

We also obtain Gal(@ﬁ,p ") /Q,) = (Z,/p"Z,)* and hence the Galois group of the extension
of Q, generated by all roots of order a power of p is isomorphic to Z,,. Of course, the extension
of Q) generated by all roots of order prime to p is Q. Hence Gal((@;b /Qp) = 7 x Ug,- O

m \II —_
COROLLARY. Let M = Q") p" > 2. Let a = up*»(® € Q%, u e 7. Then CpmM/Q"(a) = CI',‘ml.

Proof. Denote by Q the completion of the maximal unramified extension of @, and let ¢ be
the continuous extension of ¢g, on Q, it will acts on power series in Op[[X]] by acting on their
coefficients. Denote the set of multiplicative representatives in Q by R. Note that the equation
a® ' =pwithb € O has a solution a € Op. Indeed, find coefficients of a = } ;¢ a;p', ai € R,

inductively for b =} ;- bip'. The equation ag_l = ag 1= by mod p has a solution in R. If
(o aip')? = ( 0 a;p')b mod p"*! then a, | is a solution in R ofafl’Jrl —an1bo =Y g aibpy1—i

mod p.

Define g,(X) = upX + X7, f,(X) = (1+X)" — 1 for a positive integer n. Since only u mod p”
matters, we can assume that u is a positive integer. We claim that there is a power series 0(X) €
X Op|[X]] such that

guo 6 = 6% o Ip
and 6(X) is uniquely determined by its first coefficient. We find coefficients of 6(X) = Y- X’
inductively. The first coefficient is a solution of tf’fl =u. lfg,06,= 6,? o fp mod degn+ 1 with
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0, =Y" ;X then 0, | = 6, +1,. 1 X" where p”“tf+1 —upt,1 = b where b is the coefficient of
X" of g,06,— 6 o fp, note that the latter = 6,,(X)” — 67 (X?)=0 mod p, so b € pOy. Rewrite
the equation for 7,1 as f,,1 —ﬁtffH =y with € .4y, thent, 1 =B+ By’ + B0y’ ... The
uniqueness of , | follows, since the only solution of ¢ = B¢? is 0.

Denote p = 0" o f,, then f,0p = (f,00)? " o f, = (6%0f,)? ' o f, =00 f,, =p?of,. Since
0 and 69 ' o fu have the same first coefficient, the uniqueness of 8 modulo the first coefficient
implies 6 = 6% o £, and 69 = 00 f,.

Let 0 € Gal(M/Q)) be such that {5, = £ . Denote by R be completion of the maximal
unramified extension of M. Denote the continuous extension of @y on R by @, then ¢|p = ¢. Put
Ty = Gpn — 1 and g = O(7y) € R. We deduce f,, () = (1+7g)" —1=C5" —1=Cm—1 =7y
and ¥ = 0% (%%) = 0(f,(%3)) = 6(7my) = 7k, S0 7k belongs to the fixed field K of 6¢ and it
is its prime element. Hence Yy, (o) =Ng /Q, Tk mod Ny, M™.

For a polynomial /2 define 4(") as the composite of 1 copies of . Then g,(l"> (ng) = gl(,") (0(mp)) =
9¢n(f,(,n)(7tM)) = 0%"( [f: — 1) is zero if n = m. It is non-zero if n = m — 1, since |K : Q)| =
M : Qp| > (p—1)p™ 2. Hence 7k is a root of the polynomial g(X) = g,(,m) (X)/g,(lmfl)(X) =
g,(;"*l)(X)l’_1 +up = x7"'(P=1) mod p, and g is irreducible over Q, by Eisenstein’s criterion.
Finally, Nk g,k = (—)MQlg(0) = (—=1)Mlpy, p = (—1)|M:@1"NM/QP7EM, s0 Ng/q, 7k = u
mod Ny /g, M ™. O

The next Theorem includes another proof of the Hasse—Arf theorem using class field theory.

21.3. THEOREM. Let L/F be a finite abelian extension, G = Gal(L/F). Denote by h the
Hasse—Herbrand function hy . Put Uy = Urp. Then for every non-negative integer n the reci-
procity map W ;p maps the quotient group U,I’FNL/FLX/NL/FLX isomorphically onto the rami-
fication group G(n) = Gy and Uy pNp/pL™ /Uy 1 pNpjp L™ isomorphically onto Gy /Gh(n)+1-
Therefore

Giny+1 = Ghnt1)>
i.e., upper ramification jumps of L/ F are integers.

Proof. Let Ly be the maximal unramified extension of F in L. We know that i /p = hy /7, and the
norm Ny, maps U, 1, onto U, r for n > 0. Using the first Proposition of 20.5 (for £ = L,M =
F,L = Ly) we can therefore assume that LNF = F.

By Remark 20.4 and using its notation

TL/F(G) ENM/M()S l'IlOd]\/VL/FLX7 gli(p:ﬂﬂ(flil,

where My = M N F". If 6 € Gy, then 7l belongs to Un(n),m- Writing € = [](1+ o;m') with a

prime element 7 of L, one immediately deduces that € € Uy, ,UL. Hence
NM/MO Ec NM/MO(Uh(n),MUL) NUfr C Un,FNL/FUL-

So Y(Gh(n)) C Un’FNL/FLX. Similarly, Y(Gh(n)—l-l) C Un+l,FNL/FL>< .
In the rest of the proof we will show that Y(Gy(,)) D Uy 7Ny /pL*. Then Y(Gyy) = Un p Ny /p L™,
and we deduce TL/F(Gh(n)+1) = TL/F(Gh(n-H))’ Guny+1 = Ghny1)-
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Let R/F be a subextension of L/F such that L/R is of prime degree [ and its ramification jump
s is such that G5y = {1}.

If h(n) > s then Gy, = {1}. Let’s show in this case, by induction on the degree, that U, r C
Np/rUp(n),L- The inequality h(n) > s and the description of the Hasse—Herbrand function for cyclic
extensions of prime degree implies that hg/r(n) > 5. By induction U, r C Ng/pUy, 5 (n),R- Since
every unit in UhR/F(n%R is the image with respect to Ny g of a unit in Uy, 1, we deduce the claim.
Thus, if ~(n) > s then Ny jpL* =Y({1}) = Y(Gpyn)) D UnrNypL* = Ny jpL*.

Let h(n) < s. If s = 0 there is nothing to prove, so let s > 0 and hence L/R is of degree p.
Then hg/p(n) = h(n) < 5. Let’s show by induction on the degree that

W1/r(UnrNLpL™ [NLpL™) C Gy,

Assume this inclusion is not true for L/F. Then, using the previous notation, there is a o €
Gi\Gjt1, j < h(n) such that 77:1“,’[1 =¢!=?and Ny1/uy€ € Un pNp/pUL. Denote by E the composite
of R and My. Applying the norm map Ny g, since j < s we deduce that 6|z € Gal(R/F); \
Gal(R/F)js1, (Ny/emn)® ' = (Ny/e€)' ™, Ne sy (Ny/£€) € Un pNppUr which contradicts the
induction assumption. O

COROLLARY.
For n > 0 the reciprocity map ¥ maps U, r isomorphically onto G(n), where G = Gal(F® /F).
Every abelian extension with finite residue field extension is arithmetically profinite.

Every abelian extension has integer upper ramification jumps.

Proof. By the previous Theorem ¥, (U, rNy/pL™) = Gal(L/F)(n) for every finite abelian ex-
tension L/F. We deduce that ¢ (U, r) is a dense subset of G(n). Since U, r is compact when the
residue field is finite, ¥r (U, ) is closed and we conclude that W (U, r) = G(n).

For every abelian extension L/F the group Gal(L/F)(n) is the image of G(n) in Gal(L/F).
Since every group of principal units of F has finite index in Uf, the previous paragraph implies
that G(n) has finite index in G(0) and so Gal(L/F)(x) for every x has finite index in Gal(L/F).
Thus, L/F is arithmetically profinite.

For an upper ramification jump x of L/F the group Gal(L/F)(x+ 1) is an open subgroup
of Gal(L/F). Therefore, the fixed field E of Gal(L/F)(x+ 1) is a finite abelian extension of
F. The jump x corresponds to the jump x of Gal(E/F) and therefore is integer by the previous
Theorem. O

21.4. Hilbert symbol plays a prominent role in class field theory and its applications.

Let the group u,, of all nth roots of unity in the separable closure F*°P be contained in F and
let ptnif char(F) = p.

The norm residue symbol or Hilbert symbol or Hilbert pairing (-,-),: F* x F* — L, is
defined by the formula

(a,B)n =7 "Wr(a)(y), wherey'=B,ye F*P.
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If ¥ € F*P is another element with " = 8, then Y'Y € u, and

~1 _
Y R(@)(Y) =7 Wr(o)(y).
This means that the Hilbert symbol is well defined.

PROPOSITION. The norm residue symbol possesses the following properties:
(1) (-,-)n is bilinear,;
(2) (1—oa,a), =1for o € F*, a0 # 1 (Steinberg property);
(3) (—o, ), =1fora € F*,
(4) (. B)n= (B, ), ";
(5) (a,B),=1ifand only if @ € NF((/B)/FF(W)X and if and only if
B € Ny rF (Va)*;

(6) (a,B), = 1forall B € F* ifand only if o € F*",
(o, B), =1 forall @ € F* ifand only if B € F*";

(7) (0t B)hy = (0t B)n for m > 1, fum © F

(8) (&,B)nr = (Npjp,B)nr for & € L*,B € F*, where (-, ), 1 is the Hilbert symbol in L,
(+,+)n.r is the Hilbert symbol in F, and L is a finite separable extension of F;

(9) (oat,6PB)nor=0(0, B)nr, where Lis a finite separable extension of F, ¢ € Gal(F5? /F),

and U, C L™ but not necessarily U, C F*.

Proof.
(1): For y € F*P y" = 3 we get

Y "Wr(onon)(y) =Pr(on) (v "r()(y) - (v "Pr(a) (7))
= (v "¥r(o) () (v "¥r(on)(9)),

since Wr (o) acts trivially on (o, ), € W,. We also obtain

(0, BiB2)n= (1'% "Wr(a) () = (0 "Pr(a)(n)) (B " Pr(a) (1)
= (&, B1)n(@, B2)n-

for 11,7 € F*0, 7 = B1, 7% = B.
(5),(2),(3),(4): (a,B), =1 if and only if ¥r () acts trivially on F(\’/E) and if and only if @ €
n X
NF({/E)/FF(\/B)) by Theorem 20.9.
Let m|n be the maximal integer for which a € F*™. Then F(y/a)/F is of degree nm~'. Let
o = of" with o; € F* and let §, be a primitive nth root of unity. Then for § € F*P 8" = o, we
get

1—a__1i(1—§’ In]lnf‘[(l—c i )

= Ne(ya)/F (H(l - 525)) € Np(ya)rF (Va) ™.

i=1
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Hence, (1 — o, @), = 1. Further, —ot = (1 —a)(1 —a~')~! for o # 0, # 1. This means that
(—o,0),=(1—a,a),(1-a L a™t)

n

l=(-aB,aB),=(—a,a).(a,B).(B,)u(=B,B)n = (&,B)n(B, ),
ie, (o,B),=(B,),".

Finally, if (e, ), = 1, then (B, &), = 1, which is equivalent to
B € NryayrF (Vo)™
(6): Let B € F*"; then (o, B), = 1 forall a € F*. Let B ¢ F*", then L= F({/B) # F, and L/F

is a nontrivial abelian extension. By Theorem 20.9 the subgroup Ny ,rL* does not coincide with
F. If we take an element & € F* such that & ¢ N /pL* then, by property (5), we get (e, ), # 1.
(7): For y € F*P_y"" = 3, one has

(0, B = (v "¥r()(1)" = (v "Pr(a)(v")) = (&, B)n.

because (y")" = .
(8): Theorem 20.9 shows that

(o, B)nz =7 "¥r(a)(y) = ¥ "Pr (Niyr (@) (v) = (Npyp et B),,

where y € F5P y' = 3.
(9): Theorem 20.9 shows that for y € F5P y" = 3,

I'— 1. Moreover,

(00t,0B)nor = 0 (v ' Wi(@)(1) = 0(, B

COROLLARY. The Hilbert symbol induces the nondegenerate pairing

()t FJF" < F*JF*" — p,.

Kummer theory asserts that abelian extensions L/F of exponent n (i, C F*, pfnif char(F) =
p) are in one-to-one correspondence with subgroups B, C F*, such that B, D F*", L=F(/B) =
F(y:y" € BL) and the group B /F*" is dual to Gal(L/F).

THEOREM. Let W, C F*, pfn, ifchar(F) = p. Let A be a subgroup in F* such that F*" C A.
Denote its orthogonal complement with respect to the Hilbert symbol (-,-), by B = Al e,

B={BeF :(a,B)n=1 forall o€ A}.
Then A = Ny pL*, where L=F({/B) and A = B*.
Proof. We first recall that F*" is of finite index in F* by Proposition 4.9.
Let B be a subgroup in F* with F*" C B and [B: F*"| = m. Let A = B*. Then Wr(«), for

@ € A, acts trivially on F({/B) for B € B. This means that Wr () acts trivially on L = F(+/B)
and, by Theorem 20.9, & € Ny /rL*. Hence

AC NL/FLX.
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Conversely, if a € N /L™, then Wr () acts trivially on F ({/B) C Land

a eNF(W)/FF(\"/B)X

for every B € B. Property (5) of the previous Proposition shows that (o), = 1 and hence
NpjpL™ C A. Thus, A= Ny /pL*.

Furthermore, to complete the proof it suffices to verify that a subgroup A in F* with F*" C A
coincides with (A1)*. Restricting the Hilbert symbol on A x F* we obtain that it induces the
nondegenerate pairing A/F*" x F* /A+ — u,. The order of A/F*" coincides with the order of
F*/A*. Similarly, one can verify that the order of A~/F*" is the same as that of F* /(A*+)L,
and hence the order of F* /A* equals the order of (A1) /F*". From A C (A1) we deduce that
A= (AhH)L O

The problem to find explicit formulas for the norm residue symbol originates from Hilbert. In
the case under consideration the challenge is to find a formula for the Hilbert symbol (¢, ), in
terms of the elements o, B of the field F. This problem is very complicated when p|n. There is a

simple answer when p{n.

PROPOSITION. Let n be relatively prime with p and W, C F*. Then
(0t B)n = cat, B)l= 1",
where q is the cardinality of the residue field F and
c: F* XF" — lUg
is the tame symbol defined by the formula
c(at, B) = pr (ﬁvp(a)a—vp(ﬁ)(_l)w(a)w(ﬁ)) :

with the projection pr: Up — U, induced by the decomposition Ur = [, 1 X Uy, i.e., pr(u)

is the multiplicative representative of i € F.

Proof. Note that the elements of the group u,, for p{n, are isomorphically mapped onto the
subgroup in the multiplicative group F. Hence, n|(g — 1). Note also that the prime elements
generate F*. Indeed, if o = n%€ with € € Uy, then @ = 7 w41 for the prime element m; = 7e,
when a # 1, and o = @, for the prime element 7, = e, when a = 1. Using properties (1) and (7)
of the Hilbert symbol it suffices to verify that ¢(r, B) = (7, B)4—1 for B € F*.

Let B = (—m)“0€ with a = vr(B),60 € W, 1,€ € Uy . Then c(r,—7) = 1. Since & = &/
for some € € U; r due to (¢ — 1)-divisibility of U; r, we obtain c(m,€) = 1. Hence c¢(x,f) =
c(m,0) = 6. Property (3) of the Hilbert symbol shows that (x,—m),—; = 1. Since the group
U r is (g — 1)-divisible, (7,€),—1 = 1. Finally, since the extension F(+/0)/F is unramified, for
n € F*°P n9-! = 6 we have

(m,8)g-1 =n""r(m)(n) =n""or(n) ="' = 6.
We conclude that (7,),-1 = 6 = c¢(mx, B). O
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REMARK. There are two types of explicit formulas for the p"th Hilbert symbol: explicit
formulas of Shafarevich, Vostokov, Kato type and explicit formulas of Eisenstein, Kummer, Artin—

Hasse, Iwasawa, Sen, Coates—Wiles, Kato—Kurihara type.

Here is the Vostokov formula for the Hilbert pairing. Let F contain a primitive p”th root {,»
of unity, p > 2,n > 1. Choose a prime element 7 of F. Let &) be the ring of integers of the inertia
subfield Fo = F N Q)" of F. Let Tr = Trg, 7, and let ¢ be the Frobenius automorphism of Q,,.

Then for a, B € F*
((X;B)pn — C[;I;TI'ES(I)(A7B)(1/S+1/2)

®(A,B) =I(B)dA/A — l(A)IldeA /B>,

where A, B € 0p((X))™ are any series such that A(w) = o,B(w) =3, S = S’fn — 1, the series S| €
14X 0)|[X]] is any series such that S () = {, [(A) = log(A? /A®)/p, (LaiX')® = ¥ @(a;)X",
res(Ya;X'dX) = a_1. Thus, this formula for the Hilbert pairing involves indeterminacies in rela-
tion to the choice of 7,A,B,S;.

The right hand side of the previous displayed formula is defined independently of class field
theory, it is called the Vostokov symbol. Vostokov symbol can be used to provide an alternative

presentation of class field theory for Kummer extensions without using the local reciprocity map.

21.5. Artin—Schreier pairing is important in positive characteristic.

Abelian extensions of exponent p of a field F' of characteristic p are described by the Artin—
Schreier theory. The polynomial & (X) = X? — X is additive. Abelian extensions L/F of exponent
p are in one-to-one correspondence with subgroups B C F such that &(F) C B. The quotient
group B/ (F) is dual to Gal(L/F), where

L=F (g '(B)) =F(r: p(v) €B).

For a complete discrete valuation field F of characteristic p with a finite residue field we define

the map
(+,-]: F*xF —TF,
by the formula
(o, B] = Wr(a)(7) -7,
where 7 is a root of the polynomial X” — X — f3. All the roots of this polynomial are Y+ ¢ where ¢

runs through I, therefore we deduce that the pairing (-, -] is well defined.

PROPOSITION. The map (-,-] has the following properties:

(1) (ua, Bl = (a1, Bl + (0, B, (o, B + o] = (&, Bi] + (@, Ba];

(2) (—o,0] =0 for a € F*;

(3) (o, B] =0 if and only if o € Np(y)/pF(Y)*, where Y —y = B;

(4) (a,B]=0forall a € F* ifand only if B € (F);

(5) (a,B] =0 forall B €F ifand only if o. € F*?;

(6) (m,B] = Trr, /r, 60, where T is a prime element in F and B =Y;>, 0,7 with 6; € F,,.
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Proof.
(1): One has

Pr(aro)(y) —y="Pr(on) (¥r(oa)(y) —7) +¥Pr(a)(y) — v
=Wr(ou)(y) —v+¥(a) () -7,
since Wr(0p)(y) — v € F. One also has

Yr(a)(n+r)—n+nr)=Yr(a)(n) —n+¥r(a)(r) - r.

(3): (a,B] =0if and only if ¥r () acts trivially on F(y), where ¥’ —y = 3. Theorem 20.9 shows
that this is equivalent to & € Np(y) /pF (7).

(2): If @ € (F), then (—ot, &¢] = 0 by property (3). If a root y of the polynomial X? — X — o does
not belong to F, then —a = Ny (,)/r(—7) and property (3) shows that (—a, o] = 0.

(4): If B ¢ go(F), then L= F(y) # F for aroot y of the polynomial X? — X — f; L/F is an abelian
extension of degree p, and hence Ny /pL* # F*. For an element o € F*, such that o & Ny /pL*,
we deduce by Theorem 20.9 that Wr () acts nontrivially on L, i.e., ¥r () (y) # v and (o, B] # 0.
(5): Let A denote the set of those @ € F*, for which (a,] =0 for all B € F. Note that for
o, B € F* properties (1) and (2) imply

(=B,ap] = (—ap, af] — (o, aB] = —(a, ap].

Hence, the condition o € A is equivalent to (o,aff] =0 for all B € F* and to (—f,af] =0
for all B € F*. Then, if a;, 0 € A we get (—f, (o + 00)B] = (—B,0uB] + (=B, ] =0, and
(—B,—0yB] = —(—PB, a1 B] = 0. This means that o; + 0, —0t; € A. Obviously, @0 € A,ocl_1 €
A. Therefore, the set AU {0} is a subfield in F. Further, F» C AU{0} by property (1), and we
obtain F” C AU{0} C F.

One can identify the field F with F,((x)). Then the field F? is identified with the field
[F,((7?)) and we obtain that the extension F,((x))/F,((n?)) is of degree p. Hence, AU{0} = F?
or AU{0} = F. Since @(F) # F, property (4) shows that (a, 3] # 0 for some B € F,a € F*.
Thus, AU{0} #F,ie., A=F*’.

(6): If 0 € Fyand y € F5P, y? —y= 0, then F(y) = F or F(y)/F is the unramified extension of
degree p. Theorem 20.9 implies

(m,6] = @r(y) —y=7'—y=0""+ 09" 1 ... 1 =Ty s 6.
Let a be a positive integer and 6 € . Then
a(m,0n’] = (n*,0n%] = (67,07 = (—1,07] =0,

since the group IF< is p-divisible and —1 € Fj. Hence (7, 07| = 0 for pta. Finally, let a = p*b,
where s > 0 and p{b,b > 0. Then

ont = (O’ L)y — o’ P o € o P+ p(F),

where 8 = 6. Continuing in this way we deduce that 67¢ = 6,” + @ (1), where 6/ " =6 and
A € F. Then (7,07%] = (r, 6;m’] = 0. We obtain property (6) and complete the proof. O
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COROLLARY. The pairing (-,-| determines the nondegenerate pairing
p
F*/F*"xF/@(F)—F,

To obtain an explicit formula for (-, -], introduce a map dy as follows.
Let w be a prime element of a complete residue field F of characteristic p with the residue
field IF,. Then an element o € F can be uniquely expanded as
o= Zeﬂl’i, 0; E]Fq.
iza
Put
dea =Y i 'dr, resg () mimdm) =n_,.

iza

Define the Artin—Schreier pairing
Dy: F* xF —T,, Dy (e, B) = Ty, /r, resz(Bdrat/at).

PROPOSITION. The map Dy possesses the following properties:
(1) linearity
Dr(ou0n,B) = Dx(a, ) + Dr(0n, B),
D?‘C(aaﬁl +B2) = D?‘C(aaﬁl) +Dﬂ(a7ﬁ2);

(2) if my is a prime element in F, then

Dn(ﬂ'],ﬁ) :Dm(ﬂ:],[” :Tr]Fq/Fp 6o,
where B =Y, 67}, 6; € Fys
(3) if 8,1 €F} then Dz (1+ 67, na)) =0ifi>—j, i >0; Dz(1+ 67, nas) =Try, 5, (67)
ifi=—j>0.

Proof.

(1): We have
dﬂ(alag) _ d. . d. 0

o0 o (05}

)

since dr @ can be treated as a formal differential da(X)|y_, for the series a(X) = ¥ a;X'. Hence,
we get Dy(oy o, B) = Dr(ou,B) + D0, B).

The other formula follows immediately.

(2): Let C = Z[X1,X,...], where X;,Xa,... are independent indeterminates. Let X be an

indeterminate over C. Put
a(X) =X X +XoX> + X3X3 +--- € C[[X]].
For an element ¥ -, k;X/ € C[[X]], k; € C, we put

d(Y kX)) =Y jrX/7lax, resx() k;X/dX) =x_,.
jza jza j>a
Note that
resyd (Y K;X7) = 0.

j=a
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Hence, for i # 0 we get
resy (a(X)"'da(X)) = resy (:d (a(X)i)) =0.

One can define a ring-homomorphism C[[X]] — F as follows: X; e C — n; € F,,X — 7. The
series a(X) is mapped to () = M+ np7w> +--- € F, and we conclude that
resy (a(n) 'dza(m)) =0  if i#0.
Now let B =Y >, o;m,6; € [F,. The definition of Dy, shows that

D?‘C] (nlaﬁ) = TrFq/Fp 90-
Writing 71 = 0y T+ N2 + - - - = a(7) with 1; € F,;, we get
Dy (m, Gin'f) =resy (Ginffld,rm) =resy (Bioc(n)"*ldﬂoc(n)) =0 ifi#0,

and
Dx(m1,60) =resg (Bpar(n) 'dra(n)) =resz((Bon " +8)dm) = Trg, /r, 60
where 8 € Op. Thus Dy, (71, ) = Dz(m1, ) = Trg,/r, 00, as desired.
(3) follows immediately from the definitions. Il

PROPOSITION. Let F be a complete discrete valuation field of characteristic p with the
residue field F,. Then the pairing (-,-] coincides with Dy. In particular, the pairing Dy does

not depend on the choice of the prime element T.

Proof. As the prime elements generate F*, it suffices to show, using property (1) of (-,-] and
property (1) of Dy, that for a prime element 7; in F the following equality holds:

(m,B] = Dx(m,B), BEF.
Let B=Yi>, 91-71:{. Then property (6) of (-,-] and property (2) of d;; imply that

(m1, B] = Dr(m,B) = Tr]Fq/IF,) 6o,

as desired. O

REMARKS.

1. One can prove directly, without using class field theory, that D; induces a continuous
perfect pairing F* /F*P x F / go(F) — F,, using explicit computations of Dy in the Proposition
preceding the previous one. Using Artin—Schreier theory, this gives an algebraic and topological
isomorphism F* /F*? = Gal(F,/F) where F), is the composite of all cyclic extensions of degree
pofF.

2. Similar to the study of the Hilbert symbol, one can prove that for an open subgroup A in F*
such that F*” C A, its orthogonal complement B with respect to the Artin—Schreier pairing ( , ]
produces an abelian extension L = F (&' (B)) of F such that A = Ny /rL*. In particular, every
open subgroup A of index p in F* is the norm group Ny /pL* of L = F(7'(B)) where B & @(F)
satisfies (A, B] = 0.
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3. Using Witt vectors over F one can extended the previous theory to the Artin—Schreier—Witt

pairing. A map defined by
(- ln: F* XWy(F) — Wo(Fp) = Z/p"Z

by the formula
(a,x]n = Wr(a)(2) — 2,

where z € W, (F*P) and z” — z = x, produces a nondegenerate pairing
F*JF*?" X W,(F) /oW, (F) — W,(F,) = Z/p"Z.
Similar to the previous material, there is an explicit formula for it.

21.6. FURTHER REMARKS.

1. Let L be an infinite arithmetically profinite extension of a local number field F, and let E /L
be a finite Galois extension. If L is the union of finite field extensions L; of F and E = L(«), then
E is the union of E; = L;(a) and E;/L; is Galois extension with the Galois group isomorphic to
Gal(E /L) for all sufficiently large i. Define

Yg/p: Gal(E/L) — N(L|F)™ /Ny(g|r)nwr)N(EIF)™

as the inverse limit of Y, : Gal(E/L) = Gal(E;/L;) — L;* /Ng,/1,E;* with respect to the norm
maps. Then Y/, equals the composition of Gal(E/L) = Gal(N(E|F)/N(L|F)) and the homo-
morphism YN(E\F)/N(L|F) : Gal(N(E|F)/N(L‘F)) — ]\7(L’F)>< /NN(E\F)/N(L\F)N(E|F) X, Thus,
the reciprocity map in characteristic 0 or zero is connected with the reciprocity map in charac-
teristic p.

Using this observation and the explicit formula for the Artin—Schereir pairing and its gener-
alisation, the Artin-Scheirer—Witt pairing, and field of norms of a local number field contains f,»
and its appropriate arithmetically profinite extension L/F, one can obtain new proofs of explicit
formulas for the p"th Hilbert symbol. Using the arithmetically profinite extension described in
Remark 4 of 17.1 one obtains explicit formulas of Shafarevich, Vostokov, ... type. Using the
arithmetically profinite extension generated by all roots of order a power of p one obtains explicit
formulas of Kummer, Artin—Hasse, Iwasawa, ... type.

An open question is whether there is another class of arithmetically profinite extensions that

can lead to a new type of explicit formulas for the Hilbert symbol.

2. Let 7 be a prime element in F and Wy () = ¢. Then @| .. = @, and for the fixed field Fx
of @ we get
FrNFY =F, FF"=F%®,
The prime element 7 belongs to the norm group of every finite subextension L/F of Fy/F. The
group Gal(F® /Fy) is mapped isomorphically onto Gal(F* /F) and the group Gal(F/F) is iso-
morphic to Gal(F /F'r), the inertia subgroup of G = Gal(F® /F).
We have

Gal(F® /F) 2 Gal(Fy /F) x Gal(F™/F),  Gal(Fg/F)=Up, Gal(F"/F)~Z
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and
W (F*) = (@) x Gal(F*®/F""),
where (@) is the cyclic group generated by ¢.

The field F; can be explicitly generated by roots of iterated powers of the isogeny of a formal

Lubin-Tate group associated to 7.

3. Other approaches to class field theory of local fields with finite residue field:

— historically the first one, by Hasse, using the computation of the Brauer group of the field to
define a canonical pairing of the group of characters of the field k with £* and use its properties to
derive the reciprocity map

— historically the second one, using group cohomology, e.g. Artin-Tate

— explicit cohomology-free approach of Hazewinkel (in a way the inverse to the Neukirch
approach in the local field case)

— in positive characteristic Kawada—Satake’s cohomology-free approach uses Artin—Schreier—
Witt theory and explicit pairings

— explicit cohomology-free approach using formal Lubin—Tate groups

— using ¢-y modules theory, by Herr.

Hazewinkel’s approach to local class field theory constructs ¥y /p: F* /Ny pL* — Gal(L/F )20
for a totally ramified Galois extension L/F by sending o € U, to ¢ € Gal(L/F) that satisfies the
congruence JrLl’G =B¢"! modU Blgf % where .Z is the completion of L' and 8 € U is such that
Ny, /F ﬁ = .

4. It is an open question whether there is another local class field theory with different deg,
for example, using the z—quotient of the maximal abelian extension of Q,,.

5. Generalisation of class field theory to local fields with quasi-finite residue field F, i.e.
G = Z, using A = F* can be produced by checking axioms Al and A2. When the residue field
is infinite, existence theorem becomes much more complicated, and the formal Lubin—Tate groups
approach is not extendable.

Generalisation of class field theory to local fields with perfect residue field F of characteristic
p such that F # @(F), i.e. the field F is not separably p-closed, i.e., it has nontrivial separable
extensions of degree p. Let F**" denote the maximal abelian unramified p-extension of F and let
L/F be a finite Galois totally ramified p-extension. Fesenko’s class field theory for such F defines

a generalisation Y7 /5 of the Neukirch method. The reciprocity map 1 /r induces an isomorphism
Homgz, (Gal(Fabur/F)vGal<L/F)ab) = Urr/NypUs

where Homgz,, denotes continuous Z,-homomorphisms from the group Gal(F abur /) endowed
with the topology of profinite group to the discrete finite group Gal(L/F).

The group U, r/Np/pU 1 is no longer finite if the residue field if not quasi-finite, so the
numerical property in A2 has to be replaced with the isomorphism property Uy r /Ny /pU 1 =
Homg, (Gal(F abur /F), Gal(L/F)™) for cyclic totally ramified extensions L/F of degree p. In this
theory one uses a generalisation of Hazewinkel’s reciprocity map ‘¥ /r and the easy to check fact

that W',/ o Y35, is the identity map on Gal(L/F)™.
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Existence theorem in this theory implies the following property: let 7 be a prime element in F
and let Fy; be the compositum of all finite abelian extensions L of F' such that 7 € N /rL*. Then
Fr is a maximal abelian totally ramified p-extension of F and the maximal abelian p-extension
FP of F is the compositum of linearly disjoint extensions F; and F2%". No explicit construction

of Fy is known unless the residue field is finite.

6. There is even a generalisation of class field theory to some partial class field theory of
complete discrete valuation fields with general (i.e. possibly imperfect) residue field F of charac-
teristic p such that F' # @(F). Unlike the other local class field theories, there is no induction on
the degree in this theory.

At the same time, class field theory of a n-dimensional local field F, see 3.5, with last finite
residue field describes abelian extensions of F by using the Milnor K,,(F)-group of F, and induc-
tion on the degree works fine there. This theory works with Ay = K,,(F) with the appropriate defi-
nitions of v and deg, so that the axioms A1, A2 are satisfied. However, there is in general no Galois
descent, i.e. K,(F) % K,(L)%®/F) and the map K, (F) — K, (L) induced by field embedding
is not in general injective, so one needs to modify the abstract class field theory to be applicable
here. The theory constructs the higher local reciprocity map Ar = K, (F) — Gal(F®/F) with
everywhere dense image and with the kernel N,,>mK, (F), such that all the properties in section
20 hold.

7. Arithmetic non-abelian class field theory for a local field F with finite residue field (Fes-
enko). Let ¢ in the absolute Galois group G of F be an extension of the Frobenius automorphism
or. Let Fy be the fixed field of ¢@. It is a totally ramified extension of F" and its compositum with
F"" coincides with the maximal separable extension of F. For every finite subextension E/F of
Fy/F put g = Y£(@|gw). Then 7 is a prime element of E and from functorial properties of the
reciprocity maps we deduce that my = Ngy 7g for every subextension M J/F of E/F.

Let L C Fy be an infinite Galois totally ramified arithmetically profinite extension of F.
Then the prime elements (7z) in finite subextensions E of Fy,/F supply the sequence of norm-
compatible prime elements (7z) in finite subextensions of L/F and therefore by the theory of
fields of norms a prime element X of the local field N = N(L|F). Denote by ¢ the automorphism
of N and of its completion N = N (Z\“r / Fur ) corresponding to ¢. Note that N and N are
Gp-modules.

Define a noncommutative local reciprocity map
®L/F . Gal(L/F) — Uﬁﬁr/UN
by
@L/F(G):U l'l'lOdl]/\/7

where U € Ugg; satisfies the equation

U =x'°.

The element U exists by the properties of local fields with separably closed residue field. Compare
this equation with that in Remark 20.4.
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The ground component u; of U = (u;5:) belongs to F. We have compatibility with the usual

local class field theory at the lowest component:
®L/F(G)fur:ufﬁr:YF(o-) mOdNL/FUL.
The reciprocity map @y is injective and satisfies the 1-cocyle relation:

®L/F(GT) = ®L/F(0') 0'(®L/F(T))-

For arithmetically profinite extensions whose Galois group is n-nilpotent, this noncommuta-

tive reciprocity map iimplies Koch—de Shalit-Gurevich class field theory.

22. Adeles of Global Fields

22.1. A globalfield F is either a number field, i.e. a finite extension of (Q, or a global function
field, i.e. a finite separable extension of IF,(z).

The largest finite subfield of a global function field is called its constant field or field of con-
stants.

Note that every finitely generated extension F of [F,, of transcendence degree 1 over I, is
a global function field. Indeed, if F = F,(ay,...,a,) with a; transcendental over F,, then by
induction one can assume that IF,(a»,...,a,) is a finite separable extension of F,(a,), so F is a
finite separable extension of F,(a1,a>). Find a non-zero irreducible polynomial f(X;,X>) over IF,,
such that f(aj,a,) = 0, it contains a term in which the degree of X; is prime to p for i equal 1 or
2, and then F is separable over F,(a;) where {i, j} = {1,2}.

Many results of algebraic number theory hold for global function fields, with Z replaced by
[F, [7]. The ring of integers O of a global field is a Dedekind ring, hence with unique factorisation
of non-zero proper ideals into the product of maximal ideals. The norm N(I) of ideals is a mul-
tiplicative function and the maximal ideals of &7 lying over maximal ideals of OF are described
similarly to the number field case. Instead of working with the ideal class group of the ring of in-
tegers Op it is better to work with the Picard group of an associated smooth irreducible projective

curve, as we will see later in this section.

DEFINITION. A completion F, of F is a local field with finite residue field or R or C such that
there is a ring isomorphism & between F and its dense subfield.
Two completions F,, F,, of F are called equivalent if there is a ring isomorphism 7: F, — F
such that § =&’ oT.
A place of F is an equivalence class of completions of F. A place is called (archimedean or
infinite) real, resp. complex, if the completion is isomorphic to R, resp. C. The rest of the places
is called finite or non-archimedean.

EXAMPLES.

1. Finite places of Q correspond to positive primes, and there is one infinite real place.
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2. A complex place has two representatives, a complex embedding and its composite with
complex conjugation.
3. All places of [F,(¢) are finite, they correspond to monic irreducible polynomials over IF,, or

to —deg, see Example 2 of 1.3.

Similarly to section 9,

DEFINITION. For a finite separable extension L/F of global fields a place w of L is said to lie over

w/F, is a finite extension of complete fields.

Due to Remark 1 of 9.7, for a finite separable extension L/F of global fields and a place v of

F places w of L over v are determined from the isomorphisms
L®rF, = @W\VLW

(the same argument as in 9.7 works for infinite places as well). So
Y ewp)f(wy) =Y ILv: K| =|L: F|
wlv wlv
and
Try/r(a ZTrLM/F ), Nyr(o HNLW/F )

wiv wiv
where (@) is the image of an element & of L in @,,,Ly,.

Let L/F be a finite Galois extension. Let a place w of L lie over a place v of F. The group
Gal(L/F) acts on the set of w over v, and o € Gal(L/F) induces an isomorphism L,, = L.
The decomposition group Gal(L/F),, of w in L/F is the subgroup {c € Gal(L/F) : ow = w}
of Gal(L/F). Each o € Gal(L/F),, induces a K,-automorphism of L,, which is the contin-
uous extension of ¢ from L to L,,. The restriction of automorphisms gives the injective map
iw: Gal(L,/F,) — Gal(L/F) whose image is Gal(L/F),,.

Ly,

22.2. The name ‘adele’ in number theory is the evolution of ‘ideal number’— ‘ideal’ —
‘idele’— ‘additive idele’— ‘adele’.
DEFINITION. For a global field F its ring of adeles Ar is the restricted product of all its non-
equivalent completions
AF—H F,={a=(a):a, €F,a, € 0, for almost all v}

where v runs through all places of F, and 0, is the ring of integers of F, for finite v. So we do not

need to know what the rings of integers of R and C are.
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Equivalently, Ap = lim Ar(S), Ar(S) = ITyes F» X [Tygs Oy with S running through all finite
subsets of places of F containing all infinite places. The addition and multiplication on Ar(S) are

component-wise.

DEFINITION. Define the translation invariant topology on the additive group Ar(S) as the product

topology on the topology of the additive group F, for v € § and the topology of the additive group
O, forv ¢ §. Since 0, are compact and F, are locally compact, Ag(S) is locally compact. Endow
the additive group of Ag with the direct limit topology 1i_n>1AF(S), so Ar(S) are open subrings of
Apr. This topology is translation invariant. A fundamental system of neighbourhoods of zero in
A is formed by [,cs W, x [1,zs O, where W, are open neighbourhoods of zero in F,,. Since each
F, and 0, are complete topological space, Ar is a complete topological space. Since Ar(S) are
locally compact, Ar is locally compact.

We have the canonical diagonal injective homomorphism
F— Ap, aw~(a).
We will identify F with its image in Ar.

So the set of all [[,cgW, X [],¢5 Oy with open neighbourhoods W, of 0 in F, and S running
through finite subsets of places of F containing all infinite places, is a basis of fundamental neigh-
bourhoods of 0 in Ag.

Due to the relation between completions in finite field extensions, for a finite separable exten-
sion L/F of global fields we immediately deduce

AL = Ar®FL.
Hence we have (see also 22.1) the norm map Tr p, N /p: AL — A satisfy
TrL/F((OCW))v = ZNLW/F,,O‘M NL/F((OCW))V = HNLW/FVOCW-
wlv wlv

22.3. PROPOSITION. The topological additive group of a completion F, of a global field is
topologically self-dual: it is non-canonically isomorphic to its character group X (F,).

The topological additive group of A is topologically self-dual: it is non-canonically isomor-
phic to its character group X (Ar).

F is discrete in Ap and Ar /F is compact.

Proof. Let k = Q in characteristic zero and k = F,(¢) in positive characteristic and a global field
F be a finite separable extension of k.

The additive group Q, is Z, +A, where A, = {a/p" :a € Z,n > 0}, and Z,NA, = 7Z, so we
get a continuous additive homomorphism w,: Q, — Q,,/Z, = A,/Z — R/Z by sending z+a
toa modZ,z € Zy,a € A,. We have w,(Z,) = 0.

On the additive group of F, = F,,((r)) we get a continuous additive homomorphism
o,: Fy((t)) — F,((t))/F,[[t]] — F, — R/Z which sends Y a;t' to y(a_;) = yores, (Y a;t'dt)
where y is a homomorphism which sends 1 € F), to 1/p mod Z and res; is as in 21.5. We have
wv(ﬁv) =0.

Using these homomorphisms, define their analogs for completions of F'.
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For an archimedean completion F, denote by y? its character
o — exp(—27i Trg, r(@t)).
For a non-archimedean completion F, in characteristic zero denote by y? its character
o — exp(27ie, o Trr, /g, (@)
For a non-archimedean completion F, in characteristic p denote by y? its character
o > exp(27iay, o Ty, p, (1)) (@)

Since the trace sends integral elements to integral elements, we deduce y?(&,) = 1 for all
finite places v.

Denote the character o — wo(ay) by 7,1[/9 . For every character y,, of F;, one can find y € F,
such that y,(a) = ng , by choosing its successive coefficients of powers of a prime element appro-
priately. Indeed, since W, is continuous, there is integer m such that y, (Z") = 1, y, (A" 1) # 1,
and there is a similar my for VI‘? If 7, is a prime element of F,, let Y = 6,,,—,, )" 4 ... with a
non-zero multiplicative representative 6,,,—,, € 0, such that the induced by v, character of the
finite field k(v) = ™! /. coincides with the character induced by yy?. Then yyly; ! van-
ishes on .Z"~!. Repeat the procedure to get ¥ = Oy m T " + O gm0 + -+ € F,, etc.
Thus, X(F) = {,y0:y€ K} 3 F,.

Open neighbourhoods in X (F,) of the character y', w!(F,) = 1, are W(U) = {y € X(F,) :
y(B,) C U} where U runs through open neighbourhoods of 1 of the complex unit circle and B,
is some fixed nontrivial closed ball of F,. The set {y € F, : ,y0 € W(U)} equals W = {y € F, :
w?(yB,) C U} which is open in F,. Conversely, for any non-empty open subset V of F, the set
{yy?:yeV}isopeninX(F,) since V contains an open set {y € V : y(yB,) C U} for some open
U and hence {,y? : y € V} contains W (U).

Then the pairing F, x F, — R/Z, (o, ) — w?(aB) induces an algebraic and topological
isomorphism of the additive group F, and its group of characters X (F,). For R and C these are
classical statements.

A character y of the additive group of Ar induces a character of Ag(S) and y, on F, which
is trivial on almost all &), so y(a) =[]y, (a,). Conversely, if y, are characters of F, trivial on
almost all 0, then (a,) — [Ty, (o) is a character of Ap. Thus, we have the character

v =, =]w
v
The definitions imply that for a finite separable extension of global fields we have

lllgL = ng OTrL/F *

Similarly to the local situation, the pairing Ar x A — R/Z, («, ) — w°(aB) induces an
(algebraic and topological) isomorphism of Ay with its group of characters.

Due to the formula A;, = Ap ®F L for a finite separable field extension L/F, it suffices to show
the last claim of the Proposition for k. In the first case, by using the first paragraph of the proof,
Ap = k+ Ag(o), Ag(0) =T1Z, x R, and kN Ag(eo) = Z. Hence we have a homeomorphism
Ay/k = Ay(e0)/Z. The group Z is discrete in Ay (e0) as one immediately sees looking at the
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real component, hence Q is discrete in Ag. Also, Ag = Q+T[1Z, x [-1/2,1/2], QN[IZ, x
[—1/2,1/2] = {0}, where [—1/2,1/2] is isomorphic to the complex unit circle with respect to
o — exp(2mia). We obtain a homeomorphism of Ag/Q with the compact set []Z,, x [—1/2,1/2].
In the case of positive characteristic, using k, = €, +k N Ag({v}) for every place v, we deduce
Ap = Ar(0) + k. Since kN A,(0) =F,, we get a homeomorphism Ay/k =[], 0, /F,, so k is
discrete in Ay and A /k is compact. O

REMARKS. 1. For the character (sometimes called standard character) y° we have y°(F) = 1.
Due to the definitions, it suffices to check that w(k) = 1. In characteristic zero this follows from
—a+Y,0,(o) € Zfor o € Q, since vy(w,(a) +7Z) > 0if p # q and v, (@, () — o) > 0.

In positive characteristic, it is sufficient to check for a rational function f(r) = g(¢)/h(¢)" €
IF,(¢) where A(t) is an irreducible monic polynomial over IF,, corresponding to a discrete valuation

v and deg(g) < ndeg(h). We have ngeg(f) = yores, 1 (f(t)dt™") = y(res,(f(t)dt)) = w(—a)
where a is the coefficient of degree ndeg(h) — 1 of g. If o is aroot of A(z), then h(r) =[[(t — o;x)
with o; running through the Galois group of IF,(a)/IF,. Writing f(t) = ¥; ¥~ all) (t— o)™
we obtain that the ¢~ coefficient of f(¢) is

Zrest—ai(a)(f(t)dt) = Trp,(a)/F, res;—q (f(1)d?).

Hence l//,?([) (f) = yoTrg,(a)/F, oresi—a(f(t)dt) = y(a). Thus, vO(F)=1.

2. The orthogonal complement F of F with respect to y° is F. Indeed, this complement is
isomorphic to the group of characters of the compact group Ar/F, hence it is a discrete subgroup
of Ap. Hence F*/F is a discrete subgroup of the compact Ar/F, so it is finite. Therefore, since

F1 is an F-vector space, it coincides with F.

22.4. Adeles in the function field case and the Riemann—Roch theorem. Let F be a global
function field, i.e. the function field of a smooth proper irreducible curve ¢ over a finite field IF,,.
For a divisor d = Y v(d)[v] of the curve ¥ define

Arp(d)={a=(a,) € Ar:v(a,) > —v(d) for all v}

where [v] is the class of the valuation (or the closed point which defines it). In particular, Ar(0) =

Ap(0). We have an adelic complex

p(d): F®Ap(d) — Ap, (a,b) —a—>b,
and
H(p(d)) = FNAFp(d), H'(p(d)) = Ar/(F+Ar(d)).
For a non-zero differential form @ € Q}r JF, define a map

do: Ar — Fy, (o) — ZTrk(v)/]Fq res,(a,m),
v

where k(v) is the residue field of F, and res, (f,dx) for F, is resz (B,dm) in 21.5 for a prime element
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7 of F,. There are only finitely many non-zero terms in the sum, since almost all o, € 0, and ®
has poles at finitely many places.

Characters of Ar are in one-to-one correspondence with continuous linear maps from Ar to
Fp. The composite of the map Try, /r, 0de With an isomorphism from F), to the cyclic group of

order p on the unit circle is a non-trivial character of Ar. One can easily show that the space of

1

continuous linear maps from Ar to F, which vanish on F, is isomorphic to €. JF,"
q

Composing with the multiplication Ar X Ar — A we get the differential pairing

Ar X Ap — Ty, (00, B) = Y Tre()r, Tesv (00 Byo).

For a subspace H denote H = {8 € Ar : (H,3) = 0}. By Remark 2 in the previous sub-
section, F+ = F. The complement Ar(0)* of Ar(0) with respect to the pairing is Ar(k), k is
the divisor of @ and is called a canonical divisor of €. We get Ar(d)* = Ar(k —d), hence
the space of continuous linear maps from H°(7-(d)) to F, is isomorphic to Ar/H®(<r(d))*,
ie. to H' (<% (k —d)). The space Ar(0) and hence Ar(d) are compact, and their intersection
with F is discrete, which implies that H(</(d)) is of finite F,-dimension and so is H' (o (d)).
We now obtain dimg, H (<% (d)) = dimg, H' (/5 (k — d)) and ¥, (d) := dimg, H(Zp (d)) —
dimp, H' (p (d)) = Yo (K — d).

We will use the virtual dimension of two FF,-commensurable spaces G,H (i.e GNH is of
[F,-finite codimension in each of them), dimg, (G : H) := dimp, G/(GN H) — dimg, H/(GNH).

Noting it is additive on short exact sequences and comparing <77 (d) and <7 (0), we obtain
degp, d = dimg, (Ar(d) : AF(0)) = X (d) — %oz (0).-
Using formulas
degg, d = X (d) = X (0), dimg, H (o (d)) = dimg, H' (or (k — d))
we get
— degg, d = dimg, H'(<# (0)) — dimp, H' (/¢ (k)) — dimg, H' (7 (d)) + dimg, H' (7 (k — d)).

Thus, we obtain

dimg, H (o (d)) = dimg, H' (7 (k — d)) + degg, d + Xz, (0),

the adelic Riemann—Roch Theorem. 1f €’ is geometrically irreducible then dimp, H(<7-(0)) = 1

and X (0) = 1 — g where g is the genus diquHl (27 (0)).

REMARK. This adelic proof is extendable to any (not necessarily smooth) proper irreducible

curve over a perfect field (in particular, C) by working with its adelic space and complex.
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22.5. Ideles is the multiplicative group of the ring of adeles Af:
Jr=Ap = H/va ={o=(oy): 0o, €FJ, a, €U, foralmost all v}

where v runs through all places of F, U, = O)°.

Its topology is not the induced topology from Ap. Namely, the topology of A is the induced
topology from Ap x Ap in which Ay is viewed with respect to the embedding a — (a, al).
Then JF is a topological group. Note that the topology of the multiplicative group of a complete
discrete valuation field is the induced topology from F x F in which F* is viewed with respect to
the embedding o — (o, "), see 18.1; hence the topology of Jr induces the usual topology on
each local multiplicative F,*.

For a finite set S of places containing all archimedean ones in characteristic zero denote
Jr(S) = Ap(S)* = [lyes F,* < [1ygsUy. Then Jp = 1i_n>1Jp(S). Define the translation invariant
topology on Jr(S) as the product topology on the topology of F,* for v € S and the topology of
O forv ¢ S. Since 0 are compact and F, are locally compact, Jr(S) is locally compact. The
direct limit topology of Jr is equivalent to the previously defined topology. Then Jr is locally
compact.

We have the diagonal injective homomorphism F* — Ax. We will identify F* with its
image in A .

The quotient Cr = A /F* is called the idele class group.

DEFINITION. For a local field with (surjective) discrete valuation v and finite residue field define
the normalised absolute value ||, = [k(v)|~"(®) where |k(v)| is the cardinality of the residue field
k(v). For a field isomorphic to R define its absolute value as the usual absolute value, for a field
isomorphic to C define its absolute value is the square of the usual complex norm/module. Note
that the triangle inequality does not hold for this absolute value on C.

Due to Theorem 9.5 for an extension L,,/F, of complete discrete valuation fields, the nor-

malised absolute values are related by the formula
laly = ’NLW/F\,Odv’

since w = f(w|v) o N /g, [k(w)] = [k(v)|/ ") Also, for the extension of archimedean com-

pletions L,,/F, we have the same formula |a|,, = [Ny /r, @], as easily checked from the definitions.
When FO is Q or F,(¢) we have the product formula [, |a|, = 1 for & € F* where v runs

through all places of F°. Hence, for a global field F and o € F* we obtain the product formula

H|0‘|w = HH|NFW/FVOOC|V = H|NF/F°a|V =1

w v w\v v

REMARK. Approximation Theorem 2.8 for discrete valuations can be rewritten as a statement

about non-equivalent absolute values | |, and then to also include archimedean absolute values,

with exactly the same proof. Thus, for any € > 0 and finitely many distinct places v; and elements
o; € F,, there is an element a € F such that |a — oy],, < € for all i.
In particular, for any & € Ay and & > 0 there is @ € F* such that |a — o N, < &.
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Thus, given positive integer n,, and choosing & = |, |, ! [k(v)| ™ and & = |a,|,! at real v;,

there is a € F* such that aq,, € UFV,-J!V,- for finite v; and aoy, > O for real v;.

The adelic module
=111 Iv: Jr — RS,

is a continuous homomorphism. Its image is RZ, in the number field case: look, for example, at
the image of ideles with only one infinite place component different from 1. Its image is an infinite
cyclic group in positive characteristic: for each completion the image of the local absolute value
is a nontrivial subgroup of g%, where ¢ is the cardinality of the largest finite subfield of F. Hence
the image of the adelic module is its nontrivial subgroup as well.

Its kernel J} is a closed subgroup of J.

Since F is discrete in Ap, F* is a discrete subgroup of Jr. Due to the product formula F* is a
subgroup of J}. It is closed since the intersection of F* with {(a,) : |04, = 1 for v # vy, |ay,| < 1}
is 1. Thus, Ck = JL/F* is a closed subgroup of Cf.

DEFINITION. Let S be a finite set, containing S.. in the number field case. The intersection
F*(S)=F*NJp(S)={aeF*:|a|,=1forallv &S}

is called the group of S-units of F.
In particular, F* (Sw) = F* N[1es. £, % [Tygs. O, is the group of units & of OF.
The quotient Cr(S) = Jp(S)/F*(S) is called the group of S-idele classes of F.
Put C}(S) = J-(S)/F*(S).

LEMMA. The topology of J}p induced by the topology of Jg is equivalent to the topology
induced by the topology of Ar.

Proof. If 1 € VNJ} for an Ap-neighbourhood V of 1 of the type |B, — 1|, < € for v € S and
|By|y < 1 forv ¢S for a finite set S, then VNJL D W NJ} with a Jp-neighbourhood W for which <
is replaced with = for v ¢ S. If 1 € WNJ} for an Jr-neighbourhood W of 1 of the type |B, — 1|, < €
forv e Sand |B,|, =1 for v ¢ S for a finite set S containing all infinite places, we can assume €
is small enough so that || < 2. Since the nearest to and smaller than 1 element of |F,|, is
p~1 < 1/2, we deduce that W NJ} =V NJL with an Ap-neighbourhood V for which = is replaced
with < forv & S. O

22.6. Let L/F be a finite Galois extension of global fields, G = Gal(L/F). The group G
acts on Ay, o(a,,) = (00y,)gyw. We have ow = w if and only if ¢ belongs to the decomposition
subgroup G,, = Gal(L,,/F,) where v is the place of F under w.

The G-fixed elements are AS = Ap, J¢ = Jp.

LEMMA. For a separable extension L/F the map Crp — Cy induced by Jp — Ji is injective.
For a finite Galois extension L/F the group Cy, is a G-module and CLG =CFr.
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Proof. To check the first assertion, we can assume L/F is a finite Galois extension, then Jp NL* C
(JFNL*)% =JpNF>.

For the second assertion, we only need to show the surjectivity of JLG =Jr — CLc. Let
o €Jy,0€G,and o(al”) = aL”*. Then ca = a5 for some By € L*, and Bsr = BB for
all 0,7 € G. Since automorphisms o € G are linearly independent as L-operators, there is § € L*
suchthat y ' =Y . B:8" € L*. Theny © =Y . BS6°° =By !, s0a® ! =5 =y forall
o, hence ay~! € Jp and aL* = (ay ')L*. O

PROPOSITION. In a finite separable extension L/F only finitely many places v of F have at

least one ramification index e(w|v) > 1.

Proof. Let a € O such that L = F(a). Denote by K the largest ideal of & which is contained
in the subset Of[a| of €. Every maximal ideal Q of &} not dividing K satisfies Q+ K = 0},
and taking the nth power, it satisfies Q" + K = 7. Hence for every maximal ideal P of O
such that PO, = [[Q;" with Q; not dividing K, we have PO, + K = 0y, and PO, + Of|a] = O}.
Then Op[a) PO, = (POL+ Ofla])(Or[@|NPOL) C POF[a] and so Or|a| N PO, = POF|a].

Therefore,

OL/POL= Ofla]/POF|a] = (OF /P)[X]/(f)
where f is the monic irreducible polynomial of o over F. Then the factorisation f = Hﬁei into
powers of irreducible polynomials f; over O /P corresponds to the factorisation of P&, = [1 Q¢
into the product of maximal ideals Q; of &} and Q; = PO, + fi(@) O, the proof is entirely similar
to that to the proof of Theorem 3.5.9 in Chapter 1. The product [];e; = 1 if and only if £ has no
multiple roots if and only if the discriminant of f is not in Q (and Q does not divide K). Thus,

there are only finitely many maximal ideals of &7 which have at least one ramification index > 1
inL/F. O

COROLLARY. For a finite Galois extension L/F the norm group Ny /rCL is an open subgroup
OfCF.

Proof. By the previous Lemma almost all places v of F are unramified in L/F. The norm map
in finite unramified extensions sends the group of units surjectively on the group of units. For the
remaining finitely many places the local norm is continuous and open, see the proof of Theorem
21.2 in the case of finite places and the case of infinite places is obvious. Open neighbourhoods of
1 in Jr contain the product of the group of local units for almost all places. Thus, we deduce that
Nyp: Ji — JF is continuous and open. Hence for a finite Galois extension L/F the norm group

Np/rCy is an open subgroup of Cr. g

22.7. For a non-zero element o € O and a maximal ideal P of O the valuation vp(Q) is
the power of P participating in the factorisation of the principal ideal ot into the product of
maximal ideals. This immediately extends by multiplicativity to the discrete valuation vp of F" and

its completion F,,.
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In the number field case we have a surjective continuous homomorphism
p:dr —Ip, p((oy))=[]P" >
P
where I is the group of fractional ideals of O generated by maximal ideals P of 0 and endowed
with the discrete topology. The kernel of p is Jr(S«) where S. is the set of all infinite places of F.
Adjusting archimedean components, we see that p induces a surjective homomorphism J} — I.
The image p(F*) is the group Pr of principal fractional ideals. Hence we have the induced
isomorphism Jr /(F*Jp(Se)) =% Ir/Pr with the class group of &r. We also have a surjective
continuous homomorphism
p:Cr—1Ip/Pr.
In positive characteristic, let 4 be a smooth proper geometrically irreducible curve over a

finite field IF, with the function field . We have a surjective continuous homomorphism

piJr —Div(%), p((a)) =) v(ew)]]

where [v] is the class of the closed point of € corresponding to v. The kernel of p is J¢(0). The
group Div(%) is endowed with the discrete topology. The image p(F*) is the group of principal
divisors PDiv(%’). Hence we have an induced isomorphism Jr /(F*Jr(0)) =% Div(%)/PDiv(¥)
isomorphic to the Picard group Pic(%) of . It induces the surjective continuous homomorphism

P IL/(F*Jr(0) — Pic(%),
the latter is the degree zero subgroup of the Picard group of €.
Also, forgetting the components of ideles for valuations lying over v.., we have, similar to the
number field case, a continuous homomorphism

p:Jr —1Ir, p((an))=]]P"*,
P

where P runs through maximal ideals of OF.

PROPOSITION. C} and C}(S) are compact. Cr and Cr(S) are locally compact.

Proof. Let’s show that there is a constant ¢ > 0 such that for every adele o = (@), € Ap with
|oe| > ¢ there is an element a € F* such that |a|, < |o|, for all places v. By 22.3 Ap/F is a
compact abelian group, let Ly be its probability measure and let p be the translation invariant
measure on Ar whose quotient on Ar/F is to. Let c ™! = u({y= (%)v € Ar : ||, < 1 for all v})
and let |¢t| > ¢. Then the compact set L = {8 = (8,),: |8,|» < |a|, for all v} has volume > 1, so
there are two distinct elements A; of L which have the same image in Az /F, so their dif and only
iference A = A4, — A, € F and |A|, < |ay,], for all v.

Now for the compact subset K = {(f,) : | By|v < |04|,} of Ap, where |ot| > ¢, and any Y= (§) €
J} there is an a € F* such that |a|, < |¥, ' o, for all v. Hence ya € KNJ}. Thus, J} = (KNJL)F*,
and Lemma 22.5 implies J}. /F* is compact.

Since C}(S) is a closed subgroup of C}., it is compact.

The last sentence of the Proposition follows from the description of the quotient Cr/C}., using
the adelic module, in 22.5. ]
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COROLLARY 1. In the number field case the class group I / Pr is finite. In the global function
field case the group Pic* (%) is finite.
For sufficiently large finite sets S including Se we have Jp = F*Jp(S).

Proof. Since C}p is compact, its p-image is compact. Therefore the discreteness of the class group
I/ Pr and of Pic’(%) implies their finiteness.

Since the class group and Pic’ (%) are finite, enlarging the set S.. (or the empty set in the global
function field case) to a finite non-empty set S to include in it places corresponding to finitely many
maximal ideals that generate the class group or Pic®(%’), we have J}. = F*JL(S). In characteristic
zero |Jr| = |Jr(S)], hence we deduce Jr = F*Jr(S). In positive characteristic enlarge S to include
places at which components of an idele whose adelic module generates |Jr| are not units, then
|[Jr(S)| = |JF| and hence Jp = F*Jg(S). O

COROLLARY 2. For a finite Galois extension the norm group Ny rCy is an open subgroup of
finite index in Cr.

Proof. From Corollary 22.6 we know that Ny /rC, is an open subgroup of Cr. Hence Ny /FCi is
an open subgroup of compact C} and so it is of finite index in C}.. In the number field case, the
adelic module of the image with respect to Ny /i of the subgroup of ideles where all components
except at one infinite place are 1 and at that infinite place the component runs through all elements
of the corresponding completion is RZ. In the global function field case, the adelic module of the
image with respect to Ny /r of the subgroup of ideles where all components except at one place are
1 and at that place the component runs through all elements of the corresponding completion is a

subgroup of finite index in |Jr|. Hence Ny /rCy is a subgroup of finite index in Cr. g

REMARKS.

1. This gives a new proof of the finiteness of the class group, using the compactness of C}..
In turn, using the finiteness of the class group and of the zero part of the Picard group, one can
deduce the compactness property of Cp.

2. The arguments in the first paragraph of the proof can be used for an adelic proof of
Minkowski’s bound theorem 3.6.6 of Ch.1.

3. An alternative independent and very different proof of the compactness of C} will be
obtained later, see Remark 2 of 23.6.

22.8. For a finite S with s > 0 elements and containing S. in the number field case we have
a homomorphism
Logg: Jp(S) — R’, (o) — (logfoy|,)
which sends J} (S) to the hyperplane Hy = {(x1,...,x;) € R® :x; + -+ 4+x; = 0} of R®. The homo-

morphism Logg induces the homomorphism

logg: F*(S) — H,.
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PROPOSITION. Let S be a finite non-empty set of places containing S« in the number field
case. The kernel of logg is UF, the image is a discrete subgroup of rank s — 1 of Hy, i.e. a complete
lattice of Hy, s = |S|. Hence the group of units F*(S) is isomorphic to the direct sum of its torsion

part and a free group of rank s — 1.

Proof. The kernel of Logg is UJr where UJp =[], S} and S! = {a, € F, : |a|, = 1} for all v,
so UJr is a compact subgroup of Jr(S). The kernel of logg is the intersection of the discrete set
F*(S) in Jrp with the compact subgroup UJF, hence it is a finite group, so the kernel consists of
all roots of unity in F. The intersection of logg(F* (S)) with the product of s balls of radius 1 in
R is the image of the intersection of the discrete set £ with the compact set [], g S} x [1yes By of
Jr where B, = {a, € F, : —1 <log|a|, < 1}, so it is finite. Thus, logg(F*(S)) is discrete in H;.
We have |Jp(S)/UJr| = |Jr(S)| and log sends it isomorphically to R in characteristic zero
and to an infinite cyclic group = Z in the positive characteristic case. The group Jr(S)/UJF
is isomorphic via Logg to R" x Z*~" where r is the cardinality of S. in the number field case
and r = 0 in the global function field case. Thus, applying the absolute value to Jr(S)/UJp
corresponds to a surjective additive homomorphism A: R" x Z*~" — Y where Y = R in the
number field case and Y = Z in the global function field case. Hence there exist a; € R in the
number field case and a; € Z in the global function field case such that A(xi,...,x;) = Y ax;.
The quotient J}-(S)/(F*(S)UJF) is compact and is isomorphic to the quotient of J}(S)/UJr by
F*(S)UJr/UJp. Hence the quotient ker(A)/L is compact, where L = logg(F*(S)). Extend 4
to the additive map A: R® — Y by the formula A(xi,...,x;) = Y a;x;. The group Hy = ker(A)
contains a subgroup L’ generated by e; € R®, 2 < j <, the first component of ¢; is a;, the jth
component is —a; and all other components are 0. Since {e;} is a basis of Hy, L' is a full lattice in
H, and the quotient H,/L’ is compact. Moreover, L' C ker(A). Therefore, H;/ker(A) is compact.
Since ker(A)/L is compact as well, the quotient H /L is compact. Since L is discrete in Hy = RS~ 1,
we conclude L = 7!, O

22.9. Let A be an abelian group written additively and let f,g: A — A be group homomor-
phisms such that fog = go f = 0. Denote by Ay the kernel of f and by A’ the image of f. The
Ap : A%
S .
|Ag 1 A

Herbrand quotient Q. (A) i

LEMMA. Qy4(A) =1 for a finite group A. If B is a subgroup of A such that f(B),g(B) C B,
then Qf 4(A) = Qr.¢(B)Qy¢(A/B) when two of the factors are finite.

Proof. For the first property, consider finite groups A D A, D A/ D0 C A* C Ay C A in which
the index for the first inclusion equals the index for the fourth inclusion, the index for the third
inclusion equals the index for the sixth inclusion. Hence the index for the second inclusion equals
the index for the fifth inclusion.

For the second property, denote C = A/B. We have an exact sequence of homomorphisms

By/BS — Ap/A® — Cy/C® — B, /B! — A, /AT — C,/C! — B;/B®
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in which the first, second, fourth, fifth maps are induced by B — A and A — C. To define the
third map, take ¢ € C such that f(c) = 0, take any a € A such that a+C = ¢, then f(a) € B,.
Similarly one defines the sixth map. The exactness is immediate and one deduces Qf4(A) =
Qr4(B)Qrg(A/B). O

We will use Q in the situation when a cyclic group G of order n with a generator ¢ acts on an
abelian group A, f=1—-candg=Y"" 6/,s0A; =A% Af =IcA={a°"':a € A}, A, =ker Trg,
A8 =Trg(A).

We denote Q(G,A) = Qr4(A).

EXAMPLES.

1. If the action on an infinite cyclic group A = Z is trivial, then Q(G,A) = n.

2. If A = ®gcGOB, then O(G,A) = 1.

3. Let L/F be a cyclic extension of local fields with finite residue field, G = Gal(L/F) of
order n. Then

o(G.Ly= ekl
[ker Ny : L€

by local class field theory and Hilbert 90 Theorem. We also have Q(G,U) =1 due to L* /U = 7Z
and Example 1.

THEOREM. Let L/F be a cyclic extension of global fields with Galois group G of prime order
n. Then Q(G,CL) = n.

Proof. For a finite place v of F and a place w of L, w|v, the preceding Examples imply Q(G,L}S) =
|Ly, : F,| and Q(G,Uy,) = 1.

In positive characteristic we have
0(G,Cr) = Q(G.J/11)Q(G, ] /L*JL(0))Q(G,L* JL(0)/L*),

and Q(G,J./J}) = Q(G,Z) = n, Q(G,J}/(L*J.(0))) = 1 since J} /(L*J.(0)) is isomorphic to
finite Pic®(%), see 22.7, Q(G,L*J.(0)/L*) = Q(G,J.(0))Q(G,L*(0))~' = Q(G,J.(0)) since
L*(0) is the multiplicative group of the finite field of constants of L. Using Q(G,J.(0)) =
[T, 9(G,U,) = 1, we conclude Q(G,CL) = n.

For number fields L/F choose a finite set S of places of L, which is invariant under the acton of
G and which contains all archimedean places and is sufficiently large so that J;, = L*J.(S). Then
Cr=Jp/L* = (L*JL(S))/L* =2 J.(S)/L*(S) and Q(G,CL) = Q(G,J.(5))Q(G,L*(S)) . Denote
by Sy the set of places of F under the places in S. We get Q(G,JL(S)) = [1yes, Q(G;[1ses/q, L)
where G, = Gal(L,,/F,), w|v. Since the order of G is prime, either G, = 1 or G, = G. Using
Example 2 in the first case, we obtain Q(G,[Iscg/q, L) = Q(Gy,Ly;) = n, where n, = |G,|.

Hence Q(G,J(S) = [lyes,nv. To complete the proof, it remains to show that Q(G,L*(S)) =
n! [Tes, v

In order to achieve that, use the map logg: L*(S) — R*. Let {e, : w € S} be the standard
basis of V = R*. Let the group G act on V by oe,, = €5y, Then logg(ca) =Y, cslog|oale, =
oY esloglalg-1,e5-1,, = 0logg(a). Hence, logg(L*(S)) together with ¢’ =Y, cge,, generate a
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G-invariant complete lattice M in V. Note that oe’ = ¢ for every 6 € G. We have M /Z¢' =
logg(L*(S)), so, since the kernel of logg is finite,

Q(G,L*(S)) = Q(G,logg(L*(5))) = Q(G,Z) ' Q(G,M) =n"'Q(G,M).

Denote by | | the sup-norm with respect to the coordinates of the basis e,, of V. Since M
is a lattice, there is ¢ > 0 such that for every x € V there is m € M such that |x —m| < c¢. For
every v € Sy choose w, € S such that w,|v. Let t = ncs+ 1. Then for each v € Sy there is m, €
M such that for x, = te,, —m, we have |x,| < c. Due to the definition of the action of G on
V we also have |ox,| < ¢ for every 6 € G. For w € S, w|v define z,, = Y56y, - Om,. Then
TZw = Yo:owy—w TOMy = Y 5.0y g Py = Zry fOr every 7 € G. Let’s show that z,, are linearly
independent. We have

Iw = Z om, =t Z € — Yy =M€y — Yy, Y = Z oxy,
o:0W,=w o:0W,=w o:0W,=w
and |y,,| < nye. Write y,w =Y, csd e, withreal @), then |d,| < nyc whenw'|V. Let ¥, c5 ¢y =
0 with real ¢,,. From ¢ },,cg, 1y Zw‘v Cwlw = Loes YW Cw = Lyes Lwes Cwd, e, we deduce tn,c,, =

Yowesdlcw and nynes|ey| < |tnycy| = [ Lyes, L diew| < ¢ Lyes, nvnn, max{|c,| : WV} <

cnsmax{|c,/|} when w|v, so ¢,, = 0 for all w. Thus, the vectors z,,, w € S, are linearly independent.

Hence M’ =Y Zz,, is a sublattice of M of finite index, and it is a complete G-invariant lat-
tice of R* and 6z, = zow. So M’ = ®,c5,M, where M, = Dsci/g,Zow,. Hence, Q(G,M) =
Q(G,M') =Tlies, Q(G,Dgeg ), ZOWy). Since the order of G is prime, either G, = 1 or G, = G.
Using Example 2 in the first case, we obtain Q(G, ©scg/g,Z0Wy) = Q(Gy,Z). Hence, Q(G,M) =

[Tyes, O(Gv, Z) = [1,es, nv by Example 1, and the proof is completed. O

COROLLARY 1. |Cr : Ny pCr| = |Jp : F* Ny pJi| is divisible by |L : F| for cyclic extensions

of prime degree.

|Cr : NpyrCi

=n. U
ker Ny /p : C;~°|

Proof. Q(G,Cp) =

A place v of F is said to split completely (or totally decomposed) in L/F is L,, = F, for every
place w|v of L. In other words, due to the formula |L : F| = ¥, e(w[v) f(w|v), there are exactly
|L : F| distinct places w of L over the place v and for each of them e(w|v) = f(w|v) = 1.

COROLLARY 2. Let L/F be a nontrivial finite Galois extension. Then there are infinitely
many places of F which do not split completely in L.

Proof. Take any cyclic subgroup of prime order of Gal(L/F) and consider its fixed field E, then
L/E is cyclic of prime order. If L,, = F, for almost all places v of F and w|v then L,, = E, for
almost all places u of E and w|u. Let a € Jg. Denote by S the set of places of E where L,, # E,,.

1

Using Remark 22.5 find an element a € E* such that @a™" is a local norm at every u € S. Then

aa! € Np/eJL, s0 CE/NL/ECL =1, a contradiction. O

COROLLARY 3. Let F be a global field whose field of constants is ;. Then for the adelic
module |Jr| = ¢”.
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Proof. Let ¢% be the greatest common divisor of the cardinalities of the residue fields of places of
F,andlet F' =F [F,«. Since for every place v the residue field of F, contains F ¢, F, = F, for w|v.
Hence F = F’ by Corollary 2 and d = 1. 0

23. Zeta Functions and Zeta Integrals

23.1. Zeta functions is one of the key objects of number theory.

DEFINITION. The zeta function of a scheme X of finite type over Spec(Z) is

Cx(s) = [T (1= Ik()™) 7,

x€Xo

where x runs through closed points of X, k(x) is the finite residue field of x.

EXAMPLES.

1. When X = Spec(Z), this is the Euler-Riemann zeta function

Cev— 1

Cspec(z)(5) = Co() =[] —p) ' =} =
p SR

where p runs through all positive primes.

2. When X = Spec(OF), Op is the ring of integers of an algebraic number field, this is the

Dedekind zeta function
Cspec(op) () = Cr(s) = [T(1 = [k(w)[ )" = I;[(l —N(P)) = XI‘,N(I)*S,

where v runs through all finite places of F, P runs through maximal ideals of O, I runs through

non-zero-ideals of 0. The number N(P) is |k(v)| where P = P, corresponds to v.

3. When X corresponds to a smooth proper irreducible curve ¢ over a finite field F, with
function field F, this is

Ge(s)=Cr(s) = [T (1= k()| ™)~" = TT(1 ~ [k(w)| )~

XEB) v
= Il_l(l - !k(W)I*S)*II;I(l ~NP)) T =TT~ \k(W)!*S)*IZI‘,N(I)_S,

where v runs through all places of F, P runs through maximal ideals of OF, I runs through non-
zero ideals of OF; the first factor corresponds to the discrete valuations w of F' over the discrete
valuation v., = —deg of F,(¢). Each Euler factor (1 — [k(x)|~*)~! absolutely and uniformly con-
verges for Re(s) > 0 and meromorphically extends to the complex plane with the only pole at
s=0.
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The series Y, N(I)~* can be written as a Dirichlet series Y~ a,/n’. If it converges at real so
then it converges absolutely and uniformly on compact subsets for Re(s) > so. Indeed, all partial
sums g, = gr(s0) = Y,—1 an/n* are bounded by some positive constant, and

n=r—1

i an/n' =Y, qu(1/n"0 =1/ (n+1)"") =gy /m* 0+, /r' "%,

n=m
1/m*=50 — 1/r=%0 = (s —s0) [) dx/x*~%0*1. Thus, for |s — so| bounded and Re(s) > 5o + € with
positive € the sum Y '~/ a,/n® tends uniformly to 0 when m,r — +-co.

If | Yn=1 an| < r, then for the Dirichlet series Y~ a,/n’ we have

n=r—1

195) —an(s) < Y s / de/ 1 P,

n=m+1 n

and Y= lin [ My et ST +1dx/x*. Thus, this Dirichlet series is a holomorphic function on
Re(s) > 1.

The Dirichlet series for {g(s) diverges at s = 1 and converges absolutely and uniformly
on compact subsets for Re(s) > 1 and there {g(s) = ¥,>; = = [1(1 — p~*)~!. In particular,
log 8o (s) = L1 Xp(mp™ )~! for Re(s) > 1. We also deduce from the previous calculation that

forreal s > 1
1(s—1) < / 12 < Lols) < 1+1/(s—1).
J1
Use the notation f ~ g for two functions with singularity at s = 1 whose dif and only iference

does not have a singularity at s = 1. Hence

Cals) ~ 1/(s—=1).

converges uniformly and absolutely for Re(s) > 1/2+ €, we deduce

log 8o (s) Z p

Since Y50 Y, (mp™) !

For a number field F and a maximal ideal P of O its index in O is its norm N(P) = p/(PIP%)
where pZ is the ideal of Z lying under P. Since there are at most n = |F : Q| maximal ideals over
pZ, for Re(s) > 1 we have

logI;[(l —N(P)_S)_1 = Z Zm_lN ) "™ < n Z Zm p "™ =nloglo(s).

m=1 P m=1 p

Therefore {r(s) = [1p(1 —N(P)~*)~! converges absolutely and uniformly on compact subsets for
Re(s) > 1 and there r(s) = Y;N(I)~*. Now, and similarly to {g(s),
loglr(s)~ ), NP
N(P) is prime
where P runs through maximal ideals whose residue field has prime cardinality.
Maximal ideals of F,[t] are principal ideals generated by monic irreducible polynomials f
over Fy, so for Re(s) > 1 we have [Tp(1 —=N(P) )" =T];(1— g sdee(f))~1 =Y, g *%(8) where

g runs through all monic polynomials in [F,[t], their number of degree m is ¢™, so the latter sum
=Y ,>0q"q " = (1—¢**1)~!. Taking into account ve, Cpir,)(s) = (1— g )11 —qg !
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converges absolutely and uniformly on compact subsets for Re(s) > 1 for Re(s) > 1 with the only

s—1

poles at s such that ¢° =1 or ¢ = 1. We also have

log Gpi (g, (5) ~ —log(1 —g**") ~ —log(s — 1).

An arbitrary global field of characteristic p is a finite separable extension of [F,(¢), and simi-
larly to the discussion of the relation between the zeta function of an algebraic number field and
of Q, the zeta function of a smooth proper irreducible curve ¢ over a finite field IF, converges

absolutely and uniformly on compact subsets for Re(s) > 1. Similarly to the number field case,

loglr(s)~ ), [k(m)|™*
|k(v)] is prime
where v runs through discrete valuations of the function field of " whose residue field has a prime

number of elements.

23.2. Each time when |k(v)| shows up in a product/sum, this means that v runs through the
appropriate set of finite v.

Denote by j,: F, — Jr the homomorphism sending ¢ € F,* to the idele all of whose com-
ponents are 1 except the v-component which is equal a.

Now we define twists of zeta functions by characters, they are traditionally called L-functions.

DEFINITION. Let ) be a non-trivial character of Jr of finite order.

For example, such characters come from characters of the ideal class group Ir/Pr using the
surjective homomorphism Jp /F* — Ir /Pr.

The group x ~'(1) is a closed subgroup of Jr of finite index, so it is open and it contains j,(U,)
for almost all v. Let C be a finite set of finite places v of F. Define

Le(s, ) = [T(1 = x M) k() =)~

vgC
where
0 if x(Jv(Uy)) # 1
xGv(m)) i 2(u(Ov)) = 1,

where in the second case x(v) = x(j,(m,)) where 7, is any prime element of F,, the value

x(v) =

X (jv(m,)) does not depend on the choice of prime element.

Then L¢(s,1) = [Tygc(1 — [k(v)|~*) ™" which, when multiplied with the finitely many Euler
factors for v € C, is Cr(s).

The product of finitely many factors (1 — x(v)|k(v)|~*)~! does not affect the behaviour near
s=1.

Except finitely many factors corresponding to places in positive characteristic over v.., the
product [T,zc(1—x (v)[k(v)| )" is the product [T,¢c (1 — x (P,) N(P,)~*)~! where P runs through

maximal ideals of OF and x(P,) = x(v). By the same reasons as for {z(s), the product converges
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absolutely and uniformly on compact subsets of Re(s) > 1, and there we have for the main factor

Le(s,x)*, i.e. for non-zero ideals I of OF

Le(s,0) = ), x(DN{I)™,

LI.O)=1
logLc(s,x) ~logLe(s,x)" = ) Y x(P)/(mN(P)™) ~ Y, xB)NPR)T,
mz=1 C vgC,N(P,) is prime

where I runs through ideals of F coprime to C, P, runs through maximal ideals of O for finite
v & C and not over ve,, X (ITP") =TT x(P)".

23.3. The additive and multiplicative group of local fields with finite residue field and of
adeles are abelian locally compact groups, so they have a nontrivial translation invariant measure.
Such a measure is defined up to multiplication by a positive constant.

This translation invariant measure U, on the additive group of a local field F;, with finite residue
field with the ring of integers ¢, and maximal ideal ., is easy to describe. Counting indices and

using the virtual index similarly to 22.4, we immediately get the measure of closed balls
w(a+.2) = w () =0, 4| w(0),

thus one only needs to fix u,(0,) € R-o.

DEFINITION. For a finite v denote by d, the maximal integer such that W sends the fractional ideal
;7% to 1. In other words, in the notation of the proof of Proposition 22.3, Trr, i, (M;%) C O,
and Trg, /g, (M=) ¢ Or,. The ideal A% is called the absolute different of F,. The numbers d,

are zero for almost all v since only finitely many places ramify in F /k.

DEFINITION. Choose normalised measures (, as the self-dual measures with respect to the char-
acter Y2, i.e. we will have the property that the double Fourier transform of g(x) gives g(—x).
Namely, u, is the usual Lebesque measure on R, twice the usual Lebesque measure on the com-
plex plane, and for finite v the normalisation is u,(&,) = |k(v)|~%/2. Choose the translation

invariant measure {s, = U =[], 4, on Ap, it is well defined since p,(0,) = 1 for almost all v.

The normalised absolute values | |, defined in 22.5 are the module functions associated to p,,
i.e. for every o € F,* we have |a, |, = 1, (o,A) /1, (A) for any measurable subset A of F, of non-
zero volume. For finite places this comparison follows immediately from the displayed formula

above. Hence |a| = u(atA) /1 (A) for any measurable subset A of Ar of non-zero volume.

DEFINITION. On the multiplicative group F,* define the translation invariant measure [, by
the formula @ = (1 —|k(v)|=")~'w,/| |, in the non-archimedean case and @ = /| |, in the
archimedean case. Then u,(0)) = 1 for almost all v. Choose the translation invariant measure

Wy = 1> =TI, 1 on Ay, it is well defined.
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23.4. We now define certain spaces of functions on which one has Fourier transforms.

DEFINITION. Define spaces of functions S(F,) as locally constant functions on F, with compact
support in the non-archimedean case and as as smooth functions on F, such that the product with
any polynomial function tends to O when the absolute value of the argument tends to infinity.
Define S(Ar) as the space spanned by functions ®,g, with g, € S(F,) such that g,|5, = 1 for
almost all v.

Define the Fourier transforms for g, € S(F,) and g € S(AF) as

ﬁv(gv)(av):Agv(ﬁV)Wg(%ﬁv)d“v(Bv)v Z(g)(a)= [ g(B)v°(apB)du(p).

Ap

The definitions and the computations in the next paragraph imply .7 (®,g,) = ®.%,(g,) €
S(AF) for ®,g, € S(AF).

LEMMA. .Z o Z(g)(&) = g(—) for any g € S(AF).

Proof. General harmonic analysis results show that there is a constant ¢ such that .% o % (g)(a) =

cg(—a) forall g € S(Ar). To show that ¢ = 1, it is sufficient to check for some non-zero function.

DEFINITION. Choose
fo(a) = exp(—m||?) when v is real,
fv(at) =exp(—2m|c|,) when v is complex,

fv = charg, when v is finite.

Then .%,(f,) = f, for infinite v and .%,(f,) (o) = |5v]$/2fv(5v(xv) where 8, € F,* is such that

|8,]y = |k(v)|~%. These f, are eigenfunctions of .%, with eigenvalue 1 for all v except finitely
many finite v.

For f = ®f, we have .7 (f)(a) = |8|"/?f(Sa) where § € Jr has components 8, at finite
places and 1 at infinite places (in the number field case). Thus,

81 =TTl
If g € S(Ar) then for every B € Jr the function gg : & — g(tB) belongs to S(Ar). We have
Flep)@) = [ sBrV(anpn (1)
=B [ POV o) a, (V) = 1B F () (B ),

where Y = yB. Thus, .7 (gg) = |B| ' F (g)p1.
For B € Jr with infinite components 1 we now deduce
F f5=8"*1B|™ fsp-1.
Hence, 7 o 7 (f)(a) = |8]'[8]'|8| ™" f(a) = f(~ax). O



178 3. CLASS FIELD THEORY

REMARK. In characteristic zero it is not dif and only ificult to show that |§| = |dr|~' where
dr is the discriminant of F. In positive characteristic 22.4 implies that the image of 0 € Jr with
respect to p: Jp — Div(%) of 22.7 is a canonical divisor k = Y.d,[v] of ¢ and |§| = g~ 4&¥ =
q* 8 where ¢ is the cardinality of the constant subfield of F and g is the genus of the curve .

23.5. The additive group F is a discrete locally compact group, its translation invariant mea-
sure is an atomic measure where each point have volume ¢ > 0. Choose the measure yr which is
the counting measure, i.e. ¢ = 1. As common in harmonic analysis, define the measure [, /r on
Ap/F such that ta, = Ua, /r @ UF, ie. forall f € S(Ar) the equality

/AFf.uAp _/AF/F (/Ff(ﬁ —i—a),lip(a)) “AF/F(B)

holds where B = B+ F.

Since the measure on F' is atomic counting,

[ s@ur@) = ¥ sl

aclF

Recall that the orthogonal complement of F with respect to W is F. Hence the group of char-
acters of Ap/F is isomorphic to F, see Remark 2 of 22.3. When applying inverse Fourier trans-
form, one needs to involve the dual measure on the group of characters. The following proposition

shows in particular that the measure {15,/ is dual to the counting measure f.

PROPOSITION. The volume of A /F with respect to Hap/F is 1, 50 Ua, F is dual to Up.
Let g € S(Ar) and B € Jp. Then (Gauf3—Cauchy—Poisson summation formula)

|s@ur@ = [ #©)@ue(a.
F F

We also have (Riemann—Roch type formula)
[ sBayuca) =181 [ F(&)(B'a) (@),
F F

Proof. For g € S(AF) let §(a) = [ g(a+a) ur(a), this is a function on Ar/F. Denote by F, /r
the Fourier transform of functions on compact Ar/F using the character induced by y°, since
w'(F)=1.Thenforbc F

Pase@0)= [ B OB nsrB)= [ [ o8+ urla)y (5B) i, (B)

Ap/F
= [, | B @@y G @) e (B)= [ e0¥ I = F()0)

where Y= +a.
Denote by m the volume of Ar/F with respect to U, /r. Applying the inverse Fourier trans-

form to the function Z,, /r(§) on F, we obtain

g(B)=m"" 7 (8)(a) yO(aP) pr(a).

Thus, [ g(a)ur(a) = g(0) =m™! [ F(g)(a) ur(a). Since g € S(Ar), all the computations are
justified. Using Lemma 23.4, applying this formula to .7 (g), we deduce m = 1.
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Thus, we get the Gaui—~Cauchy—Poisson formula. The second formula follows from it and
23.4. g

REMARK. The second formula of the Proposition implies another proof of the Riemann—
Roch formula in positive characteristic. Namely, for a divisor d of a smooth proper geometrically
irreducible curve ¢ over a finite field F,, with function field F, let B € Jr be such that the map p’
defined in 22.7 sends it to d. Then for the specific function f defined in 23.4, the last formula of the
previous Proposition tand the observation |F NAp(d)| = [ f(Ba) ur(a) imply the Riemann—Roch
formula stated and proved differently in 22.4.

In the number field case the second formula of the Proposition can be viewed as a one-

dimensional predecessor of Arakelov geometry on arithmetic surfaces.

23.6. 'We will use the counting measure Ugx on the discrete group F*, so

/guF:g(0)+/ gl
F Fx

DEFINITION. Define the translation invariant measure Wj, jpx such that f;, = Uy, /px @ Upx.
Hence for all 4 = gy with g € S(Ar), x is a character of Jp that sends F* to 1, the equality

/JFh.UJF = /JF/FX (/F h(Ba) yFX(a)> )

holds.

Recall that |Jr| = R in the number field case and |Jr| = ¢” in the global function case when
the constant field of F is IF, (see Corollary 3 of 22.9). Choose a subgroup M of Jr such that Jr =
M x J}. Hence M = |Jr|. Endow M with the standard multiplicative measure ug/| | of positive
reals or with the counting discrete measure. Define the translation invariant measure (U g such that

Hyp = M1 @ U Define the translation invariant measure K1/~ such that Ky = Myl ypx © Hp.

For a character y of Jr of finite order we have ) (M) = 1 since characters of finite order of
RZ, and of Z are trivial. Thus x(my) = x(y) forme M, y € JL.

DEFINITION. For g € S(Ar), s € C and a character ¥ of Jr that vanishes on F* and is of finite

order, the zeta integral is
Cles.2) = | s()la'z(e) g (o).
F

There are two ways to compute it, thus providing the equality for the two results of computa-

tion.

The first computation. The first way is the use Jr = [[' F,* and do local computations.
Let’s start with the case of ¥ = 1 and let g be f defined in 23.4. Then

C(f,s, 1) = CF(fvsﬂ 1) = HCv(fvaSa 1)7 Cv(fv,s, 1) = /FX fv(a)‘a‘i”ﬂx (OC)
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Calculations immediately show that

lk(v)|~4/2(1 — |k(v)|~*)~" if v s finite,
G(foys,1) = S Tr(s) = n7%/°T(s/2) if v is real,
Ic(s) = (2m)°T(s) if v is complex,

d, was defined in 23.3. Recall that I'(s) is defined for Re(s) > 0 as [; y*exp(y)dy/y, it has a
meromorphic continuation to the complex plane, has no zeros there and has simple poles at non-
positive integers.

Since () absolutely and uniformly converges for Re(s) > 1, the zeta integral {(f,s, 1) has
the same property. Note that the function {r..(s) [T, [k(v)|~%/? is a meromorphic function on the
complex plane and it does not have zeros there.

Thus, for Re(s) > 1

C(fvsal) CF°° H|k | dV/zy

where Cro(s) ='r(s)"I'c(s)™ in the number field case and (.. (s) = 1 in positive characteristic.
Therefore, the zeta integral (f,s,1) is a holomorphic function on Re(s) > 1.

In particular, in the classical case of F = Q, we have o (f,s,1) = {o(s)m /2T (s/2).

By 23.4 the local components of .% (f) are equal to ]5v]l/ 2 fvs,» so this is f, at all finite places
where d, = 0. We have §,(.Z (f,),s,1) = |k(v)|~%*(1 —|k(v)|~*)~" at finite places and

C(ﬂ(f)’svl) CFO@ H|k | d"s.

Now let x be nontrivial. Let V,, be the finite set of all finite places v where x (j,(U,)) # 1, ji is
defined in 23.2. Denote Uy r, = Uf,. For a finite v define the conductor ¢, = ¢, () as the smallest
non-negative integer such that  (j,(Ue, r,)) = 1. Thus, v € V, if and only if ¢, # 0. The definition
in 23.2 shows that x(v) = 0 when v € V.. We also have Lc(s, X) = Leuv, (5, X)-

Note that §,(f,,s,x) = 0 when ¢, > 0, since the sum of the values of a non-trivial character
of a finite group U, /U,, f, on all of its elements is 0. We will modify f, at v € V, to get non-zero
local zeta integrals. As a 51de remark which we do not use, since for 0 < Re(s) < 1 one can easily
show that

G (g1),1 =5, ) Gu(82,5,%) = §u(F (82),1 =5, 1)ul81,5,%)

for g1,g2 € S(F,), the quotient §,(.# (g),1—s,x~!)/¢,(g,s,x) when the denominator is non-zero
does not depend on the choice of g € S(F,).

If v is a real place, for the composite character y o j, of finite order of R* there is a uniquely
determined number a which is 0 or 1, such that this character sends @ € R* to (a/|a)?; de-
fine I'r(s,x) = I'r(s+a). If v is complex, for the composite character x o j, of C* there is a
uniquely determined number n € Z such that this character sends & € C* to (a/|a|)", then define

Te(s, x) =Te(s+[nl/2).
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Now, let’s use, following Tate’s choice,

o‘f, () if v is real,

a'f,(o) if v is complex and n > 0,
fAF=euff, fHa)=1qa"f(a) if v is complex and n < 0,

(o) if finite v €V,

W) (o) char u, () if finite v € V.

-1
Then f} = f¥ at finite places. One calculates

I'r(s,x) if v is real,
Te(s,x) if v is complex,
Cv(fng'S‘v%) = 2 1 . .
k()| =42 (1 = x (V) [k(v)| %)~ if finite v €V,
|k(v)|(©+9)% x non-zero constant if finite v € V.
Note that ,(fZ,s, %) has no complex zeros.
We have
X (o) if v is real,
-\n\fJfl( ) ifvi 1
i o if v is complex,
FEN =" e
|6,y " fu(Syx), if finite v £ V,,
|k(v)|4/>evchary, ,  if finite v € Vj,
Then )
“Tr(s, X) if v is real,
i"TCe(s,x) if v is complex,
L= 8 oo
X)) (1= 2 (v)[k(v)|75) " if finite v &V,
non-zero constant ifvev,.

For a finite set of places C the function L¢(s, x) is defined in 23.2. We obtain that for Re(s) > 1
C(fX,S,X) LC(SX CFoo Sx H CV 7SX H ‘k(v)‘_dV/z’

veCUVy, V€CUVZ
S(F(f*),5,2) =Le(s, )" Cree(s,2) ] G(F ) T x0)® k()[4
veCUVy, vgCUVy,

where in the number field case r(s,)x) = I'r(s,x)"T'c(s, x)"™, integer b depends on the num-
bers a, n for real and complex places, and {r.(s,)) = 1 in positive characteristic. The function
Crea(s, 2) Tvecuvy, Sv( 1% s, %) is a holomorphic function on Re(s) > 0, therefore the zeta integral
C(f,s,x) is a holomorphic function on Re(s) > 1.

The second computation. The second way to compute the zeta integral is to use the filtration
Jr > J}r > F* and the equality of sets F = F* U{0}. This is a global computation. It can be
viewed as an analog of the radial computation of the Gaussian integral. For m € M denote

Gnl,5,2) = Iml* [ stm)2 (1) 1y ).

F
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Using the previous Proposition to pass from the third to the fourth line, we get

Enl,5,) + ml'8(0) [, 21 ey

=l [ 2(r) [ elmva) e @hey (1) +mb8(0) [ (7 ey ()

F

=l [, ) | gtma) (@t
— ]! / 1) [ @7 @) e @iy (7
=l [ x| F @ ya) ey ()

F

=G (F @1 =52 )l F0) [ 17 Dby
Thus,
Ga(5:5,2) +ml'8(0) [ XDty (1) =Cu () 1527 )+l 2 (@)0) [ 17 Dby (1)

Now represent the measure space M as M_ UM, where M_, M, correspond to (0,1] and
[1,+00) with their measures in the number field case and M_, M. correspond to {¢" : n <0} U{1}
and {¢" :n>0}U{1} where ¢" is given volume 1 when n # 0 and {1} in both sets is given volume
1/2. We have

Cles) = [ Gnles ) mum) = [ Gules ) 0m) 5 [ Eulis.2) s, )

Assume from now on that g = f%*. Then both integrals converge for Re(s) > 1. The second
integral converges even better when Re(s) gets smaller since m € M, hence the second integral
extends to an entire function £(g,s,x) on the complex plane. For the first integral, using the

previous computation for §,(g,s,x), we get

| Gnlesnme (m= [ G — 5" tar (m) +Ag,s5,%)

= | Gn(F(g) 15,27 ") . (m) +A(g.5.%)

= é(ﬁ(g),]—s,xfl)—i—A(g’ij)

where

M) = [ (F@OWE [ 20 iy (1) =€l [ 20y 1)) s (),

If % = 1 then fe1 2(V)Hcr (V) = el (Cr) and
Clg.5.1) = E(8:5,1) +&(F(8), 1 —5,1) — iy (Cr) (8(0) /s + F (8)(0)/ (1 —5))
in characteristic zero, and
(g5, 1) =6(851)+&(F(g), 1 —5,1)
— ey (Cr) (8(0)/(1-q7*) + 7 (8)(0)/(1—¢' ™) + (F(8)(0) — 8(0))/2)

in positive characteristic.
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Thus, {(g,s, 1) extends to a meromorphic function on the complex plane. Taking g = f, so
f(0) and .Z(f)(0) are non-zero, we also obtain that fic1 (CL) < . Since every locally compact
abelian group of finite measure is compact, we deduce from the computation of the zeta integral
that C}. is compact. We also have Hel (CL) > 0 since otherwise ty =0, uy =0and $(f,s,1)=0
which contradicts the first computation of the zeta integral.

Therefore, the poles of {(f,s,1) are at s = 0 and s = 1 in characteristic zero and at ¢° = 1 and

g'~* =1 in positive characteristic.

If x(C}) # 1 then fc;x(y)*luc;(y) is zero and
Clg,5.2) =& (g5 0) +E(F (). 1—s.27")

extends to an entire function on the complex plane.

When % 0.7 (g)(at) = g(a), we get the functional equation for the zeta integral
C(g»&%) = C(‘gi(g)v 1 —Sal_l)-

THEOREM. The zeta integral {(f,s,1) extends to a meromorphic function on the complex
plane and its only poles are at s = 0 and s = 1 in characteristic zero and at ¢ =1 and g'— = 1

in positive characteristic. It satisfies the functional equation

C(fvsvl) = C(y(f%l_‘g?l)'

For a character x of Jg such that x(Jr) # 1 = x(F*) and x is of finite order, the zeta integral

C(f%,s,x) extends to an entire function on the complex plane and satisfies the functional equation

C(fxwLX) = C(g(f%%l_s’%*l)'

The zeta function Cr (s) extends to a meromorphic function on the complex plane, with the only
poles at s =0 and s = 1 in characteristic zero and at ¢° = 1 and ¢' ~* = 1 in positive characteristic.
Denote Cr(s) = (m=5/?T(s/2))" (27)' =T (s))2{r (s) in characteristic zero and Cp(s) = {r(s) in

positive characteristic. It satisfies the functional equation
Cr(s) = 8720 Cr(1-5),
ie.
Cr(s) = |dp|"*7°Cp(1—s) in characteristic zero,
Cr(s) = (¢ )>75¢p(1 —5) in positive characteristic.

If x # 1, for a finite set C of finite places the function L¢(s, ) ) extends to an entire function on
the complex plane and it satisfies the functional equation relating Le (s, %) and Le(1 —s, 3~ 1).

Proof. 1t only remains to use the above computations.

From the comparison of the entire function {(f%,s, %) and the function L¢(s, x) and the fact
that the function Cre(s, 2) [Tvecu, & ( f%,s5,%) has no complex zeroes, we obtain that L¢ (s, x)
extends to an entire function on C. The functions equation for L¢(s, ) follows from the two
displayed lines in the last paragraph of the first computation. U
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COROLLARY. For a finite abelian extension L/ F the group Jr /(F* Ny pJy) is finite by Corol-
lary 2 of (22.7). Let y be a non-trivial character of the finite group Jg /(F* Ny pJy). Then for a
finite set C of finite places the function L¢(s, ) ) extends to an entire function on the complex plane

and in particular the order of its zero at s = 1 is non-negative.

REMARKS.

1. The proof the Theorem uses subsections 22.1-22.3, including the local compactness prop-
erty of the additive and multiplicative groups of completions of a global field and its adelic ring,
and self-duality of the additive groups of completions of a global field and its adelic ring in Propo-

sition 22.3. It does not use any other non-trivial results of sections 1-22.

2. The computation of the zeta integral in the proof of the Theorem proves compactness of C-
by proving {(C+) < . This proof is different from the proof in 22.7 and in Chapter 1. Following
the lines of how Proposition 22.8 was deduced from compactness of the idele classes of adelic
module 1 and discreteness of non-zero global elements in ideles.

3. There are classical analytic ways without involving zeta integrals to prove Corollary 2
and to prove the Theorem (Hecke’s proof of the functional equation of the L-functions of number
fields). In the proof included in this section, due to Iwasawa and Tate, the functional equation
is implied by the structure of the zeta integral, self-duality of adeles, the Fourier transform on

functions on adeles and the right mixture of the additive and multiplicative structures.

4. Generalisations of the zeta integral play key roles in the Langlands program and in higher
zeta integrals theory.

23.7. Now let’s look at an analytic proof of the second inequality by using L-functions.

THEOREM. The index of Ny pCy in Cr for a global field F and a cyclic extension L/F of

prime degree does not exceed the degree of the extension. Hence, in view of Corollary 1 of (22.8),

|Cr:NyypCr| =|L:F|, kerNyp=C; °.

Proof. Denote by C the set of all finite places v for which e(w|v) > 1 in L/F, hence e(w|v) = |L: F|
since the latter is a prime number. This set is finite due to Proposition 22.6. So finite v & C are
unramified in L/F.

Denote m = |Jp : F*NppJ|,n=|L:F|.

By Theorem 23.6, log {r(s) ~ —log(s — 1). The function {g(s) is the product of L¢(s, 1) and
the product of finitely many Euler factors (1 — |k(v)|~*)~! each of which is a holomorphic function
on Re(s) > 0, hence logLc(s, 1) ~log&p(s) ~ —log(s—1).

For a non-trivial character y of the finite abelian group Jr/(F* Ny rJy.) denote by n(y) the
order of zero of L¢(s,x) at s = 1. Then logLc(s,x) ~ n(x)log(s — 1). By Corollary of 23.6,

n(yx) = 0 for characters x different from the trivial character.

For Re(s) > 1 we have

logLc(s, ) ~ Y, X W)k =Y x(W)[k(v)|~* ~ Y, x(a) Y k()|

V¢C OCGJF/(FXNL/FJL) Vljv(ﬂ",)EOCFXNL/FJL
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where 7, as in 23.2. Summing over all characters of the finite abelian group Jr/(F* Ny pJL) =
Cr /Ny /pCL we obtain

log{r(s)+ Y logLe(s,x) ~ ), ) x(o) ) k().

x#1 X acp/(F*Ny L) viju(Ty) EQF ¥ Ny ypJL,
The sum Y ey, /(FN, L) x(a) equals zero if a is different from the identity of the quotient group
and equals its order otherwise.

Denote by S; /¢ the set of finite places of & which split completely in L/F, so there are n
places w of 0, over v and k(w) = k(v). For every v € S; /r we have j,(F,*) C N /pJr. Using the
notation 2 to indicate that the left-hand side is not smaller than the right-hand side plus a constant
when real s — 1, we get

(1- X n(x))log Loem )y kW= zm ¥ k=2 Y kw)
Pl s—1 vijo (1) EF* Nyl veSi/k wiw|vVESL

m s m s m 1
22X kW~ B k)] ~ P log —.

n w:lk(w)| is prime s—1

Therefore, m < n. Now, by Corollary 1 of 22.8, we deduce m = n, and in the displayed formulas,
n(x)=0forall x #1, ¥,cs, k()| =S ~ dlog L. O

REMARKS.
1. The method of using the singularity at s = 1 of series Y pcg N(P)~* has a long tradition

starting from Dirichlet’s proof of the theorem about primes in arithmetic progressions.

2. A purely algebraic proof (by Chevalley) of the first statement of the Theorem can be ob-
tained using Kummer theory and in positive characteristic p for Galois extensions of degree p by
using Artin—Schreier theory, so without using L-functions. The proof above, essentially due to
Weber, but in adelic language, is a historical approach to class field theory via the study of the

density of primes in arithmetic progressions and splitting of maximal ideals using L-functions.

24. Global Class Field Theory

Infinitely divisible elements of a group have to go to the identity element of a profinite group

with respect to any homomorphism from the former to the latter.

DEFINITION. For the field of real numbers define the reciprocity map
Yr = \P(C/]R: R* — Gal(C/R)

as r — t175120())/2 where 7 € Gal(C/R) is the complex conjugation. Of course, we can identify
Gal(C/R) =% Z/2Z with the group {+1}. For the field of complex numbers define the reciprocity
map W¢: C* — Gal(C/C) = {1} as the map which sends everything to 1.

Even though we do not have profinite extensions of archimedean completions with Galois
groups isomorphic to Z and hence frobenius elements in the sense of 20.1 and no analog of the

map Y of section 20, one checks immediately that for infinite places we have analogs of the
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commutative diagrams of Theorem 20.9. Indeed, the Galois groups involved are either trivial or
Gal(C/R). In particular, if E/L/F, E /M /F are finite extension of archimedean completions, then

Yem(B)lL="Yr/r(Ny/r(B)) for p € M*.

24.1. For abelian extensions the decomposition group Gal(L/F),, of a place w of L over a
place v of F depends on v only, due to the equality Gal(L/F),, = 6~ Gal(L/F),,c = Gal(L/F ).
Keeping in mind 22.1, for abelian L/F we will denote Gal(L/F),, by Gal(L/F),, L,, = L,, i,, by
iy: Gal(L,/F,) — Gal(L/F), i,(Gal(L,/F,)) = Gal(L/F),.

DEFINITION. Let F be a global field. Using the local reciprocity maps for all completions of F,,,
define for a finite abelian extension L/F the homomorphism

CI>L/FZJF—>GEI](L/F), CDL/F(a):HlVOlPLL/F‘(aV)

where v runs through all places of F, ¥, /p: F,* — Gal(L,/F,) is the local reciprocity map.
The product is well defined, since for almost all v the element &, € Uf, and the extension L, /F, is
unramified by Proposition 22.6.

PROPOSITION. Let M/F,E /L be finite separable extensions of global fields and L/F and
E /M be finite abelian extensions. Then the diagram

[e3)
Ty —25 Gal(E/M)

| l

P
Jr —— Gal(L/F)
is commutative, where the right vertical map is the restriction of Galois automorphisms and the

left vertical map is the norm map Ny /r.

Proof. For an idele (B,,) of Jyy and w|v for a place v of F we know from Theorem 20.9, section
21 and the Definition preceding subsection 24.1 that Wg, /y, (Bw)|z, = W1, /5, (Nu, /F, (Bw)) Where

wlv. Since Ny /r ((Bw))v = [Twjy N,/ (Bw) by 22.2, we get
Prsr (Nyyse(Bw) = [ Tiv o ¥r, /5 (Naaye (Bu)v) = T T v 0 ¥,/ (Nas, 5, (o))

voowly

= HHiV oWg, m, (Bw)lL, = P/ ((Bw)) -

vVowly

DEFINITION. For an infinite abelian extension R/F define
CPR/F JF— Gal(R/F)

as the inverse limit of ®; /() for finite subextensions L/F of R/F, using the previous Proposition
forM =F.
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COROLLARY. The equality ®g/p(a) =I1, iy o Wg, /r, (o) remains valid for infinite abelian
extensions R/F, where R, is the compositum of completions of all finite subextensions E /F of R/F

with respect to (any of) extensions of v on E. The previous Proposition remains true for infinite
L/F and E/M.

Proof. The product [], i, o W, /r, () converges to ®g/p(er) in Gal(R/F). Indeed, for a finite
subextension E/F of R/F let og =[], i, oW, /5, (). By the previous Proposition for any finite
subextension M /F of E/F, og |y =TI, ivo WYy, /r, (o) = Py r(@) = Oy, s0 {OF } £ converge to
®p/p (@) in the profinite topology of Gal(R/F). The second assertion of the Corollary follows

immediately. 0

24.2. In characteristic zero, the maximal cyclotomic extension Q%! is the composite of all
finite cyclotomic extensions Q(&,,) of Q, and

Gal(Q¥/Q) = lim (Z/nZ)* = 7"
We have Z* = [1,Z, and from the description of the units of local number fields we know that
Zy =1Z/(p—1)ZxZ, for odd prime p and Z, =7 /27 x Z,. Hence
Z*=TxZ, T=L2Lx[][Z/(p-1)Z.
p>2

Since Z has no nontrivial torsion, the torsion subgroup of Gal(Q%*! /Q) coincides with the torsion
subgroup of 7. The latter contains Z /27 ® ®p~2Z/(p — 1)Z whose closure in Z* coincides with
T.

DEFINITION. For k = Q denote by k the fixed field of T, it is a Z-extension of k.
In positive characteristic, the field k = F,(¢) has the Z-extension k = F}(r).

LEMMA. Let [ be a prime number and m a positive integer. For a finite extension K of Q let
K /K be the 7,;-subextension of K /K. Then for every finite extension E of Q, containing K, the
image of Gal(EK /E) in Gal(K /K) is a nontrivial open subgroup of the latter and the intersection
E NK is of finite degree over K.

Proof. For a prime number / denote by A; the subextension of @ /Q with the Galois group Z;,
S0 @ =TJA;. Put !/ =1if [ is odd and I’ =4 if [ = 2. The field A; is linearly disjoint with
Q(&y) and their composite is the maximal /-cyclotomic extension Q(&;~) of Q. Since the finite
extension E (&) of E does not include E({~), the extension EK /E is nontrivial. Hence the image
of Gal(EK/E) in Gal(K /K) is a subgroup of finite index. O

We get the surjective homomorphism
deg: Gy —» Gal(k/k) — Z.

For every finite separable extension F of k we get, similar to section 20, the surjective homo-
morphism
degy = f; 'deg: Gr — Gal(F/F) — Z,
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where fr = |F Nk : k|, F = Fk. It is continuous, since the restriction of Galois automorphisms is
continuous.

We denote the element of Gal(F /F) that is sent by deg to 1 € 7 as @r. This is the frobenius
element in abstract class field theory in the sense of 20.1, but we will not use this name in the
case of global fields in order not to confuse it with the Frobenius automorphisms of completions
of global fields.

THEOREM. For a global field F let
wr = degg OQDI;/F: Jp — 7.

Then wr(F*) = 1. The homomorphism wg induces the continuous homomorphism vg : Cp — 7.

Proof. Since @y, #(00) = ®p (N () by Corollary of Proposition 24.1, it is sufficient to prove
the statement for k = Q and k = IF,(¢).

In characteristic zero, it suffices to show that @) /g(a) = 1 for every root  and a €
Q*. If {1, &, are roots of orders my,mp and (my,my) = 1, then { = &, is of order m;m, and
from Proposition 24.1 we deduce ({®o@/e(@=ym — (C;DQ(Q)/Q(‘I)_I)W, so it is sufficient to show
¢®e00@=1 = | for every root ¢ of order I" > 2, [ a prime number.

When [ is different from a prime p, the extension Q,({)/Q, is unramified. Therefore we
obtain ®q (¢)/q,(@)() = crr “ by Remark 18.2. When p = [ then by Corollary 21.2 we know
Dq,¢)/q,@(8) = ¢v" where a = p"r@y with u € Z,. When v is infinite then R({) = C and
P oy/r(a)(8) = ¢sien(@) | Since u = sign(a) Hp#pvp(“), we deduce @) /g(a) = 1.

In positive characteristic p, for a root § of order prime to p and a € k*, k() /k, is unramified
for all places v of k and @y (¢) /i, (@)(C) = C'k(vﬂv(“). Since 1 = |a~'| =[], |k(v)|"“), we obtain
Pig)ula) = 1. .

Thus, &7 . induces the homomorphism Cr —» Gal(F/F) and we have the homomorphism
vip: Cp — 7.

The map P IF is continuous, since the preimage of Gal(ﬁ /L) for a finite subextension L/F
of F/F contains F* and the image of the norms of L,,/F, for w|v and places v of F by 22.2, hence
it also contains N /pJi.. The group Ny pCy is an open subgroup in Cr by Corollary 22.6. 0

REMARK. In positive characteristic vy has a simple description. Denote by kg the finite
coefficient field of F. Note that the restriction of the local Frobenius automorphism of F," /F, on

F=F &, kP is (p,‘tk(v):kﬂ and by local class field theory W pur/f, (04,) = };v(a"). Hence @7 . (0) =
: ~1
(pFZ“v(%)‘k(v)'kF| =@ %1l 4ng ve (o) = —logy,| |e|. In particular, @z (o) = 1 if and only if

a k.

PROPOSITION. [In characteristic zero vp(Cr) = Z. In positive characteristic vp(Cr) is iso-

morphic to the group Z. For every finite separable extension L|/F we have

vr(NpypCr) = |LOF : F| 'y (Cp).
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Proof. To prove the first assertion, note that for every finite subextension L/F of F /F the im-
age @, /p(Jr) contains all the decomposition groups Gal(L/F), = i,(Gal(L,/F,)) where v runs
through all places of F, since ®; /¢, (F,*) = Gal(L,/F,). Denote by M the fixed field of ®; /¢ (JF),
then M, = F, for all places v of F. By Corollary 2 of 22.9 we deduce M = F. Thus, CIDﬁ/F (Jp)lL =
Gal(L/F) for every finite subextension L/F of F /F. Therefore, the image ®5 / #(Cr) is dense in
Gal(F/F).

In characteristic zero Cr/C}. = R, which is a divisible group, hence <I>}7/F(CF) =5 (ch).
Since C}. is compact and ®j: - is continuous, Py (C}) is closed and so dDﬁ/F(CF) = Gal(F /F).

In positive characteristic, for every completed F, the image W, (F,*) restricted on F=F F, "
is an infinite cyclic subgroup of the infinite cyclic subgroup generated by ¢, hence vy (Cr) = Z.

Using Corollary of Proposition 24.1 we deduce

WF(NL/FCL) = degF oq)ﬁ/F<NL/FJL) = ‘Lﬂf : F‘_ldegLOCDZ/L(JL) = ’Lﬁﬁ : FFIWL(CL).

O

24.3. The map deg,: G, — 7 for class field theory of section 20 is the surjective homo-
morphism deg, : G, — Gal(k/k) = Z.

DEFINITION. Put A = l_i11>1CE where E runs through all finite separable extensions of k. This is a
Gr-module. Then Ar = Cr by Lemma 22.6.

The map v = v: Ay — Z is defined in the Theorem and Proposition 24.2. The required for
abstract class field theory compatibility of v with the norm map and deg as in 20.3 is established
in Proposition 24.2.

Properties A1 and A2 of 20.7, i.e. for cyclic extensions L/F of prime degree the kernel of the
norm map Ny /r: Cp — Cr equals C}~°, o is a generator of Gal(L/F), and the index of the norm
group Ny ,pCy, equals to the degree, hold true by Theorem 23.7.

Thus, section 20 implies
THEOREM. For a finite Galois extension L/ F of global fields we have the homomorphism
YL/F: Gal(L/F) — CF/NL/FCL,

its kernel is [Gal(L/F),Gal(L/F)] and it is surjective. All the properties of section 20 hold.

The inverse homomorphism is the surjective homomorphism
¥y /r: Cp — Gal(L/F)™

with kernel is Np jpCL.

We also have the global reciprocity map
‘PFZ Cr — G;‘P

with all the properties in 20.8 and 20.9 satisfied. The map Wr is continuous.
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Proof. Continuity of ¥ follows from W' (Gal(L/F)) = Ny pCy, for a finite abelian extension
L/F and the openness of the norm group in Corollary 22.6. 0

COROLLARY. For every finite cyclic extension L/F of global fields with a generator & prop-
erties Al and A2 hold, i.e.

kerNyp =C; ™%, Cp/NyrCr = Gal(L/F).

Proof. The second assertion follows from the isomorphism property of ¥y r. The first asser-
tion can be proved by induction on the degree of cyclic L/F. Let M/F be a subextension of
L/F of prime degree m. Proposition 20.6 for the abelian L/F implies that the homomorphism
JjiAF /NL/FAL — Ap /Ny /MAL induced by Ar — Ay corresponds via the reciprocity maps to
the homomorphism Gal(L/F) — Gal(L/M), o — ¢™. For cyclic L/F it is surjective, and hence
J s surjective. Therefore, Ayy C ApNp/yAL. Now, if o € Ay is in the kernel of Ny then by the
induction assumption Ny /0t = B! for some B € Ay and o € Gal(L/F). Write = YN/m0
with y € Ar and 6 € Ar. Then Ny /00 = Bo! = NL/M5G*1, so 8!~ is in the kernel of Nims
and so o € C;°. O

COROLLARY 2. For a finite cyclic extension L/F an element a € F* is in the norm group
NppL* if and only if its image in every completion F,* is in the image of the local norm maps

NL,/E,-

Proof. 1f a is in the image of the local maps Ny, /g, for all v, then a = Ny /¢ for an idele € J;.
Hence Ny /r(BL*) = 1 in Cr. Therefore by Corollary 1 we obtain § = ¥' b for some y € J; and
b€ L*. Thus,a= Ny rb. O

24.4. One can ask about compatibility of the local reciprocity maps and the global reci-
procity map.

THEOREM. For every finite abelian extension L/F and every place v of F we have the com-

mutative diagram

% Y1,k
F* — Gal(L,/F)

Jl ll

Yy /F
Cr ——— Gal(L/F)

where j, send an element o € F, to the class of the idele with components 1 everywhere except

at v where its component is Q.

Proof. Let F be a number field.

First consider infinite places where there are no maps Y. If F,* is infinitely divisible the
diagram commutes. If L, = F, then j,(F,*) € N, /FCL and the diagram commutes. If v is a real
place and o € F* is not infinitely divisible, then it is —1 modulo the subgroup RZ, of infinitely
divisible elements; if L, /F, is nontrivial then L, = C, hence |L: F| is even. Then W /r(j,(—1))* =
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1 and we only need to check that W', /¢ (j,(—1)) = —1. Consider the special case L = F'({4) where
§f = —1. If W r(ju(—1)) = 1then j,(—1) € Ny pCr, ie. j,(—1) = Np/r(B)b for some f € Ji
andb € F*. Then (i) b € Ny, /p, L, for v/ # v, and (ii) —b € Ny, /r, L. On the other hand, wr (b) =
1 by Theorem 24.2, so from (i) we deduce b € Ny i L. But then from (ii) —1 € Ny /g L}, a
contradiction. Thus, for the special case L = F (&) we have ¥y p(jya) = iy o¥y /(). In the
general case of real v, define L' = L({4) and choose F’ as the fixed field of the restriction of the
complex conjugation to L. Then L' is an extension of F’ of degree 2, L' /F' is the special case as
above, L' DL, F' D F, F, 2R and L, = C. Therefore, F, = F,, L, = L,. For L'/F’ we already
know that Wy, /p(j, o) =i, oWy s (a), where ji: F, = F, — Cpr. Due to formula for the norm
map on ideles in 22.2, j,(&) = Np//p(jy(a)). Using the first Proposition of 20.5 we conclude
Y r (v(@)) =iyo YL /F, (a).

Now we deal with finite places v in characteristic zero. By Theorem 20.9 degpo¥; P
vp. Since wr = degpo P JF> in the special case of a finite subextension L/F of F/F we get
Wi r(a) =1, Y., /r, () and, in particular, the diagram is commutative. We will reduce the
general case to this special case, similar how in the study of YT one reduces the general case of

finite Galois extensions to the case of finite Galois extensions inside F /F.
We have the diagram
Y, /5
Gal(L,/F) —5 FX /Ny 5Ly

| I

T
Gal(L/F) — Cp/NCr,

where j; is induced by j,, and the horizontal maps are isomorphisms. Its commutativity is equiv-
alent to the commutativity of the diagram in the statement of the Theorem.

Since elements of prime power order generate finite abelian groups, we can assume that the
order of ¢ is ["™ for a prime [/ and a positive integer m. We can also assume that ¢ generates
Gal(L/F) by passing to the fixed field of 6. We use the notation Q for the Z;-extension of Q,
similar to Lemma 24.2. Put F = FQ, F, = F,Q. The restriction map gives the homomorphism
Gr, — Gal(F,/F,) — Gal(F /F). By Lemma 24.2, n; = |F,NF : F| is a positive integer. So there
is an isomorphism Gal(F,/F,) = Gal(F /F NF,) = 7, and we have the surjective homomorphism

degy : Gr, — Gal(F,/F) = Z,

which is different from the degy, in local class field theory.

For the local fields extension L,/F, and a ¢ € Gal(L,/F,) we can use deg; as in Remark
20.2. Hence, there is an element ¢ of Frob™(L,/F,) = {1t € Gal(L,/F,) : degy (7) € Zo} such
that ¢[;, = 0. We have degy(9|z) = n;degy (¢) € Z~o. Denote by K the fixed field of ¢|;, by
20.2 it is of finite degree over F'. Denote M = KL, by 20.2 it is of finite degree over K and L and
is inside K = L. Denote by M,, the completion of M with respect to a place w of M over v of L,

then M,, D L,. Denote by the same notation w the place of K under the place w of M. The fixed
field of ¢ is of finite degree over F,, and contains K and F,, therefore it contains K,,. We deduce
that the restriction map Gal(M,,/K,,) — Gal(L,/F,) sends @ |y, to . The extension M /K is of
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the special type, so the preceding diagram is commutative for M /K, M,,/K,,. It remains to use the
following cube diagram all side diagrams except the bottom square are commutative. Hence the

bottom square is commutative for ¢ (note that K, M depend on o).

Gal(Mw/Kw) I(gj/]V[uw/le‘l‘;}<
Gal(M/K) CK/NM/KCM
N, /R,
Gal(L,/F,) F [Ny, kLY
/ NK/F/
Gal(L/F) CF/NL/FCL

Finally, in positive characteristic F = F ®p, Fy” and for each completion F, we have F, =
FY'=F ®f F. We argue similarly to the characteristic zero case argument, with the simplification
due to the fact that deg. is the usual degy in local class field theory of local fields of positive

characteristic with finite residue field. |

REMARK. In the last part of the proof for number fields it would be more satisfying to work
with local extensions va /F,, however unlike Lemma 24.2 for Z;-extensions, the intersection
@ NQ, is not of finite degree over Q. Indeed, for odd primes / different from p and a primitive /th
root (; it is easy to check that the degree of the unramified extension Q,({;)/Q,, is r; where r; is the
minimal positive integer such that p’”” =1 mod /. Hence the fixed field R; of the decomposition
group Gal(Q,(§;)/Q)) of p in Gal(Q({;)/Q) is of degree (I —1)/r; over Q. By the last sentence
in the proof of Theorem 23.7, there are infinitely many primes which split completely in Q(/p)/Q,
hence, by Theorem 3.5.9 in Chapter 1, there are infinitely many primes / such that p is a quadratic
residue modulo /, and hence (I —1)/r; > 2. So @ M Q), contains disjoint nontrivial extensions R;

of Q for infinitely many /.
COROLLARY 1. For every abelian extension L/F of global fields and o. = (o) € Jp.
Y r(a) =]Tivo¥e,r (on).
v

For every principal idele a € F* the reciprocity law holds

HiVOlPLV/Fv(a) =1.

Proof. The first formula for idele j,(b) and every place v is the content of the previous Theorem.
Hence it holds for the subgroup of ideles which have almost all of their components equal to 1.
This subgroup is a dense subgroup of ideles. Since the reciprocity map ¥y r is continuous by

Theorem 24.3, we have the first statement of the Corollary. The second statement follows. U

COROLLARY 2. For every finite abelian extension L/F and every place v

jv(FvX) r_]FX]\IL/FJL = jV(NLV/FvLj)’
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and the places of L over the place v of F are in one-to-one correspondence with elements of the
finite group Jg [ (F,) Ny jpJL).

Proof. The D inclusion follows from the description of the norm map in 22.2. Let j,(@) €
F*NppJp for a € F, ie. j(a) = aNyp(B) for some a € F* and 8 € Jp. This implies
¥, /r, (a) =1forall places V' #v, hence by Corollary 1, ¥, /r, (a) =1, and therefore ¥,/ (ot) =
I,soa €N r L.

The places of L over v correspond the cosets of Gal(L/F), = j,(Gal(L,/F,)) in Gal(L/F),
and since Wy /p and W/, are isomorphisms, we deduce the last statement. (|

To state the next Corollary we need to make several definitions and observations.

The Hilbert symbol (, ), r,: F, x F, — u, for local fields F, with finite residue field con-
taining a primitive nth root of unity was defined and studied in 21.4. Similarly we can define it for
archimedean completions F, using the same formula (o, 8),.r, = ¥~ '¥F, () (y) where y' = B.
Then (a, B),c = 1 for all non-zero complex «,  since C* is infinitely divisible; (a, B)o g = 1 if
o >0or 3 >0and = —1 otherwise.

For a finite v such that u, C F,, & € F* and v(n) = v(a) = 0 the nth power residue symbol

a

(*)ni O) — W, is defined as

4

(“) — KO-V mod .
n,F,

1%

o
So <> =1 if and only if @ € k(v)*", which explains the name.
v n,F,

For a non-zero fractional ideal I of F with factorisation / = [] P}’ with non-zero integer n;, let
an integer n > 1 be such that u, C F, vi(n) = 0 for all i and let a € F* be such that v;(a) = 0 for

all i. Define the nth power residue symbol

(5)-n(;),

If the fractional ideal I = bOF, b € F*, satisfies the restrictions above, then

(5),= (a2,

When F = Q and n = 2, for coprime positive odd integers a,b the symbol (%)2 is the Legendre
quadratic symbol.

COROLLARY 3. (Reciprocity Law for nth power residue symbols). Denote by S' the set of
archimedean places of F in characteristic zero and the set of places over — deg in positive charac-
teristic. Let a,b € F*. Assume that for every finite place v of F if one of v(a),v(b),v(n) is non-zero
then the other two are 0. Then

()., -, 1 e
7 - = yU)n,F, -
b n \4/n v(n) >0orves
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Proof. Corollary 2 implies that for a,b € F*, u, C F,and y' =b
H(a b)nr, =7 (H‘PF a))(y)=v "¥ra)(y) =1
For finite v such that v(n) = v(a) = 0 we know from the proof of the second Proposition 21.4

v(b)
that (b,a)n r, = <a> and this is 1 if also v(b) = 0. So
4 n,F,

R IO IO R T ACh
<b>n<a n (I;!éo n,Fy v(a) v(all}yéo V/nF \V/nF,

:H HbanF’
v(1)=0

v(ab)#0
where v ¢ §’. Applying the first sentence of the proof, the proof is completed. g

Thus, explicit formulas for the nth Hilbert symbol give the answer to Hilbert’s Problem 9

about explicit description of ( %)n (9 )’;l .

a
An easy computation show that (a,b)s g, = (—1)@D¢=1/4 for a,b € Z . The partial case of
Corollary 3 for F = Q, n =2 gives a proof of Gaul}’ quadratic reciprocity law for coprime positive
odd integers a, b. It is the only proof which explains why this law holds. The auxiliary formula for

(%) ) also follows immediately.

24.5. EXISTENCE THEOREM. The reciprocity map VY is continuous. its kernel coincides
with the intersection of all open subgroups of finite index in Cg. It is surjective in characteristic
zero. In positive characteristic its image is everywhere dense, and it sends C }1,- isomorphically onto
Gal(F® /F).

The correspondence between open subgroups of finite index in Cr and the norm subgroups
of finite abelian extensions L/F: N <> Ny pCr, N = W (Gal(F*® /L)), is an order reversing
bijection between the lattice of open subgroups of finite index in Cr (with respect to the intersection
N1 NN, and the product N1 N,) and the lattice of finite abelian extensions of F (with respect to the

compositum L1L, and intersection L1 N L,).

Proof. Continuity of Wr is in Theorem 24.3.

By Theorem 20.9 the image of Wr is dense in Gal(F® /F). In characteristic zero Cr = M x C}.
where M = R, is an infinite divisible group. Hence W (Cr) = W (C}.). Since C}. is compact and
Y is continuous, W (Cr) is closed, so W is surjective. In positive characteristic, due to Remark
24.2 the image Wy (CL) is in Gal(F2°/F), it is dense and closed hence ¥ (C}.) = Gal(F*®/F),
and the cokernel of the reciprocity map is isomorphic to i/ /Z.

To verify that an open subgroup N of finite index in Cr coincides with the norm subgroup
Np/rCr of some finite abelian extension L/F, it suffices to verify that N contains the norm
subgroup Ny /pCy of some finite separable extension M/F. Indeed, in this case N contains
Ng/rCg, where E/F is a finite Galois extension, E D M. Then by Proposition 20.8 we deduce
that N = Nj;/rCy, where M is the fixed field of Wg,/r(N) and M /F is abelian.

Denote by n the index of N in Cr (in fact, it suffices to consider the case of n a power of

prime number, but the argument there is the same as below). Assume first that # is not divisible
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by characteristic of F'. The preimage of N in Jr is open of index n subgroup of Jr, so it contains
the product of F* and the subgroup Ns = [[,zs Uy X [I,es F,*" for some finite subset S containing
all infinite places in characteristic zero.

Denote E = F({,) for a primitive nth root §,. Enlarge S so that it contains all ramified places
in E/F (their number is finite by Proposition 22.6) and all places dividing n. Denote by S’ the
set of all places of E over places in S. Further enlarge finite S so that the set S’ of all places of E
over places in S has the property Jg = E*Jg(S") (see Corollary 1 of 22.7). Consider the Kummer
extension M of E obtained by extracting all nth roots from all elements of E*(S’). By Proposition
22.8 the group E*(§') is isomorphic to the product of a free abelian group of rank s — 1, s = |§’

and the finite group of roots in E. Since u, C E, we obtain |E*(S") : E*(S')"| = n* and by Kummer
theory the extension M /E has degree n*. Each place w ¢ S’ is unramified in M /E, so the group U,,
of units of the ring of integers of E,, is in the norm group Ny, /g, M,;. Forw € S’ the nth powers
E;" are in Ny, /g, M,; since Gal(M,,/E,;)" = 1. Hence by Corollary 2 of 24.4 we deduce that
E” Ny /gJu contains the product of E* and Ny = [],,¢s Uy X [Tyes E"-

Note that Ny NE* = E*(S')". To show the nontrivial inclusion, for an element a € Ny N E*
consider the cyclic Kummer extension K = E(y/a). Then K,, = E,, for all w € §’ and K,,/E,, is
unramified for all w ¢ §'. Hence every idele in Jg(S') is in E*Ng pJk by Corollary 2 of 24.4.
Since E*Jg(S') = Jg, we deduce Cg = Nk/gCk and therefore K = E and a € E*". Therefore,
Ny NE* CE*"NJg(S) CE*(S)".

We have Jg /(E*Ny) = E*Jg(S")/(E*Ny) and its order is the quotient of the order r of the
group Jg(S') /Ng by n® = the order of (Jg(S')NE*)/(Ng NE*) =E*(S")/E*(S')". We also have
Je(S) /Ny = lyes E; JE,;" and due to the description in 18.3 in the non-archimedean case and
the fact that M has no real places if n > 2, we obtain |E) : E,\"| = n?|n|,,! for all places w of E.
Since |n|,, = 1 for w € ', we obtain r = n*[],, |n|;,' = n*. Thus, the order of Jg/(E*Ny) is
n* = |M : E| and hence using Theorem 24.3 we derive E*Ng' = E*Ny;/pJy. Therefore, F*Ns D
F*Ny/pJu- Thus, N O Ny /pCy, as desired.

To handle the case when 7 is divisible by char(F) = p, it is sufficient to show by induction on
m 2 1 that any open subgroup N of index p” in Cr contains a norm group, and then, similarly to
the proof of local Existence Theorem 21.2, one only needs to treat the case m = 1 where one can

use Remark 1 below, working with the adelic version of the Artin—Schreier pairing of 21.5.

Everything else follows from Proposition 20.8. U

REMARKS.
1. Let F be a finite separable extension of I, (¢). Using the local Artin—Schreier pairings from
21.5, define a pairing

(,]:Jp xF —TF,, (o,b] =Y (ou,bly, (0B, = Tryy)/m, resy(bdiat/cx)

v
where res, is resy, for any prime element 7, of F, as in 21.5, d,&t = dtdz,t/dyt. Since only

finitely many places ramify in F /IF,,(¢) by Proposition 22.6, the element ¢ is a local parameter of

F, for almost all places v of F, and hence ( , ], is the local Artin—Schreier pairing for almost all v.
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If (JF,b] = 0 then b € @(F,) for almost all v by 21.5, hence the extension F(©~!(b))/F splits
completely for almost all v, hence F(%~' (b)) = F by Corollary 2 of 22.9 and thus b € @(F).
If (a,F] =0 then dp(Fo~'d;at) = 0 where @ = dt and dy, is defined in 22.4, hence by 22.4
a~'d,o = cdt for some ¢ € F. Let Der; be the operator of taking the derivative with respect to
t and Mg be the operator of multiplication by B. The equality for & and ¢ can be rewritten as
Der, + M. = M1 o Der, o My. Hence (Der, + M, )™ = M, 1 o Der o M. Since Der/ = 0, there
is a maximal m < p for which [/ = (Der; +M,)™(1) # 0. Then (Der; +M,)l =0, ¢ = [ Der;(I"!)
and Der; (@) = 0. So each v-component of &/ is in F and so al € J%, o € JEF*.

Thus, we obtain the perfect continuous pairing Cr/Cf X F /f(F) — F,, which induces, by
Artin-Schreier theory, the continuous isomorphism Cr /Ch = Gal(F,,/F) where F), is the maximal
abelian extension of F of exponent p. This implies that every open subgroup N of index p in Cr
is the norm group of the Artin-Schreier extension L = F (&1 (b)) of F where bF, + &(F) is the

complement of N with respect to the perfect pairing.

2. Similarly to Remark 1 and alternatively to the preceding proof, when u, C F, one can use

the local Hilbert symbols to define the pairing
Cp/CE X F*JF*" — u,

check its non-degenerate property and an adelic analog of Remark 1 of 21.5, to prove that every
open subgroup N of index 7 in C is the norm group of the Kummer extension L = F(¥/b) of F

and N is the complement of b with respect to the pairing.

The following Corollary is not used in this class field theory course, in contrast to the brief

introduction to class field theory in sect. 5 of Chapter 1.

COROLLARY. (Kronecker—Weber Theorem) The maximal abelian extension Q™ of Q coin-

cides with the maximal cyclotomic extension Q%°.,

Proof. By the previous Theorem it is sufficient to show that every open subgroup N of Cg contains
the norm group of a cyclotomic extension of Q. Since N is open, for some positive integer m the
group N contains Jg(m)Q* /Q*, where m =[] p"» and
JQ(m) = Rio X HU”P?QP X HUQP'
plm pim
Without loss of generality we can assume that n; > 1.

Let’s show that Jg(m)Q* /Q* = Ny(¢,)/0Cq(¢,)- We can use the computations of the norm
groups of cyclotomic extensions of p-adic fields in Proposition 21.2 where it was shown that
the norm group of Q,(Cy)/Q) is (p) X Uy, q, if p"» > 2. The group U,,q, is contained in
the norm group of any unramified extension of Q,, so the norm group of Q,({,)/Q, contains
U, ,- By Corollary 2 of 24.4, Ny, /0Cq(¢,) contains Jo(m)Q*/Q*. We have Jo/Q* =
RZ, x 1, Ug, and Jo(m)Q* /Q* = RZ; X [1,1mUq, X [1pm Uns,.,, S0 the quotient is isomorphic
to [1pmUq,/Un,q, = (Z/mZ)*. Hence, the index of JQ( m)Q* /Q* in Cq equals the degree of
Q(&n)/Q. Theorem 24.3 now implies Ny¢,)/0Ca(c,) = Jo(m)Q* /Q*. O
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24.6. REMARKS.

1. There is a certain analogy between Neukirch’s approach to class field theory and the zeta
integral theory of Iwasawa—Tate: in both cases one extends the original math subjects area (finite
Galois extensions/zeta functions) to something much larger where one has richer arithmetic and
topological structures (infinite Galois groups/ideles and adeles) and uses that richer structure to
produce, in an almost obvious way, the construction of axiomatic class field theory or the proof of

the functional equation and meromorphic continuation of the zeta function.

2. One can show that the equality F2 = F®°! holds for F = Q only. Historically, without
using abstract class field theory, one develops special class field theory for Q, called cyclotomic
class field theory (Kronecker and others), using explicit cyclotomic methods. Special in the sense
of using more information about Galois action on torsion element than the abstract general class
field theory of section 20 does. Another special class field theories are known for quadratic imag-
inary fields with complex multiplication (Kronecker—Weber—Hilbert), and more generally, for to-
tally imaginary extensions of totally real fields (Shimura). General functorial class field theory
such as in this lectures is very much different from those special theories, both conceptually and
technically.

3. Other approaches to class field theory of global fields include

general class field theories:
— by Artin, building on Takagi’s work, using L-functions and Chebotarev density theorem,
— by Hasse, using central division algebras and the computation of the Brauer group of
the field to define a canonical pairing of the group of characters of the field with, in the modern
language, the idele class group and use its properties to derive the reciprocity map
— by Chevalley using ideles and not using L-functions,
— by Weil, Hochschild, Nakayama, Artin, Tate, the Galois cohomology approach.

In positive characteristic only:
— by Kawada and Satake using Artin—Schreier—Witt pairing,
— by Rosenlicht, Lang, ‘geometric’ class field theory for varieties over finite fields,

— by Hayes, Drinfeld, special class field theory using Drinfeld modules of rank 1.

4. Higher adelic theory studies adelic structures associated to two-dimensional arithmetic
schemes. There are two main adelic structures there: one of more geometric (1-cocyles) nature
(its use leads to an adelic proof of the Riemann—Roch theorem for surfaces and a two-dimensional
version of the homomorphism p of 22.7 and one of more arithmetic (0-cycles) nature crucial for
a two-dimensional version of the Iwasawa—Tate theory and applications to meromorphic continu-

ation and functional equation of the zeta function of the scheme and properties of its poles.

5. Three main generalisations of class field theory are higher class field theory, Langlands
program, anabelian geometry. They will be discussed in the sequel lecture courses. For more
information about these generalisations, as well as existing class field theories, see


https://ivanfesenko.org/wp-content/uploads/232.pdf




CHAPTER 4

Exercises

1. Algebraic Numbers Exercises

1.1. Let A be an integral domain and KX is its fraction field. Prove that A is a Dedekind ring
if and only if every non-zero proper ideal of A can be written as a product of prime ideals if and
only if every non-zero ideal I of A satisfies A = {a € K:al C A}l

1.2.
(a) Let F be an algebraic number field of degree d. Let m be a positive integer. For a; € F*
and independent variables Xi, ..., X, put

fXt,.. . Xn) =NpjglaXi+-+anXn) =[] (c(@)Xi+-+0(am)Xn).
ocHomg (F,C)
Show that f(Xi,...,X,,) is a homogeneous polynomial of degree d (i.e. every monomial expres-
sion is a monomial of total degree d) with coefficients from Q.

(b) Show that f defined in (a) is irreducible over Q.

(c) Let g(Xi,...,X,) be a homogeneous polynomial of degree d with rational coefficients.
Assume that g is irreducible over Q. Assume also that there exists an algebraic number field L
such that g splits into the product of linear polynomials over L. Show that then there is an algebraic
number field F, a positive integer m and elements a; € F*, 1 <i < m, such that g = Np /Q (f) as

in (a).

1.3. Let b > 1 be an odd number and let m > 1 be an integer. Suppose that d = b™ — 1 is
square-free.

(a) Show that d =2 mod 4.

(b) Show that (b)™ = (1 +d) factorizes into the product of ideals (1 ++/—d) and (1 —v/—d)
of Z[/—d|.

(c) Show that if a proper non-zero ideal I of Z[v/—d] divides both (1++/—d) and (1 —+/—d),
then 2 is contained in I and therefore 22 = 4 is contained in the product (1 ++/—d)(1 —v/—d) =
(1+d). Deduce from (a) that this is impossible; thus, the ideals (1 ++/—d) and (1 —+/—d) don’t
have common factors.

(d) Prove that there are ideals 1,J of Z[y/—d| such that (1 ++/—d) =I" and (1 —/—d) = J™
and 1J = (D).

199



200 4. EXERCISES

(e) Let n be the minimal positive integer such that I" is a principal ideal, say (e +cy/—d) of
Z[\/—d| for some e,c € Z. Show that ¢ # 0.

(f) Show that " = e2+dc? >d = b"—1 and deduce that n > m. Conclude that the ideal class
group of Q(v/—d) has an element (namely, /) of order .

Example: b =3, m = 3, d = 26, the class number of Q(1/26) is > 3.

1.4. Letd be a positive square free integer, d # 5. Suppose that 4" + 1 = da® with integer a.
Prove that 2" 4 a+/d is a fundamental unit of Q(v/d) following the steps below.

(a) Show that d is odd.

(b) Assume that 2" + av/d isn’t a fundamental unit, and arrive at a contradiction (in d) and e)
below). Since 2" + av/d is a mth power of a fundamental unit with 7 > 1, we can take a prime

divisor p of m and deduce that

2"+ avd = ((b+cVd)/2)P
for some integers b, c. Show that then

2" —avd = ((b—cVd)/2)P

and hence —1 = 4" —da® = (b*> —dc?)? /4P. Deduce that p must be odd and b*> — dc? = —4.
(c) Show that

N (p—=1)/2 P\ i iy (p—1)/2 P\ o iyt
20T — Z (2,)c d'bP™" =be, e= Z (2,)c d'b’ )

i=0 ! i=0 l
(d) If b is odd, then since it is a divisor of 27", it must be equal to 1. Show that then
b*—dc*=1—dc? = —4 and d = 5, a contradiction.
(e) If b = 2b; is even, then ¢ = 2¢; must be even and then b% —d c% = —1. Show that
(p-1)/2 o - (p-D)/2 _ ‘
b =T 5 E Qs v
i=0 i=0
with integer f. Deduce that e; = p mod by, so e; is odd, > 1 and divides 2", a contradiction.
1.5. Let P be a maximal ideal of the ring of integers of an algebraic number field F, such

that P" = a0 is a principal ideal. Prove that the ideal P&y, generated by P in 7}, a a principal
ideal of the ring &, of integers of the field L = K(+/a).

1.6. Prove that each algebraic number field F has a finite extension L such that every ideal

of the ring of integers of F' generates a principal ideal of J7.

2. Local Fields Exercises

2.1. A subring & of a field F is said to be a valuation ring if & € & or a~! € O for every
nonzero element o € F. Show that the ring of integers of a valuation of F is a valuation ring.

Conversely, for a valuation ring & in F one can order the group F* /& as follows: a 0™ < BO*
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if and only if Ba~! € €. Show that the map F — (F* /™) U +oo, which sends 0 to +oo, is a

valuation with the ring of integers .
2.2.  Show that every isomorphism of Q,, onto a subfield of Q,, is continuous.

2.3. Let F be a field with a discrete valuation v and ring of integers ¢ and maximal ideal
A . Show that the following conditions are equivalent:

(a) F is a Henselian discrete valuation field.

() If £(X) = X"+ 04,1 X"~ ' +--- + g is an irreducible polynomial over F and o € &, then
o, c0for0<i<n—1.

() If f(X)=X"+0t, 1 X" ' +---4apis an irreducible polynomial over F,n> 1,0, 2,...,0 €
O,thenaq,_| € 0.

(A If f(X) =X"+ 1 X"+ -+ is an irreducible polynomial over F,n > 1,0, 2,...,00 €
M, 0,1 € O, then o, € M.

2.4. Let F be a Henselian field with respect to nontrivial valuations v,v': F — Q. Assume
the topologies induced by v and V' are not equivalent.

(a) Show that if v is discrete, then V' is not.

(b) Deduce that F is separably closed.

2.5. Let 7 be a prime element of a discrete valuation field F, and let F*" be of infinite degree
over F.
(a) Let F; be finite unramified extensions of F, F; C Fj, F; # Fj for i < j. Put

n

o, = Z ein'i>
i=1
where 6; € OF,,,, ¢ OF.. Show that the sequence {, } >0 is a Cauchy sequence in F*", but lim o, ¢
F.
(b) Show that F*°P is not complete, but the completion of F*°P is separably closed.

2.6. Prove that for every finite extension of complete discrete valuation fields L/F there is a
finite extension K’ of a maximal complete discrete valuation subfield K of F with perfect residue
field such that e(K'L|K'F) = 1 following the steps below

(a) Let M} /F, M, /F be finite Galois subextensions of L/F. Show that the set of upper rami-
fication jumps of M, /F is a subset of upper ramification jumps of M,/F. Denote by B(L/F) the
union of all upper ramification jumps of finite Galois subextensions of L/F.

(b) For a real x define L(x) = UpM (x) where M runs over all finite Galois extensions of F in
L and M (x) is the fixed field of Gal(M/F)(x) inside M. Show that if x; < xp, then L(x;) # L(x3)
if and only if [x;,x) NB(L/F) # 0.

(c) Show that if x is the limit of a monotone increasing sequence x,,, then L(x) = UL(x,).

(d) Show that if x is the limit of a monotone decreasing sequence x, and x ¢ B(L/F), then
L(x) =NL(x,).
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(e) Let x be the limit of a strictly monotone decreasing sequence x,,. Define L[x] = Uy (N, M (xy,))
where M runs over all finite Galois extensions of F in L. Show that L[x] = N,L(x,). Show that
L[x] = L(x) is and only if x ¢ B(L/F).

(f) A subfield E of L, F C E is called a ramification subfield if for every finite Galois subex-
tension M /F of L/F there is y such that ENM = M(y). Show that every ramifications subfield of
L over F coincides either with some L(x) or with some L[x].

(g) Deduce that the set of all upper ramification jumps of L/F is the union of B(L/F) and the
limits of strictly monotone decreasing sequences of elements of B(L/F).

2.7. Let L/F be a cyclic totally ramified extension of complete discrete valuation fields,
|L:F|=p". Let char(F) = 0, char(F) = p, and let F be perfect.

(a) Show that L/F has n ramification numbers x| < x3 < --+ < x;,.

(b) Show that if x; are divisible by p, then x; = x| + (i — 1)e for 1 <i < n, where e = e(F).

(c) For the rest of this Exercise assume that a primitive pth root of unity { belongs to F. Let
Npp(o) = € and vy (o — 1) = i. Show that if x; <e/(p—1), then x; <i < hy/p(e/(p—1)) and
ifx; >2e/(p—1),theni=¢/(p—1).

(d) Assume that M /F is cyclic of degree p"~! and L = M( {/a) with @ € M*. Let o~ 'o () =
B? for a generator ¢ of Gal(L/F). Show that Ny /() is a primitive pth root of unity.

(e) Show thatif x; > e/(p—1),thenx; =x;+ (i—1)efor 1 <i< n.

(f) Let n > 2. Show that if x,_; > p"2e/(p — 1), then x, = x,_1 + p" e, and if x, | <
p"2e/(p—1), then

(1 +P(p— 1))xn—l <X < Pne/(p— 1) - (p— l)x,,_l.

2.8. Let L, be a cyclic totally ramified extension of F of degree p", p = char(F) and L, C
Lyy1. Let L=UL,. Show that i(L,|L,) > i(Ly|L,—1) + 1. Deduce that L/F is arithmetically

profinite.

2.9. Let F be a complete field with respect to some nontrivial valuation v: F* — Q. Let
the perfect residue field F be of characteristic p > 0. Put F) = F, and let R* (F) = @ Fx

with respect to the homomorphism of the raising to the pth power F"+1) 1Py g0, pyt R(F) =
R*(F)U{0}.

(a) Show that if A = (a(®)),B = (B() € R(F), then the sequence (ot + B("+m))P" con-
verges as m — +oo. Put Y = lim,,_, oo (@™ 4 B+m))P" and define A+ B =T = (y")); put
8 = o B and define A-B = A = (5). Show that R(F) is a perfect field of characteristic
p.

(b) For A = (o)) put v(A) = v(a(?)). Show that v possesses the properties of a valuation.
Let 6 € F be the multiplicative representative of a € F and ® = (8() with (") = §1/7". Show
that R: a — @ is an isomorphism of F onto a subfield in R(F) which is isomorphic to the residue
field of R(F).

(c) Show that if v: F* — Z is discrete, then R(F) can be identified with F.

(d) Show that if F is of characteristic p, then the homomorphism A = (&) = a(®) is an
isomorphism of R(F) with the maximal perfect subfield in F.
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2.10. Let L be an infinite arithmetically profinite extension of a local field F with residue
field of characteristic p. Assume that the Hasse—Herbrand function £/ grows relatively fast, i.e.,
there exists a positive ¢ such that i/ (xo) /1, JF (x0) > c for all xo where the derivative is defined.
Let C be the completion of the separable closure of F'.

(a) For (ag) € N(L/F) show that there exists B") = limg OthE:L"/pn € C where L, /F is the
maximal tamely ramified subextension of L/F and E runs over all finite extensions of L; in L.
Show that (B) belongs to R(C).

(b) Show that the homomorphism N(L|F) — R(C) is a continuous (with respect to the dis-
crete valuation topology on N (L|F) and the topology associated with the valuation v defined in the
previous exercise) field homomorphism.

(c) Let E be a separable extension of L. Let S be the completion of the (p-)radical closure of
N(E,L|F), i.e., the completion (with respect to the extension of the valuation) of the subfield of
N(E,L|F)¥¢ generated by A/a forall nand o € N(E,L|F). Show that there is a field isomorphism
from § to R(E ) where E is the completion of E. Deduce that if F is of positive characteristic, then
Eisa perfect field.

2.11. Let F be a discrete valuation field of characteristic O with residue field of characteristic
p, and let C be the completion of the separable closure of F'. Define the map

g: W(Ogc)) — Oc

by the formula g(Ag,Aj,...) =Y,>0 p"a,(,n)

, where A, = (Oc,(,?)) € Og(c)-

(a) Show that g is a surjective homomorphism. Show that its kernel is a principal ideal in
W (Og(c)) generated by some element (Ao, Aj,...) for which, in particular, v((x(()o)) =v(p).

(b) Let Wr(R) = W (Og(c)) @wr) F- Show that g can be uniquely extended to a surjective
homomorphism of K-algebras g: Wr(R) — C.

(c) Show that the kernel / of this homomorphism is a principal ideal.

(d) Let BT be the completion of Wr (R) with respect to I-adic topology and let B be its quotient
field. Show that B does not depend on the choice of F and is a complete discrete valuation field
with residue field C. The ring B plays a role in the theory of p-adic representations and p-adic

periods.

2.12. Forn >0, find a local number field F such that g, C F, lly1 ¢ F, and the extension
F(pn+1)/F is unramified.

2.13. Let L be a finite Galois extension of a local number field ' with Galois group G. Show
that L/F is tamely ramified if and only if the ring of integers &, is a free O [G]-module of rank 1.

2.14. Let F be a finite extension of Q,, n = |F : Q,|. Let L/F be a finite Galois extension,
G = Gal(L/F). A field L is said to possess a normal basis over F, if the group U, 1, of principal
units decomposes, as a multiplicative Z,[G]-module, into the direct product of a finite group and
a free Z,[G]-module of rank n.

(a) Show that if G is of order relatively prime to p, then L possesses a normal basis over F.
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(b) Suppose the F has no roots of order p. Show that L possesses a normal basis over F if and

only if L/F is tamely ramified.

3. Class Field Theory Exercises

3.1. Let L/F be a finite Galois totally ramified extension and E be the maximal abelian

extension of Fin L. Let o € F* and @ = Npu /w3 for some f§ € L™, Let Bet=T11", }/f"*l with

% € L' and o; € Gal(L"/F""). Show that

lPL/F(OC)’E =0 1|E

) ) ¢ Gal(L"/F"") and v is the discrete valuation of L*". Deduce that, in

'l

where 0 = G

particular, if B! = 2%~ for a prime element 7 of L™, then ¥ /r ()| = 6.

3.2. Let p be an odd prime, and let {, be a primitive pth root of unity.
(a) Show that X? —YP =112 (80X —&,Y) and [T2) (S0 — &) = p.

1

(b) Put ¢(¢,) = 1.2, (Cp — &1, Show that ¢(£,)? = (—1)"7 p.
(c) For a positive integer b put

0 if p|b,
b
<>— 1 if ptb,b=a*> mod p for

—1, otherwise.

()-8

(d) Let g be an odd prime, g # p, and let {, be a primitive gth root of unity. Show that

Show that

p—1 g1

() =TG-

i=1j

(e) Deduce on of the proofs of the quadratic reciprocity law: if p,g are odd primes, p # g,

then
() -+ (-

3.3. Let F be a local field with finite residue field, and let L be a totally ramified infinite
arithmetically profinite extension of F. Let N = N(L|F). Show that there is a homomorphism
¥: N* — Gal(L*™ /L) induced by the reciprocity maps Wg: EX — Gal(E® /E) for finite subex-
tensions E/F in L/F. Show that y o ¥ = Wy, where the homomorphism y: Gal(L*®/L) —
Gal(N® /N) is defined similarly to the homomorphism 7 + T in 17.6 of Ch.2.
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3.4. Let {p be a primitive pth root of unity, p > 2. Let F = Q,({,), w1 = §p — 1, Tr="Trg q,.
(a) Show that
1 _ 1 modp if i=p—1
LTr(gn) =
D 0 modp if i#p—1,i>1,

(b)Leta=1 modn?, =1 modx. If y=Y a7, a; € Z,, then let

dlogy:= y‘l (Ziaini_l) ,
this depends on the choice of expansion of 3 in a series in 7. Let

12 13
logﬁ::(ﬁ—l)—(ﬁ 21) —i-(ﬁ 31) -

Prove the Artin—Hasse formula

(@.B), = z;pTr((;'p loga-dlogB)/p

(c) Using a suitable expansion in a series in 7, show that dlog {,, can be made equal to —{ ~1
dlogm to 7~ !. Prove the Artin—Hasse formulas

(CpB)p = CpTr(logﬁ)/p for =1 modm,

(ﬁ,ﬂ)p — CTr(CpTcillogl})/p

D for B=1 modm.

3.5. LetF =Q,({,), where {, is a p”th primitive root of unity, p > 2. Denote Tr = Trf /Qp-

Let m, = {,» — 1; then 7, is prime in F. Prove the Artin—Hasse formulas

for B=1 modm,.

n -1 n
(G B)pr = LBV gy = TG T TogB)

3.6. Let A be a commutative topological ring with unity containing a subfield F'. Show that
A is isomorphic to the ring of adeles Ar of a global field F if and only if A is locally compact but
not compact and not discrete, F is discrete in A, A/F is compact, and the intersection of all closed
maximal ideals of A is 0.

3.7. Let g(xi,...,x,) be a quadratic form in several variables with coefficients in a number
field F. Prove Hasse theorem: that the equation g(xp,...,x,) = 0 has a solution ay,...,a, € F

different from O if and only if it has a solution different from O in each completion of F.

3.8. For a number field F let L be the maximal abelian extension of ' which is unramified at
all finite places and in which real places stay real. Prove that the Galois group of L/F is isomorphic
to the ideal class group of F. The field L is called the Hilbert class field for F.

3.9. Let Dr be the kernel of the reciprocity map for a global field F.

(a) Prove that Dy is an infinitely divisible group.

(b) Prove that Dp = {1} in positive characteristic.

(c) Prove that in characteristic zero Dy is topologically and algebraically isomorphic to (R /Z)" x
((IT1Zp x R)/Z)" where r = ri 4 2r, are the standard numbers associated to the number field F.
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3.10. Let F be an algebraic number field.

(a) For a cycle z =Y n,[v], a linear combination with non-negative integer coefficients, almost
all equal to 0, of classes of finite places v, define the z-ray idele class group C}. := J5.F* /F* where
Ji :=T1Un,r, xT1U A Here the first product is over finite places, Uy r, = UF,, the second product
is over infinite places and U A is the subgroup of all infinitely divisible elements of F,*. Show that
the set of open subgroups of finite index of Cr coincides with the set of closed subgroups of Cr
which contain one of ray idele class groups. The finite abelian extension F¢/F corresponding to
C}. by the existence theorem is called the ray class field for the cycle z.

(b) Denote by I} the group of fractional ideals of F' generated by maximal ideals whose places
have coefficient 0 in z = Y n,[v]. Denote by P;. principal ideals generated by elements a such that
a—1 € [P and the image of a in each real completion F, is in Uy,. Using Remark 5.1 Ch.3
show that p: Jr — Ir of 5.3 Ch.3 induces an isomorphism

CF/C;« g[f;/PIZ;.

3.11. Let F be an algebraic number field.
(a) For a subset M of finite places of F its Dirichlet’s density is
dM):= lim M
s=1+0 Y, [k(v)] S
if exists. Deduce from 6.6 Ch.3 that
d) =ty Do KO
s—1+0 log I

(b) For a cycle z let x be a nontrivial character of I} /P5. By the previous exercise it corre-
sponds to a non-trivial character of finite order of Jr /J5.. Let C be the support of z, i.e. those v for
which n, # 0. Show that L¢e(x, 1) # 1.

(c) Let R be a subgroup of Iy, R D P;. Let M, g for a € I} be the set of finite places
whose maximal ideals belong to the coset @ + R. Using the proof of Theorem 6.7 Ch.3 show
that d(My+g) = |I% : R| 7"

(d) Deduce Dirichlet’s theorem on prime numbers in arithmetic progressions: for a positive
integer m and an integer a prime to m there are infinitely many prime numbers congruent to a

modulo m.

3.12. Let F be an algebraic number field and L/F be a finite Galois extension.

(a) Let L/F be a cyclic extension. For a o € Gal(L/F) let M be the set of all finite places v of
F which are unramified in L/F and such that o is the Frobenius automorphism of Gal(L,/F,) C
Gal(L/F). Using the proof of Theorem 6.7 Ch.3 show that d(Ms) = |L: F|~'.

(b) Let L/F be a finite Galois extension. For a o € Gal(L/F) let M5 be the set of all finite
places v of F which are unramified in L/F and such that the conjugate class X of ¢ in Gal(L/F)
is the conjugate class of the Frobenius automorphism of Gal(L,,/F,) C Gal(L/F) for a place w of
L over v. Deduce Chebotarev’s theorem: |L : F|d(My) is the number of elements of X.



	Chapter 1. Algebraic Number Fields
	1. Algebraic Prerequisites
	2. Integrality
	3. Dedekind Rings
	4. p-adic Numbers
	5. A Little about Class Field Theory

	Chapter 2. Complete Discrete Valuation Fields
	1. Valuation Fields
	2. Discrete Valuation Fields
	3. Completion
	4. Filtrations of Discrete Valuation Fields
	5. Group of Principal Units as Zp-module
	6. Set of Multiplicative Representatives
	7. Witt Ring
	8. The Hensel Lemma and Henselian Fields
	9. Extensions of Valuation Fields
	10. Unramified and Ramified Extensions
	11. Galois Extensions and Ramification Groups
	12. Structure Theorems for Complete Discrete Valuation Fields
	13. Cyclic Extensions of Prime Degree
	14. Artin–Schreier Extensions
	15. Hasse–Herbrand Function
	16. Norm and Ramification Groups
	17. Field of Norms
	18. Local Fields with Finite Residue Fields

	Chapter 3. Class Field Theory
	19. Main Results of Local Class Field Theory
	20. Neukirch's Abstract Class Field Theory
	21. Local Class Field Theory and Generalisations
	22. Adeles of Global Fields
	23. Zeta Functions and Zeta Integrals
	24. Global Class Field Theory

	Chapter 4. Exercises
	1. Algebraic Numbers Exercises
	2. Local Fields Exercises
	3. Class Field Theory Exercises


