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CHAPTER 1

Algebraic Number Fields

This chapter presents basic features of algebraic number fields. Chapter 3 contains further
results obtained via the adelic method.

A prerequisite introductory course on commutative algebra is available from this page.

1. Algebraic Prerequisites

1.1. Some basics.

1.1.1. DEFINITION. For a field F define the ring homomorphism Z−→ F by n 7→ n ·1F . Its
kernel I is an ideal of Z such that Z/I is isomorphic to the image of Z in F . The latter is an integral
domain, so I is a prime ideal of Z, i.e. I = 0 or I = pZ for a prime number p. In the first case F is
said to have characteristic 0, in the second – characteristic p.

DEFINITION. Let F be a subfield of a field L. An element a ∈ L is called algebraic over F if
one of the following equivalent conditions is satisfied:

(i) f (a) = 0 for a non-zero polynomial f (X) ∈ F [X ];
(ii) elements 1,a,a2, . . . are linearly dependent over F ;
(iii) F-vector space F [a] = {∑aiai : ai ∈ F} is of finite dimension over F ;
(iv) F [a] = F(a).

Proof. (i) implies (ii): if f (X) = ∑
n
i=0 ciX i, c0,cn 6= 0, then ∑ciai = 0.

(ii) implies (iii): if ∑
n
i=0 ciai = 0, cn 6= 0, then an =−∑

n−1
i=0 c−1

n ciai,

an+1 = a ·an =−
n−1

∑
i=0

c−1
n ciai+1 =−

n−2

∑
i=0

c−1
n ciai+1 + c−1

n cn−1

n−1

∑
i=0

c−1
n ciai,

etc.
(iii) implies (iv): for every b ∈ F [a] we have F [b] ⊂ F [a], hence F [b] is of finite dimension

over F . So if b 6∈ F , there are di such that ∑dibi = 0, and d0 6= 0. Then 1/b = −d−1
0 ∑

n
i=1 dibi−1

and hence 1/b ∈ F [b]⊂ F [a].
(iv) implies (i): if 1/a is equal to ∑eiai, then a is a root of ∑eiX i+1−1. �

For an element a algebraic over F denote by

fa(X) ∈ F [X ]

the monic polynomial of minimal degree such that fa(a) = 0.
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4 1. ALGEBRAIC NUMBER FIELDS

This polynomial is irreducible: if fa = gh, then g(a)h(a) = 0, so g(a) = 0 or h(a) = 0, con-
tradiction. It is called the monic irreducible polynomial of a over F .

For example, fa(X) is a linear polynomial if and only if a ∈ F .

LEMMA. Define a ring homomorphism F [X ] −→ L, g(X) 7→ g(a). Its kernel is the principal
ideal generated by fa(X) and its image is F(a), so

F [X ]/( fa(X))∼= F(a).

Proof. The kernel consists of those polynomials g over F which vanish at a. Using the division
algorithm write g = fah + k where k = 0 or the degree of k is smaller than that of fa. Now
k(a) = g(a)− fa(a)h(a) = 0, so the definition of fa implies k = 0 which means that fa divides
g. �

DEFINITION. A field L is called algebraic over its subfield F if every element of L is algebraic
over F . The extension L/F is called algebraic.

DEFINITION. Let F be a subfield of a field L. The dimension of L as a vector space over F is
called the degree |L : F | of the extension L/F .

If a is algebraic over F then |F(a) : F | is finite and it equals the degree of the monic irreducible
polynomial fa of a over F .

Transitivity of the degree |L : F | = |L : M||M : F | follows from the observation: if αi form a
basis of M over F and β j form a basis of L over M then αiβ j form a basis of L over F .

Every extension L/F of finite degree is algebraic: if β ∈ L, then |F(β ) : F |6 |L : F | is finite,
so by (iii) above β is algebraic over F . In particular, if α is algebraic over F then F(α) is algebraic
over F .

If α,β are algebraic over F then the degree of F(α,β ) over F does not exceed the product
of finite degrees of F(α)/F and F(β )/F and hence is finite. Thus all elements of F(α,β ) are
algebraic over F .

In particular, for two algebraic over F non-zero elements α,β the elements α +β , α−β , αβ ,
αβ−1 are algebraic over F .

An algebraic extension F({ai}) of F is the composite of extensions F(ai), and since ai is
algebraic |F(ai) : F | is finite, thus every algebraic extension is the composite of finite extensions.

1.1.2. DEFINITION. An extension F of Q of finite degree is called an algebraic number field,
the degree |F : Q| is called the degree of F .

EXAMPLES.

1. Every quadratic extension L of Q can be written as Q(
√

e) for a square-free integer e.
Indeed, if 1,α is a basis of L over Q, then α2 = a1 + a2α with rational ai, so α is a root of
the polynomial X2 − a2X − a1 whose roots are of the form a2/2±

√
d/2 where d ∈ Q is the

discriminant. Write d = f/g with integer f ,g and notice that Q(
√

d) = Q(
√

dg2) = Q(
√

f g).
Obviously we can get rid of all square divisors of f g without changing the extension Q(

√
f g).
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2. Cyclotomic extensions Qm =Q(ζm) of Q where ζm is a primitive mth root of unity. If p is
prime then the monic irreducible polynomial of ζp over Q is X p−1 + · · ·+ 1 = (X p− 1)/(X − 1)
of degree p−1.

One way to show the irreducibility over Q of this polynomial is to make change of variable
Y = X + 1 and show that the polynomial in Y is irreducible over Q (applying the Eisenstein’s
criteria of irreducibility).

1.1.3. DEFINITION. Let two fields L,L′ contain a field F . A homo(iso)morphism σ : L−→ L′

such that σ |F is the identity map is called an F-homo(iso)morphism of L into L′.
The set of all F-homomorphisms from L to L′ is denoted by HomF(L,L′). Notice that every

F-homomorphism is injective: its kernel is an ideal of F and 1F does not belong to it, so the ideal
is the zero ideal. In particular, σ(L) is isomorphic to L.

The set of all F-isomorphisms from L to L′ is denoted by IsoF(L,L′).
Two elements a ∈ L,a′ ∈ L′ are called conjugate over F if there is a F-homomorphism σ such

that σ(a) = a′. If L,L′ are algebraic over F and isomorphic over F , they are called conjugate over
F .

LEMMA.
(1) Any two roots of an irreducible polynomial over F are conjugate over F.
(2) An element a′ is conjugate to a over F if and only if fa′ = fa.
(3) The polynomial fa(X) is divisible by ∏(X−ai) in L[X ], where ai are all distinct conjugate

to a elements over F, L is the field F({ai}) generated by ai over F.

Proof. (1) Let f (X) be an irreducible polynomial over F and a,b be its roots in a field extension
of F . Then fa = fb = f and we have an F-isomorphism

F(a)∼= F [X ]/( fa(X)) = F [X ]/( fb(X))∼= F(b), a 7→ b

and therefore a is conjugate to b over F .
(2) 0 = σ fa(a) = fa(σa) = fa(a′), hence fa = fa′ . If fa = fa′ , use (i).
(3) If ai is a root of fa then by the division algorithm fa(X) is divisible by X−ai in L[X ]. �

DEFINITION. For a field F define the ring homomorphism

Z−→ F, n 7→ n ·1F .

Its kernel I is an ideal of Z such that Z/I is isomorphic to the image of Z in F . The latter is an
integral domain, so I is a prime ideal of Z, i.e. I = 0 or I = pZ for a prime number p. In the first
case F is said to have characteristic 0, in the second – characteristic p.

1.1.4. DEFINITION. A field is called algebraically closed if it does not have algebraic exten-
sions.

THEOREM. (without proof) Every field F has an algebraic extension C which is algebraically
closed. The field C is called an algebraic closure of F. Every two algebraic closures of F are
isomorphic over F.
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EXAMPLE. The field of rational numbers Q is contained in algebraically closed field C. The
maximal algebraic extension Qa of Q is obtained as the subfield of complex numbers which con-
tains all algebraic elements over Q. The field Qa is algebraically closed: if α ∈ C is algebraic
over Qa then it is a root of a non-zero polynomial with finitely many coefficients, each of which
is algebraic over Q. Therefore α is algebraic over the field M generated by the coefficients. Then
M(α)/M and M/Q are of finite degree, and hence α is algebraic over Q, i.e. belongs to Qa. The
degree |Qa : Q| is infinite, since

|Qa : Q|> |Q(ζp) : Q|= p−1

for every prime p.
The field Qa is is much smaller than C, since its cardinality is countable whereas the cardinal-

ity of complex numbers is uncountable).

Everywhere below we denote by C an algebraically closed field containing F .
Elements of HomF(F(a),C) are in one-to-one correspondence with distinct roots of fa(X) ∈

F [X ]: for each such root ai, as in the proof of (i) above we have σ : F(a) −→ C, a 7→ ai; and
conversely each such σ ∈ HomF(F(a),C) maps a to one of the roots ai.

1.2. Galois extensions.

1.2.1. DEFINITION. A polynomial f (X) ∈ F [X ] is called separable if all its roots in C are
distinct.

Recall that if a is a multiple root of f (X), then f ′(a) = 0. So a polynomial f is separable if
and only if the polynomials f and f ′ don’t have common roots.

LEMMA. Irreducible polynomials over fields of characteristic zero and irreducible polynomi-
als over finite fields are separable polynomials

Proof. If f is an irreducible polynomial over a field of characteristic zero, then its derivative f ′ is
non-zero and has degree strictly smaller than f ; and so if f has a multiple root, than a g.c.d. of f
and f ′ would be of positive degree strictly smaller than f which contradicts the irreducibility of f .
For the case of irreducible polynomials over finite fields see section 1.3. �

DEFINITION. Let L be a field extension of F . An element a ∈ L is called separable over F if
fa(X) is separable. The extension L/F is called separable if every element of L is separable over
F .

EXAMPLE. Every algebraic extension of a field of characteristic zero or a finite field is sepa-
rable.

1.2.2. LEMMA. Let M be a field extension of F and L be a finite extension of M. Then every
F-homomorphism σ : M −→C can be extended to an F-homomorphism σ ′ : L−→C.

Proof. Let a∈ L\M and fa(X) =∑ciX i be the minimal polynomial of a over M. Then (σ fa)(X) =

∑σ(ci)X i is irreducible over σM. Let b be its root. Then σ fa = fb. Consider an F-homomorphism
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φ : M[X ] −→ C, φ(∑aiX i) = ∑σ(ai)bi. Its image is (σM)(b) and its kernel is generated by
fa. Since M[X ]/( fa(X)) ∼= M(a), φ determines an extension σ ′′ : M(a) −→ C of σ . Since |L :
M(a)|< |L : M|, by induction σ ′′ can be extended to an F-homomorphism σ ′ : L−→C such that
σ ′|M = σ . �

1.2.3. THEOREM. Let L be a finite separable extension of F of degree n. Then there exist
exactly n distinct F-homomorphisms of L into C, i.e. |HomF(L,C)|= |L : F |.

Proof. The number of distinct F-homomorphisms of L into C is 6 n is valid for any extension of
degree n. To prove this, argue by induction on |L : F | and use the fact that every F-homomorphism
σ : F(a)−→C sends a to one of roots of fa(X) and that root determines σ completely.

To show that there are n distinct F-homomorphisms for separable L/F consider first the case
of L = F(a). From separability we deduce that the polynomial fa(X) has n distinct roots ai which
give n distinct F-homomorphisms of L into C: a 7→ ai.

Now argue by induction on degree. For a ∈ L\F consider M = F(a). There are m = |M : F |
distinct F-homomorphisms σi of M into C. Let σ ′i : L −→ C be an extension of σi which exists
according to 1.2.2. By induction there are n/m distinct F(σi(a))-homomorphisms τi j of σ ′i (L)
into C. Now τi j ◦σ ′i are distinct F-homomorphisms of L into C. �

1.2.4. PROPOSITION. Every finite subgroup of the multiplicative group F× of a field F is
cyclic.

Proof. Denote this subgroup by G, it is an abelian group of finite order. From the standard theorem
on the stucture of finitely generated abelian groups we deduce that

G∼= Z/m1Z⊕·· ·⊕Z/mrZ

where m1 divides m2, etc. We need to show that r = 1 (then G is cyclic). If r > 1, then let a prime
p be a divisor of m1. The cyclic group Z/m1Z has p elements of order p and similarly, Z/m2Z has
p elements of order p, so G has at least p2 elements of order p. However, all elements of order p
in G are roots of the polynomial X p− 1 which over the field F cannot have more than p roots, a
contradiction. Thus, r = 1. �

1.2.5. THEOREM. Let F be a field of characteristic zero or a finite field. Let L be a finite field
extension of F. Then there exists an element a ∈ L such that L = F(a) = F [a].

Proof. If F is of characteristic 0, then F is infinite. By 1.2.3 there are n = |L : F | distinct F-
homomorphisms σi : L −→ C. Put Vi j = {a ∈ L : σi(a) = σ j(a)}. Then Vi j are proper F-vector
subspaces of L for i 6= j of dimension < n, and since F is infinite, there union ∪i 6= jVi j is different
from L. Then there is a ∈ L \ (∪Vi j). Since the set {σi(a)} is of cardinality n, the minimal
polynomial of a over F has at least n distinct roots. Then |F(a) : F | > n = |L : F | and hence
L = F(a).

If F is finite, then L× is cyclic by 1.2.4. Let a be any of its generators. Then L = F(a). �
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1.2.6. DEFINITION. An algebraic extension L of F (inside C) is called the splitting field of
polynomials fi if L = F({ai j}) where ai j are all the roots of fi.

An algebraic extension L of F is called a Galois extension if L is the splitting field of some
separable polynomials fi over F .

EXAMPLE. Let L be a finite extension of F such that L=F(a). Then L/F is a Galois extension
if the polynomial fa(X) of a over F has deg fa distinct roots in L.

So quadratic extensions of Q and cyclotomic extensions of Q are Galois extensions.

1.2.7. LEMMA. Let L be the splitting field of an irreducible polynomial f (X) ∈ F [X ]. Then
σ(L) = L for every σ ∈ HomF(L,C).

Proof. σ permutes the roots of f (X). Thus, σ(L) = F(σ(a1), . . . ,σ(an)) = L. �

1.2.8. THEOREM. A finite extension L of F is a Galois extension if and only if σ(L) = L
for every σ ∈ HomF(L,C) and |HomF(L,L)| = |L : F |. The set HomF(L,L) equals to the set
IsoF(L,L) which is a finite group with respect to the composite of field isomorphisms. This group
is called the Galois group Gal(L/F) of the extension L/F.

Proof. Sketch. Let L be a Galois extension of F . The right arrow follows from the previous
proposition and properties of separable extensions. On the other hand, if L = F({bi}) and σ(L) =
L for every σ ∈ HomF(L,C) then σ(bi) belong to L and L is the splitting field of polynomials
fbi(X). If |HomF(L,L)|= |L : F | then one can show by induction that each of fbi(X) is separable.

Now suppose we are in the situation of 1.2.5. Then L = F(a) for some a ∈ L. L is the
splitting field of some polynomials fi over F , and hence L is the splitting field of their product.
By 1.2.7 and induction we have σL = L. Then L = F(ai) for any root ai of fa, and elements of
HomF(L,L) correspond to a 7→ ai. Therefore HomF(L,L) = IsoF(L,L). Its elements correspond
to some permutations of the set {ai} of all roots of fa(X). �

1.2.9. THEOREM. (without proof) Let L/F be a finite Galois extension and M be an interme-
diate field between F and L. Then L/M is a Galois extension with the Galois group

Gal(L/M) = {σ ∈ Gal(L/F) : σ |M = idM}.

For a subgroup H of Gal(L/F) denote

LH = {x ∈ L : σ(x) = x for all σ ∈ H}.

This set is an intermediate field between L and F .

1.2.10. THEOREM. Main theorem of Galois theory (without proof)
Let L/F be a finite Galois extension with Galois group G = Gal(L/F).
Then H ↔ LH is a one-to-one correspondence between subgroups H of G and subfields of L

which contain F. The inverse map is given by M −→ Gal(L/M) = H.
Normal subgroups H of G correspond to Galois extensions M/F and

Gal(M/F)∼= G/H.
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1.3. Finite fields.

Every finite field F has positive characteristic, since the homomorphism Z−→ F is not injec-
tive. Let F be of prime characteristic p. Then the image of Z in F can be identified with the finite
field Fp consisting of p elements. If the degree of F/Fp is n, then the number of elements in F
is pn. By 1.2.4 the group F× is cyclic of order pn− 1, so every non-zero element of F is a root
of the polynomial X pn−1− 1. Therefore, all pn elements of F are all pn roots of the polynomial
fn(X) = X pn −X . The polynomial fn is separable, since its derivative in characteristic p is equal
to pnX pn−1− 1 = −1. Thus, F is the splitting field of fn over Fp. We conclude that F/Fp is a
Galois extension of degree n = |F : Fp|.

LEMMA. The Galois group of F/Fp is cyclic of order n: it is generated by an automorphism
φ of F called the Frobenius automorphism:

φ(x) = xp for all x ∈ F .

Proof. φ m(x) = xpm
= x for all x ∈ F if and only if n|m. �

On the other hand, for every n > 1 the splitting field of fn over Fp is a finite field consisiting
of pn elements. Thus,

THEOREM. For every n there is a unique (up to isomorphism) finite field Fpn consisting of pn

elements; it is the splitting field of the polynomial fn(X) = X pn−X. The finite extension Fpnm/Fpn

is a Galois extension with cyclic group of degree m generated by the Frobenius automorphism
φn : x 7→ xpn

.

LEMMA. Let g(X) be an irreducible polynomial of degree m over a finite field Fpn . Then g(X)

divides fnm(X) and therefore is a separable polynomial.

Proof. Let a be a root of g(X). Then Fpn(a)/Fpn is of degree m, so Fpn(a) = Fpnm . Since a is a
root of fnm(X), g divides fnm. The latter is separable and so is g. �

2. Integrality

2.1. Integrality over rings.
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2.1.1. DEFINITION–PROPOSITION. Let B be a ring and A its subring.
An element b ∈ B is called integral over A if it satisfies one of the following equivalent condi-

tions:
(i) there exist ai ∈ A such that f (b) = 0 where f (X) = Xn +an−1Xn−1 + · · ·+a0;
(ii) the subring of B generated by A and b is an A-module of finite type;
(iii) there exists a subring C of B which contains A and b and which is an A-module of finite

type.

Proof. (i)⇒(ii): note that the subring A[b] of B generated by A and b coincides with the A-module
M generated by 1, . . . ,bn−1. Indeed,

bn+ j =−a0b j−·· ·−bn+ j−1

and by induction b j ∈M.
(ii)⇒ (iii): obvious.
(iii)⇒(i): let C = c1A+ · · ·+ cmA. Then bci = ∑ j ai jc j, so ∑ j(δi jb−ai j)c j = 0. Denote by d

the determinant of M = (δi jb−ai j). Note that d = f (b) where f (X)∈ A[X ] is a monic polynomial.
From linear algebra we know that dE = M∗M where M∗ is the adjugate matrix to M and E is the
identity matrix of the same order of that of M. Denote by C the column consisting of c j. Now we
get MC = 0 implies M∗MC = 0 implies dEC = 0 implies dC = 0. Thus dc j = 0 for all 16 j6m.
Every c ∈ C is a linear combination of c j. Hence dc = 0 for all c ∈ C. In particular, d1 = 0, so
f (b) = d = 0. �

EXAMPLES.

1. Every element of A is integral over A.
2. If A,B are fields, then an element b ∈ B is integral over A if and only if b is algebraic over

A.
3. Let A = Z, B = Q. A rational number r/s with relatively prime r and s is integral over

Z if and only if (r/s)n + an−1(r/s)n−1 + · · ·+ a0 = 0 for some integer ai. Multiplying by sn we
deduce that s divides rn, hence s =±1 and r/s ∈ Z. Hence integral in Q elements over Z are just
all integers.

4. If B is a field, then it contains the field of fractions F of A. Let σ ∈HomF(B,C) where C is
an algebraically closed field containing B. If b ∈ B is integral over A, then σ(b) ∈ σ(B) is integral
over A.

5. If b∈B is a root of a non-zero polynomial f (X) = anXn+ · · · ∈A[X ], then an−1
n f (b) = 0 and

g(anb) = 0 for g(X) = Xn +an−1Xn−1 + · · ·+an−1
n a0, g(anX) = an−1

n f (X). Hence anb is integral
over A. Thus, for every algebraic over A element b of B there is a non-zero a ∈ A such that ab is
integral over A.

2.1.2. COROLLARY. Let A be a subring of an integral domain B. Let I be a non-zero A-
module of finite type, I ⊂ B. Let b ∈ B satisfy the property bI ⊂ I. Then b is integral over A.
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Proof. Indeed, as in the proof of (iii)⇒ (i) we deduce that dc = 0 for all c ∈ I. Since B is an
integral domain, we deduce that d = 0, so d = f (b) = 0. �

2.1.3. PROPOSITION. Let A be a subring of a ring B, and let bi ∈ B be such that bi is integral
over A[b1, . . . ,bi−1] for all i. Then A[b1, . . . ,bn] is an A-module of finite type.

Proof. Induction on n. The case of n = 1 is the previous proposition. If C = A[b1, . . . ,bn−1] is an
A-module of finite type, then C = ∑

m
i=1 ciA. Now by the previous proposition C[bn] is a C-module

of finite type, so C[bn] = ∑
l
j=1 d jC. Thus, C[bn] = ∑i, j d jciA is an A-module of finite type. �

2.1.4. COROLLARY 1. If b1,b2 ∈B are integral over A, then b1+b2,b1−b2,b1b2 are integral
over A.

COROLLARY 2. The set B′ of elements of B which are integral over A is a subring of B
containing A.

DEFINITION. B′ is called the integral closure of A in B. If A is an integral domain and B is its
field of fractions, B′ is called the integral closure of A.

A ring A is called integrally closed if A is an integral domain and A coincides with its integral
closure in its field of fractions.

A ring B is said to be integral over A if every element of B is integral over A. If B is of
characteristic zero, its elements integral over Z are called integral elements of B.

Let F be an algebraic number field. The integral closure of Z in F is called the ring OF of
(algebraic) integers of F .

From Example 5 in 2.1.1 it follows that the fraction field of OF is F .

EXAMPLES.

1. A UFD is integrally closed. Indeed, if x = a/b with relatively prime a,b ∈ A is a root of
polynomial f (X) = Xn + · · ·+a0 ∈ A[X ], then b divides an, so b is a unit of A and x ∈ A.

In particular, the integral closure of Z in Q is Z.
2. OF is integrally closed (see below in 2.1.6).

2.1.5. LEMMA. Let A be integrally closed and F be its fraction field. Let B be a field. Let
b∈B be algebraic over F. Then b is integral over A if and only if the monic irreducible polynomial
fb(X) ∈ F [X ] over F has coefficients in A.

Proof. Let L be a finite extension of F which contains B and all σ(b) for all F-homomorphisms
from B to an algebraically closed field C. Since b∈ L is integral over A, σ(b)∈ L is integral over A
for every σ . Then fb(X) = ∏(X −σ(b)) has coefficients in F which belong to the ring generated
by A and all σ(b) and therefore are integral over A. Since A is integrally closed, fb(X) ∈ A[X ].

If fb(X) ∈ A[X ] then b is integral over A by 2.1.1. �

EXAMPLES.

1. Let F be an algebraic number field. Then an element b ∈ F is integral if and only if its
monic irreducible polynomial has integer coefficients.



12 1. ALGEBRAIC NUMBER FIELDS

For example,
√

d for integer d is integral.
If d ≡ 1 mod 4 then the monic irreducible polynomial of (1+

√
d)/2 over Q is X2−X +(1−

d)/4 ∈ Z[X ], so (1+
√

d)/2 is integral. Note that
√

d belongs to Z[(1+
√

d)/2], and hence Z[
√

d]
is a subring of Z[(1+

√
d)/2].

Thus, the integral closure of Z in Q(
√

d) contains the subring Z[
√

d] and the subring Z[(1+√
d)/2] if d ≡ 1 mod 4. We show that there are no other integral elements.

An element a+b
√

d with rational a and b 6= 0 is integral if and only if its monic irreducible
polynomial X2−2aX+(a2−db2) belongs to Z[X ]. Therefore 2a,2b are integers. If a=(2k+1)/2
for an integer k, then it is easy to see that a2−db2 ∈ Z if and only if b = (2l +1)/2 with integer
l and (2k+1)2−d(2l +1)2 is divisible by 4. The latter implies that d is a quadratic residue mod
4, i.e. d ≡ 1 mod 4. In turn, if d ≡ 1 mod 4 then every element (2k+ 1)/2+(2l + 1)

√
d/2 is

integral.
Thus, integral elements of Q(

√
d) are equal toZ[
√

d] if d 6≡ 1 mod 4

Z[(1+
√

d)/2] if d ≡ 1 mod 4

2. OQm is equal to Z[ζm] (see section 2.4).

2.1.6. LEMMA. If B is integral over A and C is integral over B, then C is integral over A.

Proof. Let c ∈C be a root of the polynomial f (X) = Xn +bn−1Xn−1 + · · ·+b0 with bi ∈ B. Then
c is integral over A[b0, . . . ,bn−1]. Since bi ∈ B are integral over A, proposition 2.1.3 implies that
A[b0, . . . ,bn−1,c] is an A-module of finite type. From 2.1.1 we conclude that c is integral over
A. �

COROLLARY. OF is integrally closed.

Proof. An element of F integral over OF is integral over Z due to the previous lemma. �

2.1.7. PROPOSITION. Let B be an integral domain and A be its subring such that B is integral
over A. Then B is a field if and only if A is a field.

Proof. If A is a field, then A[b] for b ∈ B \ 0 is a vector space of finite dimension over A, and the
A-linear map ϕ : A[b]−→ A[b],ϕ(c) = bc is injective, therefore surjective, so b is invertible in B.

If B is a field and a ∈ A\0, then the inverse a−1 ∈ B satisfies a−n +an−1a−n+1 + · · ·+a0 = 0
with some ai ∈ A. Then a−1 =−an−1−·· ·−a0an−1, so a−1 ∈ A. �

2.2. Norms and traces.

2.2.1. DEFINITION. Let A be a subring of a ring B such that B is a free A-module of finite
rank n. In this situation, similarly to the situation of finite dimensional vector spaces over fields,
for a b ∈ B one has the operator mb of multiplication by b ∈ B, mb : B−→ B, mb(c) = bc. One can
work with its matrix Mb with respect to a specific basis of B over A, its characteristic polynomials
gb(X) = det(XE−Mb), trace TrB/A(b) = TrMb and norm NB/A(b) = detMb.
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If gb(X) = Xn + an−1Xn−1 + · · ·+ a0 then the definitions imply an−1 = −TrB/A(b), a0 =

(−1)nNB/A(b).
2.2.2. We have

Tr(b+b′) = Tr(b)+Tr(b′),Tr(ab) = aTr(b),Tr(a) = na,

N(bb′) = N(b)N(b′),N(ab) = anN(b),N(a) = an

for a ∈ A.

2.2.3. Everywhere below in this section F is either a finite field of a field of characteristic
zero. Then every finite extension of F is separable.

PROPOSITION. Let L be an algebraic extension of F of degree n. Let b ∈ L and b1, . . . ,bn

be roots of the monic irreducible polynomial of b over F each one repeated |L : F(b)| times.
Then the characteristic polynomial gb(X) of b with respect to L/F is ∏(X −bi), and TrL/F(b) =

∑bi,NL/F(b) = ∏bi.

Proof. If L = F(b), then use the basis 1,b, . . . ,bn−1 to calculate gb. Let fb(X) = Xn + cn−1Xn−1 +

· · ·+ c0 be the monic irreducible polynomial of b over F , then the matrix of mb is

Mb =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−c0 −c1 −c2 . . . −cn−1

 .

Hence gb(X) = det(XE−Mb) = fb(X) and detMb = ∏bi, TrMb = ∑bi.
In the general case when |F(b) : F | = m < n choose a basis ω1, . . . ,ωn/m of L over F(b) and

take ω1, . . . ,ω1bm−1,ω2, . . . ,ω2bm−1, . . . as a basis of L over F . The matrix Mb is a block matrix
with the same block repeated n/m times on the diagonal and everything else being zero. Therefore,
gb(X) = fb(X)|L:F(b)| where fb(X) is the monic irreducible polynomial of b over F . �

EXAMPLE. Let F =Q, L =Q(
√

d) with square-free integer d. Then

ga+b
√

d(X) = (X−a−b
√

d)(X−a+b
√

d) = X2−2aX +(a2−db2),

so

TrQ(
√

d)/Q(a+b
√

d) = 2a, NQ(
√

d)/Q(a+b
√

d) = a2−db2.

In particular, an integer number c is a sum of two squares if and only if c∈NQ(
√
−1)/QOQ(

√
−1).

More generally, c is in the form a2−db2 with integer a,b and square-free d not congruent to
1 mod 4 if and only if

c ∈ NQ(
√

d)/QZ[
√

d]
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2.2.4. COROLLARY 1. Let σi be distinct F-homomorphisms of L into C. Then TrL/F(b) =

∑σib, NL/F(b) = ∏σi(b).

Proof. In the previous proposition bi = σi(b). �

COROLLARY 2. Let A be an integral domain, and let F be its field of fractions. Let L be
an extension of F of finite degree. Let A′ be the integral closure of A in F. Then for an integral
element b ∈ L over A gb(X) ∈ A′[X ] and TrL/F(b),NL/F(b) belong to A′.

Proof. All bi are integral over A. �

COROLLARY 3. If, in addition, A is integrally closed, then TrL/F(b),NL/F(b) ∈ A.

Proof. Since A is integrally closed, A′∩F = A. �

2.2.5. LEMMA. Let F be a finite field of a field of characteristic zero. If L is a finite extension
of F and M/F is a subextension of L/F, then the following transitivity property holds

TrL/F = TrM/F ◦TrL/M, NL/F = NM/F ◦NL/M.

Proof. Let σ1, . . . ,σm be all distinct F-homomorphisms of M into C (m = |M : F |). Let τ1, . . . ,τn/m

be all distinct M-homomorphisms of L into C (n/m = |L : M|). The field τ j(L) is a finite extension
of F , and by 1.2.5 there is an element a j ∈ C such that τ j(L) = F(a j). Let E be the minimal
subfield of C containing M and all a j. Using 1.2.3 extend σi to σ ′i : E −→C. Then the composition
σ ′i ◦ τ j : L −→ C is defined. Note that σ ′i ◦ τ j = σ ′i1 ◦ τ j1 implies σi = σ ′i ◦ τ j|M = σ ′i1 ◦ τ j1 |M =

σi1 , so i = i1, and then j = j1. Hence σ ′i ◦ τ j for 1 6 i 6 m,1 6 j 6 n/m are all n distinct F-
homomorphisms of L into C. By Corollary 1 in 2.2.4

NM/F(NL/M(b)) = NM/F(∏τ j(b)) = ∏σ
′
i (∏τ j(b)) = ∏(σ ′i ◦ τ j)(b) = NL/F(b).

Similar arguments work for the trace. �

2.3. Integral basis.

2.3.1. DEFINITION. Let A be a subring of a ring B such that B is a free A-module of rank n.
Let b1, . . . ,bn ∈ B. Then the discriminant D(b1, . . . ,bn) is defined as det(TrB/A(bib j)).

2.3.2. PROPOSITION. If ci ∈ B and ci = ∑ai jb j, ai j ∈ A, then

D(c1, . . . ,cn) = (det(ai j))
2 D(b1, . . . ,bn).

Proof. (ci)
t = (ai j)(b j)

t , (ckcl) = (ck)
t(cl) = (aki)(bib j)(al j)

t ,
(Tr(ckcl)) = (aki)(Tr(bib j))(al j)

t . �
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2.3.3. DEFINITION. The discriminant DB/A of B over A is the principal ideal of A generated
by the discriminant of any basis of B over A.

By Proposition 2.3.2 every basis of B over A generates the same principal ideal of A, since
(det(ai j))

2 is invertible in A for the matrix (ai j) relating two bases.
For the discriminant in finite extensions of fields of characteristic zero see 2.3.5.

2.3.4. PROPOSITION. Let DB/A 6= 0. Let B be an integral domain. Then a set b1, . . . ,bn is a
basis of B over A if and only if D(b1, . . . ,bn)A = DB/A.

Proof. Let D(b1, . . . ,bn)A = DB/A.
Let c1, . . . ,cn be a basis of B over A and let bi =∑ j ai jc j. Then D(b1, . . . ,bn)= det(ai j)

2D(c1, . . . ,cn).
Denote d = D(c1, . . . ,cn).

Since D(b1, . . . ,bn)A = D(c1, . . . ,cn)A, we get aD(b1, . . . ,bn) = d for some a∈ A. Then d(1−
adet(ai j)

2)= 0 and det(ai j) is invertible in A, so the matrix (ai j) is invertible in the ring of matrices
over A. Thus b1, . . . ,bn is a basis of B over A. �

2.3.5. PROPOSITION. Let F be a finite field or a field of characteristic zero. Let L be an
extension of F of degree n and let σ1, . . . ,σn be distinct F-homomorphisms of L into C. Let
b1, . . . ,bn be a basis of L over F. Then

D(b1, . . . ,bn) = det(σi(b j))
2 6= 0.

Proof. det(Tr(bib j)) = det(∑k σk(bi)σk(b j)) = det((σk(bi))
t(σk(b j))) = det(σi(b j))

2.
The rest is more difificult to prove, unless one uses Artin’s trick. If det(σi(b j)) = 0, then there

exist ai ∈ L not all zero such that ∑i aiσi(b j) = 0 for all j. Then ∑i aiσi(b) = 0 for every b ∈ L.
Let ∑a′iσi(b) = 0 for all b ∈ L with the minimal number > 1 of non-zero a′i ∈ A. Assume

a′1 6= 0.
Let c ∈ L be such that L = F(c) (see 1.2.5), then σ1(c) 6= σi(c) for i > 1.
We now have ∑a′iσi(bc) = ∑a′iσi(b)σi(c) = 0. Hence σ1(c)(∑a′iσi(b))−∑a′iσi(b)σi(c) =

∑i>1 a′i(σ1(c)−σi(c))σi(b) = 0. Put a′′i = a′i(σ1(c)−σi(c)), so ∑a′′i σi(b) = 0 with smaller number
of non-zero a′′i than in a′i, a contradiction. �

Thus, for fields the discriminant measures the behaviour of elements of a basis with respect to
Galois automorphisms action.

COROLLARY. Under the assumptions of the proposition the linear map L −→ HomF(L,F):
b 7→ (c 7→ TrL/F(bc)) between n-dimensional F-vector spaces is injective, and hence bijective.
Therefore for a basis b1, . . . ,bn of L/F there is a dual basis c1, . . . ,cn of L/F such that TrL/F(bic j)=

δi j.

Proof. If b=∑aibi, ai ∈F and TrL/F(bc)= 0 for all c∈L, then we get equations ∑ai TrL/F(bib j)=

0. This is a system of linear equations in ai with nondegenerate matrix TrL/F(bib j), so the only
solution is ai = 0. Elements of the dual basis c j correspond to f j ∈ HomF(L,F), f j(bi) = δi j. �
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2.3.6. THEOREM. Let A be an integrally closed ring and F be its field of fractions. Let L be
an extension of F of degree n and A′ be the integral closure of A in L. Let F be of characteristic 0.
Then A′ is an A-submodule of a free A-module of rank n.

Proof. Let e1, . . . ,en be a basis of F-vector space L. Then due to Example 5 in 2.1.1 there is
0 6= ai ∈ A such that aiei ∈ A′. Then for a = ∏ai we get bi = aei ∈ A′ form a basis of L/F .

Let c1, . . . ,cn be the dual basis for b1, . . . ,bn. Claim: A′ ⊂ ∑ciA. Indeed, let c = ∑aici ∈ A′.
Then

TrL/F(cbi) = ∑
j

a j TrL/F(c jbi) = ai ∈ A

by 2.2.5. Now ∑ciA =⊕ciA, since {ci} is a basis of L/F . �

2.3.7. THEOREM. Let A be a principal ideal ring and F be its field of fractions of charac-
teristic 0. Let L be an extension of F of degree n. Then the integral closure A′ of A in L is a free
A-module of rank n.

In particular, the ring of integers OF of a number field F is a free Z-module of rank equal to
the degree of F.

Proof. The description of modules of finite type over PID and the previous theorem imply that A′

is a free A-module of rank m6 n. On the other hand, by the first part of the proof of the previous
theorem A′ contains n A-linear independent elements over A. Thus, m = n. �

DEFINITION. The discriminant dF of any integral basis of OF is called the discriminant of F .
This is a non-zero integer.

Since every two integral bases are related via an invertible matrix with integer coefficients
(whose determinant is therefore ±1), 2.3.2 implies that dF is uniquely determined.

2.3.8. EXAMPLES.

1. Let d be a square-free integer. By 2.1.5 the ring of integers of Q(
√

d) has an integral basis
1,α where α =

√
d if d 6≡ 1 mod 4 and α = (1+

√
d)/2 if d ≡ 1 mod 4.

The discriminant of Q(
√

d) is equal to

4d if d 6≡ 1 mod 4, and d if d ≡ 1 mod 4 .

To prove this calculate directly D(1,α) using the definitions, or use 2.3.9.
2. Let F be an algebraic number field of degree n and let a ∈ F be an integral element over

Z. Assume that D(1,a, . . . ,an−1) is a square free integer. Then 1,a, . . . ,an−1 is a basis of OF

over Z, so OF = Z[a]. Indeed: choose a basis b1, . . . ,bn of OF over Z and let {c1, . . . ,cn} =
{1,a, . . . ,an−1}. Let ci = ∑ai jb j. By 2.3.2 we have D(1,a, . . . ,an−1) = (det(ai j)

2D(b1, . . . ,bn).
Since D(1,a, . . . ,an−1) is a square free integer, we get det(ai j) = ±1, so (ai j) is invertible in
Mn(Z), and hence 1,a, . . . ,an−1 is a basis of OF over Z.
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2.3.9. EXAMPLE. Let F be of characteristic zero and L = F(b) be an extension of degree n
over F . Let f (X) be the minimal polynomial of b over F whose roots are bi. Then

f (X) = ∏(X−b j), f ′(bi) = ∏
j 6=i

(bi−b j),

NL/F f ′(b) = ∏
i

f ′(σib) = ∏
i

f ′(bi).

Then

D(1,b, . . . ,bn−1) = det(b j
i )

2

= (−1)n(n−1)/2
∏
i 6= j

(bi−b j) = (−1)n(n−1)/2NL/F( f ′(b)).

Let f (X) = Xn +aX + c. Then

bn =−ab− c, bn−1 =−a− cb−1

and

e = f ′(b) = nbn−1 +a = n(−a− cb−1)+a,

so

b =−nc(e+(n−1)a)−1.

The minimal polynomial g(Y ) of e over F corresponds to the minimal polynomial f (X) of b; it is
(Y +(n−1)a)n times c−1 f (−nc(Y +(n−1)a)−1), i.e.

g(Y ) = (Y +(n−1)a)n−na(Y +(n−1)a)n−1 +(−1)nnncn−1.

Hence

NL/F( f ′(b)) = g(0)(−1)n

= nncn−1 +(−1)n−1(n−1)n−1an,

so

D(1,b, . . . ,bn−1)

= (−1)n(n−1)/2(nncn−1 +(−1)n−1(n−1)n−1an).

For n = 2 one has a2−4c, for n = 3 one has −27c2−4a3.
For example, let f (X) = X3 +X + 1. It is irreducible over Q. Its discriminant is equal to

(−31), so according to example 2.5.3 OF = Z[a] where a is a root of f (X) and F =Q[a].

2.4. A little about cyclotomic fields.

2.4.1. DEFINITION. Let ζn be a primitive nth root of unity. The field Q(ζn) is called the (nth)
cyclotomic field.
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2.4.2. THEOREM. Let p be a prime number. The cyclotomic field Q(ζp) is of degree p− 1
over Q. Its ring of integers coincides with Z[ζp].

Proof. Denote z = ζp. Let f (X) = (X p− 1)/(X − 1) = X p−1 + · · ·+ 1. Recall that z− 1 is a
root of the polynomial g(Y ) = f (1+Y ) =Y p−1 + · · ·+ p is a p-Eisenstein polynomial, so f (X) is
irreducible over Q, |Q(z) : Q|= p−1 and 1,z, . . . ,zp−2 is a basis of the Q-vector space Q(z).

Let O be the ring of integers of Q(z). Since the monic irreducible polynomial of z over Q has
integer coefficients, z ∈ O. Since z−1 is a primitive root of unity, z−1 ∈ O. Thus, z is a unit of O.

Then zi ∈ O for all i ∈ Z (z−1 = zp−1). We have 1− zi = (1− z)(1+ · · ·+ zi−1) ∈ (1− z)O.
Denote by Tr and N the trace and norm for Q(z)/Q. Note that Tr(z) = −1 and since zi for

16 i6 p−1 are primitive pth roots of unity, Tr(zi) =−1; Tr(1) = p−1. Hence

Tr(1− zi) = p for 16 i6 p−1.

Furthermore, N(z− 1) is equal to the free term of g(Y ) times (−1)p−1, so N(z− 1) = (−1)p−1 p
and

N(1− z) = ∏
16i6p−1

(1− zi) = p,

since 1− zi are Galois conjugate to 1− z over Q. Therefore pZ is contained in the ideal I =
(1− z)O∩Z.

If I = Z, then 1− z would be a unit of O and so would be its Galois conjugates 1− zi, which
then implies that p as their product would be a unit of O. Then p−1 ∈ O∩Q= Z, a contradiction.
Thus,

I = (1− z)O∩Z= pZ.

Now we prove another auxiliary result:

Tr((1− z)O)⊂ pZ.

Indeed, every Galois conjugate of y(1− z) for y ∈ O is of the type yi(1− zi) with appropriate
yi ∈ O, so Tr(y(1− z)) = ∑yi(1− zi) ∈ I = pZ.

Now let x = ∑06i6p−2 aizi ∈ O with ai ∈Q. We aim to show that all ai belong to Z. From the
calculation of the traces of zi it follows that Tr((1−z)x)= a0 Tr(1−z)+∑0<i6p−2 ai Tr(zi−zi+1)=

a0 p and so a0 p ∈ Tr((1− z)O) ⊂ pZ; therefore, a0 ∈ Z. Since z is a unit of O, we deduce that
x1 = z−1(x− a0) = a1 + a2z+ · · ·+ ap−2zp−3 ∈ O. By the same arguments a1 ∈ Z. Looking at
xi = z−1(xi−1−ai−1) ∈ O we conclude ai ∈ Z for all i. Thus O = Z[z]. �

2.4.3. The discriminant of Q(ζp) is D(1,z, . . . ,zp−2).
By 2.3.9 it is equal (−1)(p−1)(p−2)/2N( f ′(z)). We have f ′(z) = pzp−1/(z−1) = pz−1/(z−1)

and N( f ′(z)) = N(p)N(z)−1/N(z− 1) = pp−1(−1)p−1/((−1)p−1 p) = pp−2. Thus, the discrimi-
nant of Q(ζp) is (−1)(p−1)(p−2)/2 pp−2.
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2.4.4. In general, the extension Q(ζm)/Q is a Galois extension and elements of the Galois
group Gal(Q(ζm)/Q) are determined by their action on the primitive mth root ζm of unity:

σ 7→ i : σ(ζm) = ζ
i
m, (i,m) = 1.

This map induces a group isomorphism

Gal(Q(ζm)/Q)−→ (Z/mZ)×.

One can prove that the ring of integers of Q(ζm) is Z(ζm).

3. Dedekind Rings

3.1. Noetherian rings in brief.

3.1.1. Recall (see the commutative algebra course linked to at the beginning of this text) that
a module M over a ring is called a Noetherian module if one of the following equivalent properties
is satisfied:

(i) every submodule of M is of finite type;
(ii) every increasing sequence of submodules stabilises;
(iii) every nonempty family of submodules contains a maximal element with respect to inclu-

sion.

A ring A is called Noetherian if it is a Noetherian A-module.

EXAMPLE. A PID is a Noetherian ring, since every ideal of it is generated by one element.

LEMMA. Let M be an A-module and N is a submodule of M. Then M is a Noetherian A-
module if and only if N and M/N are.

COROLLARY 1. If Ni are Noetherian A-modules, so is ⊕n
i=1Ni.

COROLLARY 2. Let A be a Noetherian ring and let M be an A-module of finite type. Then M
is a Noetherian A-module.

3.1.2. PROPOSITION. Let A be a Noetherian integrally closed ring. Let K be its field of
fractions and let L be a finite extension of K. Let A′ be the integral closure of A in L. Suppose that
K is of characteristic 0. Then A′ is a Noetherian ring.

Proof. According to 2.3.6 A′ is a submodule of a free A-module of finite rank. Hence A′ is a
Noetherian A-module. Every ideal of A′ is in particular an A-submodule of A′. Hence every
increasing sequence ideals of A′ stabilises and A′ is a Noetherian ring. �
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3.1.3. EXAMPLE. The ring of integers OF of a number field F is a Noetherian ring. It is a
free Z-module of rank n where n is the degree of F .

LEMMA. Every nonzero element of OF \ {0} is either a unit or factorises into a product of
prime elements and units (not uniquely in general).

Proof. Indeed, assume the family of proper principal ideals (a) where a cannot be factorised
into a product of prime elements is nonempty. Choose a maximal element (a) in this family. The
element a is not a unit, and a is not prime. Hence there is a factorisation a= bc with both b,c 6∈O∗F .
Then (b),(c) are strictly larger than (a), so b and c are products of prime elements. Then a is, a
contradiction. �

3.2. Definition of Dedekind rings.

3.2.1. DEFINITION. An integral domain A is called a Dedekind ring if
(i) A is a Noetherian ring;
(ii) A is integrally closed;
(iii) every non-zero prime ideal of A is maximal.

LEMMA. Every principal ideal domain A is a Dedekind ring.

Proof. For (i) see 3.1.1 and for (ii) see 2.1.4. If (a) is a non-zero prime ideal and (a) ⊂ (b) 6= A,
(a) 6= (b). Then b isn’t a unit of A, b divides a and a does not divide b. Write a = bc. Since (a)
is prime, either b or c belongs to (a). If b does then (a) = (b). If b doesn’t, then c must belong to
(a), so c = ad for some d ∈ A, and a = bc = bda which means that b is a unit of A, a contradiction.
Thus, property (iii) is satisfied as well. �

3.2.2. LEMMA. Let A be an integral domain. Let K be its field of fractions and let L be a
finite extension of K. Let B be the integral closure of A in L. Let P be a non-zero prime ideal of B.
Then P∩A is a non-zero prime ideal of A.

Proof. Let P be a non-zero prime ideal of B. Then P∩A 6= A, since otherwise 1 ∈ P∩A and hence
P = B.

If c,d ∈ A and cd ∈ P∩A, then either c ∈ P∩A or d ∈ P∩A. Hence P∩A is a prime ideal of
A.

Let b ∈ P, b 6= 0. Then b satisfies a polynomial relation bn + an−1bn−1 + · · ·+ a0 = 0 with
ai ∈ A. We can assume that a0 6= 0. Then a0 = −(bn + · · ·+a1b) ∈ A∩P, so P∩A is a non-zero
prime ideal of A. �

3.2.3. THEOREM. Let A be a Dedekind ring. Let K be its field of fractions and let L be a
finite extension of K. Let B be the integral closure of A in L. Suppose that K is of characteristic 0.
Then B is a Dedekind ring.

Proof. B is Noetherian by 3.1.2. It is integrally closed due to 2.1.6. By 3.2.2 if P is a non-zero
proper prime ideal of B, then P∩A is a non-zero prime ideal of A. Since A is a Dedeking ring, it is
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a maximal ideal of A. The quotient ring B/P is integral over the field A/(P∩A). Hence by 2.1.7
B/P is a field and P is a maximal ideal of B. �

3.2.4. EXAMPLE. The ring of integers OF of a number field F is a Dedekind ring.

3.3. Factorisation in Dedekind rings.

3.3.1. LEMMA. Every non-zero ideal in a Dedekind ring A contains some product of maximal
ideals.

Proof. If not, then the set of non-zero ideals which do not contain products of maximal ideals
is non-empty. Let I be a maximal element with this property. The ideal I is not A and is not a
maximal ideal, since it doesn’t contain a product of maximal ideals. Hence I is not a prime ideal.
Therefore there are a,b ∈ A such that ab ∈ I and a,b 6∈ I. Since I + aA and I + bA are strictly
greater than I, there are maximal ideals Pi and Q j such that ∏Pi ⊂ I+aA and ∏Q j ⊂ I+bA. Then

∏Pi ∏Q j ⊂ (I +aA)(I +bA)⊂ I, a contradiction. �

3.3.2. LEMMA. Let a prime ideal P of A contain I1 . . . Im, where I j are ideals of A. Then P
contains one of I j.

Proof. If Ik 6⊂ P for all 16 k6m, then take ak ∈ Ik \P and consider the product a1 . . .am. It belongs
to P, therefore one of ai belongs to P, a contradiction. �

3.3.3. The next proposition shows that for every non-zero ideal I of a Dedekind ring A there
is an ideal J such that IJ is a principal non-zero ideal of A. Moreover, the proposition gives an
explicit description of J.

PROPOSITION. Let I be a non-zero ideal of a Dedekind ring A and b be a non-zero element
of I. Let K be the field of fractions of A. Define

J = {a ∈ K : aI ⊂ bA}.

Then J is an ideal of A and IJ = bA.

Proof. Since b ∈ I, we get bA⊂ I.
If a ∈ J then aI ⊂ bA ⊂ I, so aI ⊂ I. Now we use the Noetherian and integrality property of

Dedekind rings: Since I is an A-module of finite type, by Remark in 2.1.1 a is integral over A.
Since A is integrally closed, a ∈ A. Thus, J ⊂ A.

The set J is closed with respect to addition and multiplication by elements of A, so J is an
ideal of A. It is clear that IJ ⊂ bA. Assume that IJ 6= bA and get a contradiction.

The ideal b−1IJ is a proper ideal of A, and hence it is contained in a maximal ideal P. Note
that b ∈ J, since bI ⊂ bA. So b2 ∈ IJ and b ∈ b−1IJ, bA ⊂ b−1IJ. By 3.3.1 there are non-zero
prime ideals Pi such that P1 . . .Pm ⊂ bA. Let m be the minimal number with this property.

We have

P1 . . .Pm ⊂ bA⊂ b−1IJ ⊂ P.

By 3.3.2 P contains one of Pi. Without loss of generality we can assume that P1 ⊂ P. Since P1 is
maximal, P1 = P.
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If m= 1, then P⊂ bA⊂ b−1IJ⊂P, so P= bA. Since bA⊂ I we get P⊂ I. Since P is maximal,
either I = P or I = A. The definition of J implies in the first case J = {a ∈ K : aI = aP ⊂ bA =

P}= A and IJ = bA and in the second case b ∈ J implies bA⊂ J = {a ∈ K : aA⊂ bA} ⊂ {a ∈ K :
a ∈ bA}= bA and so J = bA and IJ = bA.

Let m > 1. Note that P2 . . .Pm 6⊂ bA due to the definition of m. Therefore, there is d ∈ P2 . . .Pm

such that d 6∈ bA. Since b−1IJ ⊂ P, db−1IJ ⊂ dP ⊂ PP2 . . .Pm ⊂ bA. So (db−1J)I ⊂ bA, and the
defining property of J implies that db−1J ⊂ J. Since J is an A-module of finite type, by 2.1.1 db−1

belongs to A, i.e. d ∈ bA, a contradiction. �

3.3.4. COROLLARY 1. (Cancellation property)
Let I,J,H be non-zero ideals of A, then IH = JH implies I = J.

Proof. Let H ′ be an ideal such that HH ′ = aA is a principal ideal. Then aI = aJ and I = J. �

3.3.5. COROLLARY 2. (Factorisation property)
Let I and J be ideals of A. Then I ⊂ J if and only if I = JH for an ideal H.

Proof. If I ⊂ J and J is non-zero, then let J′ be an ideal of A such that JJ′ = aA is a principal ideal.
Then IJ′ ⊂ aA, so H = a−1IJ′ is an ideal of A. Now

JH = Ja−1IJ′ = a−1IJJ′ = a−1aI = I.

�

3.3.6. THEOREM. Every proper ideal of a Dedekind ring factorises into a product of maximal
ideals whose collection is uniquely determined.

Proof. Let I be a non-zero ideal of A. There is a maximal ideal P1 which contains I. Then
by the factorisation property 3.3.5 I = P1Q1 for some ideal Q1. Note that I ⊂ Q1 is a proper
inclusion, since otherwise AQ1 = Q1 = I = P1Q1 and by the cancellation property 3.3.4 P1 = A, a
contradiction. If Q1 6= A, then there is a maximal ideal P2 such that Q1 = P2Q2. Continue the same
argument: eventually we have I = P1 . . .PnQn and I ⊂ Q1 ⊂ ·· · ⊂ Qn are all proper inclusions.
Since A is Noetherian, Qm = A for some m and then I = P1 . . .Pm.

If P1 . . .Pm = Q1 . . .Qn, then P1 ⊃ Q1 . . .Qn and by 3.3.2 P1 being a prime ideal contains one
of Qi, so P1 = Qi. Using 3.3.4 cancel P1 on both sides and use induction. �

3.3.7. REMARK. A maximal ideal P of A is involved in the factorisation of I if and only if
I ⊂ P. Indeed, if I ⊂ P, then I = PQ by 3.3.5.

THEOREM. Let I = ∏Pri
i ,J = ∏Psi

i be factorisations of non-zero ideals I,J of a Dedekind
ring, with non-negative integer ri,si such that ri + si > 0 for all i. Then

I∩ J = ∏Pmax{ri,si}
i , I + J = ∏Pmin{ri,si}

i

and

IJ = (I∩ J)(I + J).
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Proof. For the first equality, Pi ⊃ the LHS, so the previous Remark implies that the LHS =

∏Pmi
i with non-negative integer mi. Then mi >max{ri,si}, so the LHS ⊂ the RHS. The opposite

inclusion is obvious.
For the second equality, if the LHS = ∏Qn j

j with positive n j then the previous Remark implies
Q j equals to one of Pi. Then the LHS = ∏Pni

i , ni 6 min{ri,si}, so the LHS ⊃ the RHS. The
opposite inclusion is obvious.

The last equality follows immediately from the first two. �

3.3.8. EXAMPLE. Let A = Z[
√
−5]. This is a Dedekind ring, since −5 6≡ 1 mod 4, and A is

the ring of integers of Q(
√
−5).

We have the norm map N(a+ b
√
−5) = a2 + 5b2. If an element u is a unit of A then uv = 1

for some v ∈ A, and the product of two integers N(u) and N(v) is 1, thus N(u) = 1. Conversely, if
N(u) = 1 then u times its conjugate u′ is one, and so u is a unit of A. Thus, u ∈ A× if and only if
N(u) ∈ Z×.

The norms of 2,3,1±
√
−5 are 4,9,6. It is easy to see that 2,3 are not in the image N(A).

If, say, 2 were not a prime element in A, then 2 = π1π2 and 4 = N(π1)N(π2) with both norms
being proper divisors of 4, a contradiction. Hence 2 is a prime element of A, and similarly 3,1±√
−5 are.

Now 2,3,1±
√
−5 are prime elements of A and

6 = 2 ·3 = (1+
√
−5)(1−

√
−5).

Note that 2,3,1±
√
−5 are not associated with each other (the quotient is not a unit) since their

norms differ not by a unit of Z. Thus A isn’t a UFD.
The ideals

(2,1+
√
−5),(3,1+

√
−5),(3,1−

√
−5)

are maximal.
For instance, |A/(2)| = 4, and it is easy to show that A 6= (2,1+

√
−5) 6= (2), so |A/(2,1+√

−5)|= 2, therefore A/(2,1+
√
−5) is isomorphic to Z/2Z, i.e. is a field.

We get factorisation of ideals

(2) = (2,1+
√
−5)2,

(3) = (3,1+
√
−5)(3,1−

√
−5),

(1+
√
−5) = (2,1+

√
−5)(3,1+

√
−5),

(1−
√
−5) = (2,1+

√
−5)(3,1−

√
−5).

To prove the first equality note that (1+
√
−5)2 =−4+2

√
−5 ∈ (2), so the RHS⊂ the LHS;

we also have 2 = 2(1+
√
−5)−22− (1+

√
−5)2 ∈ the RHS, so the LHS= the RHS.

For the second equality use (1+
√
−5)(1−

√
−5) = 6∈ (3), 3 = 32−(1+

√
−5)(1−

√
−5)∈

the RHS.
For the third equality use 6 ∈ (1+

√
−5), 1+

√
−5 = 3(1+

√
−5)−2(1+

√
−5) ∈ the RHS.

For the fourth equality use conjugate the third equality and use (2,1+
√
−5) = (2,1−

√
−5).
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Thus
(2) · (3) = (2,1+

√
−5)2(3,1+

√
−5)(3,1−

√
−5)

= (2,1+
√
−5)(3,1+

√
−5)(2,1+

√
−5)(3,1−

√
−5)

= (1+
√
−5)(1−

√
−5).

3.3.9. LEMMA. Let I + J = A. Then In + Jm = A for every n,m> 1.

Proof. We have A = (I+J) . . .(I+J) = I(...)+Jm ⊂ I+Jm, so I+Jm = A. Similarly In+Jm = A.
�

PROPOSITION. Let P be a maximal ideal of A. Then there is an element π ∈ P such that

P = πA+Pn

for every n> 2.
Hence the ideal P/Pn is a principal ideal of the quotient ring A/Pn. Moreover, it is the only

maximal ideal of that ring.
Every ideal of the ring A/Pn is principal of the form Pm/Pn = (πmA+Pn)/Pn for some m6 n.

Proof. If P = P2, then P = A by cancellation property, a contradiction. Let π ∈ P \P2. Since
πA+Pn ⊂ P, factorisation property implies that πA+Pn = PQ for an ideal Q.

Note that Q 6⊂ P, since otherwise π ∈ P2, a contradiction.
Therefore, P+Q = A. The Lemma implies Pn−1 +Q = A. Then

P = P(Q+Pn−1)⊂ PQ+Pn = πA+Pn ⊂ P,

so P = πA+Pn.
For m6 n we deduce Pm ⊂ πmA+Pn ⊂ Pm, so Pm = πmA+Pn.
Let I be a proper ideal of A containing Pn. Then by factorisation property Pn = IK with some

ideal K. Hence the factorisation of I involves powers of P only, so I = Pm, 0 < m 6 n. Hence
ideals of A/Pn are Pm/Pn with m6 n. �

3.3.10. COROLLARY. Every ideal in a Dedekind ring is generated by 2 elements.

Proof. Let I be a non-zero ideal, and let a be a non-zero element of I. Then aA = Pn1
1 . . .Pnm

m with
distinct maximal ideals Pi.

By Lemma 3.3.9 we have Pn1
1 +Pnk

k = A if l 6= k, so we can apply the Chinese remainder
theorem which gives

A/aA∼= A/Pn1
1 ×·· ·×A/Pnm

m .

For the ideal I/aA of A/aA we get

I/aA∼= (I +Pn1
1 )/Pn1

1 ×·· ·× (I +Pnm
m )/Pnm

m .

Each of ideals (I +Pni
i )/Pni

i is of the form (π li
i A+Pni

i )/Pni
i by 3.3.9. Hence I/aA is isomorphic to

∏(π li
i A+Pni

i )/Pni
i . Using the Chinese remainder theorem find b ∈ A such that b−π

li
i belongs to

Pni
i for all i. Then I/aA = (aA+bA)/aA and I = aA+bA. �
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3.3.11. THEOREM. A Dedekind ring A is a UFD if and only if A is a PID.

Proof. Let A be not a PID. Since every proper ideal is a product of maximal ideals, there is a
maximal ideal P which isn’t principal. Consider the family F of non-zero ideals I such that PI is
principal. It is nonempty by 3.3.3. Let I be a maximal element of this family and PI = aA, a 6= 0.

Note that I isn’t principal, because otherwise I = xA and PI = xP = aA, so a is divisible by x.
Put y = ax−1, then (x)P = (x)(y) and by 3.3.4 P = (y), a contradiction.

Claim: a is a prime element of A. First, a is not a unit of A: otherwise P ⊃ PI = aA = A, a
contradiction. Now, if a = bc, then bc ∈ P, so either b ∈ P or c ∈ P. By 3.3.5 then either bA = PJ
or cA = PJ for an appropriate ideal J of A. Since PI ⊂ PJ, we get aI = IPI ⊂ IPJ = aJ and I ⊂ J.
Note that J ∈F . Due to maximality of I we deduce that I = J, and hence either bA or cA is equal
to aA. Then one of b,c is asociated to a, so a is a prime element.

P 6⊂ aA, since otherwise aA = PI ⊂ aI, so A = I, a contradiction.
I 6⊂ aA, since otherwise aA⊂ I implies aA = I, I is principal, a contradiction.
Thus, there are d ∈ P and e ∈ I not divisible by a. We also have ed ∈ PI = aA is divisible by

the prime element a. This can never happen in UFD. Thus, A isn’t a UFD.
�

Using this theorem, to establish that the ring Z[
√
−5] of 3.3.8 is not a unique factorisation

domain it is sufficient to indicate a non-principal ideal of it.

3.4. The norm of an ideal.

In this subsection F is a number field of degree n, OF is the ring of integers of F .

3.4.1. PROPOSITION. For a non-zero element a ∈ OF

|OF : aOF |= |NF/Q(a)|.

Proof. We know that OF is a free Z-module of rank n. The ideal aOF is a free submodule of OF

of rank n, since if x1, . . . ,xm are generators of aOF , then a−1x1, . . . ,a−1xm are generators of OF ,
so m = n. By the theorem on the structure of modules over principal ideal domains, there is a
basis a1, . . . ,an of OF such that e1a1, . . . ,enan is a basis of aOF with appropriate e1| . . . |en. Then
OF/aOF is isomorphic to ∏Z/eiZ, so |OF : aOF |= ∏ |ei|. By the definition NF/Q(a) is equal to
the determinant of the matrix of the linear operator f : OF −→ OF , b 7→ ab. Note that aOF has
another basis: aa1, . . . ,aan, so (aa1, . . . ,aan) = (e1a1, . . . ,enan)M with an invertible matrix M with
integer entries. Thus, the determinant of M is ±1 and NF/Q(a) is equal to ±∏ei. �

3.4.2. COROLLARY. |OF : aOF |= |a|n for every non-zero a ∈ Z.

Proof. NF/Q(a) = an. �
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3.4.3. DEFINITION. The norm N(I) of a non-zero ideal I of OF is its index |OF : I|.

Note that if I 6= 0 then N(I) is a finite number.
Indeed, by 3.4.1 N(aOF) = |NF/Q(a)| for a non-zero a which belongs to I. Then aOF ⊂ I and

N(I)6 N(aOF) = |NF/Q(a)|.

3.4.4. PROPOSITION. If I,J are non-zero ideals of OF , then N(IJ) = N(I)N(J).

Proof. Since every ideal factors into a product of maximal ideals by 3.3.6, it is sufficient to show
that N(IP) = N(I)N(P) for a maximal ideal P of OF .

The LHS = |OF : IP| = |OF : I||I : IP|. Recall that P is a maximal ideal of OF , so OF/P is a
field.

The quotient I/IP can be viewed as a vector space over OF/P. Its subspaces correspond to
ideals between IP and I according to the description of ideals of the quotient ring. If IP ⊂ J ⊂ I,
then by 3.3.5 J = IQ for an ideal Q of OF .

By 3.3.3 there is a non-zero ideal I′ such that II′ is a principal non-zero ideal aOF . Then
IP ⊂ IQ implies aP ⊂ aQ implies P ⊂ Q. Therefore either Q = P and then J = IP or Q = OF

and then J = I. Thus, the only subspaces of the vector space I/IP are itself and the zero subspace
IP/IP. Hence I/IP is of dimension one over OF/P and therefore |I : IP|= |OF : P|. �

REMARK. If I is a non-zero ideal of OF and N(I) is prime, then I is a maximal ideal. Indeed,
OF/I is a finite commutative ring with a prime number of elements, hence a field.

3.5. Splitting of prime ideals in field extensions.

In this subsection F is a number field and L is a finite extension of F . Let OF and OL be their
rings of integers.

3.5.1. PROPOSITION–DEFINITION. Let P be a maximal ideal of OF and Q a maximal ideal
of OL. Denote by POL the ideal of OL generated by its subset P.

Then Q is said to lie over P and P is said to lie under Q if one of the following equivalent
conditions is satisfied:

(i) POL ⊂ Q;
(ii) P⊂ Q;
(iii) Q∩OF = P.

Proof. (i) is equivalent to (ii), since 1 ∈ OL. (ii) implies Q∩OF contains P, so either Q∩OF = P
or Q∩OF = OF , the latter is impossible since 1 6∈ Q. (iii) implies (ii). �

3.5.2. PROPOSITION. Every maximal ideal of OL lies over a unique maximal ideal P of OF .
For a maximal ideal P of OF the ideal POL is a proper non-zero ideal of OL. Let POL = ∏Qi be
the factorisation into a product of prime ideals of OL. Then Qi are exactly those maximal ideals
of OL which lie over P.

Proof. The first assertion follows from 3.2.2.
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Choose a b ∈ P\P2, it exists by 3.3.9. By 3.3.3 for b ∈ P\P2 there is an ideal J of OF such
that PJ = bOF . Then J 6⊂ P, since otherwise b ∈ P2, a contradiction. Take an element c ∈ J \P.
Then cP⊂ bOF .

If POL = OL, then cOL = cPOL ⊂ bOL, so cb−1 ∈ OL∩F = OF and c ∈ bOF ⊂ P, a contra-
diction. Thus, POL is a proper ideal of OL.

According to 3.5.1 a prime ideal Q of OL lies over P if and only if POL⊂Q which is equivalent
by 3.3.7 to the fact that Q is involved in the factorisation of POL. �

3.5.3. LEMMA. Let P be a maximal ideal of OF which lie under a maximal ideal Q of OL.
Then the finite field OF/P is a subfield of the finite field OL/Q.

Proof. OL/Q is finite by 3.4.3. The kernel of the homomorphism OF −→ OL/Q is equal to
Q∩OF = P, so OF/P can be identified with a subfield of OL/Q. �

3.5.4. COROLLARY. Let P be a maximal ideal of OF . Then P∩Z= pZ for a prime number
p and N(P) is a positive power of p.

Proof. P∩Z = pZ for a prime number p by 3.2.2. Then OF/P is a vector space over Z/pZ of
finite positive dimension, therefore |OF : P| is a power of p. �

3.5.5. DEFINITION. Let a maximal ideal P of OF lie under a maximal ideal Q of OL. The
degree of OL/Q over OF/P is called the inertia degree f (Q|P). If POL = ∏Qei

i is the factorisation
of POL with distinct prime ideals Qi of OL, then ei is called the ramification index e(Qi|P).

3.5.6. LEMMA. Let M be a finite extension of L and P⊂Q⊂ R be maximal ideals of OF , OL

and OM correspondingly. Then f (R|P) = f (Q|P) f (R|Q) and e(R|P) = e(Q|P)e(R|Q).

Proof. The first assertion follows from 1.1.1. Since POL =Qe(Q|P) . . . , we get POM =Qe(Q|P)OM · · ·=
(QOM)e(Q|P) · · ·= (Re(R|Q))e(Q|P) . . . , so the second assertion follows. �

3.5.7. THEOREM. Let Q1, . . .Qm be different maximal ideals of OL which lie over a maximal
ideal P of OF . Let n = |L : F |. Then

m

∑
i=1

e(Qi|P) f (Qi|P) = n.

Proof. We consider only the case F = Q. Apply the norm to the equality pOL = ∏Qei
i . Then by

3.4.2, 3.4.4

pn = N(pOL) = ∏N(Qi)
ei = ∏ p f (Qi|P)e(Qi|P).

�

3.5.8. EXAMPLE. One can describe in certain situations how a prime ideal (p) factorises in
finite extensions of Q, provided the factorisation of the monic irreducible polynomial of an integral
generator (if it exists) modulo p is known.

Let the ring of integers OF of an algebraic number field F be generated by one element α:
OF = Z[α], and f (X) ∈ Z[X ] be the monic irreducible polynomial of α over Q.
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Let fi(X) ∈ Z[X ] be monic polynomials such that

f (X) =
m

∏
i=1

fi(X)ei ∈ Fp[X ]

is the factorisation of f (X) where fi(X) is an irreducible polynomial over Fp. Since OF ∼=
Z[X ]/( f (X)), we have

OF/pOF ∼= Z[X ]/(p, f (X))∼= Fp[X ]/( f (X)),

and

OF/(p, fi(α))∼= Z[X ]/(p, f (X), fi(X))∼= Fp[X ]/( fi(X)).

Putting Pi = (p, fi(α)) we see that OF/Pi is isomorphic to the field Fp[X ]/( fi(X)), hence Pi is a
maximal ideal of OF dividing (p). We also deduce that

N(Pi) = p|Fp[X ]/( fi(X)):Fp| = pdeg fi .

Now ∏Pei
i = ∏(p, fi(α))ei ⊂ pOF , since ∏ fi(α)ei − f (α) ∈ pOF . We also get N(∏Pei

i ) =

p∑ei deg fi = pn =N(pOF). Therefore from 3.5.7 we deduce that pOF =∏
m
i=1 Pei

i is the factorisation
of pOF .

So we have proved

THEOREM. Let the ring of integers OF of an algebraic number field F be generated by one
element α: OF = Z[α], and f (X) ∈ Z[X ] be the monic irreducible polynomial of α over Q. Let
fi(X) ∈ Z[X ] be irreducible polynomials such that

f (X) =
m

∏
i=1

fi(X)ei ∈ Fp[X ]

is the factorisation of f (X) where fi(X) is an irreducible polynomial over Fp.
Then in OF

pOF =
m

∏
i=1

Pei
i

where Pi = (p, fi(α)) is a maximal ideal of OF with norm pdeg fi .

EXAMPLE. Let F =Q and L =Q(
√

d) with a square free integer d.
Then one can take

√
d for d 6≡ 1 mod 4 and (1+

√
d)/2 for d ≡ 1 mod 4 as α . Then f (X) =

X2−d and f (X) = X2−X +(1−d)/4 resp.
Let p be a prime in Z and let pOL = ∏

m
i=1 Qei

i . Then there are three cases:

(i) m = 2, e1 = e2 = 1, f (Qi|P) = 1. Then pOL = Q1Q2, Q1 6= Q2. We say that p splits in L.
From 3.5.8 we know that Qi = (p, fi(α)).

(ii) m = 1, e1 = 2, f (Q1|P) = 1. Then pOL = Q2
1. We say that p ramifies in L. From 3.5.8 we

know that Q1 = (p, f1(α)).
(iii) m = 1, e1 = 1, f (Q1|P) = 2. Then pOL = Q1. We say that p remains prime in L. Here

Q1 = (p) as ideal of OL.
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Using the previous theorem we see that p splits (pOF = P1 . . .Pm) if and only if f is separable
and reducible, p ramifies (pOF = Pe) if and only if f is a power > 1 of an irreducible polynomial
over Fp, p remains prime in OF if and only if f is irreducible over Fp.

3.5.9. We have X2−X + (1− d)/4 = 1/4(Y 2− d) where Y = 2X − 1, so if p is odd (so
the image of 2 is invertible in Fp), the factorisation of f (X) corresponds to the factorisation of
X2−d independently of what d is. The factorisation of X2−d certainly depends on whether d is
a quadratic residue modulo p, or not. If d ≡ c2 mod p, then

X2−d ≡ f1 f2 mod p, f1 = X− c, f2 = X + c,

X2−X +(1−d)/4≡ f1 f2 mod p, f1 = X− (1+ c)/2, f2 = X− (1− c)/2.

Let p = 2. If d 6≡ 1 mod 4 then

f (X) = X2−d ≡ X2 +d2 ≡ (X−d)2 mod 2.

If d ≡ 1 mod 4 then f (X) = X2 +X +(1−d)/4. So, if d ≡ 1 mod 8 then

X2 +X +(1−d)/4 = X(X +1) mod 2,

if d 6≡ 1 mod 8,d ≡ 1 mod 4 then X2 +X + (1−d)/4 = X2 +X + 1 mod 2 is irreducible in
F2[X ]. Thus, we get

THEOREM. If p is odd prime, then
(1) p splits in L =Q(

√
d) if and only if d is a quadratic residue mod p. Then fi = X ± c,α =√

d if d 6≡ 1 mod 4 and fi = X− (1± c)/2,α = (1+
√

d)/2 if d ≡ 1 mod 4.
(2) p ramifies in L if and only if d is divisible by p. Then f1 =X if d 6≡ 1 mod 4 and f1 =X−a,

2a≡ 1 mod p if d ≡ 1 mod 4.
(3) p remains prime in L if and only if d is a quadratic non-residue mod p.
If p = 2 then
(1) if d ≡ 1 mod 8, then 2 splits in Q(

√
d). Then f1 = X , f2 = X +1,α = (1+

√
d)/2.

(2) if d 6≡ 1 mod 4 then 2 ramifies in Q(
√

d). Then f1 = X−d,α =
√

d.
(3) if d ≡ 1 mod 4,d 6≡ 1 mod 8 then 2 remains prime in Q(

√
d).

COROLLARY. Only finitely many primes ramify in Q(
√

d).
The only quadratic extension of Q in which no primes ramify is Q(

√
−1).

See Proposition 22.6 of Chapter 3 for a much more general property.

3.5.10. Let p be an odd prime. Recall from 2.4.2 that the ring of integers of the pth cyclo-
tomic field Q(ζp) is generated by ζp. Its irreducible monic polynomial is f (X) = X p−1+ · · ·+1 =

(X p−1)/(X−1). Since X p−1≡ (X−1)p mod p we deduce that ( f (X), p) = ((X−1)p−1, p).
Therefore by 3.5.8 pOQ(ζp) = (ζp−1)p−1OQ(ζp) and p ramifies in Q(ζp)/Q.
For any other prime l one can show that the polynomial f (X) modulo l is the product of

distinct irreducible polynomials over Fl . Thus, no other prime ramifies in Q(ζp)/Q.

3.6. Finiteness of the ideal class group.

In this subsection OF is the ring of integers of a number field F .
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3.6.1. DEFINITION. For two non-zero ideals I and J of OF define the equivalence relation
I ∼ J if there are non-zero a,b ∈OF such that aI = bJ. In other words, I and J are proportional to
each other. Classes of equivalence are called ideal classes. Define the product of two classes with
representatives I and J as the class containing IJ. Then the class of OF (consisting of all nonzero
principal ideals) is the identity element. By 3.3.3 for every non-zero ideal I there is a non-zero
ideal J such that IJ is a principal ideal, i.e. every ideal class is invertible. Thus ideal classes form
an abelian group which is called the ideal class group CF of the number field F .

The ideal class group shows how far from PID the ring OF is. Note that CF consists of one
element if and only if OF is a PID if and only if OF is a UFD.

DEFINITION. One can also consider fractional ideals of F , i.e. OF -submodules of the OF -module
F that are proportional to ideals of OF , i.e. such that aI is an ideal of OF for some non-zero a∈OF .
Principal fractional ideals are bOF with b ∈ F .

Proposition 3.3.3 immediately implies that for every non-zero fractional ideal I there is a
non-zero fractional ideal J such that IJ = OF and J = {b ∈ F : bI ⊂ OF}. The fractional ideal
J is called the inverse I−1 of the fractional ideal I. Theorem 3.3.6 implies that every non-zero
fractional ideal is the product ∏Pni

i of maximal ideals Pi with non-zero integers ni, uniquely up to
permutation. The quotient of the group of non-zero fractional ideals by its subgroup of non-zero
principal fractional ideals is isomorphic to the class group of OF .

3.6.2. PROPOSITION. There is a positive real number c such that every non-zero ideal I of
OF contains a non-zero element a with

|NF/Q(a)|6 cN(I).

Proof. Let n = |F : Q|. According to 2.3.7 there is a basis a1, . . . ,an of the Z-module OF which is
also a basis of the Q-vector space F . Let σ1, . . . ,σn be all distinct Q-homomorphisms of F into C.
Put

c =
n

∏
i=1

( n

∑
j=1
|σia j|

)
.

Then c > 0.
For a non-zero ideal I let m be the positive integer satisfying the inequality mn 6 N(I) <

(m+ 1)n. In particular, |OF : I| < (m+ 1)n. Consider (m+ 1)n elements ∑
n
j=1 m ja j with 0 6

m j 6 m, m j ∈ Z. There are two of them which have the same image in OF/I. Their difference
0 6= a = ∑

n
j=1 n ja j belongs to I and satisfies |n j|6 m.

Now |NF/Q(a)|= ∏
n
i=1 |σia|= ∏

n
i=1 |∑n

j=1 n jσia j|6∏
n
i=1

(
∑

n
j=1 |n j||σia j|

)
6 mnc6 cN(I).

�

Thus every non-zero ideal I of OF contains a non-zero principal ideal aOF whose index in I
does not exceed c.
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3.6.3. COROLLARY. Every ideal class of OF contains an ideal J with N(J)6 c.

Proof. Given ideal class, consider an ideal I of the inverse ideal class. Let a ∈ I be as in the
theorem. By 3.3.3 there is an ideal J such that IJ = aOF , so (I)(J) = (aOF) = 1 in CF . Then
J belongs to the given ideal class. Using 3.4.1 and 3.4.4 we deduce that N(I)N(J) = N(IJ) =
N(aOF) = |NF/Q(a)|6 cN(I). Thus, N(J)6 c. �

3.6.4. THEOREM. The ideal class group CF is finite. The number |CF | is called the class
number of F.

Proof. By 3.5.4 and 3.5.2 for each prime p there are finitely many maximal ideals P lying over
(p), and N(P) = pm for m> 1. From N(∏Pei

i )6 c we have bounds ei 6 log2 c.
Hence there are finitely many ideals ∏Pei

i satisfying N(∏Pei
i )6 c. �

EXAMPLE. The class number of Q(
√
−19) is 1, i.e. every ideal of the ring of integers of

Q(
√
−19) is principal.

Indeed, by 2.3.8 we can take a1 = 1, a2 = (1+
√
−19)/2 as an integral basis of the ring of

integers of Q(
√
−19). Then

c =
(
1+ |(1+

√
−19)/2|

)(
1+ |(1−

√
−19)/2|

)
= 10.4... .

So every ideal class of OQ(
√
−19) contains an ideal J with N(J)6 10.

Let J = ∏Pei
i be the factorisation of J, then N(Pi)6 10 for every i.

By Corollary 3.5.4 we know that N(Pi) is a positive power of a prime integer, say pi, and so
pi 6 10.

From 3.5.2 we know that Pi is a prime divisor of the ideal (pi) of OQ(
√
−19). So we need to look

at prime integer numbers not greater than 7 and their prime ideal divisors as potential candidates
for non-principal ideals. Now prime number 3 has the property that -19 is a quadratic non-residue
modulo them, so by Theorem 3.5.9 it remains prime in OQ(

√
−19).

Odd prime numbers 5, 7 have the property that -19 is a quadratic residue module them, so
by Theorem 3.5.9 they split in OQ(

√
−19). By 3.5.8 and 3.5.9 we have −19 ≡ 12 mod 5, so f1 =

X−1, f2 = X , −19≡ 32 mod 7, so f1 = X−2, f2 = X +1, and

5O = (5,(1+
√
−19)/2−1)(5,(1+

√
−19)/2) = (5,(1−

√
−19)/2)(5,(1+

√
−19)/2)

7O = (7,(1+
√
−19)/2−2)(7,(1+

√
−19)/2+1) = (7,(3−

√
−19)/2)(7,(3+

√
−19)/2).

Now we have

5 = (1+
√
−19)/2 · (1−

√
−19)/2, 7 = (3+

√
−19)/2 · (3−

√
−19)/2,

so

5O = ((1−
√
−19)/2)((1+

√
−19)/2), 7O = ((3−

√
−19)/2)((3+

√
−19)/2)

and the prime ideal factors of 5O,7O are principal.
Finally, 2 remains prime in OQ(

√
−19), as follows from 3.5.9.

Thus, OQ(
√
−19) is a principal ideal domain.



32 1. ALGEBRAIC NUMBER FIELDS

REMARKS. 1. The bound given by c is not good in practical applications. A more refined
estimation is given by Minkowski’s Theorem 3.6.6.

2. For adelic proofs of the finiteness of the class number see Remark 1 of 22.7 Ch. 3 and
Remark 2 of 23.6 Ch. 3.

3.6.5. DEFINITION. Let F be of degree n over Q. Let σ1, . . . ,σn be all Q-homomorphisms
of F into C. Let

τ : C−→ C

be the complex conjugation. Then τ ◦σi is a Q-homomorphism of F into C, so it is equal to certain
σ j. Note that σi = τ ◦σi if and only if σi(F) ⊂ R. Let r1 be the number of Q-homomorphisms
of this type, say, after renumeration, σ1, . . . ,σr1 . For every i > r1 we have τ ◦σ j 6= σ j, so we can
form couples (σ j,τ ◦σ j). Then n− r1 is an even number 2r2, and r1 +2r2 = n.

Renumerate the σ j’s so that σi+r2 = τ ◦ σi for r1 + 1 6 i 6 r1 + r2. Define the canonical
embedding of F by

σ : a 7→ (σ1(a), . . . ,σr1+r2(a)) ∈ Rr1×Cr2 , a ∈ F.

The field F is isomorphic to its image σ(F)⊂Rr1×Cr2 . The image σ(F) is called the geometric
image of F and it can be partially studied by geometric tools.

3.6.6. THEOREM. (Minkowski’s Bound Theorem)
Let F be an algebraic number field of degree n with parameters r1,r2. Then every class of CF

contains an ideal I such that its norm N(I) satisfies the inequality

N(I)6 (4/π)r2n!
√
|dF |/nn

where dF is the discriminant of F.

Proof. One of the proofs uses the geometric image of F and some geometric combinatorial con-
siderations. In particular, one can use Minkowski’s Lattice Point Theorem:

Let L be a free Z-module of rank n in an n-dimensional vector space V over R (then L is called
a complete lattice in V ). Denote by Vol (L) the volume of the set

{a1e1 + · · ·+anen : 06 ai 6 1},

where e1, . . . ,en is a basis of L. Notice that Vol (L) does not depend on the choice of basis. Let X
be a centrally symmetric convex subset of V . Suppose that Vol (X)> 2nVol (L). Then X contains
at least one nonzero point of L.

Details can be found in many textbooks. �

REMARK. In relation to an adelic proof of MBD see Remark 2 in 22.7 of Ch.3.
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3.6.7. EXAMPLES.

1. Let F =Q(
√

5). Then r1 = 2, r2 = 0, n = 2, |dF |= 5.

(4/π)r2n!
√
|dF |/nn = 2!

√
5/22 = 1.1...,

so N(I) = 1 and therefore I = OF . Thus, every ideal of OF is principal and CF = {1}.

Similarly, the class groups of Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7) are trivial, since their

discriminants are −4,−8,−3,−7, r2 = 1, r1 = 0 and (2/π)
√

8 < 2.

2. Let F =Q(
√
−5). Then r1 = 0, r2 = 1, n = 2, |dF |= 20, (2/π)

√
|20|< 3. Hence, similar

to Example in 3.6.4 we only need to look at prime numbers 2 (< 3) and prime ideal divisors of the
ideal (2) as potential candidates for non-principal ideals.

From 3.3.8 we know that 2O = (2,1+
√
−5)2 and 2 = N(2,1+

√
−5). So the ideal (2,1+√

−5) is maximal by 3.4.5.
Alternatively, from 3.5.9 we get 2O = (2,5−

√
−5)2 = (2,1+

√
−5)2 and (2,1+

√
−5) is

maximal.
The ideal (2,1+

√
−5) is not principal: Indeed, if (2,1+

√
−5) = aOL then

2 = N(2,1+
√
−5) = N(aOL) = |NL/Q(a)|.

If a = c+d
√
−5 with c,d ∈ Z we deduce that c2 +5d2 =±2, a contradiction.

We conclude that CQ(
√
−5) is a cyclic group of order 2.

3. Let F = Q(
√

14). Then r1 = 2, r2 = 0, n = 2, |dF | = 56 and (1/2)
√

56 = 3.7... < 4. So
we only need to inspect prime ideal divisors of (2) and of (3).

By 3.5.8 and 3.5.9 we get 2O = (2,
√

14)2. Note that (4+
√

14)⊂ (2,
√

14) and

2 = (4+
√

14)(4−
√

14) ∈ (4+
√

14),
√

14 = 4+
√

14−4 ∈ (4+
√

14),

hence (2,
√

14) = (4+
√

14) is principal.
14 is quadratic non-residue modulo 3, so by Theorem 3.5.9 we deduce that 3 remains prime

in OF . Thus, every ideal of the ring of integers of Q(
√

14) is principal, CQ(
√

14) = {1}.

4. Let F =Q(
√
−13).

The discriminant of F is −52. We have 4 < 2/π
√

52 < 5.
Hence we only need to look at primes 2 and 3 (< 5) and prime ideal divisors in OF of the

ideals (2) and (3) as potential candidates for non-principal ideals of OF .
By 3.5.9 the ideal (3) remains prime in F since −13 is quadratic non-residue modulo 3.
By 3.5.9 2 ramifies in F . By 3.5.8 we get the following factorisation into maximal ideals:

(2) = (2,
√
−13−13)2 = (2,1+

√
−13)2.

The ideal (2,1+
√
−13) is not principal: indeed, if (2,1+

√
−13) = aOF then

2 = N(2,1+
√
−13) = N(aOF) = |NF/Q(a)|.

If a = c+d
√
−13 with c,d ∈ Z we deduce that c2 +13d2 =±2, a contradiction.

Thus, the class group of F is cyclic of order 2 and is generated by the class of the ideal
(2,1+

√
−13).
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5. It is known that for negative square-free d the only quadratic fields Q(
√

d) with class
number 1 are the following:

Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7), Q(

√
−11),

Q(
√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163).

For d > 0 there are many more quadratic fields with class number 1. Gauß conjectured that
there are infinitely many such fields, but this is still unproved.

3.7. On Fermat’s Last Theorem.

3.7.1. Already Euler noticed that for an infinitely differentiable function f (x) one has

f (x+1) = eD f (x)

where D is the operator d/dx.
If we denote g(x) = f (x+1)− f (x) = (1− eD) f (x), then

f (x) = (1− eD)−1 g(x) = (a1D−1 +a0 +a1D+a2D2 + . . .)g(x)

where the coefficients are of the Taylor expansion of x
1−ex at x = 0. This is how one comes for

what Euler called (Jacob) Bernoulli numbers

t
et −1

=
∞

∑
i=0

bi

i!
t i,

b0 = 1, b1 =−1/2, b2 = 1/6, bi = 0 for odd i > 1.

Now we can state one of the main achievements of Kummer.

THEOREM. (Kummer’s Theorem)
Let p be an odd prime. Let F =Q(ζp) be the pth cyclotomic field.
If p doesn’t divide |CF |, or, equivalently, p does not divide numerators of (rational) Bernoulli

numbers b2,b4, . . . ,bp−3, then the Fermat equation

X p +Y p = Zp

does not have positive integer solutions, i.e. Fermat’s Last Theorem (FLT) holds in this case.

Among primes < 100 only 37, 59 and 67 don’t satisfy the condition that p does not divide |CF |,
so Kummer’s theorem implies that for any other prime number smaller 100 the Fermat equation
does not have positive integer solutions.
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3.7.2. Full proofs of FLT.

1. In 1995 A. Wiles and R. Taylor published a proof of modularity of elliptic curves over
rational numbers with semi-stable reduction, this is part of activity in the Langlands program.
Using the previous theorem of Ribet, this result implies FLT.

2. Entirely independent proof of FLT from the method of Wiles, by S. Mochizuki, A. Mi-
namide, Y. Hoshi, W. Porowski, I. Fesenko was produced in their published in 2022 paper. It is
based on IUT theory of S. Mochizuki and its slightly enhanced version contained in this paper,
which enables the first proof of effective abc inequalities. FLT follows as one of the first applica-
tions of the established effective abc inequalities. In this application one uses some old computer
verifications of FLT, classical results of H. Vandiver and new lower bounds for positive integer
solutions of the Fermat’s equation when their product is divisible by p obtained by P. Mihăilescu.

3.8. On Dirichlet’s Unit Theorem.

3.8.1. THEOREM. Let F be a number field of degree n, r1 + 2r2 = n. Let OF be its ring of
integers and U be the group of units of OF . Then U is the direct product of a finite cyclic group T
consisting of all roots of unity in F and a free abelian group U1 of rank r1 + r2−1:

U ∼= T ×U1 ∼= T ×Zr1+r2−1.

A basis of the free abelian group U1 is called a fundamental system of units in OF .

Proof. Consider the canonical embedding σ of F into Rr1×Cr2 . Define

f : OF \{0} −→ Rr1+r2 ,

f (x) =
(
log |σ1(x)|, . . . , log |σr1(x)|, log(|σr1+1(x)|2), . . . , log(|σr1+r2(x)|2)

)
.

The map f induces a homomorphism g : U −→ Rr1+r2 .
Let Z be a bounded set of Rr1+r2 . If u∈ g−1(Z) then there is c such that |σi(u)|6 c for all i. The

coefficients of the characteristic polynomial gu(X) = ∏
n
i=1(X−σi(u)) of u over F being functions

of σi(u) are integers bounded by max(cn,ncn−1, . . .), so the number of different characteristic
polynomials of g−1(Z) is finite. So g−1(Z) and Z∩g(U) is finite. Thus g(U) is a discrete group.

Every finite subgroup of the multiplicative group of a field is cyclic by 1.2.4. Hence the kernel
of g, being the preimage of 0, is a cyclic finite group. On the other hand, every root of unity
belongs to the kernel of g, since mg(z) = g(zm) = g(1) = 0 implies g(z) = 0 for the vector g(z).
We conclude that the kernel of g consists of all roots of unity T in F .

Since for u ∈U the norm NF/Q(u) = ∏σi(u), as the product of units, is a unit in Z, it is equal
to ±1. Then ∏ |σi(u)|= 1 and

log |σ1(u)|+ · · ·+ log |σr1(u)|+ log(|σr1+1(u)|2)+ · · ·+ log(|σr1+r2(u)|2) = 0.

We deduce that the image g(U) is contained in the hyperplane H ⊂Rr1+r2 defined by the equation

y1 + · · ·+ yr1+r2 = 0.

Since g(Z) is discrete, by 3.7.2 g(U) has a Z-basis {yi} consisting of m 6 r1 + r2− 1 linearly
independent vectors over Z. Denote by U1 the subgroup of U generated by zi such that g(zi) = yi;
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it is a free abelian group, since there are no nontrivial relations among yi. From the main theorem
on group homomorphisms we deduce that U/T ∼= g(U) and hence U = TU1. Since U1 has no
nontrivial torsion, T ∩U1 = {1}. Then U as a Z-module is the direct product of the free abelian
group U1 of rank m and the cyclic group T of roots of unity.

It remains to show that m = r1 + r2− 1, i.e. g(U) contains r1 + r2− 1 linearly independent
vectors. Put l = r1 + r2. As an application of Minkowski’s geometric method one can show that

for every integer k between 1 and l there is c > 0 such that for every non-zero a ∈ OF \ {0}
with g(a) = (α1, . . . ,αl) there is a non-zero b = hk(a) ∈ OF \{0} such that

|NF/Q(b)|6 c and g(b) = (β1, . . . ,βl) with βi < αi for i 6= k.

(for the proof see Marcus, Number Fields, 2nd edition, Th. 38 of Ch. 5)
Fix k. Start with a1 = a and construct the sequence a j = hk(a j−1) ∈ OF for j > 2. Since

N(a jOF) = |NF/Q(a j)|6 c, in the same way as in the proof of 3.6.4 we deduce that there are only
finitely many distinct ideals a jOF . So a jOF = aqOF for some j < q 6 l. Then uk = aqa−1

j is a

unit and satisfies the property: the ith coordinate of g(uk) = f (aq)− f (a j) = (α
(k)
1 , . . . ,α

(k)
l ) is

negative for i 6= k. Then α
(k)
k is positive, since ∑i α

(k)
i = 0.

This way we get l units u1, . . . ,ul . We claim that there are l− 1 linearly independent vectors
among the images g(ui). To verify the claim it suffices to check that the first l−1 columns of the
matrix (α

(k)
i ) are linearly independent.

If there were not, then there would be a non-zero vector (t1, . . . , tl−1) such that ∑
l−1
i=1 tiα

(k)
i = 0

for all 1 6 k 6 l. Without loss of generality one can assume that there is i0 between 1 and l− 1
such that ti0 = 1 and ti 6 1 for i 6= i0, 16 i6 l−1. Then ti0α

(i0)
i0 = α

(i0)
i0 and for i 6= i0 tiα

(i0)
i > α

(i0)
i

since ti 6 1 and α
(i0)
i < 0. Now we would get

0 =
l−1

∑
i=1

tiα
(i0)
i >

l−1

∑
k=1

α
(i0)
i >

l

∑
i=1

α
(i0)
i = 0,

a contradiction.
Thus, m = r1 + r2−1. �

REMARK. For a full and very different proof of Dirichlet’s unit theorem see 5.4 Ch.3.

3.8.2. EXAMPLE. Let F =Q(
√

d) with a square free non-zero integer d.
If d > 0, then the group of roots of 1 in F is {±1}, since F ⊂ R and there are only two roots

of unity in R.
Let OF be the ring of integers of F . We have n = 2 and r1 = 2,r2 = 0 if d > 0; r1 = 0,r2 = 1

if d < 0. If d < 0, then
U(OF) = T

is a finite cyclic group consisting of all roots of unity in F . It has order 4 for d =−1, 6 for d =−3,
and one can show it has order 2 for all other negative square free integers.

If d > 0, U(OF) is the direct product of 〈±1〉 and the infinite group generated by a unit u
(fundamental unit of OF ):

U(OF)∼= 〈±1〉×〈u〉= {±uk : k ∈ Z}.
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Here is an algorithm how to find a fundamental unit if d 6≡ 1 mod 4 (there is a similar algo-
rithm for an arbitrary square free positive d):

If a+b
√

d > 1 is a unit of OF then NF/Q(a+b
√

d) = a2−db2 = ±1. Let b be the minimal
positive integer such that either db2−1 or db2 +1 is a square of a positive integer, say, a.

Let u = e+ f
√

d be a fundamental unit. Changing the sign of e, f if necessary, we can assume
that e, f are positive. Due to the definition of u there is an integer k such that a+ b

√
d = ±uk.

The sign is +, since the left hand side is positive; k > 0, since u> 1 and the left hand side is > 1.
From a+ b

√
d = (e+ f

√
d)k we deduce that if k > 1 then b = f+ some positive integer > f , a

contradiction. Thus, k = 1 and a+b
√

d > 1 is a fundamental unit of OF .
For example, 1+

√
2 is a fundamental unit of Q(

√
2) and 2+

√
3 is a fundamental unit of

Q(
√

3).

3.8.3. Now suppose that d > 0, and for simplicity, d 6≡ 1 mod 4. Let u = e+ f
√

d be a
fundamental unit. From the previous we deduce that all integer solutions (a,b) of the equation

X2−dY 2 =±1

satisfy a+b
√

d =±(e+ f
√

d)m for some integer m, which gives formulas for a and b as functions
of e, f ,m.

4. p-adic Numbers

This section introduces first features of p-adic numbers. Chapter 2 contains a more general
presentation of local fields and its readers can essentially skip this section.

4.1. p-adic valuation and p-adic norm.

4.1.1. Fix a prime p.
For a non-zero integer m let

k = vp(m)

be the maximal integer such that pk divides m, i.e. k is the power of p in the factorisation of m.
Then vp(m1m2) = vp(m1)+ vp(m2).

Extend vp to rational numbers putting vp(0) := ∞ and

vp(m/n) = vp(m)− vp(n),

this does not depend on the choice of a fractional representation: if m/n = m′/n′ then mn′ = m′n,
hence vp(m)+ vp(n′) = vp(m′)+ vp(n) and vp(m)− vp(n) = vp(m′)− vp(n′).
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Thus we get the p-adic valuation vp : Q −→ Z∪{+∞}. For non-zero rational numbers a =

m/n,b = m′/n′ we get

vp(ab) = vp(mm′/(nn′)) = vp(mm′)− vp(nn′)

= vp(m)+ vp(m′)− vp(n)− vp(n′)

= vp(m)− vp(n)+ vp(m′)− vp(n′)

= vp(m/n)+ vp(m′/n′)

= vp(a)+ vp(b).

Thus vp is a homomorphism from Q× to Z.
4.1.2. p-adic norm. Define the p-adic norm of a rational number α by

|α|p = p−vp(α), |0|p = 0.

Then

|αβ |p = |α|p|β |p.

If α = m/n with integer m,n relatively prime to p, then vp(m) = vp(n) = 0 and |α|p = 1. In
particular, |−1|p = |1|p = 1 and so |−α|p = |α|p for every rational α .

4.1.3. Ultrametric inequality. For two integers m,n let k = min(vp(m),vp(n)), so both m and
n are divisible by pk. Hence m+n is divisible by pk, thus

vp(m+n)>min(vp(m),vp(m)).

For two nonzero rational numbers α = m/n, β = m′/n′

vp(α +β ) = vp(mn′+m′n)− vp(nn′)

>min(vp(m)+ vp(n′),vp(m′)+ vp(n))− vp(n)− vp(n′)

>min(vp(m)− vp(n),vp(m′)− vp(n′))

= min(vp(α),vp(β )).

Hence for all rational α,β we get

vp(α +β )>min(vp(α),vp(β )).

This implies

|α +β |p 6max(|α|p, |β |p).

This inequality is called an ultrametric inequality.
In particular, since max(|α|p, |β |p)6 |α|p + |β |p, we obtain

|α +β |p 6 |α|p + |β |p,

so | |p is a metric (p-adic metric) on the set of rational numbers Q and

dp(α,β ) = |α−β |p

gives the p-adic distance between rational α,β .
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4.1.4. All norms on Q. In general, for a field F a norm | | : F −→ R>0 is a map which sends
0 to 0, which is a homomorphism from F× to R×>0 and which satisfies the triangle inequality:
|α +β |6 |α|+ |β |. In particular,

|1|= 1,1 = |1|= |(−1)(−1)|= |−1|2,

so |−1|= 1, and hence

|−a|= |−1||a|= |a|.

A norm is called nontivial if there is a nonzero a ∈ F such that |a| 6= 1.

In addition to p-adic norms on Q we get the usual absolute value on Q which we will denote
by | |∞.

A complete description of norms on Q is supplied by the following result.

THEOREM. (Ostrowski’s Theorem) A nontrivial norm | | on Q is either a power of the absolute
value | |c∞ with positive real c, or is a power of the p-adic norm | |cp for some prime p with positive
real c.

Proof. For an integer a > 1 and an integer b > 0 write

b = bnan +bn−1an−1 + · · ·+b0

with 06 bi < a,an 6 b. Then

|b|6 (|bn|+ |bn−1|+ · · ·+ |b0|) max(1, |a|n)

and

|b|6 (loga b+1)d max(1, |a|loga b),

with d = max(|0|, |1|, . . . , |a−1|).
Substituting bs instead of b in the last inequality, we get

|bs|6 (s loga b+1)d max(1, |a|s loga b),

hence

|b|6 (s loga b+1)1/sd1/s max(1, |a|loga b).

When s→+∞ we deduce

|b|6max(1, |a|loga b).

There are two cases to consider.

(1) Suppose there is an integer b such that |b|> 1. We can assume b is positive. Then

1 < |b|6max(1, |a|loga b),

and so |a|> 1, |b|6 |a|loga b for every integer a > 1. Swapping a and b we get |a|6 |b|logb a, thus,

|a|= |b|logb a

for every integer a and hence for every rational a.
Choose c > 0 such that |b|= |b|c∞ then we obtain |a|= |a|c∞ for every rational a.
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(2) Suppose that |a|6 1 for all integer a. Since | | is nontrivial, let a0 be the minimal positive
integer such that |a0| < 1. If a0 = a1a2 with positive integers a1, a2, then |a1| |a2| < 1 and either
a1 = 1 or a2 = 1. This means that a0 = p is a prime. If q /∈ pZ, then pp1 + qq1 = 1 with some
integers p1, q1 and hence 1 = |1| 6 |p| |p1|+ |q| |q1| 6 |p|+ |q|. Writing qs instead of q we get
|q|s > 1−|p|> 0 and |q|> (1−|p|)1/s. The right hand side tends to 1 when s tends to infinity. So
we obtain |q|= 1 for every q prime to p. Therefore, |α|= |p|vp(α), and | | is a power of the p-adic
norm. �

4.1.5. LEMMA. (Product formula) For every nonzero rational α

∏
i prime or ∞

|α|i = 1.

Proof. Due to the multiplicative property of the norms and factorisation of integers it is sufficient
to consider the case when α a prime number p. Then |p|p = p−1, |p|∞ = p and |p|i = 1 for all
other i. �

4.2. The field of p-adic numbers Qp.

4.2.1. DEFINITION. Similarly to the definition of real numbers as the completion of Q with
respect to the absolute value | |∞ define Qp as the completion of Q with respect to the p-adic norm
| |p. So Qp consists of equivalences classes of all fundamental sequences (with respect to the p-
adic norm) (an) of rational numbers an: two fundamental sequences (an), (bn) are equivalent if
and only if |an−bn|p tends to 0.

The field Qp is called the field of p-adic numbers and its elements are called p-adic numbers.

4.2.2. p-adic series presentation of p-adic numbers. As an analog of the decimal presentation
of real numbers every element α of Qp has a series representation: it can be written as an infinite
convergent (with respect to the p-adic norm) series

∞

∑
i=n

ai pi

with coefficients ai ∈ {0,1, . . . , p−1} and an 6= 0.

4.2.3. The p-adic norm and p-adic distance. We have an extension of the p-adic norm from
Q to Qp by continuity: if α ∈Qp is the limit of a fundamental sequence (an) of rational numbers,
then |α|p := lim |an|p. Since two fundamental sequences (an), (bn) are equivalent if and only if
|an−bn|p tends to 0, the p-adic norm of α is well defined.

If we use the series representation α = ∑
∞
i=n ai pi with coefficients ai ∈ {0,1, . . . , p− 1} and

an 6= 0, then |α|p = p−n.
The p-adic norm on Qp satisfies the ultrametric inequality: let α = liman,β = limbn, (an),

(bn) are fundamental sequences of rational numbers, then α + β = lim(an + bn). Suppose that
|α|p 6 |β |p, then |an|p 6 |bn|p for all sufficiently large n, and so

|α +β |p = lim |an +bn|p 6 limmax(|an|p, |bn|p) = lim |bn|p = |β |p = max(|α|p, |β |p).
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For α,β such that |α|p < |β |p we obtain β = γ +α where γ = β −α . By the ultramet-
ric inequality |β |p 6 max(|γ|p, |α|p), so |β |p 6 |γ|p and by the ultrametric inequality |γ|p 6
max(|α|p, |−β |p) = max(|α|p, |β |p) = |β |p. Thus if |α|p < |β |p then |α−β |p = |β |p.

Using the p-adic distance dp we have shown that for every triangle with vertices in 0,α,β

if the p-adic length of its side connecting 0 and α is smaller than the p-adic length of its side
connecting 0 and β then the p-adic length of the third side connecting α and β equals to the
former. Thus, in every triangle two sides are of the same p-adic length!

4.2.4. The ring of p-adic integers Zp. Define the set Zp of p-adic integers as those p-adic
numbers whose p-adic norm does not exceed 1, i.e. whose p-adic series representation has n0 > 0.
For two elements α,β ∈ Zp we get |αβ |p 6 1, |α±β |p 6 1. Hence Zp is a subring of Qp.

The units Z×p of the ring Zp are those p-adic numbers u whose p-adic norm is 1.
Every nonzero p-adic number α can be uniquely written as pvp(α)u with u ∈ Z×p . Thus

Q×p ∼= 〈p〉×Z×p

where 〈p〉 is the infinite cyclic group generated by p.
Let I be a non-zero ideal of Zp. Let n = min{vp(α) : α ∈ I}. Then pnu belongs to I for some

unit u, and hence pn belongs to I, so pnZp ⊂ I ⊂ pnZp, i.e. I = pnZp. Thus Zp is a principal ideal
domain and a Dedekind ring.

4.2.5. Note that Zp is the closed ball of radius 1 in the p-adic norm.
Let α be its internal point, so |α|p < 1. Then for every β on the boundary of the open ball,

i.e. |β |p = 1 we obtain, applying 4.2.3, we obtain |α−β |p = |β |p = 1. Thus, the p-adic distance
from α to every point on the boundary of the ball is 1, i.e. every internal point of a p-adic ball is
its centre.

4.3. Henselian properties.

Let f (X) = ∑aiX i ∈ Zp[X ], and let a,b ∈ Zp, a−b ∈ pnZp, n > 0. Then

f (a)− f (b) = ∑ai(ai−bi) = ∑
i>0

ai(a−b)(ai−1 + · · ·+bi−1) ∈ pnZp.

THEOREM. (Henselian property)
Let f (X) ∈ Zp[X ].
Let a ∈ Zp such that vp( f ′(a)) = r,vp( f (a))> 2r for a non-negative integer r.
Define a sequence αn ∈Qp as α0 = a,

αn+1 = αn−
f (αn)

f ′(αn)
, n> 0.

Then this sequence converges to α ∈ Zp such that

f (α) = 0, vp(α−a)> r+1.

Proof. By induction on n > 0 we prove that αn ∈ Zp, f (αn) ∈ p2r+1+nZp for n > 0, αn−αn−1 ∈
pr+nZp for n> 1. Then the sequence αn indeed converges, and passing to the limit we obtain that
its limit α ∈ Zp satisfies f (α) = 0 and α−a ∈ pr+1Zp.
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Base of induction: n = 0 is clear. Induction step (n =⇒ n+1): αn+1−αn =− f (αn)
f ′(αn)

. Since by
the induction hypothesis αn−α0 ∈ pr+1Zp and vp( f ′(α0)) = r, using the property stated before
the Lemma, we obtain vp( f ′(αn)) = r. Then by the induction hypothesis

f (αn)

f ′(αn)
∈ pr+1+nZp (*)

so αn+1−αn ∈ pr+n+1Zp and αn+1 is in Zp.
Finally, represent f (X) as a polynomial of X−αn:

f (X) = f (αn)+ f ′(αn)(X−αn)+(X−αn)
2g(X)

for a polynomial g(X) ∈ Zp[X ]. Substitute X = αn+1. Using the definition of αn+1 ∈ Zp we obtain

f (αn+1) =

(
f (αn)

f ′(αn)

)2

g(αn+1),

hence by (*) we obtain f (αn+1) ∈ p2(r+1+n)Zp. �

REMARK. Often, a different property which implies this Theorem is called Hensel Lemma:
Let f(X),g0(X),h0(X) be monic polynomials with coefficients in Zp such that for their residue
images in Fp[X ] the equality f (X) = g0(X)h0(X) holds. Suppose that g0(X),h0(X) are relatively
prime in Fp[X ]. Then there exist monic polynomials g(X),h(X) with coefficients in Zp, such that

f(X) = g(X)h(X), g(X) = g0(X), h(X) = h0(X).

COROLLARY 1. Let f (X) ∈ Zp[X ], a ∈ Zp such that f (a) ∈ pZp and f ′(a) 6∈ pZp. Then the
polynomial f has a root α ∈ Zp such that α−a ∈ pZp.

Proof. r = 0. �

COROLLARY 2. The polynomial X p−1−1 has p−1 distinct roots in the field Qp, if p > 2.

Proof. Choose any of p− 1 elements of F×p , denote it by b. Let a ∈ Zp whose image in Fp

with respect to the surjective homomorphism Zp −→ Zp/pZp = Fp is b. Then the image of
ap−1−1 with respect to the same homomorphism is 0, i.e. vp(ap−1−1)> 1. Since (X p−1−1)′ =
(p−1)X p−2 and the image of (p−1)ap−2 in Fp is not zero, we can apply Corollary 1 to deduce
the existence of a root α ∈ Zp of X p−1−1, α−a ∈ pZp. �

COROLLARY 3. If p > 2, the group Z×p is the product of the cyclic group of order p−1 and
the group 1+ pZp. The group Z×2 is the product of the cyclic group of order 2 and the group
1+4Z2.

Proof. If p is odd, let β ∈ Z×p , let b ∈ F×p be its image with respect to the homomorphism of the
previous proof and let α ∈ Zp be a root of X p−1− 1 such that β −α ∈ pZp. Then γ = βα−1 ∈
1+ pZp. The intersection of the group of roots of X p−1−1 and the group 1+ pZp is {1}: indeed
for δ ∈ pZp we have 1 = (1+ δ )p−1 = 1+(p− 1)δ+ terms whose p-adic valuation is at least
> 2vp(δ )> vp((p−1)δ ) = vp(δ ), hence δ = 0.
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If p = 2 then ±1 are roots in Q2. We can write −1 = 1+ 2+ 22 + . . . in Z2. Hence, every
element of Z×2 = 1+2Z2 is the product of ±1 and an element of 1+4Z2. The intersection of the
group 1+4Z2 and the cyclic group of order 2 is {1}. �

COROLLARY 4. The group Q×p contains p− 1 roots of unity if p > 2 and 2 roots of unity if
p = 2.

Proof. Let γ ∈ Qp satisfy γm = 1, m > 0. If s = vp(γ), then ms = vp(γ
m) = vp(1) = 0, so s = 0

and γ ∈ Z×p . Using Corollary 3 we only need to show that 1+ pZp does not have nontrivial roots
of unity if p > 2 and 1+4Z2 does not have nontrivial roots of unity.

Write an element of 1+ pZp as 1+ pra with a ∈ Z×p , r > 1. If m is prime to p, then (1+
pra)m = 1+mpra+ · · ·+ prmam ≡ 1+mpra 6≡ 1 mod pr+1Zp, so (1+ pra)m 6= 1. Hence we
only need to look at elements of order p. If p is odd, we have (1 + pra)p ≡ 1 + pr+1a 6≡ 1
mod p2r+1Zp, hence (1+ pra)p 6= 1 and 1+ pZp does not have elements of order p. If p = 2
then (1+ 2ra)2 = 1+ 2r+1a+ 22ra2 ≡ 1+ 2r+1a 6≡ 1 mod 22rZ2 and (1+ 2ra)2 6= 1 if r > 2,
a ∈ Z×2 , hence 1+4Z2 does not have elements of order 2. �

COROLLARY 5. 1+ pZp = (1+ pZp)
m for every positive integer m prime to p.

Proof. Let γ ∈ 1+ pZp. Put f (X) = Xm− γ , a = 1 and apply the Hensel Lemma. �

COROLLARY 6. The fields Qp and Qq, p 6= q, are not isomorphic.

Proof. Consider 1+ pq ∈ 1+ pZp. By the previous corollary 1+ pq is a qth power in Qp. On the
other hand, 1+ pq∈ 1+qZq cannot be a qth power. Indeed, if 1+ pq = (qnα)q with α ∈Z×q , then
comparing vq on the LHS and RHS we deduce n = 0. Looking at the images of the LHS and RHS
in Zq/qZq ∼= Fq we deduce α ∈ 1+qZq, so α = 1+qγ with γ ∈ Zq. Since (1+qγ)q ∈ 1+q2Zq

and p 6∈ qZq, we get a contradiction. �

REMARK. For much more about p-adic fields see Ch.2.

5. A Little about Class Field Theory

This section introduces first features of cyclotomic class field theory in a way quite different
from the general presentation of class field theory in Chapter 3.

First, we need to talk a little about projective limits of algebraic objects.

5.1. Projective limits.

Let An, n > 1 be a set of groups/rings, with group operation, in the case of groups, written
additively. Suppose there are group/ring homomorphisms ϕnm : An −→ Am for all n> m such that
ϕnn = idAn , ϕnr = ϕmr ◦ϕnm for all n> m> r.
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The inverse/projective limit lim←− An of (An,ϕnm) is the set

{(an) : an ∈ An,ϕnm(an) = am for all n> m}

with the group/ring operation(s) (an)+(bn) = (an +bn) and (an)(bn) = (anbn)

For every m one has a group/ring homomorphism ϕn : lim←− An −→ Am,(an) 7→ am.

EXAMPLES.
1. If An = A for all n and ϕnm = id then lim←− An = A.

2. If An = Z/pnZ and ϕnm(a+ pnZ) = a+ pmZ then (an) ∈ lim←− Z/pnZ means pmin(n,m)|(an−
am) for all n,m.

The sequence (an) as above is a fundamental sequence with respect to the p-adic norm, and
thus determines a p-adic number a = liman ∈ Zp. For its description, denote by rm the integer
between 0 and pm−1 such that rm ≡ am mod pm. Then rm ≡ an mod pm for n> m and rn ≡ rm

mod pm for n > m. Denote c0 = r0 and cm = (rm− rm−1)p−m+1, so cm ∈ {0,1, . . . , p− 1}. Then
a = ∑m>0 cm pm = limrm ∈ Zp.

We have a group and ring homomorphism

f : lim←− Z/pnZ−→ Zp, (an) 7→ a = liman ∈ Zp.

It is surjective: if a =∑m>0 cm pm then define rm by the inverse procedure to the above, then a is the
image of (rn) ∈ lim←− Z/pn; and its kernel is trivial, since a = 0 implies that for every k pk divides
an for all sufficiently large n, and so pk divides ak.

Thus,

lim←− Z/pnZ∼= Zp.

This can be used as another (algebraic) definition of the ring of p-adic integers.
In particular, we have a surjective homomorphism Zp −→ Z/pnZ whose kernel equals to

pnZp.
From the above we immediately deduce that if An = (Z/pnZ)× and ϕnm(a+ pnZ) = a+ pmZ,

(a, p) = 1, then similarly we have a homomorphism

f : lim←− (Z/pnZ)× −→ Z×p , (an) 7→ limrm ∈ Z×p

(note that (rm, p) = 1 and hence limrm 6∈ pZp). Thus, there is an isomorphism

lim←− (Z/pnZ)× ∼−→ Z×p .

3. One can extend the definition of the projective limit to the case when the maps ϕnm are
defined for some specific pairs (n,m) and not necessarily all n> m.

Let An =Z/nZ and let ϕnm : An−→Am be defined only if m|n and then ϕnm(a+nZ) = a+mZ.
Define, similarly to the above definition of the projective limit the projective limit lim←− An.

By the Chinese Remainder Theorem Z/nZ= Z/pk1
1 Z×·· ·×Z/pkr

r Z, where n = pk1
1 . . . pkr

r is
the factorisation of n. The maps ϕnm induce the maps already defined in Example 2 on Z/prZ,
and we deduce

lim←− Z/nZ= lim←− Z/2rZ× lim←− Z/3rZ× . . .∼= Z2×Z3×·· ·= ∏Zp.
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The group lim←− Z/nZ is denoted Ẑ and is called the procyclic group (topologically it is gener-
ated by its unity 1). This group is uncountable. We have a surjective homomorphism Ẑ−→ Z/nZ
whose kernel is nẐ.

4. Similarly we have

Ẑ× = lim←− (Z/nZ)× = lim←− (Z/2rZ)×× lim←− (Z/3rZ)×× . . .∼= ∏Z×p .

5.2. Infinite Galois theory.

As described above,

Gal(Fqm/Fq)∼= Z/mZ,

where q = pn and the isomorphism is given by φn 7→ 1+mZ. The algebraic closure Fa
q of Fq is the

compositum of all Fqm . It is natural to define the infinite Galois group Gal(Fa
q/Fq) as the projective

limit lim←− Gal(Fqm/Fq) with respect to the natural surjective homomorphisms Gal(Fqm/Fq) −→
Gal(Fqr/Fq), r|m. This corresponds to ϕmr defined in Example 3 above.

Hence we get

Gal(Fa
q/Fq)∼= lim←− Z/nZ= Ẑ.

Similarly, for the maximal cyclotomic extension Qcycl, the composite of all finite cyclotomic
extensions Q(ζm) of Q, we have

Gal(Qcycl/Q)∼= lim←− (Z/nZ)× ∼= Ẑ×.

The Main Theorem of extended (to infinite extensions) Galois theory (one has to add a new
notion of closed subgroup for an appropriate extension of the finite Galois theory), can be stated
as follows:

Let L/F be a (possibly infinite) Galois extension, i.e. L is the composite of splitting fields of
separable polynomials over F. Denote G = Gal(L/F) = lim←− Gal(E/F) where E/F runs through
all finite Galois subextensions in L/F. Call a subgroup H of G closed if H = lim←− Gal(E/K)

where K runs through a subfamily of finite subextensions in E/F, and surjective homomorphisms
Gal(E ′′/K′′)−→ Gal(E ′/K′) are induced by Gal(E ′′/F)−→ Gal(E ′/F).

There is a one-to-one correspondence (H 7→ LH) between closed subgroups H of G and fields
M, F ⊂M ⊂ L, the inverse map is given by M 7→ H = lim←− Gal(E/K) where K = E ∩M. We have
Gal(L/M) = H.

Normal closed subgroups H of G correspond to Galois extensions M/F and Gal(M/F) ∼=
G/H.

5.3. Cyclotomic extensions of Q.

We have already seen the importance of cyclotomic fields in Kummer’s theorem 3.6.8.
Another very important property of cyclotomic fields is given by the following theorem
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THEOREM. (Kronecker–Weber)
Every finite abelian extension of Q is contained in some cyclotomic field Q(ζn). Therefore

the maximal abelian extension Q ab of Q coincides with the cyclotomic field Qcycl which is the
compositum of all cyclotomic fields Q(ζn).

For a finite abelian extension F/Q the minimal positive integer n such that F ⊂Q(ζn) is called
the conductor of F .

For example, let F =Q(
√

d) with square free integer d. Then one can prove that the conductor
of F is equal to |dF | where dF is the discriminant of F .

According to 2.4.4 the Galois group Gal(Q(ζn)/Q) is isomorphic to (Z/nZ)×. So the infinite
group Gal(Q ab/Q) is isomorphic to the limit of (Z/nZ)× which by 5.1.2 coincides with the group
of units of Ẑ= lim←− Z/nZ.

The isomorphism
ϒ : Ẑ× ∼−→ Gal(Q ab/Q)

can be described as follows: if a ∈ Ẑ× is congruent to m modulo n via

Ẑ/nẐ−→ Z/nZ,

then ϒ(a)(ζn) = ζ m
n .

Using 5.1 we have an isomorphism

Ψ : ∏Z×p ∼−→ Ẑ× ∼−→ Gal(Qab/Q).

On the left hand side we have an object Ẑ× which is defined at the ground level of Q, on the right
hand side we have an object which incorporates information about all finite abelian extensions of
Q.

The restriction of the isomorphism to quadratic extensions of Q is related with the Gauß
quadratic reciprocity law.

Abelian class field theory generalises the Kronecker–Weber theorem for an algebraic number
field K to give a reciprocity homomorphism which relates an object (idele class group) defined at
level of K and the Galois group of the maximal abelian extension of K over K.

5.4. Ideles and reciprocity map.

5.4.1. Recall (see 4.2.4) that Q×p ∼= 〈p〉×Z×p , a 7→ (n,u) where n = vp(a) and u = ap−n,
vp is the p-adic valuation.

Denote Q∞ = R and include ∞ in the set of “primes” of Z. Form the so called restricted
product

JQ = ∏
′Q×p = {(a∞,a2,a3, . . .) : ap ∈Q×p }

of R× =Q×∞ , Q×2 ,Q
×
3 , . . . such that almost all components ap are p-adic units. Elements of JQ are

called ideles of Q.
Define a homomorphism

f : JQ = ∏
′Q×p −→Q××R×+×∏Z×p ,

(a∞,a2,a3, . . .) 7→ (a,a∞a−1,a2a−1,a3a−1, . . .)
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where a = sign(a∞)∏ pvp(ap) ∈Q× and sign(a) is the sign of a.
It is easy to verify that f is an isomorphism.

5.4.2. Define a homomorphism

ΨQ : ∏
′Q×p −→ Gal(Qab/Q)

by the following local-global formula:

ΨQ(a∞,a2,a3, . . .) = ∏ΨQp(ap).

Here the local reciprocity map ΨQp is described as follows: if ap = pnu where n = vp(a), then for
a qmth primitive root ζ with prime q and qm > 2,

ΨQp(ap)(ζ ) =

ζ pn
, if p 6= q

ζ u−1
, if p = q.

In particular, if p 6= q, then ΨQp(p) sends ζ to ζ p, the latter is kind of similar to the pth Frobenius
automorphism defined in 1.3. So the local reciprocity map ΨQp(p) sends prime p to the pth
Frobenius automorphism.

For p = ∞ put

ΨQ∞
(a∞)(ζ ) = ζ

sign(a∞).

The homomorphism ΨQ is called the global reciprocity map.

THEOREM.

1. Reciprocity Law: for every non-zero rational number a one has

ΨQ(a,a,a, . . .) = 1.

2. For units up ∈ Z×p one has

ΨQ(1,u2,u3, . . .)
−1 = Ψ(u2,u3, . . .).

3. Using f define

g : JQ −→Q××R×+×∏Z×p −→∏Z×p ,

(a,b,u2,u3, . . .) 7→ (u2,u3, . . .). Then

ΨQ(α)−1 = Ψ◦g(α).

4. The kernel of the reciprocity map ΨQ equals to g−1(1,1,1, . . .) = the product of the di-
agonal image of Q× in JQ and of the image of R×+ in JQ with respect to the homomorphism
α 7→ (α,1,1, . . .). It induces an isomorphism

JQ/Q×R×+ ∼= Gal(Qab/Q).

Proof. To verify the first property, due to the multiplicativity of ΨQ it is sufficient to show that for
a primitive qmth root ζ , qm > 2,

ΨQ(p, p, . . .)(ζ ) = ζ for all positive prime numbers p

ΨQ(−1,−1, . . .)(ζ ) = ζ .



From the definition of ΨQ we deduce that

ΨQl (p)(ζ ) =



ζ , if l 6= q, l 6= p

ζ p, if l 6= q, l = p

ζ p−1
, if l = q, l 6= p

ζ , if l = q = p.

So (∏l ΨQl (p))(ζ ) = ζ for q 6= p and for q = p. Similarly one checks the second assertion.
The second property is easy: due to multiplicativity it suffices to show that

Ψ(1, . . . ,up,1, . . .)−1 = ΦQ(1, . . . ,up,1, . . .)

and this follows immediately from the definition of Ψ, ΨQ.
The third property follows from the definition of f and the first and second properties. The

fourth property follows from the third. �

5.4.3. The previous description is part of cyclotomic class field theory of Q, where one can
use the Galois action on roots and roots generate the maximal abelian extension of Q (Kronecker–
Weber theorem).

For an algebraic number field F one can define, in a similar way, the idele group JF as a
restricted product of the multiplicative groups F×P of completions FP of F with respect to non-zero
prime ideals P of the ring of integers of F , and of real or complex completions of F with respect
to real and complex embeddings of F into C.

Except the case of Q, imaginary quadratic fields and totally imaginary quadratic extensions of
totally real fields, one does not have an explicit description of the maximal abelian extension by
appropriate torsion elements, as in the Kronecker–Weber Theorem. Thus, one needs to directly
define a global reciprocity map

ΨF : JF −→ Gal(Fab/F)

for all number fields F and study its properties. This is done in a completely different way from
cyclotomic class field theory, in general class field theory. The Kronecker–Weber theorem plays
no role in general class field theory and this theorem will be the last statement to include, as a
corollary of general class field theory, at the end of Chapter 3.

The global reciprocity map uses certain local reciprocity maps F×P −→ Gal(Fab
P /FP) and ho-

momorphisms Gal(Fab
P /FP)−→ Gal(Fab/F). The local reciprocity maps are defined and studied

in local class field theory.
The local reciprocity maps and global reciprocity maps satisfy a number of important proper-

ties, including functorial properties which do not play any role in special class field theorists such
as the cyclotomic class field theory.

The analog of the reciprocity law is that the kernel of ΨF contains the image of F× in JF .
A key part of class field theory is the existence theorem: every open subgroups N in JF/F×

corresponds to its class field L, the unique finite abelian extension of F such that NL/F(JL)F× = N
and N = Ψ

−1
F (Gal(Fab/L)).



CHAPTER 2

Complete Discrete Valuation Fields

Chapters 2 and 3 do not include references to specific sections of Chapter 1.
In Chapter 2 we will go relatively slow in sections 1–13 in order to build a good understand-

ing of and intuition about complete discrete valuation fields. This Chapter includes less known
but important topics such as the group of principal units as a topological Zp-module, the norm
map behaviour in cyclic extensions of prime degree, Artin–Schreier extensions of local fields, an
approach to the Hasse–Herbrand function that uses the behaviour of the norm map, and Fontaine–
Wintenberger’s theory of fields of norms, studying the latter might be a good place to test the
knowledge of local fields.

1. Valuation Fields

1.1. DEFINITION. Let Γ be an additively written totally ordered abelian group. Add to Γ a
formal element +∞ with the properties a6+∞, +∞6+∞, a+(+∞) =+∞, (+∞)+(+∞) =+∞,
for each a ∈ Γ; denote Γ′ = Γ∪{+∞}.

For a field F a map v : F −→ Γ′ with the properties

v(α) = +∞⇔ α = 0

v(αβ ) = v(α)+ v(β )

v(α +β )>min(v(α),v(β ))

is said to be a valuation on F .
The map v induces a homomorphism of F× to Γ and its value group v(F×) is a totally ordered

subgroup of Γ.
If v(F×) = {0}, then v is called the trivial valuation.
A field F which has a nontrivial valuation is said to be a valuation field.

It is immediate that if v(α) 6= v(β ), then v(α +β ) = min(v(α),v(β )).

1.2. Denote Ov = {α ∈ F : v(α)> 0}, Mv = {α ∈ F : v(α)> 0}.
Then Mv coincides with the set of non-invertible elements of Ov. Therefore, Ov is a local ring

with the unique maximal ideal Mv.
Ov is called the ring of integers (with respect to v), and the field Fv = Ov/Mv is called the

residue field, or residue class field.
The image of an element α ∈ Ov in Fv is denoted by α , it is called the residue of α in Fv.

49
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The set of invertible elements of Ov is a multiplicative group Uv = Ov−Mv, it is called the
group of units.

A valuation is called discrete if the totally ordered group v(F×) is isomorphic to the naturally
ordered group Z.

1.3. Examples.
1. The p-adic valuation on Q and Qp.

2. Let K be a field. Let p(X) ∈ K[X ] be a monic irreducible polynomial over K. For a polyno-
mial f (X) ∈ K[X ] denote by vp(X)( f (X)) the largest integer k such that p(X)k divides polynomial
f (X). For two polynomials f ,g put vp(X)( f/g) = vp(X)( f )− vp(X)(g). Put vp(X)(0) = +∞.

The map vp(X) is a discrete valuation of K(X). Its the ring of integers

Ovp(X)
=

{
f (X)

g(X)
: f (X),g(X) ∈ K[X ],g(X) is relatively prime to p(X)

}
and the residue field is K[X ]/(p(X)).

Another discrete valuation of K(X) is −deg with the ring of integers K[X−1] and maximal
ideal X−1K[X−1].

3. Let Γ1, . . . Γn be totally ordered abelian groups. One can order the group Γ1× ·· · ×Γn

lexicographically, namely setting (a1, . . . ,an)< (b1, . . . ,bn) if and only if a1 = b1, . . . ,ai−1 = bi−1,
ai < bi for some 1 6 i 6 n. A valuation v on F is said to be discrete of rank n if the value group
v(F×) is isomorphic to the lexicographically ordered group (Z)n = Z×·· ·×Z︸ ︷︷ ︸

n times

.

Note that the first component v1 of a discrete valuation v = (v1, . . . ,vn) of rank n is a discrete
valuation (of rank 1) on the field F .

4. Let F be a field with a valuation v. For f (X) = ∑αiX i ∈ F [X ] put

v∗( f (X)) = min
i

(i,v(αi)) ∈ Z× v(F×).

One can naturally extend v∗ to F(X). If we order the group Z×v(F×) lexicographically, we obtain
the valuation v∗ on F(X) with the residue field Fv.

Similarly, it is easy to define a valuation on F(X1) . . .(Xn) with the value group (Z)n−1×
v(F×) ordered lexicographically. In particular, for F = Q, v = vp we get a discrete valuation of
rank n on Q(X1) . . .(Xn−1) and for F = K(X), v = vp(X) we get a discrete valuation of rank n on
K(X)(X1) . . .(Xn−1).

5. Let v be a discrete (surjective to Z) valuation of F . Fix an integer c. For f (X) = ∑αiX i ∈
F [X ] put

wc( f (X)) = min
i
{v(αi)+ ic}.

Extending wc to F(X) we obtain the discrete valuation wc with residue field Fv(X) (make substi-
tution X = Y β with v(β ) = c to reduce to the case c = 0).

6. Let F,v be as in Example 4. For f (X) = ∑αiX i ∈ F [X ] put

v∗( f (X)) = min
i

(v(αi), i) ∈ v(F×)×Z, v∗(0) = (+∞,+∞)
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for v(F×)×Z ordered lexicographically. Extending v∗ to F(X), we obtain the valuation v∗. The
residue field of v∗ is Fv.

2. Discrete Valuation Fields

2.1. A field F is said to be a discrete valuation field if it admits a nontrivial discrete valuation
v. An element π ∈ Ov is said to be a prime element (uniformising element, a uniformiser) if
v(π) > 0 generates the group v(F×). Without loss of generality we shall often assume that the
homomorphism

v : F× −→ Z

is surjective.

2.2. LEMMA. Assume that char(F) 6= char(Fv). Then char(F) = 0 and char(Fv) = p > 0.

Proof. Suppose that char(F) = p 6= 0. Then p = 0 in F and therefore in Fv. Hence p = char(Fv).
�

2.3. LEMMA. Let F be a discrete valuation field, and π be a prime element. Then the ring of
integers Ov is a principal ideal ring, and every proper ideal of Ov can be written as πnOv for some
n > 0. In particular, Mv = πOv. The intersection of all proper ideals of Ov is the zero ideal.

Proof. Let I be a proper ideal of Ov. Then there exists n = min{v(α) : α ∈ I} and hence πnε ∈ I
for some unit ε . It follows that πnOv ⊂ I ⊂ πnOv and I = πnOv. If α belongs to the intersection
of all proper ideals πnOv in Ov, then v(α) = +∞, i.e., α = 0. �

2.4. LEMMA. Any element α ∈F× can be uniquely written as πnε for some n∈Z and ε ∈Uv.

Proof. Let n = v(α). Then απ−n ∈Uv and α = πnε for ε ∈Uv. If πnε1 = πmε2, then n+ v(ε1) =

m+ v(ε2). As ε1,ε2 ∈Uv, we deduce n = m, ε1 = ε2. �

2.5. Let v be a discrete valuation on F , 0 < d < 1. The mapping dv : F×F −→R defined by
dv(α,β ) = dv(α−β ) is a metric on F . Therefore, it induces a Hausdorff topology on F . For every
α ∈ F the sets α +πnOv, n ∈ Z, form a basis of open neighbourhoods of α . This topology on F
is called the discrete valuation topology.

2.6. LEMMA. The field F with the above-defined topology is a topological field.

Proof. As
v((α−β )− (α0−β0))>min(v(α−α0),v(β −β0)),

v(αβ −α0β0)>min(v(α−α0)+ v(β ),v(β −β0)+ v(α0)),

v(α−1−α
−1
0 ) = v(α−α0)− v(α)− v(α0),

we deduce the statement. �
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2.7. LEMMA. The topologies on F defined by two discrete valuations v1, v2 coincide if and
only if v1 = v2 ( recall that v1(F×) = v2(F×) = Z).

Proof. Let the topologies induced by v1,v2 coincide. Observe that αn tends to 0 when n tends to
+∞ in the topology defined by a discrete valuation v if and only if v(α)> 0. Therefore, v1(α)> 0
if and only if v2(α)> 0. Let π1,π2 be prime elements with respect to v1 and v2. Then we conclude
that v2(π1)> 1 and v1(π2)> 1. If v2(π1)> 1 then v2(π1π

−1
2 )> 0. Consequently, v1(π1π

−1
2 )> 0,

i.e., v1(π2) < 1, a contradiction. Thus, v2(π1) = 1 and this equality holds for all prime elements
π1 with respect to v1. This shows the equality v1 = v2. �

2.8. PROPOSITION. (Approximation Theorem) Let v1, . . . ,vn be distinct discrete valuations
on F. Then for every α1, . . . ,αn ∈ F, c ∈ Z, there exists α ∈ F such that vi(αi −α) > c for
16 i6 n.

Proof. If v(α) > 0 then v(αm(1+αm)−1)→ +∞ as m→ +∞, and if v(α) < 0 then v(αm(1+
αm)−1− 1)→ +∞ as m→ +∞. We proceed by induction to deduce that there exists an element
β1 ∈ F such that v1(β1)< 0, vi(β1)> 0 for 26 i6 n.

Towards that aim for n = 2, one can first verify that there is an element γ1 ∈ F such that
v1(γ1) > 0, v2(γ1) < 0. Using the proof of the previous Lemma, find elements π1,π2 ∈ F with
v2(π1) 6= 1 = v1(π1), v1(π2) 6= 1 = v2(π2). If v2(π1)< 0 put γ1 = π1. If v2(π1)> 0, then v2(ρ) 6=
0 = v1(ρ) for ρ = π2π

−v1(π2)
1 . Put γ1 = ρ or γ1 = ρ−1. Now let γ2 ∈ F be such that v2(γ2) > 0,

v1(γ2)< 0. Then β1 = γ
−1
1 γ2 is the desired element for n = 2.

Let n > 2. Then, by the induction assumption, there exists δ1 ∈ F with v1(δ1)< 0, vi(δ1)> 0
for 2 6 i 6 n− 1 and δ2 ∈ F with v1(δ2) < 0, vn(δ2) > 0. One can put β2 = δ1 if vn(δ1) > 0,
β2 = δ m

1 δ2 if vn(δ1) = 0, and β2 = δ1δ m
2 (1+δ m

2 )−1 if vn(δ1)< 0 for a sufficiently large m.
To complete the proof we take β1, . . . ,βn ∈ F with vi(βi) < 0, vi(β j) > 0 for i 6= j. Put α =

∑
n
i=1 αiβ

m
i (1+β m

i )−1. Then α is the desired element for a sufficiently large m. �

3. Completion

3.1. Let F be a field with a discrete valuation v (as usual, v(F×) = Z). As F is a metric
topological space one can introduce the notion of a fundamental (Cauchy) sequence. A sequence
(αn)n>0 of elements of F is called a Cauchy sequence if for every real c there is n0 > 0 such that
v(αn−αm)> c for m,n> n0.

If (αn) is a fundamental sequence then for every integer r there is nr such that for all n,m> nr

we have v(αn−αm) > r. We can assume n1 6 n2 6 . . . . If for every r there is n′r > nr such
that v(αn′r) 6= v(αn′r+1), then limv(αn) = +∞. Thus, every fundamental sequence (αn) has limit
limv(αn) ∈ Z′.

LEMMA. The set A of all Cauchy sequences forms a ring with respect to component-wise
addition and multiplication. The set of all Cauchy sequences (αn)n>0 with αn → 0 as n→ +∞
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forms a maximal ideal M of A. The field A/M is a discrete valuation field with its discrete valuation
v̂ defined by v̂((αn)) = limv(αn) for a Cauchy sequence (αn)n>0.

Proof. A sketch of the proof is as follows. It suffices to show that M is a maximal ideal of A. Let
(αn)n>0 be a Cauchy sequence with αn 9 0 as n→+∞. Hence, there is an n0 > 0 such that αn 6= 0
for n > n0. Put βn = 0 for n < n0 and βn = α−1

n for n > n0. Then (βn)n>0 is a Cauchy sequence
and (αn)(βn) ∈ (1)+M. Therefore, M is maximal. �

3.2. A discrete valuation field F is called a complete discrete valuation field if every Cauchy
sequence (αn)n>0 is convergent, i.e., there exists α = limαn ∈ F with respect to v. A field F̂ with a
discrete valuation v̂ is called a completion of F if it is complete, v̂|F = v, and F is a dense subfield
in F̂ with respect to v̂.

PROPOSITION. Every discrete valuation field F has a completion which is unique up to an
isomorphism over F.

Proof. We verify that the field A/M with the valuation v̂ is a completion of F . F is embedded in
A/M by the formula α 7→ (α) mod M. For a Cauchy sequence (αn)n>0 and real c, let n0 > 0 be
such that v(αn−αm) > c for all m,n > n0. Hence, for αn0 ∈ F we have v̂((αn0)− (αn)n>0) > c,
which shows that F is dense in A/M. Let ((α(m)

n )n)m be a Cauchy sequence in A/M with respect
to v̂. Let n(0), n(1),. . . be an increasing sequence of integers such that v(α(m)

n2 −α
(m)
n1 )> m for n1,

n2 > n(m). Then (α
(m)
n(m))m

is a Cauchy sequence in F and the limit of ((α(m)
n )n)m with respect to v̂

in A/M. Thus, we obtain the existence of the completion A/M, v̂.
If there are two completions F̂1, v̂1 and F̂2, v̂2, then we put f (α) = α for α ∈ F and extend

this homomorphism by continuity from F , as a dense subfield in F̂1, to F̂1. It is easy to verify that
the extension f̂ : F̂1 −→ F̂2 is an isomorphism and v̂2 ◦ f̂ = v̂1. �

We shall denote the completion of the field F with respect to v by F̂v or F̂ .

3.3. LEMMA. Let F be a field with a discrete valuation v and F̂ its completion with the
discrete valuation v̂. Then the ring of integers Ov is dense in Ov̂, the maximal ideal Mv is dense
in Mv̂, and the residue field Fv coincides with the residue field of F̂ with respect to v̂.

Proof. It follows immediately from the construction of A/M in 3.1 and Proposition 3.2. �

3.4. Examples.
1. Embeddings of Q in Qp for all prime p and in R is a tool to solve various problems over

Q. An example is the Minkowski–Hasse Theorem: an equation ∑ai jXiX j = 0 for ai j ∈ Q has a
nontrivial solution in Q if and only if it admits a nontrivial solution in R and in Qp for all prime
p. A generalisation of this result is the so-called Hasse local-global principle which is of great
importance in algebraic number theory. It is interesting that, from the standpoint of model theory,
the complex field C is locally equivalent to the algebraic closure of Qp for each prime p.

2. The completion of K(X) with respect to vX is the formal power series field K((X)) of all
formal series ∑

+∞
−∞ αnXn with αn ∈ K and αn = 0 for almost all negative n. The ring of integers
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with respect to vX is K[[X ]], that is, the set of all formal series ∑
+∞

0 αnXn, αn ∈ K. Its residue field
may be identified with K.

3. Let F be a field with a discrete valuation v, and F̂ its completion. Then the valuation v∗ on
F(X) defined in Example 4 of 1.3 can be naturally extended to F̂((X)). For f (X) = ∑n>m αnXn,
αn ∈ F̂ , αm 6= 0, put v∗( f (X)) = (m, v̂(αm)). The ring of integers of v∗ on F̂((X)) is Ov̂+XF̂ [[X ]].

4. Let F be the same as in the previous Example. Then the valuation v∗ on F(X) defined in
Example 6 of 1.3 can be naturally extended to the field

F̂{{X}}=
{+∞

∑
−∞

αnXn : αn ∈ F̂ , inf
n
{v̂(αn)}>−∞, v̂(αn)→+∞ as n→−∞

}
.

For f (X) = ∑
+∞
−∞ αnXn ∈ F̂{{X}} put

v∗( f (X)) = min
n
(v̂(αn),n).

The ring of integers of v∗ is Mv̂{{X}}+Ov̂[[X ]] and the maximal ideal is Mv̂{{X}}+XOv̂[[X ]],
where Mv̂{{X}} = Mv̂Ov̂{{X}}, Ov̂{{X}} =

{
∑
+∞
−∞ αnXn : αn ∈ Ov̂, v̂(αn)→ +∞ as n→−∞

}
,

and the residue field is Fv.

3.5. DEFINITIONS.
1. A complete discrete valuation field with perfect residue field is called a local field.
For example, Qp and F((X)) are local fields where F is a perfect field (of positive or zero

characteristic). Local fields with finite residue field are sometimes called local number fields if
they are of characteristic zero and local functional fields if they are of positive characteristic.

2. Local fields are sometimes called 1-dimensional local fields. An n-dimensional local field
(n > 2) is a complete discrete valuation field whose residue field is an (n− 1)-dimensional local
field.

For example, Qp((X2)) . . .((Xn)), F((X1)) . . .((Xn)) (F is a perfect field), K{{X1}} . . .{{Xn−1}}
(K is a 1-dimensional local field of characteristic zero) are n-dimensional local fields.

4. Filtrations of Discrete Valuation Fields

In this section we study natural filtrations on the multiplicative group of a discrete valuation
field F ; in particular, its behaviour with respect to raising to the pth power. For simplicity, we will
often omit the index v in notations Uv, Ov, Mv, Fv. We fix a prime element π of F .

4.1. A set R is said to be a set of representatives for a valuation field F if R⊂O , 0 ∈ R and R
is mapped bijectively on F under the canonical map O −→ O/M = F . Denote by rep: F −→ R
the inverse bijective map. For a set S denote by (S)+∞

n the set of all sequences (ai)i>n, ai ∈ S. Let
(S)+∞
−∞ denote the union of increasing sets (S)+∞

n where n→−∞.
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4.2. The additive group F has a natural filtration

· · · ⊃ π
iO ⊃ π

i+1O ⊃ . . . .

The factor filtration of this filtration is easy to calculate: π iO/π i+1O ∼−→ F .

PROPOSITION. Let F be a complete field with respect to a discrete valuation v. Let πi ∈ F for
each i ∈ Z be an element of F with v(πi) = i. Then the map

Rep: (F)+∞
−∞ −→ F, (ai)i∈Z 7→

+∞

∑
−∞

rep(ai)πi

is a bijection. Moreover, if (ai)i∈Z 6= (0)i∈Z then v(Rep(ai)) = min{i : ai 6= 0}.

Proof. The map Rep is well defined, because for almost all i < 0 we get rep(ai) = 0 and the series

∑ rep(ai)πi converges in F . If (ai)i∈Z 6= (bi)i∈Z and

n = min{i ∈ Z : ai 6= bi},

then v(anπn−bnπn) = n. Since v(aiπi−biπi)> n for i > n, we deduce that

v(Rep(ai)−Rep(bi)) = n.

Therefore Rep is injective.
In particular, v(Rep(ai)) = min{i : ai 6= 0}. Further, let α ∈ F . Then α = πnε with n ∈ Z,

ε ∈ U . We also get α = πnε ′ for some ε ′ ∈ U . Let an be the image of ε ′ in F ; then an 6= 0
and α1 = α − rep(an)πn ∈ πn+1O . Continuing in this way for α1, we obtain a convergent series
α = ∑ rep(ai)πi. Therefore, Rep is surjective. �

COROLLARY. We often take πn = πn. Therefore, by the preceding Proposition, every element
α ∈ F can be uniquely expanded as

α =
+∞

∑
−∞

θiπ
i, θi ∈ R and θi = 0 for almost all i < 0.

DEFINITION. If α−β ∈ πnO , we write α ≡ β mod πn.

4.3. DEFINITIONS. The group 1+πO is called the group of principal units U1 and its ele-
ments are called principal units. Introduce also higher groups of units as follows: Ui = 1+π iO

for i> 1.

4.4. The multiplicative group F× has a natural filtration F× ⊃U ⊃U1 ⊃U2 ⊃ . . . .

PROPOSITION. Let F be a discrete valuation field. Then

(1) The choice of a prime element π (1 ∈ Z 7→ π ∈ F×) splits the exact sequence

1→U −→ F× v−→ Z−→ 0.

The group F× is isomorphic to U×Z.
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(2) The canonical map O −→ O/M = F induces the surjective homomorphism

λ0 : U −→ F×, ε 7→ ε;

λ0 maps U/U1 isomorphically onto F×.
(3) The map

λi : Ui −→ F , 1+απ
i 7→ α

for α ∈ O induces the isomorphism λi of Ui/Ui+1 onto F for i> 1.

Proof. The statement (1) follows for example from Lemma 2.4.
(2) The kernel of λ0 coincides with U1 and λ0 is surjective.
(3) The induced map Ui/Ui+1 −→ F is a homomorphism, since

(1+α1π
i)(1+α2π

i) = 1+(α1 +α2)π
i +α1α2π

2i.

This homomorphism is bijective, since λi(1+ rep(α)π i) = α . �

4.5. COROLLARY. Let l be not divisible by char(F). Raising to the lth power induces an
automorphism of Ui/Ui+1 for i> 1.

If F is complete, then the group Ui for i> 1 is uniquely l-divisible.

Proof. If ε = 1+απ i with α ∈ O , then ε l ≡ 1+ lαπ i mod π i+1. Absence of nontrivial l-torsion
in the additive group F implies the first property. It also shows that Ui has no nontrivial l-torsion.

For an element η = 1+ βπ i with β ∈ O× we have η = (1+ l−1βπ i)lη1 with η1 ∈ Ui+1.
Applying the same argument to η1 and so on, we get an lth root of η in F in the case of complete
F . �

4.6. Let char(F) = p > 0. Lemma 2.2 tells that either char(F) = p or char(F) = 0. We shall
study the operation of raising to the pth power. Denote this homomorphism byxp : α 7→ α

p.

The first and simplest case is char(F) = p.

PROPOSITION. Let char(F) = char(F) = p > 0. Then the homomorphism
xp maps Ui injec-

tively into Upi for i> 1. For i> 1 it induces the commutative diagram

Ui/Ui+1
↑p−−−−→ Upi/Upi+1

λi

y λpi

y
F

↑p−−−−→ F

Proof. Since (1+επ i)p = 1+ε pπ pi and there is no nontrivial p-torsion in F× and F×, the assertion
follows. �

COROLLARY. Let F be a field of characteristic p > 0 and let F be perfect, i.e F = F p. Thenxp maps the quotient group Ui/Ui+1 isomorphically onto the quotient group Upi/Upi+1 for i> 1.
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4.7. We now consider the case of char(F) = 0, char(F) = p > 0. As p = 0 in the residue
field F , we conclude that p ∈M and, therefore, for the surjective discrete valuation v of F we get
v(p) = e> 1.

DEFINITION. The number e = e(F) = v(p) is called the absolute ramification index of F.

Let π be a prime element in F . Let R be a set of representatives, and let θ 0 ∈ F be the element
of F uniquely determined by the relation p− rep(θ 0)π

e ∈ πe+1O .

PROPOSITION. Let F be a discrete valuation field of characteristic zero with residue field of
positive characteristic p. Then the homomorphism

xp maps Ui to Upi for i6 e/(p−1), and Ui to
Ui+e for i > e/(p−1). This homomorphism induces the following commutative diagrams

(1) if i < e/(p−1),

Ui/Ui+1
↑p−−−−→ Upi/Upi+1

λi

y λpi

y
F α 7→α

p

−−−−→ F
(2) if i = e/(p−1) is an integer,

Ui/Ui+1
↑p−−−−→ Upi/Upi+1

λi

y λpi

y
F

α 7→α
p+θ 0α−−−−−−−→ F

(3) if i > e/(p−1),

Ui/Ui+1
↑p−−−−→ Ui+e/Ui+e+1

λi

y λi+e

y
F

α 7→θ 0α−−−−→ F
The horizontal homomorphisms are injective in cases (1), (3) and surjective in case (3).
If a primitive pth root ζp of unity is contained in F, then v(1−ζp) = e/(p−1) and the kernel

of the horizontal homomorphisms in case (2) is of order p.
If e/(p−1)∈Z, Upe/(p−1)+1 ⊂U p

e/(p−1)+1 and there is no nontrivial p-torsion in F×, then the
homomorphism is injective in case (2).

Proof. Let v(α) = i. Writing

(1+α)p = 1+ pα +
p(p−1)

2
α

2 + · · ·+ pα
p−1 +α

p

and calculating v(pα) = e+ i, v
(

p(p−1)
2

α2
)
= e+2i, . . . , v(pα p−1) = e+(p−1)i, v(α p) = pi,

we get

v((1+α)p−1) = v(α p + pα), if v(α p) 6= v(pα),

v((1+α)p−1)> v(α p + pα), otherwise.
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These formulas reveal the behaviour of
xp acting on the filtration in U1, because v(α p) 6

v(pα) if and only if i6 e/(p−1). Moreover, for a unit α we obtain

(1+απ
i)p ≡ 1+α

p
π

pi mod π
pi+1, if i < e/(p−1),

(1+απ
i)p ≡ 1+ rep(θ 0)απ

i+e mod π
i+e+1, if i > e/(p−1),

(1+απ
i)p ≡ 1+(α p + rep(θ 0)α)π pi mod π

pi+1, if i = e/(p−1) ∈ Z.

Thus, we conclude that the diagrams in the Proposition are commutative. Further, the homomor-
phism

xp is an isomorphism in case (3) and injective in case (1).
Assume that ζp ∈ F . The assertions obtained above imply that v(1− ζp) = e/(p− 1) and

e/(p−1)∈Z. Therefore, the homomorphism α 7→α
p+θ 0α is not injective. Its kernel p−1

√
−θ 0Fp

in this case is of order p.
Now let e/(p−1) be an integer and let Upe/(p−1)+1 ⊂U p

e/(p−1)+1. Assume that the horizontal

homomorphism in case (2) is not injective. Let α0 ∈ F satisfy the equation α
p
0 +θ 0α0 = 0. Then

(1+ rep(α0)π
e/(p−1))p ∈ U j for some j > pe/(p− 1). Therefore (1+ rep(α0)π

e/(p−1))p = ε
p
1

for some ε1 ∈Ue/(p−1)+1. Thus, (1+ rep(α0)π
e/(p−1))ε−1

1 ∈Ue/(p−1) is a primitive pth root of
unity. �

4.8. COROLLARY 1. Let char(F) = 0 and let F be a perfect field of characteristic p > 0.
Then

xp maps the quotient group Ui/Ui+1 isomorphically onto Upi/Upi+1 for 1 6 i < e/(p− 1)
and isomorphically onto Ui+e/Ui+e+1 for i > e/(p−1).

COROLLARY 2. Let F be a complete field. Let i > pe/(p−1). Then Ui ⊂U p
i−e. Therefore, if

F× has no nontrivial p-torsion then the homomorphism is injective in case (2).
In addition, if the residue field of F is finite and F contains no nontrivial pth roots of unity,

then Ui ⊂U p
i−e for i> pe/(p−1).

Proof. Use the completeness of F . Due to the surjectivity of the homomorphisms in case (3) we
get Ui ⊂Ui+1U p

i−e ⊂Ui+2U p
i−e ⊂ ·· · ⊂U p

i−e.
If the residue field of F is finite, then the injectivity of the homomorphism in case (2) implies

its surjectivity. �

4.9. PROPOSITION. Let F be a complete discrete valuation field.
If char(F) = 0, then F×n is an open subgroup in F× for n> 1. If char(F) = p > 0, then F×n

is an open subgroup in F× if and only if n is relatively prime to p.

Proof. If char(F) = 0, then by Corollary 4.5 we get U1 ⊂ F×n for n > 1. It means that F×n is
open. If char(F) = p, then by Corollary 4.5 U1 ⊂ F×n for (n, p) = 1 and F×n is open. In this
case, if char(F) = p, then by Proposition 4.6 1+π i /∈ F× p for (i, p) = 1. Then F× p is not open. If
char(F) = 0, then using Corollary 2 of 4.8 we obtain Ui ⊂ F× pm

when i > pe/(p−1)+(m−1)e.
Therefore F×n is open for n> 1. �
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This Proposition demonstrates that topological properties are closely connected with the alge-
braic ones for complete discrete valuation fields of characteristic 0 with residue field of character-
istic p. This is not the case when char(F) = p.

4.10. Finally, we deduce a multiplicative analog of the expansion in Proposition 4.2.

PROPOSITION. (Hensel) Let F be a complete discrete valuation field. Let R be a set of repre-
sentatives and let πi be as in 4.2. Then for α ∈ F× there exist uniquely determined n ∈ Z , θi ∈ R,
θ0 ∈ R× for i> 0, such that α can be expanded in the convergent product

α = π
n
θ0 ∏

i>1
(1+θiπi).

Proof. The existence and uniqueness of n and θ0 immediately follow from Proposition 4.4. As-
sume that ε ∈Um, then, using Proposition 4.2, one can find θm ∈ R with ε(1+θmπm)

−1 ∈Um+1.
Proceeding by induction, we obtain an expansion of α in a convergent product. If there are
two such expansions ∏(1+ θiπi) = ∏(1+ θ ′i πi), then the residues θ i, θ ′i coincide in F . Thus,
θi = θ ′i . �

5. Group of Principal Units as Zp-module

We study Zp-structure of the group of principal units of a complete discrete valuation field F
with residue field F of characteristic p > 0 by using convergent series and results of the previous
section. Everywhere in this section F is a complete discrete valuation field with residue field of
positive characteristic p.

Let A be a Zp-module endowed with a topology compatible with the structure of the Zp-
module and the p-adic topology of Zp. A set {ai}i∈I of elements of A is called a set of topological
generators of A if every element of A is a limit of a convergent sequence of elements of the Zp-
submodule of A generated by this set. A set of topological generators is called a topological basis
if for every j ∈ I and every non-zero c∈Zp the element ca j is not a limit of a convergent sequence
of elements of the submodule of A generated by {ai : i 6= j}.

5.1. Propositions 4.6, 4.7 imply that ε pn → 1 as n→+∞ for ε ∈U1. This enables us to write

ε
a = lim

n→∞
ε

an if lim
n→∞

an = a ∈ Zp, an ∈ Z.

LEMMA. Let ε ∈ U1, a ∈ Zp. Then εa ∈ U1 is well defined and εa+b = εaεb, εab = (εa)b,
(εη)a = εaηa for ε,η ∈ U1, a,b ∈ Zp. The multiplicative group U1 is a Zp-module under the
operation of raising to a power. Moreover, the structure of the Zp-module U1 is compatible with
the topologies of Zp and U1.

Proof. Assume that liman = limbn; hence an− bn→ 0 as n→ +∞ and limεan−bn = 1. Proposi-
tions 4.6, 4.7 show that a map Zp×U1→U1 ((a,ε)→ εa) is continuous with respect to the p-adic
topology on Zp and the discrete valuation topology on U1. This argument can be applied to verify
the other assertions of the Lemma. �
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5.2. PROPOSITION. Let F be of characteristic p with perfect residue field. Let R be a set of
representatives, and let R0 be a subset of it such that the residues of its elements in F form a basis
of F as a vector space over Fp. Let an index-set J numerate the elements of R0. Assume that πi

are as in 4.2. Let vp be the p-adic valuation.
Then every element α ∈U1 can be uniquely represented as a convergent product

α = ∏
(i,p)=1

i>0

∏
j∈J

(1+θ jπi)
ai j

where θ j ∈ R0 , ai j ∈ Zp and the sets Ji,c = { j ∈ J : vp(ai j)6 c} are finite for all c> 0 , (i, p) = 1.

Proof. We first show that the element α can be written modulo Un for n > 1 in the desired form
with ai j ∈ Z. Proceeding by induction, it will suffice to consider an element ε ∈ Un modulo
Un+1. Let ε ≡ 1+ θπn mod Un+1, θ ∈ R. If (n, p) = 1, then one can find θ1, . . . ,θm ∈ R0 and
b1, . . . ,bm ∈ Z such that 1+θπn ≡∏

m
k=1(1+θkπn)

bk mod Un+1 for some m. If n = psn′ with an
integer n′, (n′, p) = 1, then using the Corollary 4.6, one can find θ1, . . . ,θm ∈ R0 and b1, . . . ,bm ∈Z
such that 1+θπn ≡∏

m
k=1(1+θkπn′)

psbk mod Un+1 for some m. Now due to the continuity we get
the desired expression for α ∈U1 with the above conditions on the sets Ji,c.

Assume that there is a convergent product for 1 with θ j, ai j. Let (i0, p) = 1 and j0 ∈ J be such
that n = pvp(ai0 j0 )i0 6 pvp(ai j)i for all (i, p) = 1, j ∈ J. Then the choice of R0 and 4.5, 4.6 imply

∏(1+θ jπi)
ai j /∈Un+1, which concludes the proof. �

COROLLARY. The Zp-module group U1 has a topological basis 1+θ jπi where where θ j ∈ R0,
(i, p) = 1.

5.3. Let’s have an additional look at the horizontal homomorphism

ψ : F −→ F , α 7→ α
p +θ 0α

of case (2) in Proposition 4.7.
Suppose that a primitive pth root of unity ζp belongs to F and

ζp ≡ 1+ rep(θ 1)π
e/(p−1) mod π

e/(p−1)+1,

(v(ζp− 1) = e/(p− 1) according to Proposition 4.7. As θ 1 ∈ kerψ , we conclude that ψ(α) =

θ
p
1(η

p−η) where η = αθ
−1
1 . The homomorphism η 7→ η p−η is usually denoted by ℘. In this

terminology we get ψ(F) = θ
p
1℘(F).

The theory of 10.6 extensions sets a correspondence between abelian extensions of exponent
p and subgroups of F/℘(F). In particular, if F is finite, then the cardinalities of the kernel of ψ

and of the cokernel of ψ coincide. In this simple case ψ(F) = F if and only if there is no nontrivial
p-torsion in F×, and ψ(F) is of index p if and only if ζp ∈ F× (see 4.7). The homomorphism ℘

plays an important role in class field theory.
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5.4. PROPOSITION. Let F be of characteristic 0 with perfect residue field of characteristic p.
Let πi be as in 4.2. If e = v(p) is divisible by p−1, let ψ : F −→ F be the map introduced in 5.3.

Let R be a set of representatives and let R0 (resp. R′0) be a subset of it such that the residues
of its elements in F form a basis of F as a vector space over Fp (resp. form a basis of F/ψ(F) as
a Fp-module). Let the index-set J (resp. J′) numerate the elements of R0 (resp. R′0). Let

I = {i : i ∈ Z,16 i < pe/(p−1),(i, p) = 1}.

Let vp be the p-adic valuation.
Then every element α ∈U1 can be represented as a convergent product

α = ∏
i∈I

∏
j∈J

(1+θ jπi)
ai j ∏

j∈J′
(1+η jπpe/(p−1))

a j

where θ j ∈ R0, η j ∈ R′0, ai j,a j ∈ Zp (the second product occurs when e/(p−1) is an integer) and
the sets

Ji,c = { j ∈ J : vp(ai j)6 c}, J′c = { j ∈ J′ : vp(a j)6 c}

are finite for all c> 0, i ∈ I.

Proof. We shall show how to obtain the required form for ε ∈Un modulo Un+1. Put πn = πn for
n = pe/(p−1). Let ε = 1+θπn mod Un+1, θ ∈ R. There are four cases to consider:

(1) n∈ I. One can find θ1, . . . ,θm ∈ R0 and b1, . . . ,bm ∈Z satisfying the congruence 1+θπn ≡
∏

m
k=1(1+θkπn)

bk mod Un+1 for some m.
(2) n < pe/(p− 1), n = psn′ with n′ ∈ I. Corollary 1 in 4.8 and 4.5 show that there exist

θ1, . . . ,θm ∈ R0, b1, . . . ,bm ∈ Z such that

1+θπn ≡
m

∏
k=1

(1+θkπn′)
psbk mod Un+1 for some m.

(3) e/(p−1) ∈ Z, n = pe/(p−1). Proposition 4.7 and 4.5 and the definition of R′0 imply that
if n = psn′ with n′ ∈ I, then there exist θ1, . . . ,θm ∈ R0, η1, . . . ,ηr ∈ R′0, b1, . . . ,bm, c1, . . . ,cr ∈ Z
such that

1+θπn ≡
m

∏
k=1

(1+θkπn′)
psbk

r

∏
l=1

(1+ηlπn)
cl mod Un+1 for some m,r.

(4) n > pe/(p−1). Proposition 4.7 and Corollary 1 in 4.8 imply that if d = min{d : n−de6
pe/(p−1)} and n′ = n−de, then

1+θπn ≡ (1+θ
′
πn′)

pd
mod Un+1 for some θ

′ ∈ R.

Now applying the arguments of the preceding cases to 1+θ ′πn′ , we can write 1+θπn mod Un+1

in the required form. �
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5.5. From Proposition 4.7 we deduce that F contains finitely many roots of unity of order a
power of p.

COROLLARY. Let F be of characteristic 0 with perfect residue field of characteristic p.

(1) If F does not contain nontrivial pth roots of unity then the representation in Proposi-
tion 5.4 is unique. Therefore the elements 1+ θ jπi,1+η jπpe/(p−1) of Proposition 5.4
form a topological basis of Zp-module U1,F .

(2) If F contains a nontrivial pth root of unity let r be the maximal integer such that F con-
tains a primitive prth root of unity. Then the numbers ai j,a j of Proposition 5.4 are deter-
mined uniquely modulo pr. Therefore the images of the elements 1+θ jπi,1+η jπpe/(p−1)

of Proposition 5.4 form a topological basis of Z/prZ-module U1,F/U pr

1,F .
(3) If the residue field of F is finite then U1 is isomorphic to the direct sum of a free Zp-

module of rank e f and its torsion part, where f is the dimension of F over Fp.

Proof. (1) All horizontal homomorphisms of the diagrams in Proposition 4.7 are injective when
ζp /∈ F . Repeating the arguments for uniqueness from the proof of Proposition 5.2, we get the first
assertion of the Corollary.

(2) We can argue by induction on r and explain the induction step. Write a primitive prth root
ζpr in the form of Proposition 5.4

ζpr = ∏
i∈I

∏
j∈J

(1+θ jπi)
ci j ∏

j∈J′
(1+η jπpe/(p−1))

c j

and raise the expression to the prth power which demonstrates the non-uniqueness of the expansion
in Proposition 5.4.

Now if

1 = ∏
i∈I

∏
j∈J

(1+θ jπi)
ai j ∏

j∈J′
(1+η jπpe/(p−1))

a j

then by the same argument as in the proof of Proposition 5.2 we deduce that ai j = pbi j,a j = pb j

with p-adic integers bi j,b j. Then

∏
i∈I

∏
j∈J

(1+θ jπi)
bi j ∏

j∈J′
(1+η jπpe/(p−1))

b j

is a pth root of unity, and so is equal to(
∏
i∈I

∏
j∈J

(1+θ jπi)
ci j ∏

j∈J′
(1+η jπpe/(p−1))

c j
)pr−1c

for some integer c. Now by the induction assumption all bi j− pr−1cci j,b j− pr−1cc j are divisible
by pr−1. Thus, all ai j,a j are divisible by pr.

(3) If the residue field of F is finite then U1 is a module of finite type over the principal ideal
domain Zp. Note that the group ℘

(
F
)

is of index p in F because F is finite (see 5.3). If the
p-torsion of F× is of order pr, we replace 1+η1πpe/(p−1) with a primitive prth root of unity. The
cardinality of I is equal to e = [pe/(p−1)]− [[pe/(p−1)]/p]. �
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6. Set of Multiplicative Representatives

We shall introduce a special set R of multiplicative representatives which is closed with re-
spect to multiplication. We will describe coefficients of the sum and product of convergent power
series with multiplicative representatives.

6.1. Assume that char(F) = p > 0.
Let a ∈ F . An element α ∈ O is said to be a multiplicative representative (Teichmüller repre-

sentative) of a if α = a and α ∈ ∩
m>0

F pm
. This definition is justified by the following Proposition.

PROPOSITION. An element a∈F has a multiplicative representative if and only if a∈ ∩
m>0

F pm

.

A multiplicative representative for such a is unique. If a and b have the multiplicative representa-
tives α and β , then αβ is the multiplicative representative of ab.

Proof. We need the following Lemma.

6.2. LEMMA. Let α,β ∈ O and v(α−β )> m, m > 0. Then

v(α pn−β
pn
)> n+m.

Proof. Put α = β +πmγ; then α p = β p + pβ p−1πmγ + · · ·+ pβ (πmγ)p−1 +π pmγ p, and as v(p)>
1 (recall char(F) = p), we have v(pβ p−1πmγ) > m+ 1, . . . ,v(π pmγ p) > m+ 1, and α p− β p ∈
πm+1O. Now the required assertion follows by induction. �

To prove the first assertion of the Proposition, suppose that a ∈ ∩
m>0

F pm

. Since F has no

nontrivial p-torsion, there exist unique elements am ∈ F satisfying the equations apm

m = a. Let βm ∈
O be such that β m = am. Then β

p
m+1 = β m and v(β p

m+1−βm)> 1. Lemma 6.2 implies v(β pn+1

m+1 −
β

pn

m )> n+1. Hence, the sequence (β pm−n

m )m>n is Cauchy. It has the limit αn = limβ
pm−n

m ∈O . We
see that α

pn

n = α0 for n> 0 and α0 = a, i.e., α0 is a multiplicative representative of a. Conversely,
if a ∈ F has a multiplicative representative α , then α ∈ ∩

m>0
F pm

.

Furthermore, if α and β are multiplicative representatives of a∈ F , then writing α =α
pm

m ,β =

β
pm

m for some αm,βm ∈ O , we have α
pm

m = β
pm

m and αm = β m because of the injectivity of
xpm in

F . Now Lemma 6.2 implies v(α−β )> m+1, hence α = β .
Finally, if α and β are the multiplicative representatives of a and b, then αβ = ab and αβ ∈

∩
m>0

F pm
. Therefore, αβ is the multiplicative representative of ab. �

6.3. Denote the set of multiplicative representatives in O by R.

COROLLARY 1. If F is perfect (i.e. F is a local field) then every element of F has its multi-
plicative representative in R. The map r : F −→R induces an isomorphism F× ∼−→R \{0}. The
correspondence r : F −→R is called the Teichmüller map.

If F is finite then R \{0} is a cyclic group of order equal to |F |−1.



64 2. COMPLETE DISCRETE VALUATION FIELDS

COROLLARY 2. Let char(F) = p. If α,β are the multiplicative representatives of a,b ∈ F,
then α +β is the multiplicative representative of a+b.

Proof. Let α = α
pm

m ,β = β
pm

m . Then α +β = (αm +βm)
pm
, hence α +β ∈ ∩

m>0
F pm

and α +β =

a+b. �

6.4. Consider the case where char(F) = 0 and char(F) = p. Suppose that we have two
elements α,β ∈ O , and (π is a prime element)

α = ∑
i>0

θiπ
i, β = ∑

i>0
ηiπ

i,

with θi,ηi ∈R. Suppose also that α +β and αβ are written in the form

α +β = ∑
i>0

ρ
(+)
i π

i, αβ = ∑
i>0

ρ
(×)
i π

i,

and ρi
(+),ρi

(×) ∈R.
Corollary 4.2 implies that ρ

(+)
i ,ρ

(×)
i are uniquely determined by θi,ηi. Let’s find out the

dependence of ρ
(+)
n ,ρ

(×)
n on θi,ηi, i 6 n. In order to obtain a polynomial relation we introduce

elements θi = ε
pn−i

i , ηi = ξ
pn−i

i , ρ
(∗)
i = λ

(∗)pn−i

i for εi, ξi, λ
(∗)
i ∈R and ∗=+ or ∗=×, i> 0.

Then we deduce that

(
n

∑
i=0

π
i
ε

pn−i

i

)
∗ (

n

∑
i=0

π
i
ξ

pn−i

i

)
≡ (

n

∑
i=0

π
i
λ
(∗)pn−i

i

)
mod π

n+1, (∗)

for ∗ =+ or ∗ =×. We see that if the residues ε i,ξ i for 0 6 i 6 n and λ
(∗)
i for 0 6 i 6 n−1 are

known, then by using Lemma 6.2 we can calculate π iε
pn−i

i , π iξ
pn−i

i , π iλ
pn−i

i mod πn+1. Hence,

λ
(∗)
n are uniquely determined from (∗).

6.5. Let A=Z[X0,X1, . . . ,Y0,Y1, . . . ] be the ring of polynomials in variables X0,X1, . . . , Y0,Y1, . . .

with coefficients from Z. Introduce polynomials

Wn(X0, . . . ,Xn) =
n

∑
i=0

piX pn−i

i , n> 0.

In particular, W0(X0) = X0, W1(X0,X1) = X p
0 + pX1, and

Wn(X0, . . . ,Xn) = pnXn +Wn−1(X
p
0 , . . . ,X

p
n−1).

PROPOSITION. There exist unique polynomials

ω
(∗)
n (X0, . . . ,Xn,Y0, . . . ,Yn) ∈ A, n> 0

satisfying the equations

Wn(X0, . . . ,Xn)∗Wn(Y0, . . . ,Yn) =Wn(ω
(∗)
0 , . . . ,ω

(∗)
n )

for n> 0, where ∗=+ or ∗=×.
Moreover, the polynomial

ω
(∗)
n (X0, . . . ,Xn,Y0, . . . ,Yn)

p−ω
(∗)
n (X p

0 , . . . ,X
p
n ,Y

p
0 , . . . ,Y

p
n )

belongs to pA.
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Proof. We get

ω
(+)
0 = X0 +Y0, ω

(+)
1 = X1 +Y1 +(X p

0 +Y p
0 − (X0 +Y0)

p)/p,

ω
(×)
0 = X0Y0, ω

(×)
1 = X1Y p

0 +Y1X p
0 + pX1Y1,

. . . .

Assume now that ω
(∗)
i ∈ A and the second assertion of the Proposition holds for 06 i6 n−1,

and proceed by induction.
For a suitable polynomial f ∗n ∈ A we get

pn
ω

(∗)
n =Wn−1(X

p
0 , . . . ,X

p
n−1)∗Wn−1(Y

p
0 , . . . ,Y

p
n−1)

−Wn−1(ω
(∗)
0

p
, . . . ,ω

(∗)
n−1

p
)+ pn f ∗n

(∗∗)

For example, f+n = Xn +Yn.
For any g ∈ A we get

g(X0,Y0, . . .)
p−g(X p

0 ,Y
p

0 , . . .) ∈ pA

and

g(X0,Y0, . . .)
pm−g(X p

0 ,Y
p

0 , . . .)
pm−1 ∈ pmA

for m> 0.
Using the second assertion of the Proposition for i < n and Lemma 6.2 we now deduce that

Wn−1(ω
(∗)p
0 , . . . ,ω

(∗)p
n−1 )−Wn−1(ω

(∗)
0 (X p

0 ,Y
p

0 ), . . . ,ω
(∗)

n−1(X
p
0 , . . . ,Y

p
0 , . . .)) ∈ pnA.

From it and from

Wn−1(X
p
0 , . . . ,X

p
n )∗Wn−1(Y

p
0 , . . . ,Y

p
n−1)

=Wn−1(ω
(∗)
0 (X p

0 ,Y
p

0 ), . . . ,ω
(∗)

n−1(X
p
0 , . . . ,Y

p
0 ))

using (∗∗) we conclude that ω
(∗)
n ∈ A.

The last assertion of the Proposition now follows from the first congruence for g above. �

6.6. We now return to the original problem to find an expression for ρ
(∗)
i .

PROPOSITION. Let
(
∑θi pi

)
∗
(
∑ηi pi

)
= ∑ρ

(∗)
i pi with θi,ηi,ρ

(∗)
i ∈R and ∗ = + or ∗ = ×.

Then

ρ
(∗)
i ≡ ω

(∗)
i (θ p−i

0 ,θ p−i+1

1 , . . . ,θi,η
p−i

0 ,η p−i+1

1 , . . . ,ηi) mod p, i> 0,

where ω
(∗)
i are defined in 6.5.

Proof. Assume that the assertion of the Proposition holds for i6 n−1. Using the notations of 6.4
this means that

λ
(∗)
i

pn−i

≡ ω
(∗)
i (ε pn−i

0 , . . . ,ε pn−i

i ,ξ pn−i

0 , . . . ,ξ pn−i

i ) mod p, i6 n−1.

From Proposition 6.5 we obtain that for i6 n−1

ω
(∗)
i (ε pn−i

0 , . . . ,ε pn−i

i ,ξ pn−i

0 , . . . ,ξ pn−i

i )≡ ω
(∗)
i (ε0, . . . ,εi,ξ0, . . . ,ξi)

pn−i
mod p.
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Hence

λ
(∗)
i ≡ ω

(∗)
i (ε0, . . . ,εi,ξ0, . . . ,ξi) mod p, i6 n−1.

From (*) in 6.4 we know

Wn(λ
(∗)
0 , . . . ,λ

(∗)
n )≡Wn(ε0, . . . ,εn)∗Wn(ξ0, . . . ,ξn) mod pn+1.

By Lemma 6.2 we have

pi
λ
(∗)
i

pn−i

≡ pi
ω

(∗)
i (ε0, . . . ,εi,ξ0, . . . ,ξi)

pn−i

mod pn+1, i6 n−1.

Therefore

pn
λ
(∗)
n ≡ pn

ω
(∗)
n (ε0, . . . ,εn,ξ0, . . . ,ξn) mod pn+1

which implies the assertion. �

COROLLARY 1. Let
(
∑θ

p−i

i pi
)
∗
(
∑η

p−i

i pi
)
= ∑ρ

(∗)p−i

i pi with θi,ηi,ρ
(∗)
i ∈ R, ∗ = + or

∗=×. Then

ρ
(∗)
i ≡ ω

(∗)
i (θ0, . . . ,θi,η0, . . . ,ηi) mod p.

Proof. In fact, this has already been shown in the proof of the Proposition. �

COROLLARY 2. If
(
∑θi pi

)
∗
(
∑ηi pi

)
= ∑ρ

(∗)
i pi then

(
∑θ

p
i pi
)
∗
(
∑η

p
i pi
)
= ∑ρ

(∗)p
i pi.

Proof. This follows immediately from the Proposition and the last assertion of Proposition 6.5. �

7. Witt Ring

Witt vectors over a perfect field K of positive characteristic p form the ring of integers of a
local field with prime element p and residue field K.

7.1. Let B be an arbitrary commutative ring with unity. Let the polynomials

Wn(X0, . . . ,Xn) =
n

∑
i=0

piX pn−i

i , n> 0

over B be the images of the polynomials Wn ∈ Z[X0, . . . ,Xn] defined in 6.5 under the natural ho-
momorphism Z−→ B.

For (ai)i>0, put

(a(i)) = (W0(a0),W1(a0,a1), . . .) ∈ (B)+∞

0 .

The sequences (ai) ∈ (B)+∞

0 are called Witt vectors (or, more generally, p-Witt vectors), and the
a(i) for i> 0 are called the ghost components of the Witt vector (ai).

The map (ai) 7→ (a(i)) is a bijection of (B)+∞

0 onto (B)+∞

0 if p is invertible in B.
Transfer the ring structure of (a(i)) ∈ (B)+∞

0 under the natural componentwise addition and
multiplication on (ai) ∈ (B)+∞

0 . Then for (ai),(bi) ∈ (B)+∞

0 we get

(ai)∗ (bi) = (ω
(∗)
0 (a0,b0),ω

(∗)
1 (a0,a1,b0,b1), . . .)
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for ∗=+ or ∗=×, where the polynomial ω
(∗)
i is the image of the polynomial

ω
(∗)
i ∈ Z[X0,X1, . . . ,Y0,Y1, . . . ]

under the canonical homomorphism Z−→ B.
If p is invertible in B, then the set of Witt vectors is clearly a commutative ring under the

operations defined above. In the general case, when p is not invertible in B, the property of the
set (B)+∞

0 of being a commutative ring under the operations +,× defined above can be expressed
via certain equations for the coefficients of the polynomials ω

(∗)
i ∈ B[X0,X1, . . . ,Y0,Y1, . . . ]. This

implies that if a ring B satisfies these conditions, then the same is true for a subring, quotient ring
and the polynominal ring. Since every ring can be obtained in this way from a ring B in which p
is invertible, one deduces that under the image in B of the above defined operations for B the set
(B)+∞

0 is a commutative ring with the unity (1,0,0, . . .). This ring is called the Witt ring of B and
is denoted by W (B). It is easy to verify that if B is an integral domain, then W (B) is an integral
domain as well.

7.2. Assume from now on that p = 0 in B.

LEMMA. Define the maps

r0 : B−→W (B),

V : W (B)−→W (B) (the “Verschiebung”, i.e. "shift" map),

F : W (B)−→W (B) (the “Frobenius” map)

by the formulas
r0(a) = (a,0,0, . . .) ∈W (B),

V(a0,a1, . . .) = (0,a0,a1, . . .),

F(a0,a1, . . .) = (ap
0 ,a

p
1 , . . .).

Then
r0(ab) = r0(a)r0(b),

F(α +β ) = F(α)+F(β ),F(αβ ) = F(α)F(β ),

V(α +β ) = V(α)+V(β ), VF(α) = FV(α) = pα

for α,β ∈W (B).

Proof. All these properties can be deduced from properties of ω
(∗)
i . �

The map F− id is often denoted by ℘: W (B)−→W (B).
Put Wn(B) =W (B)/VnW (B). This is a ring consisting of finite sequences (a0, . . . ,an−1).

7.3. The following assertion is of great importance, since it provides a construction of a local
field of characteristic zero with prime element p and given perfect residue field K.

PROPOSITION. Let K be a perfect field of characteristic p. For a Witt vector α =(a0,a1, . . .)∈
W (K) put

v(α) = min{i : ai 6= 0} if α 6= 0, v(0) = +∞.
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Let F0 be the field of fractions of W (K) and v : F×0 −→ Z the extension of v from W (K)

(v(αβ−1) = v(α)− v(β )).
Then v is a discrete valuation on F0 and F0 is a complete discrete valuation field of character-

istic 0 with ring of integers W (K), prime element p, and residue field isomorphic to K. The set of
multiplicative representatives in F0 coincides with r0(K) and the map r0 with the Teichmüller map
K −→W (K).

Proof. If α = (0, . . . ,0︸ ︷︷ ︸
m times

, . . .), β = (0, . . . ,0︸ ︷︷ ︸
n times

, . . .), then using the properties of the polynomials ω
(∗)
i ,

we get

α +β = (0, . . . ,0︸ ︷︷ ︸
l times

, . . .), αβ = ( 0, . . . ,0︸ ︷︷ ︸
n+m times

, . . .)

with l >min(m,n). Hence, the extension of v to F0 is a discrete valuation.
Note that p= (0,1,0, . . .)∈W (K) and pn→ 0 as n→+∞ with respect to v. Since K is perfect,

by Lemma 7.2 one can write an element α = (a0,a1, . . .) ∈W (K) as the convergent sum

α = (a0,0,0, . . .)+(0,a1,0, . . .)+ · · ·=
∞

∑
i=0

r0(a
p−i

i )pi (∗)

Moreover, such expressions for Witt vectors are compatible with addition and multiplication in
W (K).

We also obtain that W (K) is complete with respect to v, and if v(α) = 0 for α ∈W (K), then
α−1 ∈W (K). Consequently, v(α) > v(β ) for α , β ∈W (K) implies αβ−1 ∈W (K), i.e., the ring
of integers coincides with W (K) and F0 is complete. The maximal ideal of W (K) is VW (K) and
the residue field is isomorphic to K.

Finally, r0(K) = ∩
n>0

F pn

0 , and hence, using Proposition 6.1, we complete the proof. �

8. The Hensel Lemma and Henselian Fields

Let F be a valuation field with the ring of integers O , the maximal ideal M , and the residue
field F . For a polynomial f(X) = anXn + · · ·+a0 ∈ O[X ] we will denote the polynomial anXn +

· · ·+a0 by f (X) ∈ F [X ]. We will write

f(X)≡ g(X) mod M m

if f(X)−g(X) ∈M m[X ].
8.1. Let A be a commutative ring. For two polynomials f (X) = anXn + . . .a0, g(X) =

bmXm + · · ·+ b0 their resultant their resultant is the determinant of a matrix of order (n+m)×
(n+m) formed by m rows of ai and n rows of b j, appropriately inserted.

This determinant R( f ,g) is zero if and only if f and g have a common root; in general
R( f ,g) = f f1 + gg1 for some polynomials f1,g1 ∈ O[X ]. If f (X) = an ∏

n
i=1(X −αi), g(X) =

bm ∏
m
j=1(X−β j), then their resultant R( f ,g) is am

n bn
m ∏i, j(αi−β j). In particular, R(X−a,g(X)) =

g(a).
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If f ,g∈O[X ] then R( f ,g)∈O . We shall use the following properties of the resultant: if f ≡ f1

mod M [X ] then R( f ,g) ≡ R( f1,g) mod M ; if R( f ,g) ∈M s \M s+1 then M s[X ] ⊂ f O[X ] +

gO[X ].

PROPOSITION. Let F be a complete discrete valuation field with the ring of integers O and
the maximal ideal M . Let g0(X),h0(X), f(X) be polynomials over O such that deg f(X) =

degg0(X)+degh0(X) and the leading coefficient of f(X) coincides with that of g0(X)h0(X). Let
R(g0,h0) /∈M s+1 and f(X)≡ g0(X)h0(X) mod M 2s+1 for an integer s> 0.

Then there exist polynomials g(X),h(X) such that

f(X) = g(X)h(X),

degg(X) = degg0(X), g(X)≡ g0(X) mod M s+1,

degh(X) = degh0(X), h(X)≡ h0(X) mod M s+1.

Proof. We first construct polynomials gi(X),hi(X) ∈O[X ] with the following properties: deg(gi−
g0)< degg0, deg(hi−h0)< degh0

gi ≡ gi−1 mod M i+s, hi ≡ hi−1 mod M i+s, f ≡ gihi mod M i+2s+1.

Proceeding by induction, we can assume that the polynomials g j(X),h j(X), for j 6 i− 1, have
been constructed. For a prime element π put

gi(X) = gi−1(X)+π
i+sGi(X), hi(X) = hi−1(X)+π

i+sHi(X)

with Gi(X),Hi(X) ∈ O[X ], degGi(X)< degg0(X), degHi(X)< degh0(X). Then

gihi−gi−1hi−1 ≡ π
i+s(gi−1Hi +hi−1Gi

)
mod M i+2s+1.

Since by the induction assumption f(X)−gi−1(X)hi−1(X) = π i+2s f1(X) for a suitable f1(X)∈
O[X ] of degree smaller than that of f , we deduce that it suffices for Gi(X), Hi(X) to satisfy the
congruence πs f1(X)≡ gi−1(X)Hi(X)+hi−1(X)Gi(X) mod M s+1.

However, R(gi−1(X),hi−1(X))≡ R(g0(X),h0(X)) 6≡ 0 mod M s+1. Then the properties of the
resultant imply the existence of polynomials Hi, Gi satisfying the congruence. Now put g(X) =

limgi(X),h(X) = limhi(X) and get f(X) = g(X)h(X). �

The following statement is often called Hensel Lemma. It was proved by Hensel for p-adic
numbers and by Rychlík for complete discrete valuation fields.

8.2. COROLLARY 1. Let F be as in the Proposition and F the residue field of F. Suppose
that f(X),g0(X),h0(X) are monic polynomials with coefficients in O and f (X) = g0(X)h0(X).
Suppose that g0(X),h0(X) are relatively prime in F [X ]. Then there exist monic polynomials
g(X),h(X) with coefficients in O , such that

f(X) = g(X)h(X), g(X) = g0(X), h(X) = h0(X).
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Proof. We have R( f0(X),g0(X)) /∈M and we can apply the previous Proposition for s = 0. The
polynomials g(X) and h(X) may be assumed to be monic, as it follows from the proof of the
Proposition. �

Valuation fields satisfying the assertion of Corollary 1 are said to be Henselian. Corollary 1
demonstrates that complete discrete valuation fields are Henselian.

COROLLARY 2. Let F be a Henselian field and f(X) a monic polynomial with coefficients in
O . Let f (X) ∈ F [X ] have a simple root β in F. Then f(X) has a simple root α ∈ O such that
α = β .

Proof. Let γ ∈ O be such that γ = β . Put g0(X) = X− γ in Corollary 1. �

8.3. COROLLARY 3. Let F be a complete discrete valuation field. Let f(X) be a monic
polynomial with coefficients in O . Let f (α0) ∈M 2s+1, f ′(α0) /∈M s+1 for some α0 ∈ O and
integer s> 0. Then there exists α ∈ O such that α−α0 ∈M s+1 and f (α) = 0.

Proof. Put g0(X) =X−α0 and write f(X) = f1(X)(X−α0)+δ with δ ∈O . Then δ ∈M 2s+1. Put
h0(X) = f1(X) ∈ O[X ]. Hence f(X) ≡ g0(X)h0(X) mod M 2s+1 and f ′(α0) = h0(α0) /∈M s+1.
This means that R(g0(X),h0(X)) /∈M s+1, and the Proposition implies the existence of polynomi-
als g(X),h(X) ∈ O[X ] such that g(X) = X−α,α ≡ α0 mod M s+1, and f(X) = g(X)h(X). �

COROLLARY 4. Let F be a complete discrete valuation field. For every positive integer m
whose image in F is not zero there is n such that 1+M n ⊂ F×m.

Proof. Put fa(X) = Xm− a with a ∈ 1+M n. Let m ∈M s \M s+1. Then f ′a(1) ∈M s \M s+1.
Therefore for every a ∈ 1+M

2s+1
due to Corollary 3 the polynomial fa(X) has a root α ≡ 1

mod M s+1. �

8.4. The following assertion is useful.

LEMMA. Let F be a complete discrete valuation field and let

f(X) = Xn +αn−1Xn−1 + · · ·+α0

be an irreducible polynomial with coefficients in F. Then the condition v(α0)> 0 implies v(αi)> 0
for 06 i6 n−1.

Proof. Assume that α0 ∈ O and that j is the maximal integer such that v(α j) = min06i6n−1 v(αi).
If α j /∈ O , then put

f1(X) = α
−1
j f(X),

g0(X) = X j +α
−1
j α j−1X j−1 + · · ·+α

−1
j α0,

h0(X) = α
−1
j Xn− j +1

We have f 1(X) = g0(X)h0(X), and g0(X),h0(X) are relatively prime. Therefore, by Proposi-
tion 8.1, f1(X) and f(X) are not irreducible. �
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9. Extensions of Valuation Fields

9.1. Let F be a field and L an extension of F with a valuation w : L−→ Γ′. Then w induces
the valuation w0 = w|F : F −→ Γ′ on F . In this context L/F is said to be an extension of valuation
fields. The group w0(F×) is a totally ordered subgroup of w(L×) and the index of w0(F×) in
w(L×) is called the ramification index e(L/F,w). The ring of integers Ow0 is a subring of the ring
of integers Ow and the maximal ideal Mw0

coincides with Mw ∩Ow0 . Hence, the residue field
Fw0 can be considered as a subfield of the residue field Lw. Therefore, if α is an element of Ow0 ,
then its residue in the field Fw0 can be identified with the image of α as an element of Ow in the
field Lw. We shall denote this image of α by α . The degree of the extension Lw/Fw0 is called the
inertia degree or residue degree f (L/F,w). An immediate consequence is the following Lemma.

LEMMA. Let L be an extension of F and let w be a valuation on L. Let L⊃M ⊃ F and let w0

be the induced valuation on M. Then

e(L/F,w) = e(L/M,w)e(M/F,w0),

f (L/F,w) = f (L/M,w) f (M/F,w0).

9.2. Assume that L/F is a finite extension and w0 is a discrete valuation. Let elements
α1, . . . ,αe ∈ L× e 6 e(L/F,w) be such that w(α1) +w(F×), . . . ,w(αe) +w(F×) are distinct in
w(L×)/w(F×). If ∑

e
i=1 ciαi = 0 holds with ci ∈ F , then, as w(ciαi) are all distinct, we get

w
( e

∑
i=1

ciαi
)
= min

16i6e
w(ciαi) and ci = 0 for 16 i6 e.

This shows that α1, . . . ,αe are linearly independent over F and hence e(L/F,w) is finite. Let π

be a prime element with respect to w0. Then we deduce that there are only a finite number of
positive elements in w(L×) which are6w(π). Consider the smallest positive element in w(L×). It
generates the group w(L×), and we conclude that w is a discrete valuation. Thus, we have proved
the following result.

LEMMA. Let L/F be a finite extension and w0 discrete for a valuation w on L. Then w is
discrete.

9.3. Hereafter we shall consider discrete valuations. Let F and L be fields with discrete
valuations v and w respectively and F ⊂ L. The valuation w is said to be an extension of the
valuation v, if the topology defined by w0 is equivalent to the topology defined by v. We shall
write w|v and use the notations e(w|v), f (w|v) instead of e(L/F,w), f (L/F,w). If α ∈ F then
w(α) = e(w|v)v(α).

LEMMA. Let L be a finite extension of F of degree n; then

e(w|v) f (w|v)6 n.
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Proof. Let e = e(w|v) and let f be a positive integer such that f 6 f (w|v). Let θ1, . . . ,θ f be
elements of Ow such that their residues in Lw are linearly independent over Fv. It suffices to show
that {θiπ

j
w} are linearly independent over F for 16 i6 f ,06 j 6 e−1. Assume that

∑
i, j

ci jθiπ
j

w = 0

for ci j ∈ F and not all ci j = 0.
Multiplying the coefficients ci j by a suitable power of πv, we may assume that ci j ∈ Ov and

not all ci j ∈Mv. Note that if ∑i ci jθi ∈Mw, then ∑i ci jθ i = 0 and ci j ∈Mv. Therefore, there exists
an index j such that ∑i ci jθi /∈Mw. Let j0 be the minimal such index. Then j0 = w(∑ci jθiπ

j
w),

which is impossible. We conclude that all ci j = 0. Hence, e f 6 n and e(w|v) f (w|v)6 n. �

For instance, let F̂ be the completion of a discrete valuation field F with the discrete valuation
v̂. Then e(v̂|v) = 1, f (v̂|v) = 1. Note that if F is not complete, then |F̂ : F | 6= e(v̂|v) f (v̂|v). On the
contrary, in the case of complete discrete valuation fields we have

9.4. PROPOSITION. Let L be an extension of F and let F,L be complete with respect to dis-
crete valuations v,w. Let w|v, f = f (w|v) and e = e(w|v)< ∞. Let πw ∈ L be a prime element with
respect to w and θ1, . . . ,θ f elements of Ow such that their residues form a basis of Lw over Fv.
Then {θiπ

j
w} is a basis of the F-space L and of the Ov-module Ow, with 16 i6 f ,06 j 6 e−1.

If f < ∞, then L/F is a finite extension of degree n = e f .

Proof. Let R be a set of representatives for F . Then the set

R′ =
{ f

∑
i=1

aiθi : ai ∈ R and almost all ai = 0
}

is the set of representatives for L. For a prime element πv with respect to v put πm = πk
v π

j
w, where

m = ek+ j,06 j < e. Using Proposition 4.2 we obtain that an element α ∈ L can be expressed as
a convergent series

α = ∑
m

ηmπm with ηm ∈ R′.

Writing

ηm =
f

∑
i=1

ηm,iθi with ηm,i ∈ R,

we get

α = ∑
i, j

(
∑
k

ηek+ j,iπ
k
v
)
θiπ

j
w.

Thus, α can be expressed as ∑ρi, jθiπ
j

w with

ρi, j = ∑
k

ηek+ j,iπ
k
v ∈ F, 16 i6 f ,06 j 6 e−1.

By the proof of the previous Lemma this expression for α is unique. We conclude that
{

θiπ
j

w

}
form a basis of L over F and of Ow over Ov. �
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9.5. Further we shall assume that v(F×) = Z for a discrete valuation v. Then e(w|v) =
|Z : w(F×)| for an extension w of v.

THEOREM. Let F be a complete field with respect to a discrete valuation v and L a finite

extension of F. Then there is precisely one extension w on L of the valuation v and w =
1
f

v◦NL/F

with f = f (w|v). The field L is complete with respect to w.

Proof. Let w′ = v◦NL/F . First we verify that w′ is a valuation on L. It is clear that w′(α) = +∞ if
and only if α = 0 and w′(αβ ) = w′(α)+w′(β ). Assume that w′(α)> w′(β ) for α,β ∈ L×, then

w′(α +β ) = w′(β )+w′
(
1+

α

β

)
and it suffices to show that if w′(γ)> 0, then w′(1+ γ)> 0. Let

f(X) = Xm +am−1Xm−1 + · · ·+a0

be the monic irreducible polynomial of γ over F . Then we get (−1)ma0 = NF(γ)/F(γ) and if
s = |L : F(γ)|, then ((−1)ma0)

s = NL/F(γ). We deduce that v(a0)> 0, and making use of 8.4, we
get v(ai)> 0 for 06 i6 m−1. However,

(−1)mNF(γ)/F(1+ γ) = f (−1) = (−1)m +am−1(−1)m−1 + · · ·+a0,

hence

v
(
NF(γ)/F(1+ γ)

)
> 0 and v

(
NL/F(1+ γ)

)
> 0,

i.e., w′(1+ γ)> 0. Thus, we have shown that w′ is a valuation on L.
Let n = |L : F |; then w′(α) = nv(α) for α ∈ F×. Hence, the valuation (1/n)w′ is an extension

of v to L (note that (1/n)w′(L×) 6= Z in general). Let e = e(L/F,(1/n)w′). By Lemma 9.3 e is
finite. Put w = (e/n)w′ : L× → Q, hence w(L×) = w(πw)Z = Z with a prime element πw with
respect to w. Therefore, w = (e/n)v◦NL/F is at once a discrete valuation on L and an extension of
v.

Let γ1, . . . ,γn be a basis of the F-vector space L. By induction on r, 16 r 6 n, we shall show
that

r

∑
i=1

a(m)
i γi→ 0, m→ ∞⇐⇒ a(m)

i → 0 m→ ∞ for i = 1, . . . ,r

where a(m)
i ∈ F .

The left arrow and the case r = 1 are clear. For the induction step we can assume that a(m)
1 6→ 0.

Therefore we can assume that v(a(m)
1 ) is bounded. Hence

γ1 +
r

∑
i=2

b(m)
i γi =

(
a(m)

1

)−1
r

∑
i=1

a(m)
i γi→ 0,

where b(m)
i = (a(m)

1

)−1a(m)
i . Then ∑

r
i=2(b

(m)
i −b(m+1)

i )γi→ 0, and the induction hypothesis shows

that b(m)
i − b(m+1)

i → 0 for i = 2, . . . ,r. Thus, each (b(m)
i )m converges to, say, bi ∈ F . So the

sequence γ1 +∑
r
i=2 b(m)

i γi converges both to 0 and to γ1 +∑
r
i=2 biγi, so

0 = γ1 +
r

∑
i=2

biγi
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which contradicts the choice of γi.
Similarly one shows that a sequence ∑

r
i=1 a(m)

i γi is fundamental if and only if a(m)
i is funda-

mental for each i = 1, . . . ,r.
Thus, the completeness of F implies the completeness of its finite extension L with respect to

any extension of v. We also have the uniqueness of the extension. �

9.6. Now we treat extensions of discrete valuations in the general case.

THEOREM. Let F be a field with a discrete valuation v. Let F̂ be the completion of F, and
v̂ the discrete valuation of F̂. Suppose that L = F(α) is a finite extension of F and f(X) the
monic irreducible polynomial of α over F. Let f(X) = ∏

k
i=1 gi(X)ei be the decomposition of

the polynomial f(X) into irreducible monic factors in F̂ [X ]. For a root αi of the polynomial
gi(X) (α1 = α) put Li = F̂(αi). Let ŵi be the discrete valuation on Li, the unique extension of v̂.

Then L is embedded as a dense subfield in the complete discrete valuation field Li under
F ↪→ F̂ , α→ αi, and the restriction wi of ŵi on L is a discrete valuation on L which extends v. The
valuations wi are distinct and every discrete valuation which is an extension of v to L coincides
with some wi for 16 i6 k.

Proof. First let w be a discrete valuation on L which extends v. Let L̂w be the completion of L
with respect to w. By Proposition 3.2 there exists an embedding σ : F̂ −→ L̂w over F . As α ∈ L̂w,
we get σ(F̂)(α) ⊂ L̂w. Since σ(F̂)(α) is a finite extension of σ(F̂), Theorem 9.5 shows that
σ(F̂)(α) is complete. Therefore, L̂w ⊂ σ(F̂)(α) and, moreover, L̂w = σ(F̂)(α). Let g(X) be the
monic irreducible polynomial of α over σ(F̂). Then σ−1g(X) divides f(X) and σ−1g(X) = gi(X)

for some 16 i6 k, w = wi.
Conversely, assume that g(X) = gi(X) and ŵi is the unique discrete valuation on Li = F̂(αi)

which extends v̂. Since F is dense in F̂ , we deduce that the image of L is dense in Li and wi extends
v.

If wi = w j for i 6= j then there is an isomorphism between F̂(αi) and F̂(α j) over F̂ which
sends αi to α j, but this is impossible. �

COROLLARY. Let L/F be a purely inseparable finite extension. Then there is precisely one
extension to L of the discrete valuation v of F.

Proof. Assume L = F(α). Then f(X) is decomposed as (X −α)pm
in the fixed algebraic closure

Falg of F . Therefore, k = 1 and there is precisely one extension of v to L. If there were two distinct
extensions w1,w2 of v to L in the general case of a purely inseparable extension L/F , we would
find α ∈ L such that w1(α) 6= w2(α), and hence the restriction of w1 and w2 on F(α) would be
distinct. This leads to contradiction. �

9.7. REMARKS.
1. More precisely, the Theorem should be formulated as follows.
The tensor product L⊗F F̂ may be treated as an L-module and F̂-algebra. Then the quotient

of L⊗F F̂ by its radical decomposes into the direct sum of complete fields which correspond
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to the discrete valuations on L that are extensions of v. Under the conditions of the Theorem
L⊗F F̂ = F̂ [X ]/( f(X)), and we have the surjective homomorphism

L⊗F F̂ = F̂ [X ]/( f(X))−→
k⊕

i=1

F̂ [X ]/(gi(X)) ∼−→
k⊕

i=1

F̂(αi) =
⊕
wi|v

L̂wi

with the kernel
(
∏

k
i=1 gi(X)

)
F̂ [X ]/ f(X)F̂ [X ], where L̂wi = F̂(αi). Note that this kernel coincides

with the radical of L⊗F F̂ . Under the conditions of the previous Theorem, if L/F is separable,
then all ei are equal to 1 and the kernel is trivial.

2. Assume that L/F is as in the Theorem and, in addition, L/F is Galois. Then F̂(αi)/F̂ is
Galois. Let G = Gal(L/F). Note that if w is a valuation on L, then w ◦σ is a valuation on L for
σ ∈ G. Put

Hi = {σ ∈ G : w1 ◦σ = wi} for 16 i6 k.

Then it is easy to show that G is a disjoint union of the Hi and Hi = H1σi for σi ∈Hi. Theorem 9.6
implies that Hi coincides with {σ ∈ G : σgi(X) = g1(X)}, whence {σ ∈ G : σgi(X) = gi(X)} =
σ
−1
i H1σi. Then deggi(X) = degg1(X), ei = 1. The subgroup H1 is said to be the decomposition

group of w1 over F . The fixed field M = LH1 is said to be the decomposition field of w1 over F .
Note that the field M is obtained from F by adjoining coefficients of the polynomial g1(X). We
get L = M(α1), and g1(X) ∈M[X ] is irreducible over F̂ = M̂. Theorem 9.6 shows that w1 is the
unique extension to L of w1|M; there are k distinct discrete valuations on M which extend v.

EXAMPLE. Let E = F(X). Recall that the discrete valuations on E which are trivial on F are
in one-to-one correspondence with irreducible monic polynomials p(X) over F : p(X)→ vp(X),
v→ pv(X) and there is the valuation v∞ with a prime element 1

X . If an is the leading coefficient of
f(X), then

f(X) = an ∏
v 6=v∞

pv(X)v( f(X)).

Let F1 be an extension of F . Then a discrete valuation on E1 = F1(X), trivial on F1, is an
extension of some discrete valuation on E = F(X), trivial on F . Let p(X) = pv(X) be an irre-
ducible monic polynomial over F . Let p(X) be decomposed into irreducible monic factors over
F1 : p(X) =∏

k
i=1 pi(X)ei . Then one immediately deduces that the wi =wpi(X), 16 i6 k, are all dis-

crete valuations, trivial on F1, which extend the valuation vp(X). We also have e
(
wpi(X)|vp(X)

)
= ei.

There is precisely one extension w∞ of v∞. Thus, for every v

pv(X) = ∏
wi|v

pwi(X)e(wi|v)

and we have the surjective homomorphism F(α)⊗F F1 −→
⊕

F1(αi), where α is a root of p(X)

and αi is a root of pi(X). Here the kernel of this homomorphism also coincides with the radical of
F(α)⊗F F1.

9.8. Finally we treat extensions of Henselian discrete valuation fields.

LEMMA. (Gauß) Let F be a discrete valuation field, O its ring of integers. Then if a polyno-
mial f(X) ∈ O[X ] is not irreducible in F [X ], it is not irreducible in O[X ].
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Proof. Assume that f(X) = g(X)h(X) with g(X),h(X) ∈ F [X ]. Let

g(X) =
n

∑
i=0

biX i, h(X) =
m

∑
i=0

ciX i, f(X) =
n+m

∑
i=0

aiX i.

Let
j1 = min

{
i : v(bi) = min

06k6n
v(bk)

}
, j2 = min

{
i : v(ci) = min

06k6m
v(ck)

}
.

Then v(bic j1+ j2−i) > v(b j1c j2) for i 6= j1; hence v(a j1+ j2) = v(b j1)+ v(c j2). If c = v(b j1) < 0,
then we obtain v(c j2)>−v(b j1), and one can write f(X) = (π−cg(X))(πch(X)), as desired. �

THEOREM. Let v be a discrete valuation on F. The following conditions are equivalent:

(1) F is a Henselian field with respect to v.
(2) The discrete valuation v has a unique extension to every finite algebraic extension L of

F.
(3) If L is a finite separable extension of F of degree n, then

n = e(w|v) f (w|v),

where w is an extension of v on L.
(4) F is separably closed in F̂.

Proof.
(1)⇒(2). Using Corollary 9.6, we can assume that L/F is separable. Moreover, it suffices

to verify (2) for the case of a Galois extension. Let L = F(α) be Galois, f(X) be the irreducible
polynomial of α over F . Let f(X) = g1(X) . . .gk(X) be the decomposition of f(X) over F̂ as in
9.6. Let H1 and M = LH1 be as therein. Put w′i = wi|M for 1 6 i 6 k and suppose that k > 2.
Since w1 is the discrete valuation on L, which is the unique extension of w′1, we conclude that the
topology induced by w′1 is not equivalent to the topology induced by w′i for 2 6 i 6 k. We get
w′i = w1 ◦σi|M for σ1, . . . ,σl ∈ G,σ1 = 1. Taking into account the proof of Proposition 2.8, one
can find an element β ∈M such that

−c = w′1(β )< 0, w′2(β )> c, . . . , w′k(β )> c.

Let τ1, . . . ,τr (τ1 = 1) be the maximal set of elements of G = Gal(L/F) for which the elements
β ,τ2(β ), . . . ,τr(β ) are distinct. Then τ2, . . . ,τr /∈H1, and w1(β )=−c, w1

(
τi(β )

)
> c for 26 i6 r.

Let h(X) = X r +br−1X r−1 + · · ·+b0 be the irreducible monic polynomial of β over F . Then

w1(b0) =
r

∑
i=1

w1
(
τi(β )

)
> 0.

Similarly one checks that w1(bi)> 0 for i < r−1. We also obtain that

w1(br−1) = min
16i6r

w1 (τi(β )) =−c < 0.

Hence, v(bi) > 0 for 0 6 i < r− 1 and v(br−1) < 0. Put h1(X) = b−r
r−1h(br−1X). Then h1(X)

is a monic polynomial with integer coefficients. Since h1(X) = (X + 1)X r−1, by the Hensel
Lemma 8.2, we obtain that h1(X) is not irreducible, implying the same for h(X), and we arrive at
a contradiction. Thus, k = 1, and the discrete valuation v is uniquely extended on L.
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(2)⇒(3). Let L = F(α) be a finite separable extension of F and let L/F be of degree n. Since
v has the unique extension w to L, we deduce from Theorem 9.6 that f(X) = g1(X) is the decom-
position of the irreducible monic polynomial f(X) of α over F in F̂ [X ]. Therefore, the extension
F̂(α)/F̂ is of degree n. We have also e(w|v) = e(ŵ|v̂), f (w|v) = f (ŵ|v̂), because e(ŵ|w) = 1,
f (ŵ|w) = 1, e(v̂|v) = 1, f (v̂|v) = 1; see 9.3. Proposition 9.4 shows that n = e(ŵ|v̂) f (ŵ|v̂). Hence
n = e(w|v) f (w|v).

(3)⇒(4). Let α ∈ F̂ be separable over F . Put L = F(α) and n = |L : F |. Let w be the discrete
valuation on L which induces the same topology on L as v̂|L. Then e(w|v) = f (w|v) = 1, and hence
n = 1,α ∈ F .

(4)⇒(1). Let f(X),g0(X),h0(X) be monic polynomials with coefficients in O . Let f (X) =

g0(X)h0(X) and g0(X),h0(X) be relatively prime in Fv[X ]. The field F̂ is Henselian according to
8.1. Then there exist monic polynomials g(X), h(X) over the ring of integers Ô in F̂ , such that
f(X) = g(X)h(X) and g(X) = g0(X),h(X) = h0(X). The polynomials g0(X),h0(X) are relatively
prime in O[X ] because their residues possess this property. Consequently, they are relatively prime
in F [X ] by the previous Lemma. The roots of the polynomial f(X) are algebraic over F , hence the
roots of the polynomials g(X),h(X) are algebraic over F and the coefficients of g(X),h(X) are
algebraic over F . Since F is separably closed in F̂ , we obtain that g(X)pm

,h(X)pm
∈ F [X ] for some

m > 0. Then f(X)pm
is the product of two relatively prime polynomials in F [X ]. We conclude

that g(X)pm
= g1(X)pm

and h(X)pm
= h1(X)pm

for some polynomials g1(X),h1(X) ∈ F [X ] and,
finally, the polynomial g(X) coincides with g1(X) ∈ O[X ], the polynomial h(X) coincides with
h1(X) ∈ O[X ]. �

9.9. COROLLARY 1. Let F be a Henselian discrete valuation field and L an algebraic exten-
sion of F. Then there is precisely one valuation w : L× −→Q (not necessarily discrete), such that
the restriction w|F coincides with the discrete valuation v on F. Moreover, L is Henselian with
respect to w.

Proof. Let M/F be a finite subextension of L/F , and let, in accordance with the previous Theorem,
wM : M× −→ Q be the unique valuation on M for which wM|F = v. For α ∈ L× we put w(α) =

wM(α) with M = F(α). It is a straightforward exercise to verify that w is a valuation on L and
that w|F = v. If there were another valuation w′ on L with the property w′|F = v, we would find
α ∈ L with w(α) 6= w′(α), and hence w|F(α) and w′|F(α) would be two distinct valuations on

F(α) with the property w|F = w′|F = v. Therefore, there exists exactly one valuation w on L for
which w|F = v. To show that L is Henselian we note that polynomials f(X) ∈ Ow[X ],g0(X) ∈
Ow[X ],h0(X) ∈ Ow[X ] belong in fact to O1[X ], where O1 is the ring of integers for some finite
subextension M/F in L/F . Clearly, the polynomials g0(X),h0(X) are relatively prime in MwM [X ],
hence there exist polynomials g(X),h(X) ∈ O1[X ], such that f(X) = g(X)h(X), g(X) = g0(X)

and h(X) = h0(X). �

COROLLARY 2. Let F be a Henselian discrete valuation field, and let L/F be a finite sepa-
rable extension. Let v be the valuation on F and w the extension of v to L. Let e, f ,πw,θ1, . . . ,θ f
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be as in Proposition 2.4. Then θiπ
j

w is a basis of the F-space L and of the Ov-module Ow, with
16 i6 f ,06 j 6 e−1. In particular, if e = 1, then

Ow = Ov [{θi}] , L = F ({θi}) ,

and if f = 1, then

Ow = Ov [πw] , L = F (πw) .

Proof. One can show, similarly to the proof of Lemma 2.3, that the elements θiπ
j

w for 1 6 i 6
f ,0 6 j 6 e− 1 are linearly independent over F . As n = e f , these elements form a basis of Ow

over Ov and of L over F . �

COROLLARY 3. Let F be a Henselian discrete valuation field, and L/F a finite separable
extension. Let w be the discrete valuation on L and σ : L −→ Falg an embedding over F. Then
w◦σ−1 is the discrete valuation on σL and M

σL = σML,OσL = σOL.

COROLLARY 4. If F is a Henselian discrete valuation field, then Proposition 8.1, Corollary 3
and 4 of 8.3, and Lemma 8.4 hold for F.

Proof. In terms of Proposition 8.1 we obtain that there exist polynomials g,h ∈ Ô[X ] (where Ô is
the ring of integers of F̂), such that f = gh, g≡ g0 mod M̂ s+1, h≡ h0 mod M̂ s+1, degg= degg0,
degh = degh0 (where M̂ is the maximal ideal of Ô). Proceeding now analogously to the part
(4)⇒(1) of the proof of Theorem 2.8, we conclude that gpm

and hpm
belong to O[X ] for some

m> 0. As g0(X),h0(X) are relatively prime in F [X ] because R(g0(X),h0(X)) 6= 0, we obtain that
g(X) = g0(X),h(X) = h0(X) and Proposition 8.1 holds for F . Corollary 3 of 8.3 and Lemma 8.4
for F are formally deduced from the latter. �

The separable closure of F in F̂ is called the Henselisation of F (this is a least Henselian field
containing F). For example, the separable closure of Q in Qp is a Henselian countable field with
respect to the p-adic valuation.

10. Unramified and Ramified Extensions

The field F has the unique surjective discrete valuation F× −→ Z with respect to which it is
Henselian; we shall denote it from now on by vF .

Let L/F be an algebraic extension. If vL is the unique discrete valuation on L which extends
the valuation v = vF on F , then we shall write e(L|F), f (L|F) instead of e(vL|vF), f (vF |vF). We
shall write O or OF ,M or MF ,U or UF ,π or πF ,F for the ring of integers Ov, the maximal
ideal Mv, the group of units Uv, a prime element πv with respect to v, and the residue field Fv,
respectively.

10.1. LEMMA. Let L/F be a finite extension. Let α ∈ OL and let f(X) be the monic irre-
ducible polynomial of α over F. Then f(X) ∈OF [X ]. Conversely, let f(X) be a monic polynomial
with coefficients in OF . If α ∈ L is a root of f(X), then α ∈ OL.
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Proof. It is well known that β = α pm
is separable over F for some m> 0. Let M be a finite Galois

extension of F with β ∈M. Then, in fact, β ∈ OM and the monic irreducible polynomial g(X) of
β over F can be written as

g(X) =
r

∏
i=1

(X−σiβ ), σi ∈ Gal(M/F), σ1 = 1.

Since β ∈ OM we get σiβ ∈ OM using Corollary 3 of 9.9. Hence we obtain g(X) ∈ OF [X ] and
f(X) = g

(
X pm) ∈OF [X ]. If α ∈ L is a root of the polynomial f(X) = Xn +an−1Xn−1 + · · ·+a0 ∈

OF [X ] and α /∈ OL, then 1 =−an−1α−1−·· ·−a0α−n ∈ML, contradiction. Thus, α ∈ OL. �

A finite extension L of a Henselian discrete valuation field F is called unramified if L/F is a
separable extension of the same degree as L/F . We deduce from 9.4 that if L/F is unramified then
e(L|F) = 1, f (L|F) = |L : F |.

A finite extension L/F is called totally ramified if f (L|F) = 1.
A finite totally ramified extension L/F is called wildly ramified if p|e(L|F) where p= char(F)>

0.
A finite extension L/F is called tamely ramified if L/F is a separable extension and p -e(L|F)

where p = char(F)> 0.
Unramified extensions are tamely ramified.

10.2. First we treat the case of unramified extensions.

PROPOSITION.

(1) Let L/F be an unramified extension, and L = F(θ) for some θ ∈ L. Let α ∈ OL be such
that α = θ . Then L=F(α), and L is separable over F, OL =OF [α]; θ is a simple root of
the polynomial f (X) irreducible over F, where f(X) is the monic irreducible polynomial
of α over F.

(2) Let f(X) be a monic polynomial over OF , such that its residue is a monic separable
polynomial over F. Let α be a root of f(X) in Falg, and let L = F(α). Then the extension
L/F is unramified and L = F(θ) for θ = α .

Proof. (1) By the preceding Lemma f(X) ∈ OF [X ]. We have f (α) = 0 and f (α) = 0, deg f(X) =

deg f (X). Furthermore,

|L : F |> |F(α) : F |= deg f(X) = deg f (X)> |F(θ) : F |= |L : F |.

It follows that L = F(α) and θ is a simple root of the irreducible polynomial f (X). Therefore,
f ′(θ) 6= 0 and f ′(α) 6= 0, i.e., α is separable over F . It remains to use Corollary 2 of 9.9 to obtain
OL = OF [α].

(2) Let f(X)=∏
n
i=1 fi(X) be the decomposition of f(X) into irreducible monic factors in F [X ].

Lemma 9.8 shows that fi(X)∈OF [X ]. Suppose that α is a root of f1(X). Then g1(X) = f 1(X) is a
monic separable polynomial over F . The Henselian property of F implies that g1(X) is irreducible
over F . We get α ∈ OL by Lemma 10.1. Since θ = α ∈ L, we obtain L⊃ F(θ) and

deg f1(X) = |L : F |> |L : F |> |F(θ) : F |= degg1(X) = deg f1(X).
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Thus, L = F(θ), and L/F is unramified. �

COROLLARY.

(1) If L/F,M/L are unramified, then M/F is unramified.
(2) If L/F is unramified, M is an algebraic extension of F and M is the discrete valuation

field with respect to the extension of the valuation of F, then ML/M is unramified.
(3) If L1/F,L2/F are unramified, then L1L2/F is unramified.

Proof. (1) follows from Lemma 9.1.
To verify (2) let L = F(α) with α ∈ OL, f(X) ∈ OF [X ] as in the first part of the Proposition.

Then α /∈ML because L = F(α). Observing that ML = M(α), we denote the irreducible monic
polynomial of α over M by f1(X). By the Henselian property of M we obtain that f 1(X) is a
power of an irreducible polynomial over M.However, f 1(X) divides f (X), hence f 1(X) is irre-
ducible separable over M. Applying the second part of the Proposition, we conclude that ML/M
is unramified.

(3) follows from (1) and (2). �

An algebraic extension L of a Henselian discrete valuation field F is called unramified if
L/F,L/F are separable extensions and e(w|v) = 1, where v is the discrete valuation on F , and w is
the unique extension of v on L. For finite extensions this is compatible with the previous definition.

The third assertion of the Corollary shows that the compositum of all finite unramified ex-
tensions of F in a fixed algebraic closure Falg of F is unramified. This extension is a Henselian
discrete valuation field. It is called the maximal unramified extension Fur of F . Its maximality
implies σFur = Fur for any automorphism of the separable closure Fsep over F . Thus, Fur/F is
Galois.

10.3. PROPOSITION.

(1) Let L/F be an unramified extension and let L/F be a Galois extension. Then L/F is
Galois.

(2) Let L/F be an unramified Galois extension. Then L/F is Galois. For an automorphism
σ ∈ Gal(L/F) let σ be the automorphism in Gal(L/F) satisfying the relation σ̄ ᾱ = σα

for every α ∈ OL. Then the map σ 7→ σ induces an isomorphism of Gal(L/F) onto
Gal(L/F).

Proof. (1) It suffices to verify the first assertion for a finite unramified extension L/F . Let L=F(θ)

and let g(X) be the irreducible monic polynomial of θ over F . Then

g(X) =
n

∏
i=1

(X−θi),

with θi ∈ L,θ1 = θ . Let f(X) be a monic polynomial over OF of the same degree as g(X) and
f (X) = g(X). The Henselian property

(
Corollary 2 in 8.2

)
implies

f(X) =
n

∏
i=1

(X−αi),
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with αi ∈OL,α i = θi. Proposition 10.2 shows that L = F(α1), and we deduce that L/F is Galois.

(2) Note that the automorphism σ is well defined. Indeed, if β ∈OL with β = α , then σ(α−
β ) ∈ML by Corollary 3 in 9.9 and σα = σβ . It suffices to verify the second assertion for a finite
unramified Galois extension L/F . Let α,θ , f(X) be as in the first part of Proposition 10.2. Since
all roots of f(X) belong to L, we obtain that all roots of f (X) belong to L and L/F is Galois. The
homomorphism Gal(L/F) −→ Gal(L/F) defined by σ 7→ σ is surjective because the condition
σθ = θi implies σα = αi for the root αi of f(X) with α i = θi. Since Gal(L/F), Gal(L/F) are of
the same order, we conclude that Gal(L/F) is isomorphic to Gal(L/F). �

COROLLARY. The residue field of Fur coincides with the separable closure Fsep of F and
Gal(Fur/F)∼= Gal(Fsep

/F).

Proof. Let θ ∈ Fsep, let g(X) be the monic irreducible polynomial of θ over F , and f(X) as in the
second part of Proposition 10.2. Let {αi} be all the roots of f(X) and L = F({αi}). Then L⊂ Fur

and θ = α i ∈ Fur for a suitable i. Hence, Fur = Fsep. �

10.4. Let L be an algebraic extension of F , and let L be a discrete valuation field. We will
assume that Falg = Lalg in this case.

PROPOSITION. Let L be an algebraic extension of F and let L be a discrete valuation field.
Then Lur = LFur, and L0 = L∩Fur is the maximal unramified subextension of F which is contained
in L. Moreover, L/L0 is a purely inseparable extension.

Proof. The second part of Corollary 10.2 implies Lur ⊃ LFur. Since the residue field of LFur con-
tains the compositum of the fields L and Fsep, which coincides with Lsep because L/F is algebraic,
we deduce Lur = LFur. An unramified subextension of F in L is contained in L0, and L0/F is
unramified. Let θ ∈ L be separable over F , and let g(X) be the monic irreducible polynomial of θ

over F . Let f(X) be a monic polynomial with coefficients in OF of the same degree as g(X), and
f (X) = g(X). Then there exists a root α ∈ OL of the polynomial f(X) with α = θ because of the
Henselian property. Proposition 10.2 shows that F(α)/F is unramified, and hence θ ∈ L0. �

COROLLARY. Let L be a finite separable (resp. finite) extension of a Henselian (resp. com-
plete) discrete valuation field F, and let L/F be separable. Then L is a totally ramified extension
of L0, Lur is a totally ramified extension of Fur, and |L : L0|= |Lur : Fur|.

Proof. Theorem 9.8 and Proposition 9.4 show that f (L|L0) = 1, and e(L|L0) = |L : L0|. At the
same time, Lemma 9.1 implies

e(Lur|Fur) = e(Lur|F) = e(L|L0).

Since |L : L0| > |Lur : Fur|, we obtain that |L : L0| = |Lur : Fur|, e(Lur|Fur) = |Lur : Fur|, and
f (Lur|Fur) = 1. �
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10.5. We treat the case of tamely ramified extensions.

PROPOSITION.

(1) Let L be a finite separable (resp. finite) tamely ramified extension of a Henselian (resp.
complete) discrete valuation field F and let L0/F be the maximal unramified subexten-
sion in L/F. Then L = L0(π) and OL = OL0 [π] with a prime element π in L satisfying
the equation Xe−π0 = 0 for some prime element π0 in L0, where e = e(L|F).

(2) Let L0/F be a finite unramified extension, L = L0(α) with αe = β ∈ L0. Let p - e if
p = char(F)> 0. Then L/F is separable tamely ramified.

Proof. (1) The Corollary of Proposition 10.4 shows that L/L0 is totally ramified. Let π1 be a
prime element in L0, then π1 = πe

Lε for a prime element πL in L and ε ∈UL according to 9.3. Since
L = L0, there exists η ∈ OL0 such that η = ε . Hence π1η−1 = πe

Lρ for the principal unit ρ =

εη−1 ∈ OL. For the polynomial f(X) = Xe−ρ we have f (1) ∈ML, f ′(1) = e. Now Corollary 2
of 8.2 shows the existence of an element ν ∈ OL with νe = ρ , ν = 1. Therefore, π0 = π1η−1,
π = πLν are the elements desired for the first part of the Proposition. It remains to use Corollary 2
of 9.9.

(2) Let β = πa
1 ε for a prime element π1 in L0 and a unit ε ∈UL0 . The polynomial g(X) =

Xe − ε is separable in L0[X ] and we can apply Proposition 10.2 to f(X) = Xe − ε and a root
η ∈ Fsep of f(X). We deduce that L0(η)/L0 is unramified and hence it suffices to verify that
M/M0 for M = L(η),M0 = L0(η), is tamely ramified. We get M = M0(α1) with α1 = αη−1,
αe

1 = πa
1 . Put d = g.c.d.(e,a). Then

M ⊂M0(α2,ζ )

with α
e/d
2 = π

a/d
1 and a primitive eth root ζ of unity. Since the extension M0 (ζ )/M0 is unrami-

fied (this can be verified by the same arguments as above), π1 is a prime element in M0 (ζ ). Let
v be the discrete valuation on M0 (α2,ζ ). Then (a/d)v(π1) ∈ (e/d)Z and v(π1) ∈ (e/d)Z, be-
cause a/d and e/d are relatively prime. This shows that e

(
M0(α2,ζ ) |M0(ζ )

)
> e/d. However,

|M0(ζ ,α2) : M0(ζ )|6 e/d, and we conclude that M0(ζ ,α2)/M0(ζ ) is tamely and totally ramified.
Thus, M0 (ζ ,α2)/M0 and M/M0 are tamely ramified extensions. �

COROLLARY.

(1) If L/F,M/L are separable tamely ramified, then M/F is separable tamely ramified.
(2) If L/F is separable tamely ramified, M/F is an algebraic extension, and M is discrete,

then ML/M is separable tamely ramified.
(3) If L1/F,L2/F are separable tamely ramified, then L1L2/F is separable tamely ramified.

If F is complete, then all the assertions hold without the assumption of separability.

Proof. It is carried out similarly to the proof of Corollary 10.2. To verify (2) one can find the
maximal unramified subextension L0/F in L/F . Then it remains to show that ML/ML0 is tamely
ramified. Put L = L0(π) with πe = π0. Then we get ML = ML0(π), and the second part of the
Proposition yields the required assertion. �
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10.6. Finally we treat the case of totally ramified extensions. Let F be a Henselian discrete
valuation field. A polynomial

f(X) = Xn +an−1Xn−1 + · · ·+a0 over O

is called an Eisenstein polynomial if a0, . . . ,an−1 ∈M , a0 /∈M 2.

PROPOSITION.

(1) The Eisenstein polynomial f(X) is irreducible over F. If α is a root of f(X), then
F(α)/F is a totally ramified extension of degree n, and α is a prime element in F(α), OF(α)=

OF [α].
(2) Let L/F be a separable totally ramified extension of degree n, and let π be a prime

element in L. Then π is a root of an Eisenstein polynomial over F of degree n.

Proof. (1) Let α be a root of f (X), L = F(α), e = e(L|F). Then

nvL(α) = vL

(n−1

∑
i=0

aiα
i
)
> min

06i6n−1
(evF(ai)+ ivL(α)) ,

where vF and vL are the discrete valuations on F and L. It follows that vL(α)> 0. Since evF(a0)<

evF(ai)+ ivL(α) for i > 0, one has nvL(α) = evF(a0) = e. Lemma 9.3 implies vL(α) = 1,n =

e, f = 1, and OL = OF [α] similarly to Corollary 2 of 9.9.
(2) Let π be a prime element in L. Then L = F(π) by Corollary 2 of 9.9. Let

f(X) = Xn +an−1Xn−1 + · · ·+a0

be the irreducible polynomial of π over F . Then

n = e, nvL(π) = min
06i6n−1

(
nvF(ai)+ i

)
,

hence vF(ai)> 0, and n = nvF(a0), vF(a0) = 1. �

11. Galois Extensions and Ramification Groups

Ramification theory was first studied by Dedekind and Hilbert. In this section F is a Henselian
discrete valuation field.

11.1. LEMMA. Let L be a finite Galois extension of F. Then v ◦σ = v for the discrete val-
uation v on L and σ ∈ Gal(L/F). If π is a prime element in L, then σπ is a prime element and
σOL = OL, σML = ML.

Proof. It follows from Corollary 3 of 9.9. �

PROPOSITION. Let L be a finite Galois extension of F and let L0/F be the maximal unramified
subextension in L/F. Then L0/F and L0/F are Galois, and the map σ 7→ σ defined in Proposi-
tion 10.3 induces the surjective homomorphism Gal(L/F) −→ Gal(L0/F) −→ Gal(L0/F). If, in
addition, L/F is separable, then L = L0 and L/F is Galois, and L/L0 is totally ramified.
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The extension Lur/F is Galois and the group Gal(Lur/L0) is isomorphic with Gal(Lur/L)×
Gal(Lur/Fur), and

Gal(Lur/Fur)∼= Gal(L/L0), Gal(Lur/L)∼= Gal(Fur/L0).

Proof. Recall that in 10.4 we got an agreement Falg = Lalg. Let σ ∈ Gal(L/F). Corollary 3 of 9.9
implies that σL0 is unramified over F , hence L0 = σL0 and L0/F is Galois. The the surjectivity
of the homomorphism Gal(L/F) −→ Gal(L0/F) follows from Proposition 10.3. Since L/F and
Fur/F are Galois extensions, we obtain that LFur/F is a Galois extension. Then Lur = LFur by
Proposition 10.4. The remaining assertions are easily deduced by using Galois theory. �

Thus, a Galois extension L/F induces the Galois extension Lur/Fur. The converse statement
can be formulated as follows.

11.2. PROPOSITION. Let M be a finite extension of Fur of degree n. Then there exist a finite
unramified extension L0 of F and an extension L/L0 of degree n such that L∩Fur = L0, LFur = M.
If M/Fur is separable (Galois) then one can find L0 and L, such that L/L0 is separable (Galois).

Proof. Assume that L0 is a finite unramified extension of F, L is a finite extension of L0 of the
same degree as M/Fur and M = LFur. Then for a finite unramified extension N0 of L0 and N =N0L
we get |M : Fur|6 |N : N0|6 |L : L0|, hence |N : N0|= |L : L0| and |N : L|= |N0 : L0|. This shows
L∩Fur = L0 and L0,L are such as desired. Moreover, N0, N are also valid for the Proposition.
Therefore, it suffices to consider a case of M = Fur(α).

Let f(X) ∈ Fur[X ] be the irreducible monic polynomial of α over Fur. In fact, its coefficients
belong to some finite subextension L0/F in Fur/F . Put L = L0(α). Then f(X) is irreducible over
L0, L is the finite extension of L0 of the same degree as M/Fur and M = LFur. This proves the
first assertion of the Proposition. If α is separable over Fur, then it is separable over L0. If M/Fur

is a Galois extension, then M = Fur(α) for a suitable α and σi(α) for σi ∈ Gal(M/Fur) can be
expressed as polynomials in α with coefficients in Fur. All these coefficients belong to some finite
extension L′0 of L0 in Fur. The pair L′0, L′ = L′0(α) is the desired one. �

COROLLARY. If M = Fur, then L/L0 and M/Fur are totally ramified.

Proof. It follows from Proposition 10.4. �

11.3. Let L be a finite Galois extension of F , G = Gal(L/F). Put

Gi =
{

σ ∈ G : σα−α ∈M i+1
L for all α ∈ OL

}
, i>−1.

Then G−1 = G by Lemma 11.1 and Gi+1 is a subset of Gi.
Let vL be the discrete valuation of L. For a real number x define

Gx =
{

σ ∈ G : vL(σα−α)> x+1 for all α ∈ OL
}
.

Certainly each of Gx is equal to Gi with the least integer i> x.

LEMMA. Gi are normal subgroups of G.
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Proof. Let σ ∈ Gi,α ∈ OL. Then σα −α ∈M i+1
L . Hence α −σ−1(α) ∈ σ−1(M i+1

L ) = M i+1
L

by Lemma 11.1, i.e., σ−1 ∈ Gi. Let σ ,τ ∈ Gi. Then

στ(α)−α = σ(τ(α)−α)+σ(α)−α ∈M i+1
L ,

i.e., στ ∈ Gi. Furthermore, let σ ∈ Gi,τ ∈ G. Then τ(α) ∈ OL for α ∈ OL and σ(τα)− τα ∈
M i+1

L , τ−1στ(α)−α ∈M i+1
L , τ−1στ ∈ Gi. �

The groups Gx are called (lower) ramification groups of G = Gal(L/F).

PROPOSITION. Let L be a finite Galois extension of F, and let L be a separable extension of F.
Then G0 = Gal(L/L0) and the ith ramification groups of G0 and G coincide for i> 0. Moreover,

Gi =
{

σ ∈ G0 : σπ−π ∈M i+1
L

}
for a prime element π in L, and Gi = {1} for sufficiently large i.

Proof. Note that σ ∈ G0 if and only if σ ∈ Gal(L/F) is trivial. Then G0 coincides with the kernel
of the homomorphism Gal(L/F)−→Gal(L/F). Proposition 11.1 and Proposition 10.3 imply that
this kernel is equal to Gal(L/L0). Since Gi is a subgroup of G0 for i> 0, we get the assertion about
the ith ramification group of G0. Finally, using Corollary 2 of 9.9 we obtain OL = OL0 [π]. Let

α =
n

∑
m=0

amπ
m

be an expansion of α ∈ OL with coefficients in OL0 . As σam = am for σ ∈ G0 it follows that

σα−α =
n

∑
m=0

am (σ(πm)−π
m) .

Now we deduce the description of Gi, since σ(πm)−πm ∈M i+1
L . Now we deduce the description

of Gi, since σ(π i)−π i ∈ Gi. If i>max{vL(σπ−π) : σ ∈ G}, then Gi = {1}. �

The group G0 is called the inertia group of G, and the field L0 is called the inertia subfield of
L/F .

11.4. PROPOSITION. Let L be a finite Galois extension of F, L a separable extension of F,
and π a prime element in L. Introduce the maps

ψ0 : G0 −→ L×, ψi : Gi −→ L (i > 0)

by the formulas ψi(σ) = λi(σπ/π), where the maps

λ0 : UL −→ L×, λi : 1+M i
L −→ L

were defined in Proposition 4.4. Then ψi is a homomorphism with the kernel Gi+1 for i> 0.

Proof. The proof follows from the congruence

στ(π)

π
= σ

(
τπ

π

)
· σπ

π
≡ τπ

π
· σπ

π
mod Ui+1

for σ ,τ ∈ Gi and Proposition 4.4. The kernel of ψi consists of those automorphisms σ ∈ Gi, for
which σπ/π ∈ 1+M i+1

L , i.e., σπ−π ∈M i+2
L . �
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COROLLARY 1. Let L be a finite Galois extension of F, and L a separable extension of F.
If char(F) = 0, then G1 = {1} and G0 is cyclic. If char(F) = p > 0, then the group G0/G1 is
cyclic of order relatively prime to p, Gi/Gi+1 are abelian p-groups if i > 0, and G1 is the maximal
p-subgroup of G0.

Proof. The previous Proposition permits us to transform the assertions of this Corollary into the
following: a finite subgroup in L× is cyclic (of order relatively prime to char(L) when char(L) 6= 0);
there are no nontrivial finite subgroups in the additive group of L if char(L) = 0; if char(L) = p> 0
then a finite subgroup in L is a p-group. �

COROLLARY 2. Let L be a finite Galois extension of F and L a separable extension of F. Then
the group G1 coincides with Gal(L/L1), where L1/F is the maximal tamely ramified subextension
in L/F.

Proof. The extension L1/L0 is totally ramified by Proposition 11.1 and is the maximal subexten-
sion in L/L0 of degree relatively prime with char(F). Now Corollary 1 implies G1 = Gal(L/L1).

�

COROLLARY 3. Let L be a finite Galois extension of F and L a separable extension of F.
Then G0 is a solvable group. If, in addition, L/F is a solvable extension, then L/F is solvable.

Proof. It follows from Corollary 1. �

11.5. DEFINITION. Let L/F be a finite Galois extension with separable residue field exten-
sion; let G = Gal(L/F). Integers i such that Gi 6= Gi+1 are called ramification numbers of L/F or
lower ramification jumps of L/F .

One of the first properties of ramification numbers if supplied by the following

PROPOSITION. Let L/F be a finite Galois extension with separable residue field extension.
Let σ ∈ Gi \Gi+1 and τ ∈ G j \G j+1 with i, j > 1. Then στσ−1τ−1 ∈ Gi+ j+1 and i≡ j mod p.

Proof. Let πL be a prime element of L. Then

σπL

πL
= 1+απ

i
L,

τπL

πL
= 1+βπ

j
L with α,β ∈ O×L .

Therefore
στπL = σπL +(σβ )(σπL)

j+1

≡ πL +απ
i+1
L +βπ

j+1
L +( j+1)αβπ

i+ j+1
L mod M i+ j+2

L .

Hence (στ− τσ)πL ≡ ( j− i)αβπ
i+ j+1
L mod M i+ j+2

L . Substituting instead of πL the other prime
element σ−1τ−1πL of L we deduce that

στσ−1τ−1πL

πL
≡ 1+( j− i)αβπ

i+ j
L mod M i+ j+1

L .
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Now if j is the maximal ramification number of L/F , then G j+1 = {1}. Therefore the last
formula in the previous paragraph shows that every positive ramification number i of L/F is con-
gruent to j modulo p. Therefore every two positive ramification number of L/F are congruent to
each other modulo p. Finally, from the same formula we deduce that στσ−1τ−1 ∈ Gi+ j+1. �

12. Structure Theorems for Complete Discrete Valuation Fields

Lemma 2.2 shows that there are three cases: two equal-characteristic cases, when char(F) =

char(F) = 0 or char(F) = char(F) = p > 0, and one unequal-characteristic case, when char(F) =

0,char(F) = p > 0.
12.1. LEMMA. The ring of integers OF contains a nontrivial field M if and only if char(F) =

char(F).

Proof. Since M∩MF =(0), M is mapped isomorphically onto the field M⊂F , therefore char(F)=

char(F). Conversely, let A be the subring in OF generated by 1. Then A is a field if char(F) = p,
and A∩MF = (0) if char(F) = 0. Hence, the quotient field of A is the desired one. �

A field M ⊂OF , that is mapped isomorphically onto the residue field F = M is called a coeffi-
cient field in OF . Such a field, if it exists, is a set of representatives of F in OF , see 4.1. Proposition
4.2 implies immediately that in this case F is isomorphic (algebraically and topologically) with
the field M((X)): a prime element π in F corresponds to X . Note that this isomorphism depends
on the choice of a coefficient field (which is sometimes unique, see below) and the choice of a
prime element of F .

We shall show below that a coefficient field exists in an equal-characteristic case.

12.2. The simplest case is that of char(F) = char(F) = 0.

PROPOSITION. Let char(F) = 0. Then there exists a coefficient field in OF . A coefficient field
can be selected in infinitely many ways if and only if F is not algebraic over Q.

Proof. Let M be a maximal subfield in OF , in other words, M be not properly contained in any
other larger subfield of OF . We assert that M = F , i.e., M is a coefficient field. Indeed, if θ ∈ F
is algebraic over M, then θ is separable over M and we can apply the arguments of the proof of
Proposition 10.4 to show that there exists an element α ∈ OF which is algebraic over M and such
that α = θ . Since M(α) = M by the maximality of M, we get α ∈M,θ ∈M.

Furthermore, let θ ∈ F be transcendental over M. Let α ∈ OF be such that α = θ . Then α is
not algebraic over M, because if ∑

n
i=0 aiα

i = 0 with ai ∈M, then ∑
n
i=0 aiθ

i = 0. Hence, ai = 0 and
ai = 0 (M is mapped isomorphically onto M). By the same reason M[α]∩M = (0). Hence, the
quotient field M(α) is contained in OF and M 6= M(α), contradiction.

Thus, a coefficient field exists.
If F is not algebraic over Q, choose an element α ∈ OF transcendental over Q. Then the

maximal subfield in OF , which contains Q(α + ε) with ε ∈MF , is a coefficient field and it will
be different from the coefficient field containing Q(α) if ε 6= 0.
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If F is algebraic over Q, then M is algebraic over Q and is uniquely determined by the previous
constructions. �

12.3. To treat the case char(F) = p we consider the following notion: elements θi of F are
called a p-basis of F if

F = F p
[{θi}] and |F p

[θ1, . . . ,θn] : F p|= pn

for every distinct elements θ1, . . . ,θn. The empty set is a p-basis if and only if F is perfect. For an
imperfect F , a p-basis Θ = {θi} exists by Zorn’s Lemma, because every maximal set of elements
θi satisfying the second condition possesses the first property. The definition of a p-basis implies
that F = F pn

[{θi}] for n> 1.

LEMMA. Let F be a complete discrete valuation field with the residue field F of characteristic
p, and Θ= {θi} be a p-basis of F. Let αi ∈OF be such that α i = θi. Then there exists an extension

L/F with e(L|F) = 1, such that L is a complete discrete valuation field, L =
⋃

n>0
F p−n

and αi are

the multiplicative representatives of θi in L.

Proof. Let I be an index-set for Θ. One can put Fn = Fn−1({αi,n}) with α
p
i,n = αi,n−1, i ∈ I, and

F0 = F , αi,0 = αi. Then e(Fn|F) = 1 and the completion of L′ =
⋃

n>0 Fn is the desired field. Since
αi ∈

⋂
n>0

Lpn
, we obtain that αi is the multiplicative representative of θi. �

12.4. Now we treat the case char(F) = char(F) = p.
If F is perfect, then Corollaries 1 and 2 of 6.3 show that the set of the multiplicative represen-

tatives of F in OF forms a coefficient field. Moreover, this is the unique coefficient field in OF

because if M is such a field and α ∈ M, then, as M is perfect, α ∈
⋂

n>0
Mpn

is the multiplicative

representative of α .
Note that in general there are infinitely many maximal fields similarly to the case of char(F) =

0, therefore in general when char(F) = p and F is perfect a maximal field is not a coefficient field.

PROPOSITION. Let char(F) = p. If F is perfect then a coefficient field exists and is unique; it
coincides with the set of multiplicative representatives of F in OF . If F is imperfect then there are
infinitely many coefficient fields.

Proof. If F is imperfect we apply the construction of the previous Lemma. Then L is perfect and
there is the unique coefficient field N of L in OL. Let M be the subfield of N corresponding to F .

Let Θ = {θi} be a p-basis of F . Let αi ∈ OF be such that α i = θi. Let αi,n be as in the proof
of Lemma 12.3.

If γ ∈ M then γ ∈ F pn

[Θ] and there exists an element βn ∈ OF [{αi,n}] such that β n = γ
p−n

.
It follows that βn ≡ γ p−n

mod ML, and by Lemma 6.2 we deduce γ ≡ β
pn

n mod M n+1
L . Since

β
pn

n ∈ O pn

F [{αi}] ⊂ OF , we obtain γ = limβ
pn

n ∈ OF . This proves the existence of a coefficient
field of F in OF .
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If we apply this construction for another set of elements α ′i ∈ OF with α
′
i = α i, then we get a

coefficient field M′ containing α ′i . Since MF ∩M = MF ∩M′ = (0) we deduce M 6= M′. �

12.5. We conclude with the case of unequal characteristic: char(F) = 0, char(F) = p. For
the discrete valuation vF such that vF(F×) = Z recall that e(F) = vF(p) is called the absolute
index of ramification of F , see 4.7. The preceding assertions show that in equal-characteristic case
for an arbitrary field K there exists a complete discrete valuation field F with the residue field F
isomorphic to K. Here is an analog:

PROPOSITION. Let F be a complete discrete valuation field of characteristic 0 with residue
field K of characteristic p. Let K1 be any extension of K. Then there exists a complete discrete
valuation field F1 which is an extension of F, such that e(F1|F) = 1 and F1 = K1.

Proof. It is suffices to consider two cases: K1 = K(a) is an algebraic extension over K and K1 =

K(y) is a transcendental extension over K. If, in addition, in the first case K1/K is separable, then
let g(X) be the monic irreducible polynomial of a over K, and let f(X) be a monic polynomial
over the ring of integers of K such that f (X) = g(X). By the Hensel Lemma 8.2 there exists a root
α of f(X) such that α = a. Then F1 = F(α) is the desired extension of F . Next, if ap = b ∈ K
and β is an element in the ring of integers of F such that β = b, then F1 = F(α) is the desired
extension of F for α p = β . Finally, in the second case let w be the discrete valuation on F(y)
defined in Example 5 in 1.3. Then completion of F(y) is the desired extension F1 of F . �

COROLLARY. There exists a complete discrete valuation field of characteristic 0 with any
given residue field of characteristic p and the absolute index of ramification is equal to 1.

Proof. One can set F =Qp and apply the Proposition. �

12.6. PROPOSITION. Let L be a complete discrete valuation field of characteristic 0 with the
residue field L of characteristic p. Let F be a complete discrete valuation field of characteristic 0
with p as a prime element. Suppose that there is an isomorphism ω : F −→ L. Then there exists a
field embedding ω : F −→ L, such that vL ◦ω = e(L)vF and the image of ω(α) ∈ OL for α ∈ OF

in the residue field L coincides with ω(α).

Proof. Assume first that F is perfect. By Corollary 1 of 6.3 any element θ ∈ F has the unique
multiplicative representative rF(θ) in F and rL(ω(θ)) in L. Put

ω
(
∑rF(θi)pi)= ∑rL(ω(θi))pi.

Proposition 4.2 shows that the map ω is defined on F , Proposition 6.6 shows that ω is a homo-
morphism of fields. Evidently vL ◦ω = e(L)vF and ω(α) = ω(α) for α ∈ OF .

Next, assume that F is imperfect. Let Θ = {θi}i∈I be a p-basis of F . Let A = {αi}i∈I be a set
of elements αi ∈ OF with α i = θi, and let B = {βi}i∈I be a set of elements βi ∈ OL with β i = θi.
For a map

ν : I −→ {0,1, . . . , pn−1}
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such that ν(i) = 0 for almost all i ∈ I, put

Θ
ν = ∏

i∈I
θ

ν(i)
i .

The same meaning will be used for Aν ,Bν . By Lemma 12.3 there exist complete discrete valuation
fields F ′,L′ for F,L, such that e(F ′|F) = e(L′|L) = 1, and F ′ is perfect and isomorphic to L′,
and αi (resp. βi) are multiplicative representatives of θi in OF ′ (resp. of ω(θi) in OL′). The
previous arguments show the existence of a homomorphism ω ′ : F ′ −→ L′ with vL′ ◦ω ′ = e(L)vF ′

and ω ′(α) = ω(α) for α ∈ OF ′ . Moreover, ω ′ maps αi to βi, since they are the multiplicative
representatives of θi and ω(θi). Let γ ∈ OF and γ = ∑apn

ν Θν with aν ∈ F . Let bν be an element
of OF with the property bν = aν , and cν an element of OL with the property cν = ω ′(bν). Then
γ ≡ ∑bpn

ν Aν mod pOF , i.e.,

γ = ∑bpn

ν Aν + pγ1

with γ1 ∈ OF . We get ω ′(Aν) = Bν and using Lemma 6.2 we have

ω
′(bpn

ν )≡ cpn

ν mod M n+1
L′ .

Therefore,

ω
′(γ)≡∑cpn

ν Bν + pω
′(γ1) mod M n+1

L′ .

Repeating this reasoning for γ1, we conclude that ω ′(γ)≡ δn mod M n+1
L′ for some δn ∈OL. Then

ω ′(γ) = limδn and since OL is complete, we deduce ω ′(γ) ∈ OL. Thus, ω ′ maps OF in OL, and
we finally put ω = ω ′|F to obtain the desired homomorphism. �

COROLLARY 1. Let F1,F2 be complete discrete valuation fields of characteristic 0 with p as
a prime element. Let there be an isomorphism ω of the residue field F1 to F2. Then there exists a
field embedding ω : F1 −→ F2 such that ω(α) = ω(α) for α ∈ OF1 .

Proof. Apply the Proposition for F = F1,L = F2 and F = F2,L = F1. �

COROLLARY 2. The image ω(F) is uniquely determined in the field L if and only if F is
perfect or e(L) = 1.

Proof. If F is perfect then its multiplicative representatives are uniquely determined in F and in
L, and this is compatible with ω , hence ω(F) is uniquely determined and its image is equal to the
image of the fraction field of the Witt vectors over F in L. If e(L) = 1 then ω(F) = L.

Assume that F is imperfect and e(L)> 1. If ω(F) were uniquely determined in L then in the
proof of the Proposition we could have replaced βi by βi + πL to obtain βi ∈ ω(OF), βi + πL ∈
ω(OF) and hence πL ∈ ω(OF); the latter is impossible because vL ◦ω = e(L)vF . �
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13. Cyclic Extensions of Prime Degree

Let F be a complete discrete valuation field and L its Galois extension of prime degree n. Then
there are four possible cases:

L/F is unramified;
L/F is tamely and totally ramified;
L/F is totally ramified of degree p = char(F)> 0;
L/F is inseparable of degree p = char(F)> 0.

The fourth case is very interesting for higher local class field theory. Here we discuss the first
three cases.

The following results were first proved by Hasse.

13.1. LEMMA. Let L/F be a finite Galois extension of prime degree n, γ ∈ML. Then

NL/F(1+ γ) = 1+NL/F(γ)+TrL/F(γ)+β

with some β ∈ OL such that vL(β )> 2vL(γ).
If n equals positive characteristic of the residue field of F, then

NL/F(1+ γ) = 1+NL/F(γ)+TrL/F(γ)+TrL/F(δ )

with some δ ∈ OL such that vL(δ )> 2vL(γ).

Proof. If n = 2, the assertions are obvious. When n > 2, we get

NL/F(1+ γ) =
n

∏
i=1

(1+σi(γ))

= 1+
n

∑
i=1

σi(γ)+
n

∏
i=1

σi(γ)+ ∑
1<m<n

∑
16i1<···<im6n

σi1(γ) · · ·σim(γ).

Then

NL/F(1+ γ) = 1+
n

∑
i=1

σi(γ)+
n

∏
i=1

σi(γ)+

( n

∑
i=1

σi

)
δ

where
δ = ∑

1<m<n

1
m

σ1(γ) ∑
1< j1<···< jm−16n

σ j1(γ) · · ·σ jm−1(γ).

When n > 2 equals positive characteristic of the residue field of F , vL(δ )> 2vL(γ). �

Below λi,L, λi,F (i > 0) will be as in Proposition 4.4 for the specific choice of πL and πF as
stated below. We denote Ui,L = 1+π i

LOL, Ui,F = 1+π i
FOF .

13.2. PROPOSITION. Let L/F be a Galois unramified extension of degree n. Then a prime
element πF in F is a prime element in L, so we take πL = πF .

Then the following diagrams are commutative :

L× vL−−−−→ Z

NL/F

y y×n

F× vF−−−−→ Z

UL
λ0,L−−−−→ L×

NL/F

y yNL/F

UF
λ0,F−−−−→ F×

Ui,L
λi,L−−−−→ L

NL/F

y yTrL/F

Ui,F
λi,F−−−−→ F
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i> 1.

Proof. Proposition 10.3 implies that NL/F(α) = NL/F(α) for α ∈ OL, i.e., the second diagram is
commutative. By the preceding Lemma we get

NL/F(1+θπ
i
F) = 1+(TrL/F θ)π i

F +(NL/Fθ)πni
F +ρ

with ρ ∈ F , vL(ρ)> 2i and, consequently vF(ρ)> 2i. Thus, we obtain

NL/F(1+θπ
i
F)≡ 1+(TrL/F θ)π i

F mod π
i+1
F

and the commutativity of the third diagram. �

COROLLARY. In the case under consideration NL/FU1,L =U1,F .

13.3. PROPOSITION. Let L/F be a totally and tamely ramified cyclic extension of degree n.
Then for some prime element πL in L, the element πF = πn

L is prime in F and F = L. Then the
following diagrams

L× vL−−−−→ Z

NL/F

y yid

F× vF−−−−→ Z

UL
λ0,L−−−−→ L×

NL/F

y yxn

UF
λ0,F−−−−→ F×

Uni,L
λni,L−−−−→ L = F

NL/F

y y×n

Ui,F
λi,F−−−−→ F

are commutative, where id is the identity map,
xn takes an element to its nth power, ×n is the

multiplication by n ∈ F, i> 1.
Moreover, NL/FUi,L = NL/FUi+1,L if n - i.
Furthermore, Ui,F = NL/FUni,L for positive i.

Proof. Since πn
L = πF and L/F is Galois, then Gal(L/F) is cyclic of order n and σ(πL) = ζ πL for

a generator σ of Gal(L/F), where ζ is a primitive nth root of unity, ζ ∈ F . The first diagram is
commutative in view of Theorem 9.5. Proposition 11.1 shows that σ(α) = α for σ ∈ Gal(L/F),
α ∈ OL, and we get the commutativity of the second diagram.

We have
σ(1+θπ i

L)

1+θπ i
L

= 1+θ(ζ i−1)π i
L mod π

i+1
L .

If n - i then the residue of ζ i− 1 is non-zero and so Ui,L ⊂ Ui+1,L kerNL/F and NL/FUi,L =

NL/FUi+1,L.
If j = ni, then 1+θπ

j
L ∈ F for θ ∈ OF , and

NL/F(1+θπ
j

L) = (1+θπ
i
F)

n ≡ 1+nθπ
i
F mod π

i+1
F

by Proposition 4.4. Applying Corollary 4.5, we deduce

Ui,F =Un
i,F ⊂ NL/FUni,L,
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and Ui,F = NL/FUni,L follows from the previous paragraph.
�

COROLLARY. In the case under consideration NL/FU1,L =U1,F .
If F is algebraically closed then NL/FL× = F×.

13.4. Now we treat the most complicated case when L/F is a totally ramified Galois exten-
sion of degree p = char(F)> 0. Then Corollary 2 of 9.9 shows that OL = OF [πL], L = F(πL) for
a prime element πL in L, and L = F .

Let σ be a generator of Gal(L/F), then σ(πL)/πL ∈UL. One can write σ(πL)/πL = θε with
θ ∈UF ,ε ∈ 1+ML. Then

σ
2(πL)/πL = σ(θε) ·θε = θ

2
ε ·σ(ε),

and

1 = σ
p(πL)/πL = θ

p · ε ·σ(ε) · · · · ·σ p−1(ε).

This shows that θ p ∈ 1+ML and θ ∈ 1+MF , because raising to the pth power is an injective
homomorphism of F . Thus, we obtain σ(πL)/πL ∈ 1+ML. Put

σ(πL)

πL
= 1+ηπ

s
L with η ∈UL, s = s(L|F)> 1. (∗)

Note that s does not depend on the choice of the prime element πL and of the generator σ of
G = Gal(L/F). Indeed, we have

σ i(πL)

πL
≡ 1+ iηπ

s
L mod π

s+1
L and

σ(ρ)

ρ
≡ 1 mod π

s+1
L

for an element ρ ∈UL. We also deduce that

σ(α)

α
∈Us,L

for every element α ∈ L×. This means that G = Gs, Gs+1 = {1} (see 11.3). Thus, s is the lower
ramification number/jump of L/F .

We need the following auxiliary property.

LEMMA. Let f(X) be the irreducible polynomial of πL over F. Then

TrL/F

(
π

j
L

f ′(πL)

)
=

0 if 06 j 6 p−2,

1 if j = p−1.

Proof. Since σ i(πL) for 06 i6 p−1 are all the roots of the polynomial f(X), we get

1
f(X)

=
p−1

∑
i=0

1
f ′
(
σ i(πL)

)
(X−σ i(πL))

.
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Let f(X) = X p+ap−1X p−1+ · · ·+a0. Putting Y = X−1 and performing the calculations in the
field L((Y )), we consequently deduce

f(X) = Y−p(1+ap−1Y + · · ·+a0Y p),

1
f(X)

=
Y p

1+ap−1Y + · · ·+a0Y p ≡ Y p mod Y p+1,

1
X−σ i(πL)

=
Y

1−σ i(πL)Y
= ∑

j>0
σ

i(π j
L)Y

j+1

(because 1/(1−Y ) = ∑i>0Y i in F((Y ))). Hence

∑
j>0

p−1

∑
i=0

σ i(π j
L)Y

j+1

f ′
(
σ i(πL)

) ≡ Y p mod Y p+1,

or

TrL/F

(
π

j
L

f ′(πL)

)
=

p−1

∑
i=0

σ i(π j
L)

f ′
(
σ i(πL)

) =
0 if 06 j 6 p−2,

1 if j = p−1,

as desired. �

PROPOSITION. Let [a] denote the maximal integer 6 a. For an integer i > 0 put j(i) = s+
1+[(i−1− s)/p]. Then

TrL/F(π
i
LOL) = π

j(i)
F OF .

Proof. One has f ′(πL) = ∏
p−1
i=1

(
πL−σ i(πL)

)
and σ i(πL)/πL ≡ 1+ iηπs

L mod π
s+1
L . Then

f ′(πL) = (p−1)!(−η)p−1
π
(p−1)(s+1)
L ε

with some ε ∈ 1+M
(p−1)(s+1)+1
L . Since F = L, for a prime element πF in F one has the repre-

sentation πF = π
p
L ε ′ with ε ′ ∈UL. The previous Lemma implies

TrL/F

(
π

j+s+1
L ε j+s+1

)
=

0 if 06 j < p−1,

π
s+1
F if j = p−1

for ε j+s+1 = (ε ′)s+1/
(
(p−1)!(−η)p−1ε

)
. Taking into consideration TrL/F(π

i
Fα) = π i

F TrL/F(α),

we can choose the units ε j+s+1, for every integer j > 0, such that TrL/F(π
j+s+1

L ε j+s+1) = 0 if

p - ( j+ 1) and = π
s+( j+1)/p
F if p|( j+ 1). Thus, since the OF -module π i

LOL is generated by π
j

Lε j,
j > i, we conclude that TrL/F(π

i
LOL) = π

j(i)
F OF . �

13.5. PROPOSITION. Let L/F be a totally ramified Galois extension of degree p = char(F)>

0. Let πL be a prime element in L. Then πF = NL/FπL is a prime element in F.
Then the following diagrams are commutative:

L× vL−−−−→ Z

NL/F

y yid

F× vF−−−−→ Z

UL
λ0,L−−−−→ L×

NL/F

y y↑p

UF
λ0,F−−−−→ F×
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Ui,L
λi,L−−−−→ L = F

NL/F

y y↑p

Ui,F
λi,F−−−−→ F

if 16 i < s,

Us,L
λs,L−−−−→ L = F

NL/F

y yθ 7→θ
p−η

p−1
θ

Us,F
λs,F−−−−→ F

Us+pi,L
λs+pi,L−−−−→ L = F

NL/F

y y×(−η
p−1)

Us+i,F
λs+i,F−−−−→ F

if i > 0.

Moreover, NL/F(Us+i,L) = NL/F(Us+i+1,L) for i > 0, p - i.

Proof. The commutativity of the first and the second diagrams can be verified similarly to the
proof of Proposition 13.3.

In order to prove commutativity of the remaining diagrams, put ε = 1+ θπ i
L with θ ∈ UL.

Then, by Lemma 13.1 we get

NL/Fε = 1+NL/F(θ)π
i
F +TrL/F(θπ

i
L)+TrL/F(θδ )

with vL(δ )> 2i. The previous Proposition implies that

vF
(
TrL/F(π

i
L)
)
> s+1+

[
i−1− s

p

]
, vF

(
TrL/F(δ )

)
> s+1+

[
2i−1− s

p

]
and for i < s

vF
(
TrL/F(π

i
L)
)
> i+1, vF

(
TrL/F(δ )

)
> i+1.

Therefore, the third diagram is commutative. Further, using (∗) of 13.4, one can write

1 = NL/F

(
σ(πL)

πL

)
≡ 1+NL/F(η)πs

F +TrL/F(ηπ
s
L) mod π

s+1
F .

We deduce that TrL/F(ηπs
L)≡−NL/F(η)πs

F mod π
s+1
F . Since NL/F(η)≡ η p mod πL in view of

UL ⊂UFU1,L, we conclude that

NL/F(1+θηπ
s
L)−1−η

p
π

s
F(θ

p−θ) ∈ π
ps+1
L θOL

for θ ∈ OF . This implies the commutativity of the fourth (putting θ ∈ OF ) and the fifth (when
θ ∈ π i

FOF ) diagrams. Finally, if p - i,θ ∈ OF , then

σ(1+θπ i
L)

1+θπ i
L
≡ 1+ iθηπ

i+s
L mod π

i+s+1
L .

This means that NL/F(1+ iθηπ
i+s
L ) ∈ NL/FUs+i+1,L and NL/F(Us+i,L) = NL/F(Us+i+1,L). �

REMARK. Compare the behaviour of the norm map with the behaviour of raising to the pth
power in Proposition 4.7.
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COROLLARY. Us+1,F = NL/FUs+1,L.
If F is algebraically closed then NL/FL× = F×.

Proof. It follows immediately from the last diagram of the Proposition, since the multiplication by
(−η)p−1 is an isomorphism of the additive group F . �

14. Artin–Schreier Extensions

A theorem of Artin and Schreier asserts that every cyclic extension of degree p over a field K
of characteristic p is generated by a root of the polynomial X p−X−α , α ∈ K. In this subsection
we show how to extend this result to complete discrete valuation fields of characteristic 0 with
residue field of characteristic p.

14.1. First we treat the case of unramified extensions. The polynomial X p−X is denoted by
℘(X).

LEMMA. Let L/F be an unramified Galois extension of degree p = char(F). Then L = F(λ ),
where λ is a root of the polynomial X p−X−α for some α ∈UF with α /∈℘

(
F
)
.

Proof. Let L = F(θ), where θ is a root of the polynomial X p−X −η for some η /∈℘
(
F
)
. Then

the polynomial X p−X −α = 0, with α ∈ UF , such that α = η , has a root λ in L, by Hensel
Lemma 9.2. Thus, L = F(λ ). �

14.2. Now we study the case of totally ramified extensions.
Let L/F be a totally ramified Galois extension of degree p = char(F). Let σ be a generator of

Gal(L/F),πL a prime element in L and s = vL(π
−1
L σ(πL)−1).

LEMMA. For β ∈ L there exists an element b ∈ F such that vL(σβ −β ) = vL(β −b)+ s.

Proof. Let β = a0 +a1πL + · · ·+ap−1π
p−1
L with ai ∈ F (see Proposition 10.6). Then

σ(β )−β = a1πLγ + · · ·+ap−1π
p−1
L

(
(1+ γ)p−1−1

)
,

where γ = π
−1
L σ(πL)−1. Since vL(γ) = s > 0, we get

(1+ γ)i−1≡ iγ mod π
s+1
L for i> 0.

Hence, vL

(
aiπ

i
L
(
(1+ γ)i−1

))
are distinct for 16 i6 p−1. Put b = a0. Then

vL(σ(β )−β ) = vL((β −b)γ) = vL(β −b)+ s, as desired. �
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14.3. PROPOSITION. Let F be a complete discrete valuation field with residue field of char-
acteristic p > 0. Let L be a totally ramified Galois extension of degree p of F. If char(F) = p then
p -s. If char(F) = 0, then s6 pe/(p−1), where e= e(F) is the absolute index of ramification of F.
In this case, if p|s, then a primitive pth root of unity belongs to F, and s = pe/(p−1),L = F( p

√
α)

with some α ∈ F×,α /∈UFF×p.

Proof. First let char(F) = p. Then (1+θπ i
F)

p = 1+θ pπ
pi
F for θ ∈UF . One can take πF = NL/FπL

for a prime element πL in L. Then it follows from 13.4 that πF ≡ π
p
L mod π

p+1
L . Assume that

s = pi. Then NL/FUpi+1,L ⊂ Upi+1,F , and we get the congruence 1+ θ pπ
pi
F ≡ NL/F(1+ θπ

pi
L )

mod π
pi+1
F that contradicts the fourth diagram of Proposition 13.5. Hence, p - s.

Now let char(F) = 0. Assume that s > pe/(p− 1). Let ε = 1+ θπs
F ∈ Us,F with θ ∈ UF .

Corollary 2 of 4.8 shows that ε = ε
p
1 for some ε1 = 1 + θ1π

s−e
F ∈ UF with θ1 ∈ UF . Then

NL/FUp(s−e),L 6⊂ Us+1,F , but p(s− e) > s + 1, which is impossible because of Corollary 13.5.
Hence, s 6 pe/(p− 1). By the same reasons as in the case of char(F) = p, it is easy to ver-
ify that if s = pi < pe/(p− 1), then 1+θ pπ

pi
F ≡ NL/F(1+θπ

pi
L ) mod π

pi+1
F , which is impossi-

ble. Therefore, in this case we get s = pe/(p− 1). One can write σ(πL)π
−1
L ≡ 1+ θπ

e/(p−1)
F

mod π
pe/(p−1)+1
L . Then, acting by NL/F , we get 1 ≡ (1 + θπ

e/(p−1)
F )p mod π

pe/(p−1)+1
F . But

Upe/(p−1)+1,F ⊂U p
e/(p−1)+1,F (see Corollary 2 of 4.8), so we can find an element ζ ≡ 1+θπ

e/(p−1)
F

mod π
e/(p−1)+1
F , such that ζ p = 1; ζ is a primitive pth root of unity in F , hence L = F( p

√
α) for

some α ∈ F×, by Kummer theory. Writing α = πa
Fε1 with ε1 ∈UF and assuming p|a, we can re-

place α with ε1. Since L = F we obtain ε1 ∈ F p (otherwise L/F would not be totally ramified) and
ε1 ≡ ε

p
2 mod πL for some ε2 ∈UF . Replacing ε1 with ε3 = ε1ε

−p
2 , we get ε3 ∈U1,F , L = F(η3),

η
p
3 = ε3. Note that

σ(1+ρπ i
L)

1+ρπ i
L
≡ 1+ρiηπ

i+pe/(p−1)
L mod π

1+i+pe/(p−1)
L

for ρ ∈UF . Hence η
−1
3 σ(η3)≡ 1 mod π

1+pe/(p−1)
L , but η

−1
3 σ(η3) is a primitive pth root of unity.

This contradiction proves that α /∈UFF×p. �

14.4. PROPOSITION. Let F be a complete discrete valuation field with residue field of char-
acteristic p > 0. Let L be a Galois totally ramified extension of degree p, s = s(L|F).

Suppose that s 6= pe/(p− 1) if char(F) = 0, where e = e(F). Then L = F(λ ), where λ is a
root of some polynomial X p−X−α with α ∈ F, vF(α) =−s.

Proof. The previous Proposition shows that p - s. First consider the case of char(F) = p. Then,
by Artin–Schreier theory, L = F(λ ), where λ is a root of a suitable polynomial X p−X −α with
α ∈ F . Let σ be a generator of Gal(L/F). Then (σ(λ )−λ )p = σλ −λ . Since λ /∈ F , we get
σ(λ )−λ = a with a ∈ {1, . . . , p− 1}. Then λ−1σ(λ ) = 1+ aλ−1, and hence Proposition 13.5
implies 1+ aλ−1 ∈Us,L. This shows vL(λ ) 6 −s and vF(α) 6 −s. Put t = vF(α). Write λ ≡
π t

Lθ mod π
t+1
L with θ ∈UF and a prime element πL in L. If t = pt ′, then α ≡ π

pt
L θ p ≡ π

pt ′
F θ p

mod π
pt+1
L , where πF = NL/FπL ≡ π

p
L mod π

p+1
L is a prime element in F . Replacing λ by λ ′ =

λ −π t ′
F θ and α by α ′ = α−π

pt ′
F θ p +π t ′

F θ , we get λ ′p−λ ′ = α ′ and L = F(λ ′),vF(α
′)> vF(α).
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Proceeding in this way we can assume p - t because vF(α
′) 6 −s. Then it follows from 13.4 that

vL(λ
−1σ(λ )−1) = s and vF(α) =−s.

Now we consider the case of char(F) = 0.
First, we will show that there is an element λ1 ∈ L, such that vL(λ1) = −s and vL(σ(λ1)−

λ1−1)> 0. Indeed, put β =−π
−s
L ρs−1 with ρ ∈UF . Then

σ(β )−β =−π
−s
L ρs−1((1+ηπ

s
L)
−s−1

)
≡ ρη mod πL.

Hence, if we choose ρ = η
−1, then vL(σ(β )−β −1)> 0. Put λ1 = β .

Since s < pe/(p−1) = e(L)/(p−1), we get pλ
p−1
1 ≡ 0 mod πL,

vL(σ(λ p
1 )−λ

p
1 −1)> 0 and vL(σ℘(λ1)−℘(λ1))> 0.

Second, we will construct a sequence {λn}, n > 0, of elements in L satisfying the conditions
for n > 0:

vL(λn) =−s, vL(λn+1−λn)> vL(λn−λn−1)+1,

vL(σ℘(λn+1)−℘(λn+1))> vL
(
σ℘(λn)−℘(λn)

)
+1.

Then for λ = limλn we obtain σ℘(λ )=℘(λ ), or in other words λ p−λ =α ∈F and vF(α)=−s.
Put λ0 = 0. Denote δn = σ℘(λn)−℘(λn). Then vL(δn)> 0. If δn = 0, then put λm = λn for

m > n. Otherwise, by Lemma 14.2, there exists an element cn ∈ F such that

vL(σ℘(λn)−℘(λn)) = vL(℘(λn)− cn)+ s.

Put µn =℘(λn)− cn, λn+1 = λn + µn. Then σ µn = µn + δn, vL(σ(λn+1)− λn+1− 1) > 0 and
vL(µn)>−s, vL(λn+1) =−s. So

vL(λn+1−λn) = vL(µn) =−s+ vL(σ℘(λn)−℘(λn))

>−s+1+ vL(σ℘(λn−1)−℘(λn−1)) = vL(λn−λn−1)+1

for n > 1.
For n = 1 from the previous arguments we get

vL(λ2−λ1) =−s+ vL(σ℘(λ1)−℘(λ1))> vL(λ1−λ0)+1 = 1− s.

Furthermore, σ µn−µn = δn and

σ℘(µn)−℘(µn) =℘(µn +δn)−℘(µn) =−δn +
p

∑
i=1

(
p
i

)
µ

p−i
n δ

i
n.

Since vL(µn) = vL(λn+1−λn)> vL(λ1−λ0) =−s and vL(pµ
p−1
n ) = pe−(p−1)s > 0, we get

vL(σ℘(µn)−℘(µn)+δn)> vL(δn)+1.

Moreover,

σ℘(λn+1)−℘(λn+1) = σ℘(λn)−℘(λn)

+σ℘(µn)−℘(µn)+
p−1

∑
i=1

(
p
i

)(
σ(λ p−i

n µ
i
n)−λ

p−i
n µ

i
n
)

and

σ(λ p−i
n µ

i
n)−λ

p−i
n µ

i
n = λ

p−i
n µ

i
n
(
ε

p−i
n (1+δnµ

−1
n )i−1

)
,
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where λ−1
n σλn = εn ∈ Us,L since p 6 |s, and we also have vL(δnµ−1

n ) = vL(δn) + s− vL(δn) = s.
Hence, for 16 i6 p−1 we get

vL
(
σ(λ p−i

n µ
i
n)−λ

p−i
n µ

i
n
)
>−(p− i)s+ i(vL(δn)− s)+ s

>−(p−1)s+ vL(δn)>−pe+ vL(δn)+1.

Thus,
vL
(
σ℘(λn+1)−℘(λn+1)

)
> vL(δn)+1,

which completes the proof. �

14.5. The assertions converse to Propositions 14.1 and 14.4 can be formulated as follows.

PROPOSITION. Let F be a complete discrete valuation field with a residue field of character-
istic p > 0. Then every polynomial X p−X−α with α ∈ F, vF(α)>−pe/(p−1) if char(F) = 0
and e= e(F), either splits completely or has a root λ which generates a cyclic extension L = F(λ )

over F of degree p. In the last case vL(σ(λ )−λ −1) > 0 for some generator σ of Gal(L/F). If
α ∈UF ,α /∈℘

(
F
)
, then L/F is unramified; if α ∈MF , then λ ∈ F; if α /∈OF and p -vF(α), then

L/F is totally ramified with s =−vF(α).

Proof. Let α ∈MF , f(X) = X p − X − α . Then f (0) ∈MF , f ′(0) /∈MF , and, by Hensel
Lemma 8.2, for every integer a there is λ ∈MF with f (λ ) = 0, λ − a ∈MF . This means that
f(X) splits completely in F . If α ∈ UF ,α /∈℘

(
F
)
, then Proposition 10.2 shows that F(λ )/F

is an unramified extension and Proposition 10.3 shows that F(λ )/F is Galois of degree p. The
generator σ ∈ Gal(L/F), for which σ̄ ᾱ = α +1, is the required one.

If α /∈ OF , then let λ be a root of the polynomial X p−X−α in Falg and L = F(λ ). Put

g(Y ) = (λ +Y )p− (λ +Y )−α = Y p +

(
p
1

)
λY p−1 + · · ·+

(
p

p−1

)
λ

p−1Y −Y.

If char(F) = p, then L/F is evidently cyclic of degree p when α /∈℘(F). If char(F) = 0, then
vL
((p

i

)
λ i
)
> e(L|F)(e−ei/(p−1))> 0 for i6 p−1 and g(Y ) =Y p−Y over L. Hence by Hensel

Lemma g(Y ) splits completely in L. Therefore, L/F is cyclic of degree p if f(X) does not split
over F . Let σ be a generator of Gal(L/F), such that σ(λ )−λ is a root of g(Y ) and is congruent
to 1 mod πL. Then vL(σ(λ )−λ −1)> 0. If p - vF(α), then the equality pvL(λ ) = vL(α) implies
e(L|F) = p, and L/F is totally ramified. It follows from the definition of s in 13.4 that s =

vL(σ(λ ) ·λ−1−1), and consequently s = vL(σ(λ )−λ )− vL(λ ) =−vL(λ ) =−vF(α). �

COROLLARY. Let λ be a root of the polynomial X p−X +θ pα with θ ∈UF , vF(α) = −s >
−pe/(p−1), p -s. Let L=F(λ ). Then α ∈NL/FL× and 1+θ−p℘(OF)α−1+π

s+1
F OF ⊂NL/FL×,

where ℘(OF) = {℘(β ) : β ∈ OF}.

Proof. The preceding Proposition shows that L/F is a totally ramified extension of degree p and
that vL(σ(πL)π

−1
L − 1) = s for a generator σ of Gal(L/F) and a prime element πL in L. Put

f(X) = X p − X + θ pα . Then we get NL/F(−λ ) = f (0) = θ pα and α = NL/F(−λθ−1). For
β ∈ OF put

g(Y ) = f (β −Y ) = (β −Y )p− (β −Y )+θ
p
α.
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Then

NL/F(β −λ ) = g(0) =℘(β )+θ
p
α.

Therefore, 1+℘(β )θ−pα−1 ⊂ NL/FL×. It remains to use Corollary 13.5. �

15. Hasse–Herbrand Function

In this section we associate to a finite separable extension L/F a certain real function hL/F

which partially describes the behaviour of the norm map from arithmetical point of view. Then we
relate the function hL/F which was originally introduced in a different way by Hasse and Herbrand
to properties of ramification subgroups.

We maintain the hypothesis of the preceding sections concerning F , and assume in addition
that all residue field extensions are separable.

15.1. PROPOSITION. Let the residue field F be infinite. Let L/F be a finite Galois extension,
N = NL/F . Then there exists a unique function

h = hL/F : N−→ N

such that h(0) = 0 and

NUh(i),L ⊂Ui,F , NUh(i),L 6⊂Ui+1,F , NUh(i)+1,L ⊂Ui+1,F .

Proof. The uniqueness of h follows immediately. Indeed, for j > h(i) NU j,L ⊂Ui+1,F , hence if h̃
is another function with the required properties, then h̃(i)6 h(i),h(i)6 h̃(i), i.e., h = h̃.

As for the existence of h, we first consider the case of an unramified extension L/F . Then
Proposition 13.2 shows that in this case h(i) = i (because NL/F(L

×
) 6= 1 and TrL/F L = F). The

next case to consider is a totally ramified cyclic extension L/F of prime degree. In this case Propo-
sition 13.3 and Proposition 13.5 describe the behaviour of NL/F . By means of the homomorphisms
λi,L, the map NL/F is determined by some nonzero polynomials over L. The image of L under the
action of such a polynomial is not zero since L is infinite. Hence, we obtain

h(i) = |L : F |i,

if L/F is totally tamely ramified, and

h(i) =

i, i6 s,

s(1− p)+ pi, i> s,

if L/F is totally ramified of degree p = char(F)> 0.
Now we consider the general case. Note that if we have the functions hL/M and hM/F for the

Galois extensions L/M,M/F , then for the extension L/F one can put hL/F = hL/M ◦hM/F . Indeed,

NL/FUhL/F (i),L ⊂ NM/FUhM/F (i),M ⊂Ui,F .
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Furthermore, the behaviour of NL/F is determined by some nonzero polynomials (the composition
of the polynomials for NL/M and NM/F , the existence of which can be assumed by induction).
Hence

NL/FUhL/F (i),L 6⊂Ui+1,F .

Since

NL/FUhL/F (i)+1,L ⊂ NM/FUhM/F (i)+1,M ⊂Ui+1,M,

we deduce that h = hL/F is the desired function.
In the general case we put hL/F = hL/L0 for L0 = L∩Fur and determine hL/L0 by induction

using Corollary 3 of 11.4, which shows that L/L0 is solvable. �

15.2. To treat the case of finite residue fields we need

LEMMA. Let L/F be a finite separable totally ramified extension. Then for an element α ∈ L
we get

NL/F(α) = NL̂ur/F̂ur(α)

where F̂ur is the completion of Fur, L̂ur = LF̂ur.

Proof. Let L = F(πL) with a prime element πL in L, and let α ∈ L. Let

απ
i
L =

n−1

∑
j=0

ci jπ
j

L with ci j ∈ F,06 i6 n−1,n = |L : F |.

Then NL/F(α) = det(ci j). Since Lur = Fur(πL) and

|Lur : Fur|= e(Lur|Fur) = e(Lur|F) = e(L|F) = |L : F |,

we get

NLur/Fur(α) = det(ci j) = NL/F(α).

Finally, let E/Fur be a finite totally ramified Galois extension with E ⊃Lur. Let G=Gal(E/Fur),H =

Gal(E/Lur), and let G be the disjoint union of σiH with σi ∈ G,16 i6 |Lur : Fur|. Then

NLur/Fur(α) = ∏σi(α) = NL̂ur/F̂ur(α),

because G and H are isomorphic to Gal(Ê/F̂ur) and Gal(Ê/L̂ur) by (4) in Theorem 9.8. �

This Lemma shows that for a finite totally ramified Galois extension L/F the functions hL/F

and hL̂ur/F̂ur coincide. Now, if L/F is a finite Galois extension, we get

hL/F = hL/L0 = hL̂ur/F̂ur .

So, if F is finite we put hL/F = hL̂ur/F̂ur (the residue field of F̂ur is infinite as the separable
closure of a finite field).
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It is useful to extend this function to real numbers. For an unramified extension, a tamely
totally ramified extension of prime degree, a totally ramified extension of degree p = char(F)> 0
put

hL/F(x) = x, hL/F(x) = |L : F |x, hL/F(x) =

x, x6 s,

s(1− p)+ px, x> s

for real x > 0 respectively. Using the solvability of L/L0 (Corollary 3 of 11.4) and the equality
hL/F = hL/M ◦ hM/F define now hL/F(x) as the composite of the functions for a tower of cyclic
subextensions in L/L0.

PROPOSITION. Thus defined function hL/F : [0,+∞)−→ [0,+∞) is independent on the choice
of a tower of subfields. The function hL/F is called the Hasse–Herbrand function of L/F. It is
piecewise linear, continuous and increasing.

Proof. By induction on the degree of L/F it suffices to show that if M1/M, M2/M are linearly
disjoint cyclic extensions of prime degree, then

hE/M1 ◦hM1/M = hE/M2 ◦hM2/M (∗)

where E = M1M2.
Note that each of hM1/M(x), hM2/M(x) has at most one point at which its derivate is not con-

tinuous. Therefore there are at most two points at which the function of the left (resp. right) hand
side of (∗) has discontinuous derivative. By looking at graphs of the functions it is obvious that
at such points the derivative strictly increases and there is at most one such non-integer point for
at most one of the composed functions of the left hand side and the right hand side of (∗). At this
point (if it exists) the derivative jumps from p to p2.

From the uniqueness in the preceding Proposition we deduce that the left and right hand sides
of (∗) are equal at all nonnegative integers. Thus, elementary calculus shows that the left and right
hand sides of (∗) are equal at all nonnegative real numbers. �

15.3. Let the residue field of F be perfect. For a finite separable extension L/F put

hL/F = h−1
E/L ◦hE/F ,

where E/F is a finite Galois extension with E ⊃ L. Then hL/F is well defined, since if E ′/F is a
Galois extension with E ′ ⊃ L and E ′′ = E ′E, then

h−1
E ′′/L ◦hE ′′/F =

(
hE ′′/E ′ ◦hE ′/L

)−1 ◦
(
hE ′′/E ′ ◦hE ′/F

)
= h−1

E ′/L ◦hE ′/F

and, similarly, h−1
E ′′/L ◦hE ′′/F = h−1

E/L ◦hE/F . We can easily deduce from this that the equality

hL/F = hL/M ◦hM/F (∗)

holds for separable extensions.

PROPOSITION. Let L/F be a finite separable extension, and let F be perfect. Then hL/F(N)⊂
N and the left and right derivatives of hL/F at any point are positive integers.
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Proof. Let E/F be a finite Galois extension with E ⊃ L. Then from Lemma 15.2 we get

hL/F = h−1
E/L ◦hE/F = h−1

Êur/L̂ur ◦hÊur/F̂ur = hL̂ur/F̂ur .

Put G = Gal(Êur/F̂ur),H = Gal(Êur/L̂ur). Since G is a solvable group, there exists a chain of
normal subgroups

G.G(1) . · · ·.G(m) = {1},

such that G(i)/G(i+1) is a cyclic group of prime order. Then we obtain the chain of subgroups

G> G(1)H > . . .> G(m)H = H,

for which G(i+1)H is of prime index or index 1 in G(i)H. This shows the existence of a tower of
fields

F̂ur−M1−·· ·−Mn−1−Mn = L̂ur,

such that Mi+1/Mi is a separable extension of prime degree. Therefore, it suffices to prove the
statements of the Proposition for such an extension.

If Mi+1/Mi is a totally tamely ramified extension of degree l, then π = π l
1 is a prime element in

Mi for some prime element π1 in Mi+1. Since l is relatively prime with char(F), we obtain, using
the Henselian property of Mi and the fact that the residue field of M̂ur

i is separably closed, that a
primitive lth root of unity belongs to M̂ur

i . This means that M̂ur
i+1/M̂ur

i is a Galois extension and

hMi+1/Mi(x) = lx.

If Mi+1/Mi is an extension of degree p = char(F) > 0, then let K/Mi be the smallest Galois
extension, for which K ⊃Mi+1. Let K1 be the maximal tamely ramified extension of Mi in K; then
l = e(K1|Mi) = e(K|Mi+1) is relatively prime to p. Choose prime elements π and π1 in Mi+1 and
K such that π = π l

1. Let f(X) ∈Mi[X ] be the monic irreducible polynomial of π over Mi. Then

f ′(π) =
p−1

∏
i=1

(
π−σ

i(π)
)
=

p−1

∏
i=1

(
π

l
1−σ

i(π l
1)
)
,

where σ is a generator of Gal(K/K1). Let s be defined for K/K1 as in 13.4. Then vK
(
π l

1 −
σ i(π l

1)
)
= l+ s for 16 i6 p−1, and (p−1)(l+ s) = vK

(
f ′(π)

)
is divisible by l. We deduce that

l|(p−1)s and

hMi+1/Mi(x) =
1
l

hK/K1(lx) =

x, x6 sl−1,

s(1− p)l−1 + px, x> sl−1.

These considerations complete the proof. �

COROLLARY. The function hL/F is piecewise linear, continuous and increasing.
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15.4. The following assertion clarifies the relation between the Hasse–Herbrand function
and the norm map.

PROPOSITION. Let L/F be a finite separable extension.
Then for ε ∈ OL

hL/F

(
vF
(
NL/F(ε)−1

))
> vL(ε−1).

If, in addition, L/F is totally ramified and if vL(α−β )> 0 for α,β ∈ OL, then

hL/F

(
vF
(
NL/F(α)−NL/F(β )

))
> vL(α−β ).

Proof. Let’s show that the second inequality is a consequence of the first one.
If vL(β )> vL(α−β ), then vL(α)> vL(α−β ), and applying Theorem 9.5 we get

vF
(
NL/F(α)−NL/F(β )

)
>min{vF

(
NL/F(α)),vF

(
NL/F(β ))}

= min{vL(α),vL(β )}> vL(α−β ).

Since hL/F(x)> x, we obtain the second inequality.
If vL(β ) < vL(α − β ), then put ε = αβ−1. Using the property of the derivatives of h in

Proposition 15.3 and the first inequality we obtain

hL/F

(
vF
(
NL/F(α)−NL/F(β )

))
= hL/F

(
vF
(
NL/F(ε)−1

)
+ vL(β )

)
> vL(ε−1)+ vL(β ) = vL(α−β ).

Now we verify the first inequality of the Proposition. By the proof of the previous Proposition,
we may assume that L/F is totally ramified and F is algebraically closed. It is easy to show that
if the first inequality holds for L/M and M/F , then it holds for L/F . The arguments from the
proof of the previous Proposition imply now that it suffices to verify the first inequality for a
separable extension L/F of prime degree. If L/F is tamely ramified, then L/F is Galois, and
the inequality follows from Proposition 13.3. If |L : F | = p = char(F) > 0, then we may assume
that ε is a principal unit. Proposition 13.5 implies the required inequality for the Galois case.
In general, assume that E/F is the minimal Galois extension such that E ⊃ L, and let E1 is the
maximal tamely ramified subextension of F in E. Let l = |E : L| = |E1 : F |. Then NL/F(Ui,L) =

NE/F(Uli,E)⊂ NE1/F(U j,E1) with j > h−1
E/E1

(li). Hence, NL/F(Ui,L)⊂Uk,F with lk> h−1
E/E1

(li), i.e.,

k > h−1
L/F(i), as desired. �

15.5. We will relate the Hasse–Herbrand function to ramification groups which are defined
in 11.3.

If H is a subgroup of the Galois group G, then Hx = H∩Gx. As for the quotients, the descrip-
tion is provided by the following

THEOREM. (Herbrand) Let L/F be a finite Galois extension and let M/F be a Galois subex-
tension. Let x,y be nonnegative real numbers related by y = hL/M(x).

Then the image of Gal(L/F)y in Gal(M/F) coincides with Gal(M/F)x.
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Proof. The cases x 6 1 or e(L|M) = 1 are easy. Due to solvability of Galois groups of totally
ramified extensions it is sufficient to prove the assertion in the case of a ramified cyclic extension
L/M of prime degree l.

If l 6= p, then using Proposition 10.5 choose a prime element π of L such that πM = π l is a
prime element of M. Then for every τ ∈ Gal(L/F)1 we have π

−1
M τπM = (π−1τπ)l and therefore

vL(π
−1

τπ−1) = vL
(
(π−1

τπ)l−1
)
= lvM(π−1

M τπM−1).

Consider now the most interesting case l = p, x > 1. Let πL be a prime element of L. Put
s = s(L|M), see 13.4.

The element πM = NL/MπL is a prime element of M. Let τ ∈ Gal(L/F)y. We have π
−1
M τπM =

NL/M(π−1
L τπL).

From Proposition 15.4 we get

hL/M(vM(π−1
M τπM−1)) = hL/M(vM(NL/M(π−1

L τπL)−1))> y,

so τ|M belongs to Gal(M/F)x.
Conversely, if τ|M ∈ Gal(M/F)x, then i = vM(π−1

M τπM− 1) > x. If i 6 s = s(L|M) then ap-
plying 13.5 we deduce that τ ∈ Gal(L/F)i = Gal(L/F)y. If i > s then Proposition 11.5 and 13.5
show that j = vL(π

−1
L τπL−1) = s+ pr for some nonnegative integer r.

If r > 0 then Proposition 13.5 implies that i = s+ r and τ ∈Gal(L/F) j = Gal(L/F)y. If j = s
then since i > s from the same Proposition we deduce that

τπL

πL
≡ σπL

πL
mod M s+1

L

for an appropriate generator σ of Gal(L/M). Then τσ−1 belongs to Gal(L/F)k for k > s. Due to
the previous discussions (view k as j > s above) k= hL/M(i) and τ belongs to Gal(L/F)y Gal(L/M),
as required. �

COROLLARY. Define the upper ramification filtration of G = Gal(L/F) as

G(x) = Gal(L/F)hL/F (x).

Then for a normal subgroup H of G the previous Theorem shows that

(G/H)(x) = G(x)H/H.

DEFINITION. For an infinite Galois extension L/F define upper ramification subgroups of G =

Gal(L/F) as

G(x) = lim←− Gal(M/F)(x)

where M/F runs through all finite Galois subextensions of L/F . Real numbers x such that G(x) 6=
G(x+δ ) for every δ > 0 are called upper ramification jumps of L/F .

For example, local class field theory for local fields with finite residue field implies that the
set of upper ramification jumps of the Galois group of the maximal abelian extension is the set of
natural numbers.
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15.6. The following Proposition is a generalisation of results of section 13.
Suppose that L/F is a finite totally ramified Galois extension and that |L : F | is a power of

p = char(F). Put G = Gal(L/F). For the chain of normal ramification groups

G = G1 > G2 > . . .> Gn > Gn+1 = {1}

let Lm be the fixed field of Gm; then we get the tower of fields

F = L1−L2−·· ·−Ln−Ln+1 = L.

PROPOSITION. Let 1 6 m 6 n. Then Gal(Lm+1/Lm) coincides with the ramification group
Gal(Lm+1/Lm)m, Gal(Lm+1/Lm)m+1 = {1}, and hLm+1/Lm(m) = m.

Moreover , if i < m, then hLm+1/Lm(i) = i and the homomorphism

Ui,Lm+1/Ui+1,Lm+1 −→Ui,Lm/Ui+1,Lm

induced by NLm+1/Lm is injective;
if i > m, then the homomorphism

Uh(i),Lm+1/Uh(i)+1,Lm+1 −→Ui,Lm/Ui+1,Lm

induced by NLm+1/Lm for h = hLm+1/Lm is bijective.
Furthermore, the homomorphism

Uh(i),L/Uh(i)+1,L −→Ui,F/Ui+1,F

induced by NL/F for h = hL/F , is bijective if h(i)> n.

Proof. Induction on m. Base of induction m = n. Since Gal(L/Ln)x is equal to the group
Gal(L/F)x∩Gal(L/Ln), we deduce that Gal(L/Ln)n = Gal(L/Ln) and Gal(L/Ln)n+1 = {1}, and
hL/Ln(x) = x for x6 n. All the other assertions for m = n follow from Proposition 13.5.

Induction step m+1→ m. The transitivity property of the Hasse–Herbrand function implies
that hL/Lm+1(x) = x for x6 m+1. Now from the previous Theorem

Gal(Lm+1/Lm)x = Gal(L/Lm)hL/Lm+1
(x) Gal(Lm+1/Lm)/Gal(Lm+1/Lm).

We deduce that Gal(Lm+1/Lm)m = Gal(Lm+1/Lm) and Gal(Lm+1/Lm)m+1 = {1}. The rest follows
from Proposition 13.5.

To deduce the last assertion note that k = hL/F(i)> n implies j = hLm/F(i)> m. �

COROLLARY. The word “injective” in the Proposition can be replaced by “bijective” if F is
perfect.
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15.7. PROPOSITION. Let L/F be a finite Galois extension, and let G = Gal(L/F), h = hL/F .
Let h′l and h′r be the left and right derivatives of h. Then h′l(x) = |G0 : Gh(x)|, and

h′r(x) =

|G0 : Gh(x)| if h(x) is not integer,

|G0 : Gh(x)+1| if h(x) is integer.

Therefore

hL/F(x) =
∫ x

0
|G0 : Gh(t)|dt.

Proof. Using the equality (∗) of 15.3, we may assume that L/F is a totally ramified extension the
degree of which is a power of p = char(F)> 0. Then G = G0 = G1. We proceed by induction on
the degree |L : F |. Let Ln be identical to that of 15.6; then |Ln : F | < |L : F |. Since (G/Gn)m =

Gm/Gn for m6 n due to 15.6, we deduce the following series of claims.
If hLn/F(x)6 n, then, by Proposition 15.6, hL/F(x) = hLn/F(x) and

h′l(x) =
∣∣(G/Gn) : (G/Gn)h(x)

∣∣= |G : Gh(x)|.

If hLn/F(x)< n and hL/F(x) = hLn/F(x) is not integer, then h′r(x) = |G : Gh(x)|.
If hLn/F(x) is an integer < n, then

h′r(x) =
∣∣(G/Gn) : (G/Gn)h(x)+1

∣∣= |G : Gh(x)+1|.

Since the derivative (right derivative) of hL/Ln(x) for x > n (resp. x > n) is equal to |Gn :
(Gn)n+1|= |Gn|, we deduce that if hLn/F(x)> n, then

h′l(x) = |Gn| · |G : Gn|= |G|= |G : Gh(x)|.

So if hLn/F(x)> n, then h′r(x) = |Gn| · |G : Gn|= |G|. This completes the proof. �

REMARK. The function hL/F often appears under the notation ψL/F ; in which case it is defined
in quite a different way by using ramification groups, not the norm map. This function is inverse
to the function ϕL/F =

∫ x
0

dt
|G0:Gt | .

16. Norm and Ramification Groups

16.1. The following assertion is of general interest.

PROPOSITION. (Hilbert “Satz 90”) Let F be a field. Let L/F be a cyclic Galois extension,
and let NL/F(α) = 1 for some α ∈ L. Then there exists an element β ∈ L such that α = β σ−1,
where σ is a generator of Gal(L/F).
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Proof. Let β (γ) denote

γ +α
−1

σ(γ)+α
−1

σ(α−1)σ2(γ)+ · · ·+α
−1

σ(α−1) · · · · ·σn−2(α−1)σn−1(γ)

for γ ∈ L, n = |L : F |. If β (γ) were equal to 0 for all γ , then we would have a nontrivial solution
1,α−1,α−1σ(α−1), . . . for the n×n system of linear equations with the matrix

(
σ i(γ j)

)
06i, j6n−1,

where (γ j)06 j6n−1 is a basis of L over F . This is impossible because L/F is separable. Hence
β (γ) 6= 0 for some γ ∈ L. Then β = β (γ) is the desired element. �

COROLLARY. If L is a cyclic unramified extension of F and NL/F(α) = 1 for α ∈ L, then
α = γσ−1 for some element γ ∈UL.

Proof. In this case a prime element π in F is also a prime one in L. By the Proposition, α =

β−1σ(β ) with β = π iε, ε ∈UL. Then α = ε−1σ(ε). �

Below in this section F is a complete discrete valuation field.
Recall that in section 11 we employed the homomorphisms

ψi : Gi −→Ui,L/Ui+1,L

(we put U0,L = UL), where G = Gal(L/F), πL is a prime element in L, i > 0. Obviously these
homomorphisms do not depend on the choice of πL if L/F is totally ramified. The induced homo-
morphisms Gi/Gi+1 −→Ui,L/Ui+1,L will be also denoted by ψi.

16.2. THEOREM. Let L/F be a finite totally ramified Galois extension with group G. Let
h = hL/F . Then for every integer i> 0 the sequence

1−→ Gh(i)/Gh(i)+1
ψh(i)−−−−→ Uh(i),L/Uh(i)+1,L

Ni−−−−→ Ui,F/Ui+1,F

is exact (the right homomorphism Ni is induced by the norm map).

Proof. The injectivity of ψh(i) follows from the definitions. It remains to show that if NL/Fα ∈
Ui+1,F for α ∈Uh(i),L, then

α ≡ σ(πL)

πL
mod Uh(i)+1,L

for some σ ∈ Gh(i).
If L/F is a tamely ramified extension of degree l, then the fourth commutative diagram of

Proposition 13.3 shows that Ni is injective for i> 1, and the kernel of N0 coincides with the group
of lth roots of unity which is contained in F . Since πL = l

√
πF is a prime element in L for some

prime element πF in F , we get ker(N0)⊂ im(ψ0), and in this case the sequence of the Theorem is
commutative.

If L/F is a cyclic extension of degree p = char(F)> 0, then the fourth commutative diagram
of Proposition 13.5 shows that ker(Ns) ⊂ im(ψs) for s = vL(π

−1
L σ(πL)) and a generator σ of

Gal(L/F). Other diagrams of Proposition 13.5 show that Ni is injective for i 6= s.
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We proceed by induction on the degree |L : F |. Since we have already considered the tamely
ramified case, we may assume that the maximal tamely ramified extension L1 of F in L does not
coincide with L. Since |L : L1| is a power of p, the homomorphism induced by NL/L1

U0,L/U1,L −→U0,L1/U1,L1

is the raising to this power of p, and ker(N0) is equal to the preimage under this homomorphism
of the kernel of U0,L1/U1,L1 −→U0,F/U1,F . In other words ker(N0) coincides with the group of all
lth roots of unity for l = |L1 : F | which is contained in F . Hence the kernel of N0 is contained in
the image of ψ0, since ψ0 is injective and |G0 : G1|= l.

Now suppose i > 1. In this case we may assume L1 = F because the homomorphism Ni

induced by NL1/F is injective for i> 1. Let Ln be as in Proposition 15.6. Then one can express Ni

as the composition

Uh(i),L/Uh(i)+1,L
N′−→Uh1(i),Ln/Uh1(i)+1,Ln

N′′−→Ui,F/Ui+1,F ,

where N′ and N′′ are induced by NL/Ln and NLn/F respectively, and h1(i) = hLn/F(i). If h1(i) > n,
then by Proposition 15.6 Gal(Ln/F)h1(i) = {1}, and we may assume that N′′ is injective. Then by
the induction assumption kerNi = kerN′ coincides with the set of elements π

−1
L σ(πL) mod Uh(i)+1,L,

where σ runs over Gal(L/Ln)n = Gn. If h1(i)< n and NL/F(α) ∈Ui+1,F for some α ∈Uh(i),L, then
h(i) = h1(i), and by the induction assumption,

N′(α)≡ σ(πLn)

πLn

mod Uh1(i)+1,Ln

for a prime element πLn in Ln and some σ ∈ Gal(L/F). We can take πLn = NL/LnπL. Hence

N′(α)≡ N′
(

σ(πL)

πL

)
mod Uh1(i)+1,Ln .

The homomorphisms

U j,L/U j+1,L −→U j,Ln/U j+1,Ln

induced by NL/Ln , are injective for j < n by Proposition 15.6. Therefore, the element π
−1
L σ(πL)

belongs to Uh(i),L and so σ ∈ Gh(i),

α ≡ σ(πL)

πL
mod Uh(i)+1,L.

�

16.3. Now we study ramification numbers of abelian extensions. We shall see that these
satisfy much stronger congruences than those of Proposition 11.5.

THEOREM. (Hasse–Arf) Let L/F be a finite abelian extension, and let the residue extension
L/F be separable. Let G = Gal(L/F). Then G j 6= G j+1 for an integer j > 0 implies j = hL/F( j′)
for an integer j′ > 0. In other words, upper ramification jumps of abelian extensions are integers.
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Proof. We may assume that j > 0 and that L/F is totally ramified. Let E/F be the maximal
p-subextension in L/F , and m = |L : E|. Let πL be a suitable prime element in L such that πm

L ∈ E.
For σ ∈ G j, σ 6∈ G j+1 we get π

−m
L σπm

L = 1+mθπ
j

L for some θ ∈ UL; therefore j = m j1, and
σ |E ∈ Gal(E/F) j1 , σ 6∈ Gal(E/F) j1+1. If we verify that j1 = hE/F( j′) for some integer j′, then
j = hL/F( j′). Thus, we may also assume G = G1.

If L/F is cyclic of degree p = char(F), then the required assertion follows from Proposi-
tion 13.5. In the general case we proceed by induction on the degree of L/F . In terms of Propo-
sition 15.6 it suffices to show that n ∈ hLn/F(N) where Gn 6= {1} = Gn+1. Let σ ∈ Gn,σ 6= 1.
Assume that there is a cyclic subgroup H of order p such that σ /∈ H. Then denote the fixed
field of H by M. For a prime element πL in L the element πM = NL/M(πL) is prime in M, and
M = F(πM) by Corollary 2 of 9.9. Then ε = NL/M(π−1

L σ(πL)) = NL/M(π−1
L )σ(NL/M(πL)) 6= 1,

since σ(πM) 6= πM. Put n′ = vM(ε−1); then σ |M ∈ (G/H)n′ , σ |M /∈ (G/H)n′+1. By the induction
hypothesis, n′ = hM/F(n′′) for some n′′ ∈N. Proposition 13.5 implies n6 hL/M(n′), and we obtain
n 6 hL/F(n′′). If n < hL/F(n′′), then, by Proposition 15.7 the left derivative of hL/F at n′′ is equal
to |L : F |, and the left derivative of hL/M at n′ is equal to |L : M|. Therefore, the left derivative of
hM/F at n′′, which is equal to |(G/H) : (G/H)n′ | by Proposition 15.7, coincides with |M : F |. This
contradiction shows that n = hL/F(n′′).

It remains to consider the case when there are no cyclic subgroups H of order p, such that
σ /∈ H. This means that G is itself cyclic. Let τ be a generator of G. The choice of n and
Theorem 16.2 imply that σ = τ ipm−1

, where p - i, pm = |G|. We can assume m > 2 because the
case of m = 1 has been considered above. Let n1 = vL(π

−1
L τ pm−2

(πL)−1). Since |G : Gn|= pm−1,
Proposition 15.7 shows now that it suffices to prove that pm−1|(n−n1). This is, in fact, a part of
the third statement of the following Proposition. �

PROPOSITION. Let L/F be a totally ramified cyclic extension of degree pm. Let πL be a prime
element in L. For σ ∈ Gal(L/F) and integer k put

ck = ck(σ) = vL

(
σ k(πL)

πL
−1
)
.

Then

(1) ck depends only on vp(k), where vp is the p-adic valuation (see section 1);
(2) there exists an element αk ∈ L× such that

vL(αk) = k, vL

(
σ(αk)

αk
−1
)
= ck;

(3) if vp(k1− k2)> l, then vp(ck1− ck2)> l +1.

Proof.
(1) Note that ck does not depend on the choice of a prime element in L by the same reasons as s

in 13.4. Let k = ip j with p - i, j> 0. Then σ k−1=(ρ−1)µ for ρ =σ p j
,µ = ρ i−1+ρ i−2+ · · ·+1.

Since ck does not depend on the choice of a prime element in L and i is prime to p, we deduce
ck = cp j . We also have ck(σ

p) = ckp(σ).
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(2) Put αk = ∏
k−1
i=0 σ i(πL) for k > 0, αk = α

−1
−k for k < 0 and α0 = 1. The elements αk satisfy

condition (2) of the Proposition.
(3) Assume, by induction, that if vp(k1−k2)> l for l 6 n−2, then vp(ck1(σ)−ck2(σ))> l+1

for σ ∈ Gal(L/F).
First we show that all the integers cpn−1 ,k+ck for vp(k)6 n−1 are distinct. If vp(k1) = vp(k2),

k1 6= k2, then ck1 = ck2 and k1 + ck1 6= k2 + ck2 . Let vp(k1),vp(k2) be distinct and 6 n− 1, then
vp(k1− k2) 6 n− 2. So if k1 + ck1 = k2 + ck2 then vp(k1− k2) = vp(ck2 − ck1) > vp(k1− k2)+ 1,
and thus k1 = k2. If vp(k) = n− 1 then cpn−1 6= ck + k. If vp(k) < n− 1 then vp(cpn−1 − ck) >

vp(pn−1− k)+1 > vp(k) and so cpn−1 6= ck + k.
Assume that vp(cpn−1(τ)−cpn(τ))< n for a generator τ of Gal(L/F). Our purpose is to show

that this leads to a contradiction. Then, obviously, vp(ck1(σ)− ck2(σ)) > l + 1 for vp(k1− k2) >

l, l 6 n−1.
Put d = cpn−1(τ)− cpn(τ). Since

vp(d) = vp(cpn−2(τ p)− cpn−1(τ p))> n−1,

we get vp(d) = n−1. By (2), there exists an element α ∈ L such that vL(α) = d,

vL(τ
p(α)−α) = d + cd(τ

p) = d + cpn(τ) = cpn−1(τ).

Put

β = (τ p−1 + τ
p−2 + · · ·+1)α.

Since vL(τ
p(α)−α) = cpn−1(τ)> 0, we get vL(τ(α)−α)> vL(α) and vL(β )> d. We also obtain

vL(τ(β )−β ) = vL(τ
p(α)−α) = cpn−1(τ).

Note that any element αk as in (2) can be changed to θαk satisfying the same property (2),
with a unit θ ∈UF that has a given residue. Hence we deduce that β can be expanded as

β = ∑
k>vL(β )

βk,

with βk ∈ L possessing the same properties with respect to τ as αk of (2). Then

τ(β )−β = ∑
k>vL(β )
vp(k)<n

(τ(βk)−βk)+ ∑
k>vL(β )
vp(k)>n

(τ(βk)−βk) .

The valuations of the elements of the first sum on the right-hand side are all distinct because
vL(τ(βk)−βk) = k+ ck(τ) are all distinct and none of them coincides with cpn−1(τ) = vL(τ(β )−
β ). Therefore,

cpn−1(τ) = vL( ∑
k>vL(β )
vp(k)>n

(τ(βk)−βk)).

In this sum

vL(τ(βk)−βk) = k+ ck(τ)> vL(β )+ cpn(τ)> d + cpn(τ) = cpn−1(τ),

a contradiction. �
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REMARK. This Theorem can be naturally proved using local class field theory. In addition,
there is a converse theorem (Fesenko): a finite Galois totally ramified extension L/F is abelian if
and only if for every finite abelian totally ramified extension M/F the extension LM/F has integer
upper ramification jumps. It is not true that if a finite Galois totally ramified extension has integer
upper ramification jumps then it is abelian.

17. Field of Norms

The theory of a field of norms was started by Fontaine and Wintenberger 50 years ago. This
section may be more difficult than the other sections of Chapter 2, and it can be skept if useful.

In this section F is a local field with perfect residue field of characteristic p > 0.

17.1. DEFINITION. Let L be a separable extension of F with finite residue field extension
L/F . We can view L as the union of an increasing directed family of subfields Li, which are finite
extensions of F , i > 0. The extension L/F is said to be arithmetically profinite if the composite
· · · ◦hLi/Li−1 ◦ · · · ◦hL0/F(a) is a real number for every real a > 0.

In other words, taking into consideration Proposition 15.3, L/F is arithmetically profinite if
and only if its residue field extension is finite and for every real a> 0 there exists an integer j, such
that the derivative (left or right) of hLi/L j(x) for x < hL j/F(a), i > j, is equal to 1. Equivalently, for
every real a > 0 the derivative (left or right) of hLi/F(x) is bounded for x < a and all i.

Define the Hasse–Herbrand function of L/F as

hL/F = · · · ◦hLi/Li−1 ◦ · · · ◦hL0/F .

PROPOSITION. The function hL/F is well defined. It is a piecewise linear, continuous and
increasing function. If E/L is a finite separable extension, then E/F is arithmetically profinite. If
M/F is a subextension of L/F, then M/F is arithmetically profinite. If, in addition, M/F is finite,
then L/M is arithmetically profinite and

hL/F = hL/M ◦hM/F .

Proof. Let L′i be another increasing directed family of subfields in L such that L = ∪L′i. Let a be a
real number > 0. There exist integers j and k such that

hLi/L j(x) = x for x < hL j/F(a), i > j

and

hL′i/L′k
(x) = x for x < hL′k/F(a), i > k.

Since there exists an integer m> j such that L jL′k ⊂ Lm, we obtain by 15.3 that

hL jL′k/L j(x) = x for x < hL j/F(a).
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Then
hL j/F(x) = hL jL′k/F(x) for x < a

and similarly,
hL′k/F(x) = hL jL′k/F(x) for x < a.

Therefore,
hLi/F(x) = hL′i/F(x) for x < a and sufficiently large i,

and the function hL/F is well defined.
Let E = L(β ), and let P = L(α) be a finite Galois extension of L with P⊃ E. Using the same

arguments as in the proof of Proposition 11.2, one can show that Li(α)∩L = Li and Li(α)/Li is
a Galois extension of the same degree as P/L for a sufficiently large i. Then Gal(Li(α)/Li) and
Gal(Li(α)/Li(β )) are isomorphic with Gal(P/L) and Gal(P/E) for i > m, respectively.

Put Ei = Li for i6m and Ei = Li(β ) for i > m. Then E = ∪Ei. If the left derivative of hLi/F(x)
is bounded by d for x < a and c = |E : L|, then the left derivative of hEi/F(x) is bounded by cd for
x < a, i > m. This means that E/F is arithmetically profinite.

If M/F is a finite subextension of L/F , then we can take L0 = M. Therefore L/M is arithmeti-
cally profinite and

hL/F = hL/M ◦hM/F .

If M/F is a separable subextension of L/F , then there exists an increasing directed family of
subfields Mi, i> 0, which are finite extensions of F and such that M = ∪Mi. If L = ∪Li, then also
L = ∪LiMi, and the left derivative of hLiMi/F(x) for x < a is bounded. Hence, the left derivative of
hMi/F(x) for x < a is bounded, i.e., M/F is arithmetically profinite. �

REMARKS.
1. Translating to the language of ramification groups by using the two previous sections, we

deduce that a Galois extension L/F with finite residue field extension is arithmetically profinite
extension if and only if its upper ramification jumps form a discrete unbounded set and for every
upper ramification jump x the index of Gal(L/F)(x+ δ ) in Gal(L/F)(x) is finite. Alternatively,
a Galois extension L/F is arithmetically profinite if and only if for every x the upper ramification
group Gal(L/F)(x) is open (i.e. of finite index) in Gal(L/F). More generally, a separable exten-
sion L/F is arithmetically profinite if and only if for every x the group Gal(Fsep/F)(x)Gal(Fsep/L)
is open in Gal(Fsep/F).

Since the Hasse–Herbrand function relates upper and lower ramification filtrations, we can
define lower ramification groups of an infinite Galois arithmetically profinite extension L/F as
Gal(L/F)x = Gal(L/F)(h−1

L/F(x)).

2. Since upper ramification jumps of abelian extensions are subsets of natural numbers by
Theorem 16.3, every abelian extension of a local field with finite residue field and finite residue
field extension is arithmetically profinite, see Corollary of 21.3.

3. An important property of a totally ramified Zp-extension L/F in characteristic zero is that
its upper ramification jumps form an arithmetic progression with dif and only iference e = e(F)

for sufficiently large jumps.
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Maus–Sen’s theorem on ramification filtration of p-adic Lie extensions L/F in characteristic
zero with finite residue field extension states that the p-adic Lie filtration is equivalent to the upper
ramification filtration of the Galois group of such extensions. This theorem implies that every such
extension is an arithmetically profinite extension. In positive characteristic the analogous result
was proved by Wintenberger.

4. An important example of an arithmetically profinite extension is given by L = ∪Li, L0 = F ,
Li = Li−1(πi) such that π

p
i = πi−1 is a prime element of Li−1. The extension L/F is not Galois.

17.2. Let L/F be arithmetically profinite. Put

q(L|F) = sup{x> 0 : hL/F(x) = x}.

LEMMA.

(1) if M/F is a subextension in L/F, then q(L|F)6 q(M|F).
(2) if M/F is a finite subextension in L/F, then q(L|M)> q(L|F).
(3) if L = ∪Li as in (17.1), then q(L j|Li)→+∞ as j > i, i, j→+∞.
(4) q(L|F) = +∞ if and only if L/F is unramified; q(L|F) = 0 if and only if L/F is totally

and tamely ramified, and q(L|F)6 pvF(p)/(p−1) if L/F is totally ramified.

Proof. (1) Let L=∪Li,M =∪Mi and L′i = LiMi. As hL′i/F(x)6 hL/F(x) by 15.3, we get hL′i/F(x)= x
for x6 q(L|F), hence hMi/F(x) = x for x6 q(L|F). Therefore, q(L|F)6 q(M|F). (2) The previous
Proposition shows that

hL/M(x) = x for x6 hM/F(q(L|F)).

This means that q(L|M)> hM/F(q(L|F)). But by Proposition 15.3, hM/F(x)> x, hence q(L|M)>

q(L|F). (3) It follows from the definition. (4) The first two assertions follow from Proposition 15.3.
Proceeding as in the proof of Proposition 15.3 and using (1), it suffices to verify the last assertion
for a separable totally ramified extension of degree p. Now the computations in the proof of
Proposition 15.3 and Proposition 14.3 lead to the required inequality. �

17.3. Let L be an infinite arithmetically profinite extension of F , and let Li, i > 0, be an
increasing directed family of subfields, which are finite extensions of F , L = ∪Li. Let

N(L|F)× = lim←− L×i

be the inverse limit of the multiplicative groups with respect to the norm homomorphisms NLi/L j , i>
j. Denote N(L|F) = N(L|F)×∪{0}.

LEMMA. The group N(L|F)× does not depend on the choice of Li.

Proof. Let L′i be another increasing directed family of finite extensions of F and L = ∪L′i. For
every i there exists an index j, such that L′i ⊂ L j and NL j/F = NL′i/F ◦NL j/L′i . This immediately
implies the desired assertion. �

Therefore

N(L|F)× = lim←− M∈SL/F M×,
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where SL/F is the partially ordered family of all finite subextensions in L/F and the inverse limit is
taken with respect to the norm maps. If A = (αM)∈N(L|F) with αM ∈M, then NM1/M2αM1 = αM2

for M2 ⊂M1.
We will show that N(L|F) is in fact a field (the field of norms). Moreover, one can define a

natural discrete valuation on N(L|F), which makes N(L|F) a complete discrete valuation field of
characteristic p with residue field L.

17.4. The following statement plays a central role.

PROPOSITION. Let M′/M be totally ramified of degree a power of p. Then

vM
(
NM′/M(α +β )−NM′/M(α)−NM′/M(β )

)
>

(p−1)q(M′|M)

p

for α,β ∈ OM′ .
For α ∈ OM there exists an element β ∈ OM′ such that

vM
(
NM′/M(β )−α

)
>

(p−1)q(M′|M)

p
.

Proof. To prove the first inequality, assume first that M′/M is a cyclic extension of degree p. Then
we get q(M′|M) = s(M′|M) (see 13.4 and 15.1) and, by Proposition 13.4,

TrM′/M(OM′) = π
r
MOM

with r = s+1+[(−1− s)/p]> (p−1)s(M′|M)/p. Then Lemma 13.1 shows that

vM
(
NM′/M(1+ γ)−1−NM′/M(γ)

)
>

(p−1)q(M′|M)

p

for γ ∈OM′ . Substituting γ =αβ−1 if vM′(α)> vM′(β ) and β 6= 0, we obtain the desired inequality.
In the general case we proceed by induction on the degree of M′/M. Let E/M be a finite

Galois extension with E ⊃ M′, and let E1 be the maximal tamely ramified extension of M in E.
Then E1 and M′ are linearly disjoint over M, and

NM′/M(α +β )−NM′/M(α)−NM′/M(β ) = NE1M′/E1(α +β )−NE1M′/E1(α)−NE1M′/E1(β ).

The group G = Gal(E/E1) is a p-group, and hence for H = Gal(E/E1M′) there exists a chain of
subgroups

G = G(0) > G(1) > . . .> G(m) = H,

such that G(i+1) is a normal subgroup of index p in G(i). For the fields we obtain the tower
E1 = E(0)−E(1)−·· ·−E(m) = E1M′, in which E(i+1) is a cyclic extension of degree p over E(i).
Let E2 be some E(i) for 16 i < m. By the induction assumption,

NE1M′/E2(α +β ) = NE1M′/E2(α)+NE1M′/E2(β )+δ

with vE2(δ )> (p−1)q(E1M′|E2)/p. We deduce also that

NE1M′/E1(α +β ) = NE1M′/E1(α)+NE1M′/E1(β )+NE2/E1(δ )+δ
′
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with vE1(δ
′)> (p−1)q(E2|E1)/p. Then

vE1

(
NE2/E1(δ )

)
>

(p−1)q(E1M′|E2)

p
>

(p−1)q(E1M′|E1)

p

and

vE1(δ
′)>

(p−1)q(E1M′|E1)

p
by Lemma 17.2. These two inequalities imply that

vM
(
NM′/M(α +β )−NM′/M(α)−NM′/M(β )

)
>

(p−1)q(M′|M)

p
,

as required.
To prove the second inequality of the Proposition, we choose a prime element π ′ in M′ and

put π = NM′/Mπ ′. Then π is a prime element in M. Let n = |M′ : M| (a power of p). Writing the
element α of M as

α = ∑
i>a

θiπ
i

with multiplicative representatives θi, put

β = ∑
i>a

θ
1/n
i π

′i ∈M′.

Then NM′/M

(
θ

1/n
i π ′

)
= θiπ . By the first inequality of the Proposition and passing to the limit, we

obtain

vM(NM′/M(β )−α)>
(p−1)q(M′|M)

p
,

as required. �

17.5. Let L/F be an arithmetically profinite extension. Let L0 be the maximal unramified
extension of F in L, and let L1 be the maximal tamely ramified extension of F in L. Then L0/F
is finite by the definition, and L1/F is finite because of the equality hL1/L0(x) = |L1 : L0|x. So one
can choose Li for i> 2 as finite extensions of L1 in L with Li ⊂ Li+1 and L = ∪Li.

For an element A ∈ N(L|F) put

v(A) = vL0(αL0).

Then v(A) = vLi(αLi) for i> 0.
Let a be an element of the residue field L = L0, and θ = r(a) the multiplicative representative

of a in L0 (see section 6). Put θLi = θ 1/ni , where ni = |Li : L1| for i > 1 and θL0 = NL1/L0θ . Then
Θ = (θLi) is an element of N(L|F). Denote the map a 7→Θ by R.

THEOREM. Let L/F be an infinite arithmetically profinite extension. Let A = (αM) and B =

(βM) be elements of N(L|F), M ∈ SL/F . Then the sequence NM′/M(αM′ + βM′) is convergent in
M when M ⊂M′ ⊂ L, |M′ : M| → +∞. Let γM be the limit of this sequence. Then Γ = (γM) is an
element of N(L|F). Put Γ = A+B.

Then N(L|F) is a field with respect to the multiplication and addition defined above. The map
v is a discrete valuation of N(L|F) and N(L|F) is a complete field of characteristic p. The map
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R is an isomorphism of L onto a subfield in N(L|F) which maps isomorphically onto the residue
field of N(L|F).

Proof. Let Li be as above in 17.5, in the context of Lemma 17.3.
Let a be a positive integer and let k be an integer such that (p−1)q(L j|Li)/p> a for j > i> k,

see Lemma 17.2. Let A = (αLi),B = (βLi) be elements of N(L|F) and αL0 ,βL0 ∈ OL0 . Then
Proposition 17.4 shows that

NLi/Lk(αLi +βLi)≡ αLk +βLk mod M a
Lk
. (∗)

Let ak > 0 be a sequence of integers such that

ak 6 ak+1, ak 6 (p−1)q(L|Lk)/p, limak =+∞

(the existence of the sequence follows from Lemma 17.2). Let an index k > 1 be in addition such
that ak > 1. Suppose that βLk is a prime element in Lk. Proposition 17.4 and Lemma 17.2 show
that one can construct a sequence βLi ∈ Li, i> k, such that

vLi(NLi+1/LiβLi+1−βLi)> ai.

Then βLi is prime in Li, and applying (∗), we get

vLi(NL j/LiβL j −βLi)> ai for j > i> k.

Now Proposition 15.4 and Proposition 17.1 imply that

vLs(NL j/LsβL j −NLi/LsβLi)> h−1
Li/Ls

(ai)> h−1
L/Ls

(ai)

for j> i> s> k. Since h−1
L/Ls

(ai)→+∞ as i→+∞, we obtain that there exists γLs = limi→+∞ NLi/LsβLi

and γLs is prime in Ls. Putting γL j = NLk/L j γLk for j < k, we get the element Γ = (γLi) ∈ N(L|F)

with v(Γ) = 1.
Furthermore, by Proposition 15.4 and (∗) we obtain:

vL j

(
NLi/L j(αLi +βLi)−NLk/L j(αLk +βLk)

)
> h−1

Lk/L j
(a)> h−1

L/L j
(a).

This means that the sequence NLi/L j(αLi +βLi) is convergent. In the general case let c= vL0(αL0),d =

vL0(βL0). Taking prime elements πLi in Li such that Π = (πLi) ∈ N(L|F) with v(Π) = 1 and
replacing A = (αLi) by A′ = (αLiπ

−g
Li

) and B = (βLi) by B′ = (βLiπ
−g
Li

), where g = min(c,d),
we deduce that NLi/L j(αLi +βLi) is convergent. Put γL j = limi→+∞ NLi/L j(αLi +βLi). Obviously,
(γLi) = Γ ∈ N(L|F) and N(L|F) is a field. As

v(Γ) = vLk(γLk) = lim
i→+∞

vLk(NLi/Lk(αLi +βLi)),

we get v(Γ)>min(v(A),v(B),a). Choosing a>max(v(A),v(B)), we obtain v(Γ)>min(v(A),v(B)).
Since 1 = (1Li), for p = (αLi) we get that

αL j = lim
i→+∞

NLi/L j(p) = lim
i→+∞

p|Li:L j| = 0.

Therefore, N(L|F) is a discrete valuation field of characteristic p.
To verify the completeness of N(L|F) with respect to v, take a Cauchy sequence A(n) =

(α
(n)
Li

) ∈ N(L|F). We may assume v(A(n)) > 0. For any i there exists an integer ni such that
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v(A(n)−A(m)) > ai for n,m > ni (ai as above). One may assume that (ni)i is an increasing se-
quence. Applying (∗), we get

vLi(α
(n)
Li
−α

(m)
Li

)> ai for n,m> ni.

Let αLi be an element in Li such that

vLi(αLi−α
(ni)
Li

)> ai.

Then, by (∗),
vLi(NL j/LiαL j −αLi)> ai.

Proposition 15.4 and Proposition 17.1 imply now that

vLs(NLi/LsαLi−NL j/LsαL j)> h−1
L/Ls

(a j)→+∞

when i > j→ +∞. Putting α ′Ls
= limi→+∞ NLi/LsαLi , we obtain an element A′ = (α ′Li

) ∈ N(L|F)

with A′ = limA(n). Therefore, N(L|F) is complete with respect to the discrete valuation v.
Finally, R is multiplicative. If R(a) = Θ, R(b) = Λ, R(a+b) = Ω, then it follows immediately

from 6.3, that ωLi ≡ θLi +λLi mod p. By the definition of ai we get vLi(p)> ai. Then by (∗) and
Proposition 15.4 we obtain

vLi(ωLi−NL j/Li(θL j +λL j))→+∞

as j→+∞. This means that Ω = Θ+Λ and R is an isomorphism of L onto a subfield in N(L|F).
The latter subfield is mapped onto the residue field of N(L|F), hence it is isomorphic to the residue
field N(L|F). �

COROLLARY. Let A = (αLi),B = (βLi) belong to the ring of integers of N(L|F). Let Γ =

A+B. Then γLi ≡ αLi +βLi mod M ai
Li

, where ai are those defined in the proof of the Theorem.
Moreover, for any α ∈OL j there exists an element A = (αLi) in the ring of integers of N(L|F) such
that α ≡ αL j mod M

a j
L j

.

Proof. The first assertion follows from (∗) and the second from Proposition 17.4. �

17.6. An immediate consequence of the definitions is that if M/F is a finite subextension of
an arithmetically profinite extension L/F , then N(L|F) = N(L|M). On the other hand, if E/L is a
finite separable extension, then, as shown in Proposition 17.1, E/F is an arithmetically profinite
extension. Let M be a finite extension of F such that ML = E. Since NL jM/LiM(α) = NL j/Li(α)

for α ∈ L j, j > i > m, and sufficiently large m, we deduce that N(L|F) can be identified with
a subfield of N(E|F): A = (αLi) 7→ A′ ∈ N(E|F) with A′ = (α ′LiM), α ′LiM = αLi for i > m,
α ′LiM = NLmM/LiM(αLm) for i < m. In fact the discrete valuation topology of N(L|F) coincides
with the induced topology from N(E|F), and N(E|F)/N(L|F) is an extension of complete dis-
crete valuation fields. For an arbitrary separable extension E/L denote by N(E,L|F) the direct
limit of N(E ′|F) for finite separable subextensions E ′/L in E/L. Obviously, N(E,L|F) = N(E|F)

if E/L is finite.
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Let L/F be infinite arithmetically profinite, and let L′/L be a finite separable extension. Let
τ be an automorphism in GF = Gal(Fsep/F) with τ(L) ⊂ L′. There exists a tower of increasing
subfields L′i in L′ such that L′i/F is finite, τ(L)L′i = L′, L′=∪L′i, and NL′j/L′i(τα) = τNτ−1L′j/τ−1L′i

(α)

for j > i,α ∈ τ−1L′j; see the proof of Proposition 17.1. Let T: N(L|F) −→ N(L′|F) denote the
homomorphism of fields, which is defined for A = (αLi) ∈ N(L|F) as T(A) = A′ = (α ′L′i

) with
α ′L′i

= τ(ατ−1L′i
). Then A′ ∈ N(L′|F). This notion is naturally generalized for N(E,L|F) and

N(E ′,L|F) with τ(E)⊂ E ′.

PROPOSITION. Let E1 and E2 be separable extensions of L. Then the set of all automorphisms
τ ∈ GL with τ(E1) ⊂ E2 is identified (by τ 7→ T) with the set of all automorphisms T ∈ GN(L|F)

with T(N(E1,L|F)) ⊂ N(E2,L|F). In particular, if E/L is a Galois extension, then Gal(E/L) is
isomorphic to Gal(N(E,L|F)/N(L|F)).

Proof. First we verify the second assertion for a finite Galois extension E/L. Let T act trivially on
N(E|F). Then T acts trivially on the residue field of N(E|F), which coincides with E, and hence
τ belongs to the inertia subgroup Gal(E/F)0. Let E = L(β ) and Li form a standard tower of fields
for L over F , as in (17.5). Since the coefficients of the irreducible polynomial of β over L belong
to some Lm, we deduce that Li(β )/Li is Galois and Gal(Li(β )/Li) is isomorphic to Gal(E/L) for
i > m. Let Π = (πLi(β ))i>m be a prime element of N(E|F). Then T(Π) = Π and τπLi(β ) = πLi(β )

for i > m. We obtain now that τ = 1 because τ acts trivially on the residue field Li(β ) = E.
We conclude that Gal(E/L) can be identified with a subgroup of

Gal(N(E|F)/N(L|F)).

Since the field of the fixed elements under the action of the image of Gal(E/L) is contained in
N(L|F), these two groups are isomorphic.

From this we easily deduce the second assertion of the Proposition for an arbitrary Galois
extension E/L.

Finally, if E/L is a Galois extension such that E1,E2 ⊂ E, denote the Galois groups of E/E1

and E/E2 by H1 and H2. These two groups H1 and H2 can be identified with Gal(N(E,L|F)/N(E1,L|F)),
and Gal(N(E,L|F)/N(E2,L|F)) respectively. Since the set of τ ∈ GL with τ(E1) ⊂ E2 coincides
with {τ ∈ GL : τH1τ−1 ⊃ H2}, the proof is completed. �

17.7. The preceding Proposition shows that the group Gal(Fsep/L) can be considered as a
quotient group of Gal(N(L|F)sep/N(L|F)). We will show in what follows that the former group
coincides with the latter.

THEOREM. Let Q be a separable extension of N(L|F). Then there exists a separable extension
E/L and an N(L|F)-isomorphism of N(E,L|F) onto Q.

Thus, the absolute Galois group of L is naturally isomorphic to the absolute Galois group of
N(L|F):

GL
∼−→ GN(L|F).
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Proof. One can assume that Q/N(L|F) is a finite Galois extension. Using the description of Galois
extensions of 11.4 we must consider the following three cases: Q/N(L|F) is unramified, cyclic
tamely totally ramified, and cyclic totally ramified of degree p = char(F).

Let OQ = ON(L|F)[Γ]. Let f(X) be the monic irreducible polynomial of Γ over N(L|F). It
suffices to find a separable extension E ′/L such that f(X) has a root in N(E ′,L|F). Let Li and ai

be identical to those in the proof of Theorem 17.5. By Lemma 10.1, we can write

f(X) = Xn +A(n−1)Xn−1 + · · ·+A(0)

with A(m) = (α
(m)
Li

) ∈ ON(L|F), n = |Q : N(L|F)|. Denote by fi(X) ∈ OLi [X ] the polynomial Xn +

α
(n−1)
Li

Xn−1 + · · ·+α
(0)
Li

. Let αi be a root of fi(X) and Mi = Li(αi),Ei = L(αi).
The following assertion will be useful in our considerations.

LEMMA. Let Γm for 16m6 n are all roots of f(X) and ∆ = ∏m<l(Γm−Γl)
2 be the discrimi-

nant of f(X). Then ∆=(−1)
n(n−1)

2 ∏
n
m=1 σm f ′(Γ) where σ1, . . . ,σn are elements of Gal(Q/N(L|F)).

Let di ∈ Li be the discriminants of fi(X). Then there exists an index i1 such that vLi(di) = v(∆)
for i> i1.

Proof. Let ∆ = (δLi), and let i1 be such that ai > v(∆) for i > i1. Then v(∆) = vLi(δLi), and
Corollary 17.5 shows that vLi(δLi−di)> ai. Hence, vLi(di) = vLi(δLi) = v(∆) for i> i1. �

This Lemma implies that Mi/Li is separable for i > i1. Now we shall verify that in the three
cases under consideration, there exists an index i2, such that Mi/Li and L/Li are linearly disjoint
and q(Ei|Mi)> q(L|Li) for i> i2.

If Q/N(L|F) is unramified, then the residue polynomial f i ∈ L[X ] is irreducible of degree n
and Mi/Li is an unramified extension of the same degree. Hence, Mi/Li and L/Li are linearly
disjoint and hEi/Mi(x) = hL/Li(x), so q(Ei|Mi) = q(L|Li).

If Q/N(L|F) is totally and tamely ramified, then one can take f(X) = Xn−Π, where Π is a
prime element in N(L|F) (see 10.5). Hence, Mi/Li is tamely and totally ramified of degree n for
i> 1. We deduce that L∩Mi = Li and hEi/Mi(nx) = nhL/Li(x), and hence q(Ei|Mi)> nq(L|Li) for
i> 1.

If Q/N(L|F) is totally ramified of degree n = p = char(F), then one may assume that f(X)

is an Eisenstein polynomial (see 10.6). Then fi(X) is a separable Eisenstein polynomial in Li[X ],
and αi is prime in Mi. Let Ni be the minimal finite extension of Mi such that Ni/Li is Galois, and
M′i the maximal tamely unramified extension of Li in Ni. Then |Ni : Li|6 p!. One has Ni = M′i(αi)

and si = s(Ni|M′i) = vNi(σαi−αi)− vNi(αi) for a generator σ of Gal(Ni/M′i) (see 13.4 and the
proof of Proposition 15.3). Note that

vNi(σαi−αi) =
1

p(p−1)
vNi(di)6

p!
p(p−1)

vLi(di) = (p−2)!v(∆)

for i > i1. Furthermore, in the same way as in the proof of Proposition 15.3, we get hMi/Li(x) =
l−1hNi/M′i (lx), where l = e(M′i |Li). Consequently,

q(Mi|Li) = sil−1 < (p−2)!v(∆).
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Since hL j(αi)/Mi ◦hMi/Li = hL j(αi)/L j ◦hL j/Li for j> i, we deduce that q(Ei|Mi)= hMi/Li(q(L|Li))>

q(L|Li).
Now we construct the desired field E ′. Let v : N(L|F)sep× −→ Q be the extension of the

discrete valuation v : N(L|F)× −→ Z (see Corollary 1 of 9.9). According to Corollary 17.5 there
is an element B( j) = (β

( j)
Li(α j)

)i> j ∈N(E j|F) such that vM j(α j−β
( j)
M j

)> b j, where b j is the maximal
integer 6 (p−1)q(E j|M j)/p.

Since q(E j|M j)> q(L|L j), we obtain b j > a j. We claim that v( f (B( j)))→+∞ as j→+∞.
Indeed, E j/M j is totally ramified. Therefore, if f (B( j)) = (ρLi(α j))i> j then v( f (B( j))) >

vM j(ρM j)/n.
By using Corollary 17.5 we deduce

vM j(ρM j − f j(β
( j)
M j

))> (p−1)q(E j|M j)/p> a j.

This means that

v( f (B( j)))>
a j

n
for j > i2.

Since a j→+∞ when j→+∞, we conclude that v( f (B( j)))→+∞.
By the same arguments we obtain that for f ′(B( j)) = (µLi(α j))i> j

v( f ′(B( j)))6 vM j(µM j), vM j(µM j − f ′j(α j))> a j, vM j( f ′j(α j))6 nv(∆)

for j > i2. This implies that for a sufficiently large j

v( f ′(B( j)))6 nv(∆)<
1
2

v( f (B( j))).

Corollary 3 of 8.3 shows the existence of a root of f(X) in N(E j|F). Putting E ′ = E j we complete
the proof of the Theorem. �

DEFINITION. The functor of fields of norms associates to every arithmetically profinite extension
L over F its field of norms N(L|F), to every separable extension E of L the field N(E,L|F) and
to every element of GF the corresponding element of the group of automorphisms of the field
N(L|F)sep (so that elements of GL 6 GF are mapped isomorphically to elements of GN(L|F)).

REMARKS.
1. If L/F is an arithmetically profinite extension, one can show that for a separable ex-

tension E/L (not necessarily finite), E/F is an arithmetically profinite extension if and only if
N(E,L|F)/N(L|F) is arithmetically profinite. In this case the field N(E|F) can be identified with
N(N(E,L|F)|N(L|F)) and

hE/F = hN(E,L|F)/N(L|F) ◦hL/F .

If, in addition, E/F and E/L are Galois extensions, then

Gal(N(E,L|F)/N(L|F))(hL/F(x)) = Gal(E/F)(x)∩Gal(N(E,L|F)/N(L|F))

where we identified Gal(N(E,L|F)/N(L|F)) with Gal(E/L).

2. Fields of norms are related to various rings introduced by Fontaine in his study of Galois
representations over local fields.
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3. A local field F with finite residue field Fq has infinitely many wild automorphisms, i.e.,
continuous homomorphisms σ : F −→ F such that π

−1
F σ(πF) ∈U1, if and only if F is of positive

characteristic. The group R of wild automorphisms of F has a natural filtration Ri = {σ ∈ R :
π
−1
F σπF ∈ Ui} and R is isomorphic to lim←− R/Ri. Therefore the group R is a pro-p-group. It is

called the Nottingham group by group theorists. It has finitely many generators. One can check
that every nontrivial closed normal subgroup of an open subgroup of R is open; so R is a so-
called hereditarily just infinite pro-p-group. Those are of importance for the theory of infinite
pro-p-groups.

Every Galois totally ramified and arithmetically profinite p-extension of a local field with
residue field Fq is mapped under the functor of fields of norms to a closed subgroup of R. Using
this functor and realisability of pro-p-groups as Galois groups of arithmetically profinite exten-
sions in positive characteristic one can easily show that every finitely generated pro-p-group is
isomorphic to a closed subgroup of R.

For integer r > 1 define a closed subgroup T = T [r] of R

T [r] = {σ ∈ R : π
−1
F σπF = f (πF) with f (X) ∈ Fq[[X pr

]] }.

Fesenko proved that for p > 2,r > 1 the group T is hereditarily just infinite (i.e. every nontrivial
normal closed subgroup of every open subgroup is open), T does not have infinite subquotients
isomorphic to p-adic Lie groups, and the group T [r] for r > 1 can be realised as the Galois group
of an arithmetically profinite extension of a finite extension of Qp.

4. General ramification theory of infinite extensions is far from being complete, despite many
deep investigations.

A satisfactory ramification theory of complete discrete valuation fields with imperfect residue
field is still missing. Such a theory is expected to have analogs of three key properties of rami-
fication theory of local fields: Herbrand’s theorem, Hasse–Arf’s theorem and compatibility with
local reciprocity map (see 21.3). There are several partial theories, each with its own merits and
drawbacks and none having analogs of all the three properties.

18. Local Fields with Finite Residue Fields

18.1. Let F be a local field with finite residue field F = Fq, q = p f elements. The number
f is called the absolute residue degree of F . Since char(Fq) = p, Lemma 2.2 shows that F is of
characteristic 0 or of characteristic p.

In the first case v(p) > 0 for the discrete valuation v in F , hence the restriction of v on Q is
equivalent to the p-adic valuation. Then we can view the field Qp of p-adic numbers as a subfield
of F ; another way to show this is to use the quotient field of the Witt ring of a finite field and
Proposition 12.6.

Let e = v(p) = e(F) be the absolute ramification index of F . Then by Proposition 9.4 we
obtain that F is a finite extension of Qp of degree n = e f . We call F a local number field.
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In the second case Propositions 12.4 and 12.1 show that F is isomorphic (with respect to the
field structure and the discrete valuation topology) to the field of formal power series Fq((X)) with
prime element X . We call F a local functional field.

The topology of the multiplicative group F× of a local field is the product of the discrete topol-
ogy on the infinite cyclic group generated by a prime element and the induced from F topology
on the group of units U . Equivalently, the topology of F× is induced from the topology of F×F
with respect to the embedding α 7→ (α,α−1).

LEMMA. F is a locally compact topological space with respect to the discrete valuation topol-
ogy. The ring of integers O and the maximal ideal M are compact. The multiplicative group F×

is locally compact, and the group of units U is compact.

Proof. Assume that O is not compact. Let (Vi)i∈I be a covering by open subsets in O , i.e.,
O = ∪Vi, such that O is not covered by a finite union of Vi. Let π be a prime element of O .
Since O/πO is finite, there exists an element θ0 ∈ O such that the set θ0 +πO is not contained
in the union of a finite number of Vi. Similarly, there exist elements θ1, . . . ,θn ∈ O such that
θ0 + θ1π + · · ·+ θnπn +πn+1O is not contained in the union of a finite number of Vi. However,
the element α = limn→+∞ ∑

n
m=0 θmπm belongs to some Vi, a contradiction. Hence, O is compact

and U , as the union of θ +πO with θ 6= 0, is compact. �

18.2. LEMMA. The Galois group of every finite extension of F is solvable.

Proof. Follows from Corollary 3 of 11.4. �

PROPOSITION. For every n> 1 there exists a unique unramified extension L of F of degree n:
L = F(µqn−1).

The extension L/F is cyclic and the maximal unramified extension Fur of F is a Galois exten-
sion.

The group Gal(Fur/F) is isomorphic to Ẑ and topologically generated by an automorphism
ϕF , such that

ϕF(α)≡ α
q mod MFur for α ∈ OFur .

The automorphism ϕF is called the Frobenius automorphism of F.

Proof. First we note that, by Corollary 1 of 6.3, F contains the group µq−1 of (q− 1)th roots of
unity which coincides with the set of nonzero multiplicative representatives of F in O . Moreover,
Proposition 4.4 and section 6 imply that the unit group UF is isomorphic to µq−1×U1,F .

The field Fq has the unique extension Fqn of degree n, which is cyclic over Fq. Propositions
10.2 and 10.3 show that there is a unique unramified extension L of degree n over F and hence
L = F(µqn−1).

Now let E be an unramified extension of F and α ∈ E. Then F(α)/F is of finite degree.
Therefore, Fur is contained in the union of all finite unramified extensions of F . We have

Gal(Fur/F)∼= lim←− Gal(Fqn/Fq)∼= Ẑ.
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It is well known that Gal(F sep
q /Fq) is topologically generated by the automorphism σ such that

σ(a) = aq for a ∈ F sep
q . Hence, Gal(Fur/F) is topologically generated by the Frobenius automor-

phism ϕF . �

REMARK. If θ ∈ µqn−1, then

ϕF(θ)≡ θ
q mod ML

and ϕF(θ) ∈ µqn−1. The uniqueness of the multiplicative representative for θ
q ∈ F implies now

that ϕF(θ) = θ q.

18.3. In order to describe the group U1 =U1,F of principal units we can apply assertions of
sections 4 and 5.

If char(F) = p, then Proposition 5.2 shows that every element α ∈U1 can be uniquely written
as the convergent product

α = ∏
p-i

i>0

∏
j∈J

(1+θ jπi)
ai j ,

where the index-set J numerates f elements in OF , such that their residues form a basis of Fq over
Fp, and the elements θ j belong to this set of f elements; πi are elements of OF with v(πi) = i, and
ai j ∈ Zp. Thus, U1 has the infinite topological basis {1+θ jπi}.

If char(F) = 0, 5.4 and 5.5 show that every element α ∈U1 can be written as a convergent
product

α = ∏
i∈I

∏
j∈J

(1+θ jπi)
ai j ω

a
∗

where I = {16 i < pe/(p−1), p - i}, e = e(F); the index-set J numerates f elements in OF , such
that their residues form a basis of Fq over Fp, and the elements θ j belong to this set of f elements;
πi are elements of OF with v(πi) = i, and ai j ∈ Zp.

If a primitive pth root of unity does not belong to F , then ω∗ = 1,a = 0 and the above expres-
sion for α is unique; U1 is a free Zp-module of rank n = e f = |F : Qp|.

If a primitive pth root of unity belongs to F , then ω∗ = 1+θ∗πpe/(p−1) is a principal unit such
that ω∗ /∈ F×p, and a ∈ Zp. In this case the above expression for α is not unique. Subsections 4.7
and 4.8 imply that U1 is isomorphic to the product of n copies of Zp and the p-torsion group µpr ,
where r > 1 is the maximal integer such that µpr ⊂ F .

LEMMA. If char(F) = 0, then F×n is an open subgroup of finite index in F× for n > 1. If
char(F) = p, then F×n is an open subgroup of finite index in F× for p -n. If a primitive nth root is
in F then |F× : F×n|= n2qv(n).

If char(F) = p and p|n, then F×n is not open and is not of finite index in F×.

Proof. Everything except the formula follows from Proposition 4.9 and the previous considera-
tions. To obtain the formula for |F× : F×n|, first it is = n|U : Un|. Write n = prm with integer
m prime to p. The integer r can be positive only when F is of characteristic zero. We have
|F×q : F×n

q |= |F×q : F×m
q |= m; |U1 : Un

1 |= 1 in characteristic p and = |U1 : U pr

1 |= prd+1 in charac-
teristic 0, where d = |F : Qp|. Hence |F× : F×n|= n2 prd and prd = qv(n). �
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18.4. Now we have a look at the norm group NL/FL× for a finite extension L of F . Recall
that the norm map

NFq′/Fq : F×q′ −→ F×q
is surjective when Fq′ ⊃ Fq. Then the second and third diagrams of Proposition 3.2 show that
NL/FUL =UF in the case of an unramified extension L/F . Further, the first diagram there implies
that

NL/FL× = 〈πn〉×UF ,

where π is a prime element in F , n = |L : F |. This means, in particular, that F×/NL/FL× is a cyclic
group of order n in the case under consideration. Conversely, every subgroup of finite index in F×

that contains UF coincides with the norm group NL/FL× for a suitable unramified extension L/F .
The next case is a totally and tamely ramified Galois extension L/F of degree n. Since L/F is

Galois, we get µn ⊂ F× and n|(q−1). Proposition 13.3 and its Corollary show that

NL/FU1,L =U1,F , π ∈ NL/FL×,

for a suitable prime element π in F such that L = F( n
√
−π), and θ ∈ NL/FL× for θ ∈UF if and

only if θ ∈ F×n
q . Since n|(q− 1), the quotient group F×q /F×n

q is cyclic of order n. We conclude
that

NL/FL× = 〈π〉×〈θ〉×U1,F

with an element θ ∈UF , such that its residue θ generates F×q /F×n
q . In particular, F×/NL/FL× is

cyclic of order n. Conversely, every subgroup of index n relatively prime to char(F) coincides
with the norm group NL/FL× for a suitable cyclic extension L/F .

The last case to be considered is the case of a totally ramified Galois extension L/F of degree
p. Preserving the notations of 13.4 we apply Proposition 13.5. The right vertical homomorphism
of the fourth diagram

θ → θ
p−η

p−1
θ

has a kernel of order p; therefore its cokernel is also of order p. Let θ∗ ∈UF be such that θ ∗ does
not belong to the image of this homomorphism. Since F is perfect, we deduce, using the third and
fourth diagrams, that 1+θ∗π

s
F /∈ NL/FU1,L. The other diagrams imply that F×/NL/FL× is a cyclic

group of order p and generated by

1+θ∗π
s
F mod NL/FL×.

If char(F) = 0, then, by Proposition 14.3, s 6 pe/(p− 1), where e = e(F). That Proposition
also shows that if p|s, then s = pe/(p−1) and a primitive pth root of unity ζp belongs to F , and
L = F( p

√
π) for a suitable prime element π in F . In this case F×/NL/FL× is generated by ω∗

mod NL/FL×.
Conversely, note that every subgroup of index p in the additive group Fq can be written as

η℘(Fq) for some η ∈ Fq. Let N be an open subgroup of index p in F× such that some prime
element πF ∈ N and ω∗ ∈ N (if char(F) = 0). Then, in terms of the cited Corollary 14.5, if s is the
maximal integer relatively prime to p such that Us,F 6⊂ N and Us+1,F ⊂ N, then 1+η℘(OF)πs +

πs+1OF ⊂ N for some element η ∈ OF . By that Corollary we obtain that 1 + η℘(OF)πs +
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πs+1OF ⊂ NL/FL×, where L = F(λ ) and λ is a root of the polynomial X p−X +θ pα , with α =

θ−pη−1π−s for a suitable θ ∈UF . Since s = s(L|F) (the same notation as in 13.4), we get Ui,F ⊂
Ui+1,FNL/FUL for i < s, by Proposition 13.5. In terms of the homomorphism λi of section 4 we
obtain that

λi ((N∩Ui,F)Ui+1,F/Ui+1,F) = λi
(
(NL/FL×∩Ui,F)Ui+1,F/Ui+1,F

)
for i > 0. If ω∗ /∈ N and char(F) = 0, then one can put L = F( p

√
π) to obtain the same relations

for N and NL/FL× as just above.

When F is of positive characteristic p, the Artin–Schreier extension L/F generated by a root of
the polynomial X p−X+θ pα with vF(α)=−s< 0 and not divisible by p has its ramification jump
is s (see section 14). Proposition 13.5 implies that Ui,F ⊂Ui+1,FNL/FUL for i < s and Us+1,F ⊂
NL/FUL. Since |UF : NL/FUL| = p, and by Corollary 14.5 the units 1+ θ−p℘(OF)α

−1 are in
the norm group of L/F , we deduce that 1+ θ−pρα−1 6∈ NL/FUL for any unit ρ ∈UF such that
ρ 6∈℘(F). Hence every open subgroup of index p in F× is the norm group of the appropriate
Artin–Schreier extension.

Later we will show that every open subgroup N of finite index in F×, N = NL/FL× for a
suitable abelian extension L/F .

18.5. The following property will be useful in motivating the Neukirch’s approach to class
field theory.

PROPOSITION. Let L/F be a finite Galois extension and σ ∈ Gal(L/F). There is a finite
separable extension K/F such that M = KL is a finite unramified Galois extension of K and of L,
Kur = Lur = Mur, and the image of the Frobenius automorphism ϕK ∈ Gal(Lur/K) with respect to
the restriction on L is σ .

L
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Proof. The restriction of σ on L0 = L∩Fur is ϕn
F |L0 for some n > 0. Let ϕ ∈ Gal(Lur/F) be an

extension of ϕF . The product of σ and the restriction of ϕ−n on L is an element of Gal(L/L0), let
τ ∈ Gal(Lur/Fur) correspond to it via the canonical isomorphism with Gal(L/L0). Then σ̃ = τϕn

has the property: σ̃ |L = σ(ϕ−nϕn)|L = σ , σ̃ |Fur = ϕn
F .

Let K by the fixed field of σ̃ . Since F ⊂ K ⊂ Lur we deduce that Fur ⊂ Kur ⊂ Lur. The Galois
group of Lur/K is topologically generated by σ̃ and is isomorphic to Ẑ, therefore it does not have
nontrivial closed subgroups of finite order. The group Gal(Lur/Kur) being a subgroup of the finite
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group Gal(Lur/Fur) is trivial, so Lur = Kur. Due to the latter, M/K is a subextension of Kur/K and
M/L is a subextension of Lur/L, hence those are unramified extensions.

The degree of the extension K/F is the product of the degree of the extension K/K0, K0 =

K∩Fur, whose Galois group is isomorphic to Gal(Lur/Fur) and the degree of K0/F equal to n, so
it is finite.

In the unramified extension Lur/K the automophism σ̃ is a power of ϕK and their restrictions
to Fur are equal: ϕK |Fur = ϕ

|K0:F |
F |Fur = ϕn

F |Fur = σ̃ |Fur , so σ̃ = ϕK .
�





CHAPTER 3

Class Field Theory

This Chapter includes a very short and easy to follow presentation of class field theory of local
fields with finite residue field and of global fields, in characteristic zero and positive characteristic.
Algebraic topics such as central division algebras and Galois cohomology groups that are not nec-
essary for class field theory are not included. The presentation of global class field theory is based
on the use of abstract class field theory mechanism discovered by Neukirch. This mechanism is
natural from the point of view of the theory of local fields and local class field theory, as explained
in sections 19 and 20. Neukirch’s approach was partially motivated by anabelian geometry of
number fields. Zeta integrals, the theory of Iwasawa and Tate, is included in section 23, as well as
an application of zeta functions and their twists by characters to the computation of the index of
the norm map image of idele class group.

19. Main Results of Local Class Field Theory

19.1. Let k be a local field with finite residue field. The main results of local class field
theory in this case are

1. For every finite separable extension F/k and finite Galois extension L/F there is a surjective
homomorphism

ϒL/F : Gal(L/F)−→ F×/NL/FL×

whose kernel is Gal(L/E), where E is the maximal abelian subextension of F in L (hence NL/FL×=
NE/FE×), such that:

(a) if L/F is unramified then

ϒL/F(ϕL/F)≡ πF mod NL/FL×

where ϕL/F is the restriction of the Frobenius automorphism ϕF on L, πF is a prime element of F ;

(b) if M/F,E/L, F/k, L/k are finite separable extensions, and L/F and E/M are finite Galois
extensions, then the diagram

Gal(E/M)
ϒE/M−−−−→ M×/NE/ME×y yN∗M/F

Gal(L/F)
ϒL/F−−−−→ F×/NL/FL×

is commutative, where the left vertical map is the restriction of Galois automorphisms and the
right vertical map is induced by the norm map NM/F ;

129
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(c) if M/k is a finite separable extension and L/M is a finite Galois extension, and σ ∈
Gal(ksep/k), then the diagram

Gal(L/M)
ϒL/M−−−−→ M×/NL/ML×

σ∗
y yσ

Gal(σL/σM)
ϒσL/σM−−−−→ (σM)×/NσL/σM(σL)×

is commutative, where σ∗(τ) = στσ−1.

2. Denote the maximal abelian extension of F by Fab.
For every finite separable extension F/k, passing to the inverse limit, we get

ΨF : F× −→ lim←− F×/NL/FL× −→ lim←− Gal(L/F)ab = Gal(Fab/F)

where L runs through all finite Galois (or all finite abelian) extensions of F , and the second arrow
is the inverse isomorphism to ϒL/F . The homomorphism ΨF is called the reciprocity map.

(a) ΨF is injective and continuous, its image is dense in Gal(Fab/F).

(b) Compatibility with 0-dimensional class field theory (for finite fields): the restriction of the
image of ΨF on Fur coincides with α 7→ ϕ

vF (α)
F , i.e. the diagram is commutative

F× ΨF−−−−→ Gal(Fab/F)yvF

y
Z 1 7→ϕF−−−−→ Gal(Fur/F)y=

y∼=
Z 17→ϕF−−−−→ Gal(Fsep

q /Fq)∼= Ẑ

(c) Compatibility with ramification theory for abelian extensions for n> 0:

ΨF : Un,F
∼−→ Gal(Fab/F)(n).

Note that there is no analog of this property in class field theory of global fields or higher local
fields.

(d) For every finite separable extension F/k, if L is a finite separable extension of F , and σ is
an automorphism of Gal(ksep/k), then the diagrams

L× ΨL−−−−→ Gal(Lab/L)yNL/F

y
F× ΨF−−−−→ Gal

(
Fab/F

)
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F× ΨF−−−−→ Gal(Fab/F)y yVer

L× ΨL−−−−→ Gal
(
Lab/L

)
L× ΨL−−−−→ Gal(Lab/L)yσ

yσ∗

(σL)×
ΨσL−−−−→ Gal

(
(σL)ab/σL

)
are commutative, where σ∗(τ) = στσ−1, the right vertical homomorphism of the second dia-
gram is the restriction and Ver : Gal(Fab/F) = Gal(Fsep/F)ab −→ Gal(Fsep/L)ab = Gal(Lab/L)
is induced by the transfer map Ver : Gab −→ Hab for a subgroup H of finite index in a group G.

3. Existence Theorem: the correspondence between open subgroups of finite index in F× and
the norm subgroups of finite abelian extensions L/F : N↔ NL/FL×, N = Ψ

−1
F (Gal(Fab/L)), is an

order reversing bijection between the lattice of open subgroups of finite index in F× (with respect
to the intersection N1∩N2 and the product N1N2) and the lattice of finite abelian extensions of F
(with respect to the compositum L1L2 and intersection L1∩L2).

19.2. Neukirch’s method in class field theory constructs ϒL/F by using desired properties 1a,
1b and Proposition 18.5. In other words, one uses desired functoriality with respect to the base
change to reduce to the case of finite unramified extensions, in order to get an explicit formula for
the map ϒL/F .

For a finite Galois extension L/F one can try to define

ϒL/F : Gal(L/F)−→ F×/NL/FL×

by finding for a σ ∈ Gal(L/F) any σ̃ ∈ Gal(Lur/F) = ϕK as in the proof of Proposition 18.5, and
then applying 1b, 1a to deduce that ϒL/F(σ) = NK/F(ϒKL/K(ϕK)) = NK/FπK mod NL/FL×. So it
is natural to define ϒL/F(σ) as NK/FπK mod NL/FL× where πK is any prime element of the field K
which is the fixed field of any lift σ̃ ∈ Gal(Lur/F) such that σ̃L = σ and σ̃ |Fur is a positive integer
power of ϕK . There are two indeterminacies in relation to the choice of σ̃ and the choice of πK .

In order for everything to work fine, two axioms of class field theory have to be satisfied. Typ-
ically, for one dimensional fields they are: for cyclic extensions of prime degree with a generator
σ the kernel of the norm map NL/F is the image of 1−σ and the index of the norm group equals
the degree of L/F .

Neukirch’s mechanism derives ϒL/F and its properties in the situations when these two class
field theory axioms are satisfied for a specific class of fields and abelian groups associated to
them, such as the multiplicative group of local fields with finite residue field. This mechanism is
universal in the sense that it works for global fields and higher fields as well.

This explicit and clear mechanism is purely group theoretical, while to verify the two axioms
for a specific class of fields and associated abelian groups one has to use their ring structure.
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Thus, these class field theory axioms separate group theoretical part of class field theory from
its part that uses ring structures. Such separation is important in anabelian geometry, one of
generalisations of class field theory.

20. Neukirch’s Abstract Class Field Theory

This section does not depend on any of the other sections in this book. We will refer to
the previous theory of local fields for illustration and motivation, but the reader can skip such
references. A local field with finite residue field will be abbreviated in this section as LFF.

We would like to have a purely group-theoretical deduction of the main theorems of class field
theory from as few as possible as mild as possible restrictions (axioms). The key role will be played
by continuous homomorphisms deg and v and two class field theory axioms, first unramified and
then full axioms.

20.1. Let k be a field. It does not need to be related to algebraic number fields or to local
fields. Assume that the absolute Galois group Gk = Gal(ksep/k̃) of k is sufficiently large, namely
that there is a surjective continuous homomorphism of topological profinite groups

deg: Gk −→ Ẑ.

Here Ẑ is the additive group endowed with its profinite topology.

REMARK. Instead of the field k with its absolute Galois group Gk one can start with a profinite
group G which has a Ẑ-quotient. All the following use of subfields of ksep in abstract class field
theory can obviously be rewritten in the language of closed subgroups of G.

Denote its kernel by Gk̃ = Gal(ksep/k̃).
For LFF k̃ = kur.
For any finite separable extension F of k, denote F̃ = Fk̃.
Extensions of F in F̃ will be called unramified in this section.
Denote F0 = F ∩ k̃ and fF = |F0 : k|.
For LFF fF is the inertia degree of F/k.

The morphism deg induces a surjective morphism

degF = f−1
F deg: GF −→ Ẑ.

Then for a finite separable extension L/F the following diagram is commutative

GL
degL−−−−→ Ẑy y fL f−1

K

GF
degF−−−−→ Ẑ

Call any element of GF which is sent by degF to 1 ∈ Ẑ a frobenian of F .
The restriction of any frobenian of F on F̃ is called the frobenius ϕF of F , it is uniquely

determined by F . So degF(τ) = n ∈ Ẑ where τ|F̃ = ϕn
F .
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For LFF the frobenius of F is the Frobenius automorphisms of F .

20.2. DEFINITION. For a finite Galois extension L/F put

Frob(L/F) = {τ ∈ Gal(L̃/F) : degF(τ) is a positive integer}.

Compare the following Proposition with Proposition 18.5.

PROPOSITION. The set Frob(L/F) is closed with respect to multiplication; it is not closed
with respect to inversion, and 1 /∈ Frob(L/F).

The fixed field K of τ ∈ Frob(L/F) is a finite extension of F, τ = ϕK , K̃ = L̃.
The field M = KL is a finite unramified extension of K and of L.
The set Frob(L/F) consists of the frobeniuses ϕK of finite extensions K of F in L̃.
The map Frob(L/F)−→ Gal(L/F),τ 7→ τ|L is surjective.

Proof. The first assertion is obvious.
Since F ⊂ K ⊂ L̃ we deduce that F̃ ⊂ K̃ ⊂ L̃. The Galois group of L̃/K is topologically

generated by τ and isomorphic to Ẑ, therefore it does not have nontrivial closed subgroups of
finite order. So the group Gal(L̃/K̃) being a subgroup of the finite group Gal(L̃/F̃) is trivial. So
L̃ = K̃. Due to the latter, M/K is a subextension of K̃/K and M/L is a subextension of L̃/L, hence
those are unramified extensions.

Put K0 = K∩ F̃ . This field is the fixed field of τ|F̃ = ϕn
F , n > 0, therefore |K0 : F |= n is finite.

We deduce that

|K : K0|= |K̃ : F̃ |= |L̃ : F̃ |= |L : L0|

is finite. Thus, K/F is a finite extension.
Now ϕK |F̃ = ϕ

|K0:F |
F = ϕn

F |F̃ = τ|F̃ . Therefore, τ = ϕK .
Denote by ϕ an extension in Gal(L̃/F) of ϕF . Let σ ∈Gal(L/F), then σ |L0 is equal to ϕm

F for
some positive integer m. Let ρ ∈ Gal(L̃/F̃) be such that ρ|L is σϕ−m|L (it belongs to Gal(L/L0)

since σϕ−m|L acts trivially on L0). Then for τ = ρϕm we deduce that τ|F̃ = ϕm
F and τ|L = σ . Then

the element τ ∈ Frob(L/F) is mapped to σ ∈ Gal(L/F). �

REMARK. If instead of the Ẑ-extension k̃/k one starts with a Zl-extension k̆/k for a prime
l and the corresponding surjective homomorphism deg` : Gk −→ Zl , then the assertions of the
Proposition for a finite Galois extension L/F of degree a power of l remain true, with exactly the
same proof.

20.3. Assume that there is an abelian (discrete topological) group A endowed with a contin-
uous action by the profinite group Gk. We will write the operation of A multiplicatively.

For LFF A = ksep×.
For a closed subgroup GF of Gk (i.e. F/k is a separable extension) denote by AF the GF -fixed

elements of A.
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For an open subgroup GL of a closed subgroup GF of Gk denote by NL/F : AL −→ AF the
product of the action of right representatives of GL in GF :

NL/F(α) = ∏σ(α), GF = ∪̇GLσ .

It is easy to check that NL/F is a well defined map and is a homomorphism. Moreover, NL/F =

NM/F ◦NL/M for a subextension M/F of L/F , NσL/σF ◦σ = σ ◦NL/F for σ ∈ Gk.

Assume that there is a continuous homomorphism

v : Ak −→ Ẑ

whose image is Z or Ẑ and such that the equality

v(NF/kAF) = fFv(Ak)

holds for every finite separable extension F/k. The group Z is endowed, as usual, with the discrete
topology.

Partially similarly to how degF was defined in relation to deg, define vF in relation to v as

vF = f−1
F v◦NF/k : AF −→ Ẑ,

then vF(AF) = v(Ak).

For LFF vF is the discrete valuation of F .
The definition of vF immediately implies that

fLvL = fFvF ◦NL/F , vσF = vF ◦σ for σ ∈ Gk.

Similarly to the definition of frobenian we have

DEFINITION. An element πF of AF such that vF(πF) = 1 is called a prime element of F . Also
define

UF = {u ∈ AF : vF(u) = 0}.

So AF is isomorphic to the direct product of UF and the subgroup generated by πF .

We note that if σF = F then π
σ−1
F ∈UF .

20.4. Everywhere below F is a finite separable extension of k.

Now we need two unramified axioms for the G-module A (unramified axioms of CFT):

A1∼. For any unramified extension L/F of prime degree

ker NL/F = Aσ−1
L ,

where σ is any generator of Gal(L/F).

A2∼. For any unramified extension L/F of prime degree

|AF : NL/FAL|= |L : F |.

Equivalently, AF/NL/FAL ∼= Gal(L/F).
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COROLLARY. For any finite unramified extension L/F with a generator σ we have

ker NL/F = Aσ−1
L , |AF : NL/FAL|= |L : F |,

and

ker NL/F =Uσ−1
L , NL/FUL =UF .

Proof. For any finite unramified extension L/F , πF is a prime element of AL and NL/FπF = π
|L:F |
F .

Then AF/NL/FAL is the product of Z/|L : F |Z and UF/NL/FUL. Since πF is a prime element of AL,
for α = πr

Fu ∈ AL we have ασ−1 = (πr
Fu)σ−1 = uσ−1, u ∈UL. Thus, the properties in the second

displayed formula hold for unramified extensions of prime degree.
We check the assertions by induction on the degree. Let M/F be a subextension of cyclic

unramified extension L/F such that |L : M| is a prime number. By the induction hypothesis,
NL/MUL = UM, NM/FUM = UF , so NL/FUL = UF and then AF/NL/FAL ∼= Z/|L : F |Z. If α ∈
ker NL/F then by the induction hypothesis NL/Mα = β σ−1 for some β ∈UM, so β = NL/Mγ for
some γ ∈UL and αγ1−σ ∈ ker NL/M, hence α = γσ−1δ σ ′−1 where σ ′ = σ |M:F |. Hence α ∈Uσ−1

L .
�

DEFINITION. Let L/F be a finite Galois extension. Define

ϒ̃L/F : Frob(L/F)−→ AF/NL/FAL, τ 7→ NK/FπK mod NL/FAL,

where K is the fixed field of τ ∈ Frob(L/F) and πK is any prime element of K.

LEMMA. The map ϒ̃L/F is well defined. If τ|L = idL then ϒ̃L/F(τ) = 1.

Proof. Let π1,π2 be prime elements in K. Then π1 = π2ε with a ε ∈UK . Let M be the compositum
of K and L. Since the extension M/K is unramified, by the previous Corollary there is η ∈UM

such that ε = NM/Kη . Hence

NK/Fπ1 = NK/F(π2ε) = NK/Fπ2 ·NK/F(NM/Kη) = NK/Fπ2 ·NL/F(NM/Lη).

We obtain that NK/Fπ1 ≡ NK/Fπ2 mod NL/FAL.
If τ|L = idL then L⊂ K and therefore NK/FπK ∈ NL/FAL. �

PROPOSITION. The map ϒ̃L/F sends the product of two of its elements to the product of their
images.

Proof. Denote by ψ an extension in Gal(L̃/F) of ϕF . Take three elements of Frob(L/F) such that
the third is the product of the first two. Let Ki for i∈ {1,2,3} be their fixed fields, so these elements
are ϕKi by the previous results. Let ϕKi |F̃ = ϕ

mi
F for positive integer mi, then τi = ψmiϕ

−1
Ki
∈

Gal(L̃/F̃).
Also introduce K4 = ψm2K1 then ϕK4 |F̃ = ψm2ϕK1ψ−m2 |F̃ = ϕ

m1
F . Denote τ4 = ψm1ϕ

−1
K4

=

ψm3ϕ
−1
K1

ψ−m2 , since m3 = m1 +m2. From ϕK3 = ϕK2ϕK1 we obtain τ3 = τ4τ2.
Enlarge L by replacing it with a finite Galois extension of F in L̃ which contains L and all Ki.

Proving the Proposition for this enlarged field implies the Proposition in the general case.
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Denote by N the norm map NL̃/F̃ .
For a finite extension R of F in L̃ such that RF̃ = L̃ let R0 = R∩ F̃ , |R0 : F |= m.

R R̃ = L̃

F

uuuuuuuuuuu
R0 = R∩ F̃ F̃

Denote NR : AR −→ AL̃, α 7→ α1+ψ+···+ψm−1
.

For α ∈ AR, β ∈ AR0 we have

NR/R0(α) = N(α), NR0/F(β ) = β
1+ϕF+···+ϕ

m−1
F = NR(β ),

and

NR/F(α) = NR0/F ◦NR/R0(α) = N ◦NR(α).

Let πi be a prime element of Ki for i = 1,2,3. Put π4 = ψm2(π1). Then ϕKiπi = πi and

NKi(πi)
ψ−1 = π

ψmi−1
i = π

ψmi ϕ−1
Ki
−1

i = π
τi−1
i .

Now,

NK3/Fπ3 NK2/Fπ
−1
2 NK1/Fπ

−1
1 = NK3/Fπ3 NK2/Fπ

−1
2 NK4/Fπ

−1
4 = Nρ,

where ρ = NK3(π3)NK2(π2)
−1NK4(π4)

−1. Then we have vL(ρ) = m3−m2−m1 = 0, i.e. ρ ∈UL.
Using the previous paragraph, we deduce ρψ−1 = π

τ3−1
3 π

1−τ2
2 π

1−τ4
4 .

Introduce three elements ρ2 = π4π
−1
2 , ρ3 = π3π

−1
4 , ρ4 = π

τ2−1
4 of UL. Then we obtain

ρ
ψ−1 = ρ

τ2−1
2 ρ

τ3−1
3 ρ

τ4−1
4 .

To complete the proof of the Proposition we will show that Nρ ∈ NL/FAL. It is convenient to
work with yet another field M which is the fixed field of ϕn

L where n = |L : F |.

L M

F

uuuuuuuuuuu
L0 = L∩ F̃ M0 = M∩ F̃

Then M/L is an unramified extension of degree n. Hence by the previous Corollary there are
units ν ,νi ∈UM such that their images with respect to NM/L are equal to ρ,ρi. Then by the same
Corollary

ν
ψ−1 = ν

τ2−1
2 ν

τ3−1
3 ν

τ4−1
4 ξ

where ξ = εϕL−1 for some ε ∈UM.
Applying N, we obtain

(Nν)ϕF−1 = (Nν)ψ−1 = (Nε)ϕL−1 = (Nε)ϕr
F−1 = (NLNε)ϕF−1

where r = |L0 : F | and we use ϕr
F − 1 = (ϕF − 1)NL on M0. Thus, Nν = κ ·NLNε with some

κ ∈ AF .
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Applying NM/L and using NM/Lκ = NL/Fκ , we conclude Nρ = NM/LNν = NL/F(κ)NM/F(ε)∈
NL/FAL. �

COROLLARY. For a finite Galois extension L/F the map ϒ̃L/F induces a well defined homo-
morphism

ϒL/F : Gal(L/F)−→ AF/NL/FAL.

Proof. Let two frobeniuses ϕK1 ,ϕK2 ∈ Gal(L̃/F) have the same restriction on L. If their degF are
the same then their restriction on F̃ are also the same, so they are equal. If deg(ϕK1)− deg(ϕK2)

is positive then ϕK1ϕ
−1
K2

is a frobenius whose restriction on L is the identity automorphism, with
fixed field K3. For prime elements πi of Ki by the previous Proposition we obtain NK1/Fπ1 ≡
NK2/Fπ2 NK3/Fπ3 ≡ NK2/Fπ2 mod NL/FAL since K3 ⊃ L.

�

We will denote ϒab
L/F : Gal(L/F)ab−→AF/NL/FAL the induced map from the maximal abelian

quotient Gal(L/F)ab of Gal(L/F).

REMARK. Let L/F be a finite Galois extension such that L∩F̃ =F . Let σ ∈Gal(L̃/F̃), denote
by the same notation its restriction to L. Let ϕ = ϕL. Then ϒL/F(σ) ≡ NK/FπK mod NL/FAL

where πK is a prime element of the fixed field K of ϕK = σϕ , K ∩ F̃ = F . Let M be a finite
Galois extension of L inside L̃ and containing K. Then for a prime element πL of L there is ε ∈UM

such that πK = πLε . Hence ε1−ϕ = ε1−σϕεσφ−ϕ = π
σϕ−1
L (εϕ)σ−1 = (πLεϕ)σ−1, so for the prime

element πM = πLεϕ we have

ε
1−ϕ = π

σ−1
M , ϒL/F(σ)≡ NM/M∩F̃ ε mod NL/FAL.

The equation

ε
1−ϕ = π

σ−1
M

in the very special case of cyclotomic extensions of local fields with finite residue field plays the
key role in the theory of φ–γ modules, but, as we see, its role is much more significant in abstract
class field theory, and hence, in particular, in local class field theory and in global class field the-
ory. This equation also plays the key role in non-commutative class field theory of arithmetically
profinite extensions of local fields with finite residue field, see Remark 6 in 21.6.

20.5. Now we deduce some of the properties 1(a), 1(b), 1(c) of 19.1, and more.

LEMMA. Let L/F be a finite unramified extension of prime degree. Then

ϒL/F(ϕF |L)≡ πF mod NL/FAL,

where πF is any prime element of F, and ϒL/F is an isomorphism of cyclic groups of order |L : F |.

Proof. The fixed field of ϕF ∈ Frob(L/F) is F . �
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PROPOSITION. If M/F,E/L, F/k, L/k are finite separable extensions, and L/F and E/M are
finite Galois extensions, then the diagram

Gal(E/M)
ϒE/M−−−−→ AM/NE/MAEy yN∗M/F

Gal(L/F)
ϒL/F−−−−→ AF/NL/FAL

is commutative, where the left vertical map is the restriction of Galois automorphisms and the
right vertical map is induced by the norm map NM/F .

Proof. For a τ ∈Frob(E/M) its restriction on L̃ is σ ∈Frob(L/F), since degF(σ)= degM(τ) fM f−1
F

is a positive natural number. The intersection of the fixed field K of τ with L̃ is the fixed field R
of σ and for a prime element πK of K its norm NK/RπK is a prime element of R. It remains to use
NM/F ◦NK/M = NR/F ◦NK/R. �

COROLLARY. Let M/F be a Galois subextension in a finite Galois extension L/F. Then the
diagram of maps

Gal(L/M) −−−−→ Gal(L/F) −−−−→ Gal(M/F) −−−−→ 1yϒL/M

yϒL/F

yϒM/F

AM/NL/MAL
N∗M/F−−−−→ AF/NL/FAL −−−−→ AF/NM/FAM −−−−→ 1

is commutative. Here the central homomorphism of the lower exact sequence is induced by the
identity map of AF .

Proof. An easy consequence of the preceding Proposition. �

PROPOSITION. If M/k is a finite separable extension and L/M is a finite Galois extension,
and σ ∈ Gal(ksep/k), then the diagram

Gal(L/M)
ϒL/M−−−−→ AM/NL/MAL

σ∗
y yσ

Gal(σL/σM)
ϒσL/σM−−−−→ AσM/NσL/σMAσL

is commutative, where σ∗(τ) = στσ−1.

Proof. Let τ ′ ∈ Gk be an extension of τ ∈ Frob(L/M), then degσM(στ ′σ−1|σM̃) = degM τ is a
positive integer. If K is the fixed field of τ ′ with a prime element π then σK is the fixed field of
στ ′σ−1|σ L̃ with a prime element σπ . �
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20.6. Another functorial property involves the transfer map from group theory. Recall the
notion of transfer (Verlagerung). Let G be a group and let G′ be its commutator subgroup (derived
group). Denote the quotient group G/G′ by Gab; it is abelian. Let H be a subgroup of finite index
in G. Let

G = ∪iHρi, ρi ∈ G, 16 i6 |G : H|

be the decomposition of G into the disjoint union of sets Hρi.
Define the transfer

Ver : Gab −→ Hab, σ mod G′ 7→∏
i

ρiσρ
−1
σ(i) mod H ′,

where σ(i) is determined by the condition ρiσ ∈Hρσ(i). So σ(1), . . . ,σ(|G : H|) is a permutation
of 1, . . . , |G : H|.

We shall verify that Ver is well defined. Let ρ ′i = κiρi with κi ∈ H. Then

∏ρ
′
i σρ

′−1
σ(i) = ∏κi

(
ρiσρ

−1
σ(i)

)
κ
−1
σ(i) ≡∏ρiσρ

−1
σ(i) ·∏κi ·∏κ

−1
σ(i) mod H ′,

because H/H ′ is abelian. Hence

∏ρ
′
i σρ

′−1
σ(i) ≡∏ρiσρ

−1
σ(i) mod H ′.

Now we shall verify that Ver is a homomorphism. Let σ ,τ ∈ G; then

ρiστρ
−1
στ(i) ≡ ρiσρ

−1
σ(i)ρσ(i)τρ

−1
στ(i) mod H ′

and, as ρiσρ
−1
σ(i) ∈ H, ρiστρ

−1
στ(i) ∈ H, we get ρσ(i)τρ

−1
στ(i) ∈ H, i.e., στ(i) = τ

(
σ(i)

)
. Hence

∏ρiστρ
−1
στ(i) ≡∏ρiσρ

−1
σ(i) ·∏ρiτρ

−1
τ(i) mod H ′.

If G is abelian then Ver(σ) = σ |G:H|.

We need another description of Ver. Let σ be an element of G. For an element τ1 ∈ G let
g1 = g(σ ,τ1) be the maximal integer such that all the sets Hτ1σ ,Hτ1σ2, . . . ,Hτ1σg1 are distinct.
Then, take an element τ2 ∈ G such that all Hτ2σ ,Hτ1σ , . . . ,Hτ1σg1 are distinct and find g2 =

g(σ ,τ1,τ2) such that all the sets

Hτ2σ , . . . ,Hτ2σ
g2 ,Hτ1σ , . . . ,Hτ1σ

g1

are distinct. Repeating this construction, we finally obtain that G is the disjoint union of the
sets Hτnσmn , where 1 6 n 6 k,1 6 mn 6 gn = g(σ ,τ1,τ2, . . . ,τn). The number gi can also be
determined as the minimal positive integer, for which the element

σ [τi] = τiσ
giτ
−1
i

belongs to H. The definition of Ver shows that in this case

Ver(σ mod G′)≡∏
n

σ [τn] mod H ′.

Since the image of ϒL/F is in the abelian group, it defines a homomorphism

ϒ
ab
L/F : Gal(L/F)ab −→ AF/NL/FAL.
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PROPOSITION. Let L/F be a finite Galois extension and let M/F be a subextension in L/F.
Then the diagram

Gal(L/F)ab
ϒab

L/F−−−−→ AF/NL/FALyVer

y
Gal(L/M)ab

ϒab
L/M−−−−→ AM/NL/MAL

is commutative; here the right vertical homomorphism is induced by the embedding F ↪→M.

Proof. Denote G̃ = Gal(L̃/F), H̃ = Gal(L̃/M). Let σ ∈ Gal(L/F), and let σ̃ ∈ Frob(L/F) be its
extension. Let G̃ be the disjoint union of H̃ τ̃nσ̃mn for 1 6 n 6 k,1 6 mn 6 gn, as above. Let G =

Gal(L/F) and H = Gal(L/M); then G is the disjoint union of Hτnσmn for τn = τ̃n|L ∈ Gal(L/F).
This means that

Ver(σ mod G′)≡∏
n

σ [τn] mod H ′.

Let S be the subgroup in G̃ generated topologically by σ̃ and

H̃n = H̃ ∩ τ̃nSτ̃
−1
n .

Then H̃n is a subgroup in H̃, which coincides with the subgroup in H̃ topologically generated by
σ̃ [τ̃n]. Note that τ̃nS is the disjoint union of H̃nτ̃nσ̃mn for 16 mn 6 gn.

Let H̃ be the disjoint union of ν̃n,lH̃n for ν̃n,l ∈ H̃,16 l 6 |H̃ : H̃n|. Then

G̃ = ∪∪ ν̃n,lH̃nτ̃nσ
mn = ∪ν̃n,l τ̃nS.

If K is the fixed field of σ̃ , then it is the fixed field of S, and we obtain that

NK/F(α) = ∏
n,l

ν̃n,l τ̃n(α) for α ∈ K.

Let Kn be the fixed field of σ̃ [τ̃n] = τ̃nσ̃gn τ̃−1
n . Then (τ̃nK)F̃ = τ̃nK̃ = τ̃nL̃ = L̃, τ̃nK ⊂ Kn, and

Kn/τ̃nK is the unramified extension of degree gn. Hence, for a prime element π in K, the element
τ̃n(π) is prime in Kn. Moreover, one can show as before that

NKn/M(α) = ∏
l

ν̃n,l(α) for α ∈ Kn.

We deduce that

NK/F(π) = ∏
n,l

ν̃n,l τ̃n(π) = ∏
n

NKn/M
(
τ̃n(π)

)
.

Since σ̃ [τ̃n] ∈ Frob(L/M) extends the element σ [τn] ∈ Gal(L/M), we conclude that

ϒ
ab
L/F(σ) = ∏

n
ϒ

ab
L/M(σ [τn]) = ϒ

ab
L/M

(
∏

n
σ [τn]

)
and ϒab

L/F(σ) = ϒab
L/M

(
Ver(σ mod Gal(L/F)′

)
. �
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20.7. In order to prove that ϒab
L/F is an isomorphism, we need two full axioms for the Gk-

module A (axioms of CFT), not just for unramified extensions:

A1. For any cyclic extension L/F of prime degree

ker NL/F = Aσ−1
L ,

where σ is any generator of Gal(L/F).

A2. For any cyclic extension L/F of prime degree

|AF : NL/FAL|= |L : F |.

Equivalently, AF/NL/FAL ∼= Gal(L/F).

REMARK. Assume that ϒL/M is an isomorphism for a finite abelian extension L/M. Let
σ ∈ Gk be such that σL = L,σM = M and σ∗τ = τ for every τ ∈ Gal(L/M). Then Aσ−1

M ⊂
NL/MAL. Indeed, since ϒL/M is an isomorphism, the last Proposition of 20.5 shows that the map
σ : AM/NL/MAL −→ AM/NL/MAL is the identity map, i.e. Aσ−1

M ⊂ NL/MAL.

THEOREM. For a finite Galois extension L/F

ϒ
ab
L/F : Gal(L/F)ab −→ AF/NL/FAL

is an isomorphism.

Proof. First, let L/F be a cyclic extension of prime degree n. If L/F is unramified then ϒL/F is an
isomorphism by Lemma 20.5.

If L∩ F̃ = F then, in the notation of Remark 20.4 let σ be a generator of Gal(L̃/F̃) and use
the same notation for its restriction on L. Let ϕ = ϕL. Let K be the fixed field of σϕ with a
prime element πK . Then K∩ F̃ = F . Assume that ϒL/F(σ)≡ NK/FπK ≡ 1 mod NL/FAL and get a
contradiction. Let M be the composite of L and K, it is a subfield of L̃. For a prime element πL of
L there is a unit ε ∈UM such that πK = πLε . Using the notation in the proof of Proposition 20.4,

ϒL/F(σ)≡ NK/FπK ≡ NM/M0ε mod NL/FAL.

If NM/M0ε ∈ NL/FAL, then since L∩ F̃ = F , NM/M0ε = NM/M0ρ for a unit ρ ∈UL, and axiom A1
implies ρ = ενσ−1 for some ν ∈ AM. Then

(πLρ)σ−1 = (πLρ)σϕ−1 = (πKν
σ−1)σϕ−1 = (νσϕ−1)σ−1,

so ξ = πLρν1−σϕ ∈M0. Since vM(νσϕ−1) = 0, we obtain 1 = vM(ξ ) = nvM0(ξ ), a contradiction.
Thus, ϒL/F is injective and then by A2 it is also surjective.

Now, for a finite cyclic extension L/F of non-prime degree let M/F be a proper nontrivial
subextension of prime degree. By the previous Remark Aσ−1

M ⊂ NL/MAL and therefore N∗M/F in
injective in the diagram of Corollary of 20.5. Therefore ϒL/F is injective by induction on the
degree. By induction on the degree, A2 and Corollary 20.5, ϒL/F is surjective.

Next, consider the case of a finite abelian extension L/F . Using the commutative diagram in
Corollary 20.5, the surjectivity of ϒL/F follows by the induction on the degree, and if ϒL/F(σ) = 1
then the restriction of σ on every cyclic quotient M/F is trivial, hence σ = 1.
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For a finite Galois extension L/F the same diagram now implies that the kernel of ϒL/F is the
commutator subgroup of G. For solvable extensions the surjectivity of ϒL/F follows by induction
on the degree. In the general case, the surjectivity follows if the image of ϒL/F includes the p-
Sylow subgroup of AF/NL/FAL for every prime p. Let M be the fixed field of a p-Sylow subgroup
of Gal(L/F). Then by induction on the degree, ϒL/M is surjective, so the p-Sylow subgroup of
AM/NL/MAL is in its image. It remains to notice that N∗M/F maps this subgroup isomorphically onto
the p-Sylow subgroup of AF/NL/FAL, since |M : F | is prime to p and the inverse map is induced
by the inclusion AF ↪→ AM. �

20.8. The inverse of ϒab
L/F provides the norm residue homomorphism

ΨL/F : AF −→ Gal(L/F)ab,

its kernel is NL/FAL.

PROPOSITION. Let H be a subgroup in Gal(L/F)ab, and let M be the fixed field of H in
L∩Fab. Then Ψ

−1
L/F(H) = NM/FAM.

Let L1,L2 be abelian extensions of finite degree over F, and let L3 = L1L2, L4 = L1∩L2. Then

NL3/FAL3 = NL1/FAL1 ∩NL2/FAL2 , NL4/FAL4 = NL1/FAL1 NL2/FAL2 .

For finite abelian extensions, the field L1 is a subfield of the field L2 if and only if NL2/FAL2 ⊂
NL1/FAL1 ; in particular, L1 = L2 if and only if NL1/FAL1 = NL2/FAL2 .

If a subgroup N in AF contains the norm subgroup NL/FAL for some finite Galois extension
L/F, then N itself is a norm subgroup.

Proof. The first assertion follows immediately from 20.5, 20.7. Put Hi = Gal(L3/Li), i = 1,2.
Then

NL3/FAL3 = Ψ
−1
L3/F(1) = Ψ

−1
L3/F(H1∩H2)

= Ψ
−1
L3/F(H1)∩Ψ

−1
L3/F(H2) = NL1/FAL1 ∩NL2/FAL2 ,

NL4/FAL4 = Ψ
−1
L3/F(H1H2) = Ψ

−1
L3/F(H1)Ψ

−1
L3/F(H2)

= NL1/FAL1 NL2/FAL2 .

If L1 ⊂ L2, then NL2/FAL2 ⊂ NL1/FAL1 . Conversely, if NL2/FAL2 ⊂ NL1/FAL1 , then NL1L2/FAL1L2

coincides with NL2/FAL2 , and Theorem 20.7 shows that the extension L1L2/F is of the same degree
as L2/F , hence L1 ⊂ L2.

Finally, if N ⊃ NL/FAL, then N = NM/FAM, where M is the fixed field of ΨL/F(N). �

REMARK. The question is how for a specific field k, when the axioms A1 and A2 hold, to
characterise norm subgroups NL/FAL of finite Galois extensions L/F in terms of AF , e.g. as open
subgroup of a certain intrinsic topology of AF .
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20.9. Similarly to 2 of 19.1, passing to the inverse limit for ΨL/F , using 20.5, one gets the
reciprocity map

ΨF : AF −→ lim←− AF/NL/FAL −→ lim←− Gal(L/F)ab = Gal(Fab/F)

where L runs through all finite Galois (or all finite abelian) extensions of F .

THEOREM. The reciprocity map is well defined.
Its image is dense in Gal(Fab/F), and its kernel coincides with the intersection of all norm

subgroups NL/FAL in AF for all finite Galois (equivalently, all finite abelian) extensions L/F.
If L/F is a finite Galois extension and α ∈ AF , then the automorphism ΨF(α) acts trivially

on L∩Fab if and only if α ∈ NL/FAL.

The restriction of ΨF(α) on F̃ coincides with ϕ
vF (α)
F for α ∈ AF .

Let L be a finite separable extension of F, and let σ be an automorphism of Gal(Fsep/F).
Then the diagrams

AL
ΨL−−−−→ Gal(Lab/L)yσ

yσ∗

AσL
ΨσL−−−−→ Gal

(
(σL)ab/σL

)
AL

ΨL−−−−→ Gal(Lab/L)yNL/F

y
AF

ΨF−−−−→ Gal
(
Fab/F

)
AF

ΨF−−−−→ Gal(Fab/F)y yVer

AL
ΨL−−−−→ Gal

(
Lab/L

)
are commutative, where σ∗(τ) = στσ−1, the right vertical homomorphism of the second diagram
is the restriction and

Ver : Gal(Fsep/F)ab −→ Gal(Fsep/L)ab = Gal(Lab/L).

Proof. Let L1/F,L2/F be finite Galois extensions and L1 ⊂ L2. Then the first Proposition 20.5
shows that the restriction of the automorphism

ΨL2/F(α) ∈ Gal(L2/F)ab

on the field L1∩Fab coincides with ΨL1/F(α) for an element α ∈ AF . This means that ΨF is well
defined.

The condition α ∈ NL/FAL is equivalent ΨL/F(α) = 1, i.e. ΨF(α) acts trivially on L∩Fab.
Hence, the kernel of ΨF is equal to

⋂
NL/FAL, where L runs through all finite Galois extensions

of F . Since ΨF(AF)|L = Gal(L/F) for a finite abelian extension L/F , we deduce that ΨF(AF) is
dense in Gal(Fab/F).
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Similarly to the proof of Lemma 20.5 we obtain ΨF(πF)|F̃ = ϕF for a prime element πF in F .
Hence, ΨF(α)|F̃ = ϕ

vF (α)
F and ΨF(UF)|F̃ = 1.

The commutativity of the diagrams follow from 20.5, 20.6, 20.7. �

21. Local Class Field Theory and Generalisations

In this section k, F , L are a local fields with finite residue field.
Put A = ksep×, so AF = F×.
21.1. The map degk : Gk −→ Ẑ is the surjective homomorphism

degk : Gk −→ Gal(kur/k)∼= Ẑ, k̃ = kur.

The map v : Ak −→ Z is the discrete surjective valuation vk of k. The required compatibility
with the norm map for finite separable extensions and their inertia degree follows from Theorem
9.5.

A1 of 20.7, i.e. Hilbert Theorem 90, holds by 16.1.
A2 of 20.7, the index of the norm group for cyclic extensions of prime degree, holds by 18.5.

Thus, for a finite Galois extension L/F we have the homomorphism

ϒL/F : Gal(L/F)−→ F×/NL/FL×,

its kernel is [Gal(L/F),Gal(L/F)] and it is surjective, and all the properties proved in section 20
hold.

We also have the local reciprocity map

ΨF : F× −→ Gab
F

with the properties in 20.8 and 20.9 satisfied.
Its compatibility with 0-dimensional class field theory for finite fields follows from Theorem

20.9.
To check all the properties stated in 19.1, it remains to check that ΨF is continuous and injec-

tive, its compatibility with ramification theory and the existence theorem.

21.2. EXISTENCE THEOREM. The norm groups NL/FL× of finite Galois extensions are open
of finite index in F×.

The reciprocity map ΨF is continuous and injective. Its image is dense in Gal(Fab/F) and the
cokernel is isomorphic to Ẑ/Z.

The correspondence between open subgroups of finite index in F× and the norm subgroups of
finite abelian extensions L/F: N↔ NL/FL×, N = Ψ

−1
F (Gal(Fab/L)), is an order reversing bijec-

tion between the lattice of open subgroups of finite index in F× (with respect to the intersection
N1∩N2 and the product N1N2) and the lattice of finite abelian extensions of F (with respect to the
compositum L1L2 and intersection L1∩L2).

Proof. To show that the norm group NL/FL× is an open subgroup of F×, note that the norm map for
cyclic extensions of prime degree maps open subgroups of the group of units to open subgroups,
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this follows from the explicit description of the norm map in section 13. Hence by induction on
the degree we deduce that the norm map NL/F is open. In particular, NL/FL× is open. By Theorem
20.7 it is of finite index.

The preimage Ψ
−1
F (Gal(Fab/L)) of an open subgroup Gal(Fab/L) of Gal(Fab/F) is the norm

group NL/FL× by Theorem 20.9, hence ΨF is continuous.
Since UF is compact, its image with respect to ΨF is closed, hence equals Gal(Fab/Fur), so

the cokernel of ΨF is isomorphic to Gal(Fur/F)/ϕZ
F
∼= Ẑ/Z.

We will verify that an open subgroup N of finite index in F× coincides with the norm sub-
group NL/FL× of some finite abelian extension L/F . It suffices to verify that N contains the
norm subgroup NM/FM× of some finite separable extension M/F . Indeed, in this case N contains
NE/FE×, where E/F is a finite Galois extension, E ⊃ M. Then by Proposition 20.8 we deduce
that N = NM/FM×, where M is the fixed field of ΨE/F(N) and M/F is abelian.

Denote by n the index of N in F×. First, assume that n is not divisible by characteristic of F .
If roots µn of order dividing n are in F , then consider the Kummer extension L = F(

n
√

F×). By
Kummer theory Hom(Gal(L/F),µn)∼= F×/F×n. Since the latter is finite by Proposition 4.9, L/F
is an abelian extension of exponent n. The index of its norm group in F× is the order of Gal(L/F)

equal to the index of F×n, and the latter is included in the former, hence they are equal. Thus, in
this case N contains the norm group NL/FL×. If µn is not in F×, then put F1 = F(µn). By the same
arguments, F×1

n
= NL1/F1L× for the finite abelian extension L1/F1. Then NL1/FL×1 ⊂ F×n ⊂ N.

Assume now that char(F) = p. We will show by induction on m> 1 that any open subgroup
N of index pm in F× contains a norm group. Let m = 1. If N ⊃UF , then N is the norm group
of the unramified extension of degree p. If N 6⊃ UF , then it is the norm group by 18.5. Let
m > 1, and let N1 be an open subgroup of index pm−1 in F× such that N ⊂ N1. By the induc-
tion assumption, N1 ⊃ NL1/FL×1 . The subgroup N ∩NL1/FL×1 is of index 1 or p in NL1/FL×1 . In
the first case N ⊃ NL1/FL×1 , and in the second case let L/L1 be a finite separable extension with
N−1

L1/F

(
N∩NL1/FL×1

)
⊃ NL/L1L×, then N ⊃ NL/FL×. For an open subgroup N of index npm in F×

with p - n we now take open subgroups N1 and N2 of indices n and pm, respectively, in F× such
that N ⊂ Ni. Then N = N1∩N2 ⊃ NL1/FL×1 ∩NL2/FL×2 ⊃ NL1L2/F(L1L2)

× and we have proved the
desired assertion for N.

The kernel of ΨF is the intersection of all norm groups NL/FL× equal to the intersection of all
open subgroups of F×, hence ΨF is injective.

Everything else follows from Proposition 20.8. �

PROPOSITION. Every finite abelian extension of Qp is contained in an appropriate finite cy-
clotomic extension Q(n)

p =Qp(ζn) where ζn is a primitive nth root of unity. Hence

Qab
p =Qcycl

p = lim−→Q(n)
p

and

Gal(Qab
p /Qp) = lim←−Gal(Q(n)

p /Qp)∼= Ẑ×UQp .
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Proof. Let’s look at the extension M =Q(pm)
p , pm > 2. We have vM(ζpm) = 0, so ζpm ∈ OM. Let

fm(X) =
X pm−1

X pm−1−1
= X (p−1)pm−1

+X (p−2)pm−1
+ · · ·+1.

Then ζpm is a root of fm(X), and hence |M :Qp|6 (p−1)pm−1. The elements ζ i
pm , 0< i< pm, p - i,

are roots of fm(X). Hence

fm(X) = ∏
p-i

0<i<pm

(X−ζ
i
pm) and p = fm(1) = ∏

p-i
0<i<pm

(1−ζ
i
pm).

Also,

(1−ζ
i
pm)(1−ζpm)−1 = 1+ζpm + · · ·+ζ

i−1
pm

belongs to the ring of integers of M. For the same reason, (1−ζpm)(1−ζ i
pm)−1 belongs to the ring

of integers of M. Thus, (1− ζ i
pm)(1− ζpm)−1 is a unit and p = (1− ζpm)pm−1(p−1)ε for some unit

ε . Therefore, e(M|Qp)> (p−1)pm−1, and M is a cyclic totally ramified extension with the prime
element 1− ζpm , and of degree (p− 1)pm−1 over Qp. The polynomial fm(X) is irreducible over

Qp of ζpm and p = NM/Qp(1− ζpm). If p is odd then Um,Qp = U (p−1)pm−1

Qp
so it is ⊂ NM/QpUM. If

p = 2,m > 1 then Um,Q2 = U2m−2

2,Q2
= U2·2m−2

Q2
∪ 52m−2

U2·2m−2

Q2
⊂ NM/Q2UM, as 5 = NQ(4)

2 /Q2
(2+ ζ4).

Since the index of the norm group equals to the index of Um,Q2 , they are equal. Thus, NM/QpM× =

〈p〉×Um,Qp .
Let L/Qp be a finite abelian extension and N its norm group. Then 〈pr〉×UQp∩〈p〉×Um,Qp is

in N for some r and m. The first group on the left is the norm group of Qp(µpr−1)/Qp, the second
group is the norm group of the extension Qp(µpm)/Qp. Hence L⊂Qp(µ(pr−1)pm).

We also obtain Gal(Q(pm)
p /Qp) ∼= (Zp/pmZp)

× and hence the Galois group of the extension
of Qp generated by all roots of order a power of p is isomorphic to Z×p . Of course, the extension
of Qp generated by all roots of order prime to p is Qur

p . Hence Gal(Qab
p /Qp)∼= Ẑ×UQp . �

COROLLARY. Let M =Q(pm)
p , pm > 2. Let α = upvp(α) ∈Q×p , u∈Z×p . Then ζ

ΨM/Qp (α)

pm = ζ u−1

pm .

Proof. Denote by Q the completion of the maximal unramified extension of Qp and let φ be
the continuous extension of ϕQp on Q, it will acts on power series in OQ[[X ]] by acting on their
coefficients. Denote the set of multiplicative representatives in Q by R. Note that the equation
aφ−1 = b with b ∈ OQ has a solution a ∈ OQ. Indeed, find coefficients of a = ∑i>0 ai pi, ai ∈ R,
inductively for b = ∑i>0 bi pi. The equation ap−1

0 = aφ−1
0 ≡ b0 mod p has a solution in R. If

(∑n
i>0 ai pi)φ ≡ (∑n

i>0 ai pi)b mod pn+1 then an+1 is a solution in R of ap
n+1−an+1b0≡∑

n
i=0 aibn+1−i

mod p.
Define gu(X) = upX +X p, fn(X) = (1+X)n−1 for a positive integer n. Since only u mod pm

matters, we can assume that u is a positive integer. We claim that there is a power series θ(X) ∈
XOQ[[X ]] such that

gu ◦θ = θ
φ ◦ fp

and θ(X) is uniquely determined by its first coefficient. We find coefficients of θ(X) = ∑i>1 tiX i

inductively. The first coefficient is a solution of tφ−1
1 = u. If gu ◦θn ≡ θ

φ
n ◦ fp mod degn+1 with
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θn =∑
n
i=1 tiX i then θn+1 = θn+tn+1Xn+1 where pn+1tφ

n+1−uptn+1 = b where b is the coefficient of
Xn+1 of gu ◦θn−θ

φ
n ◦ fp, note that the latter≡ θn(X)p−θ

φ
n (X p)≡ 0 mod p, so b∈ pOQ. Rewrite

the equation for tn+1 as tn+1−β tφ

n+1 = γ with β ∈MQ, then tn+1 = β +βγφ +β 1+φ γφ 2
+ · · · . The

uniqueness of tn+1 follows, since the only solution of c = βcφ is 0.
Denote ρ = θ φ−1 ◦ fu, then fu◦ρ =( fu◦θ)φ−1 ◦ fu =(θ φ ◦ fp)

φ−1 ◦ fu = θ ◦ fup = ρφ ◦ fp. Since
θ and θ φ−1 ◦ fu have the same first coefficient, the uniqueness of θ modulo the first coefficient
implies θ = θ φ−1 ◦ fu and θ φ = θ ◦ fu.

Let σ ∈ Gal(M/Qp) be such that ζ σ
pm = ζ u−1

pm . Denote by R be completion of the maximal
unramified extension of M. Denote the continuous extension of ϕM on R by ϕ , then ϕ|Q = φ . Put
πM = ζpm−1 and πK = θ(πM)∈ R. We deduce fu(π

σ
M) = (1+πσ

M)u−1 = ζ σu
pm −1 = ζpm−1 = πM

and π
σϕ

K = θ φ (πσ
M) = θ( fu(π

σ
M)) = θ(πM) = πK , so πK belongs to the fixed field K of σϕ and it

is its prime element. Hence ϒM/Qp(σ)≡ NK/QpπK mod NM/QpM×.

For a polynomial h define h(n) as the composite of n copies of h. Then g(n)u (πK)= g(n)u (θ(πM))=

θ φ n
( f (n)p (πM)) = θ φ n

(ζ pn

pm − 1) is zero if n = m. It is non-zero if n = m− 1, since |K : Qp| =
|M : Qp| > (p− 1)pm−2. Hence πK is a root of the polynomial g(X) = g(m)

u (X)/g(m−1)
u (X) =

g(m−1)
u (X)p−1 + up ≡ X pm−1(p−1) mod p, and g is irreducible over Qp by Eisenstein’s criterion.

Finally, NK/QpπK = (−1)|M:Qp|g(0) = (−1)|M:Qp|pu, p = (−1)|M:Qp|NM/QpπM, so NK/QpπK ≡ u
mod NM/QpM×. �

The next Theorem includes another proof of the Hasse–Arf theorem using class field theory.

21.3. THEOREM. Let L/F be a finite abelian extension, G = Gal(L/F). Denote by h the
Hasse–Herbrand function hL/F . Put U0,F = UF . Then for every non-negative integer n the reci-
procity map ΨL/F maps the quotient group Un,FNL/FL×/NL/FL× isomorphically onto the rami-
fication group G(n) = Gh(n) and Un,FNL/FL×/Un+1,FNL/FL× isomorphically onto Gh(n)/Gh(n)+1.
Therefore

Gh(n)+1 = Gh(n+1),

i.e., upper ramification jumps of L/F are integers.

Proof. Let L0 be the maximal unramified extension of F in L. We know that hL/F = hL/L0 , and the
norm NL0/F maps Un,L0 onto Un,F for n > 0. Using the first Proposition of 20.5 (for E = L,M =

F,L = L0) we can therefore assume that L∩ F̃ = F .
By Remark 20.4 and using its notation

ϒL/F(σ)≡ NM/M0 ε mod NL/FL×, ε
1−ϕ = π

σ−1
M ,

where M0 = M∩Fur. If σ ∈ Gh(n), then π
1−σ

M belongs to Uh(n),M. Writing ε = ∏(1+θiπ
i) with a

prime element π of L, one immediately deduces that ε ∈Uh(n),MUL. Hence

NM/M0 ε ∈ NM/M0(Uh(n),MUL)∩UF ⊂Un,FNL/FUL.

So ϒ(Gh(n))⊂Un,FNL/FL×. Similarly, ϒ(Gh(n)+1)⊂Un+1,FNL/FL×.
In the rest of the proof we will show that ϒ(Gh(n))⊃Un,FNL/FL×. Then ϒ(Gh(n))=Un,FNL/FL×,

and we deduce ϒL/F(Gh(n)+1) = ϒL/F(Gh(n+1)), Gh(n)+1 = Gh(n+1).
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Let R/F be a subextension of L/F such that L/R is of prime degree l and its ramification jump
s is such that Gs+1 = {1}.

If h(n)> s then Gh(n) = {1}. Let’s show in this case, by induction on the degree, that Un,F ⊂
NL/FUh(n),L. The inequality h(n)> s and the description of the Hasse–Herbrand function for cyclic
extensions of prime degree implies that hR/F(n) > s. By induction Un,F ⊂ NR/FUhR/F (n),R. Since
every unit in UhR/F (n),R is the image with respect to NL/R of a unit in Uh(n),L, we deduce the claim.
Thus, if h(n)> s then NL/FL× = ϒ({1}) = ϒ(Gh(n))⊃Un,FNL/FL× = NL/FL×.

Let h(n) 6 s. If s = 0 there is nothing to prove, so let s > 0 and hence L/R is of degree p.
Then hR/F(n) = h(n)6 s. Let’s show by induction on the degree that

ΨL/F(Un,FNL/FL×/NL/FL×)⊂ Gh(n).

Assume this inclusion is not true for L/F . Then, using the previous notation, there is a σ ∈
G j \G j+1, j < h(n) such that π

σ−1
M = ε1−ϕ and NM/M0ε ∈Un,FNL/FUL. Denote by E the composite

of R and M0. Applying the norm map NM/E , since j < s we deduce that σ |R ∈ Gal(R/F) j \
Gal(R/F) j+1, (NM/EπM)σ−1 = (NM/Eε)1−ϕ , NE/M0(NM/Eε) ∈Un,FNL/FUL which contradicts the
induction assumption. �

COROLLARY.
For n> 0 the reciprocity map ΨF maps Un,F isomorphically onto G(n), where G=Gal(Fab/F).
Every abelian extension with finite residue field extension is arithmetically profinite.
Every abelian extension has integer upper ramification jumps.

Proof. By the previous Theorem ΨL/F(Un,FNL/FL×) = Gal(L/F)(n) for every finite abelian ex-
tension L/F . We deduce that ΨF(Un,F) is a dense subset of G(n). Since Un,F is compact when the
residue field is finite, ΨF(Un,F) is closed and we conclude that ΨF(Un,F) = G(n).

For every abelian extension L/F the group Gal(L/F)(n) is the image of G(n) in Gal(L/F).
Since every group of principal units of F has finite index in UF , the previous paragraph implies
that G(n) has finite index in G(0) and so Gal(L/F)(x) for every x has finite index in Gal(L/F).
Thus, L/F is arithmetically profinite.

For an upper ramification jump x of L/F the group Gal(L/F)(x+ 1) is an open subgroup
of Gal(L/F). Therefore, the fixed field E of Gal(L/F)(x + 1) is a finite abelian extension of
F . The jump x corresponds to the jump x of Gal(E/F) and therefore is integer by the previous
Theorem. �

21.4. Hilbert symbol plays a prominent role in class field theory and its applications.
Let the group µn of all nth roots of unity in the separable closure Fsep be contained in F and

let p -n if char(F) = p.
The norm residue symbol or Hilbert symbol or Hilbert pairing ( ·, ·)n : F××F× −→ µn is

defined by the formula

(α,β )n = γ
−1

ΨF(α)(γ), where γ
n = β ,γ ∈ Fsep.
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If γ ′ ∈ Fsep is another element with γ ′n = β , then γ−1γ ′ ∈ µn and

γ
′−1

ΨF(α)(γ ′) = γ
−1

ΨF(α)(γ).

This means that the Hilbert symbol is well defined.

PROPOSITION. The norm residue symbol possesses the following properties:

(1) ( ·, ·)n is bilinear;
(2) (1−α,α)n = 1 for α ∈ F×,α 6= 1 (Steinberg property);
(3) (−α,α)n = 1 for α ∈ F×;
(4) (α,β )n = (β ,α)−1

n ;
(5) (α,β )n = 1 if and only if α ∈ NF( n

√
β )/FF( n

√
β )× and if and only if

β ∈ NF( n√α)/FF( n
√

α)×;
(6) (α,β )n = 1 for all β ∈ F× if and only if α ∈ F×n,

(α,β )n = 1 for all α ∈ F× if and only if β ∈ F×n;
(7) (α,β )m

nm = (α,β )n for m> 1,µnm ⊂ F×;
(8) (α,β )n,L = (NL/Fα,β )n,F for α ∈ L×,β ∈ F×, where ( ·, ·)n,L is the Hilbert symbol in L,

( ·, ·)n,F is the Hilbert symbol in F, and L is a finite separable extension of F ;
(9) (σα,σβ )n,σL =σ(α,β )n,L, where L is a finite separable extension of F, σ ∈Gal(Fsep/F),

and µn ⊂ L× but not necessarily µn ⊂ F×.

Proof.
(1): For γ ∈ Fsep,γn = β we get

γ
−1

ΨF(α1α2)(γ) = ΨF(α1)
(
γ
−1

ΨF(α2)(γ)
)
·
(
γ
−1

ΨF(α1)(γ)
)

=
(
γ
−1

ΨF(α2)(γ)
)(

γ
−1

ΨF(α1)(γ)
)
,

since ΨF(α1) acts trivially on (α2,β )n ∈ µn. We also obtain

(α,β1β2)n =
(
γ
−1
1 γ

−1
2 ΨF(α)(γ1γ2)

)
=
(
γ
−1
1 ΨF(α)(γ1)

)(
γ
−1
2 ΨF(α)(γ2)

)
= (α,β1)n(α,β2)n.

for γ1,γ2 ∈ Fsep, γn
1 = β1,γ

n
2 = β2.

(5),(2),(3),(4): (α,β )n = 1 if and only if ΨF(α) acts trivially on F( n
√

β ) and if and only if α ∈
NF( n
√

β )/FF( n
√

β ))× by Theorem 20.9.

Let m|n be the maximal integer for which α ∈ F×m. Then F( n
√

α)/F is of degree nm−1. Let
α = αm

1 with α1 ∈ F× and let ζn be a primitive nth root of unity. Then for δ ∈ Fsep,δ n = α , we
get

1−α =
n

∏
i=1

(1−ζ
i
nδ ) =

n

∏
i=1

nm−1

∏
j=1

(
1−ζ

i
nζ

j
nm−1δ

)
= NF( n√α)/F

( n

∏
i=1

(
1−ζ

i
nδ
))
∈ NF( n√α)/FF( n

√
α)×.
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Hence, (1−α,α)n = 1. Further, −α = (1−α)(1−α−1)−1 for α 6= 0,α 6= 1. This means that
(−α,α)n = (1−α,α)n(1−α−1,α−1)−1

n = 1. Moreover,

1 = (−αβ ,αβ )n = (−α,α)n(α,β )n(β ,α)n(−β ,β )n = (α,β )n(β ,α)n,

i.e., (α,β )n = (β ,α)−1
n .

Finally, if (α,β )n = 1, then (β ,α)n = 1, which is equivalent to

β ∈ NF( n√α)/FF( n
√

α)×.

(6): Let β ∈ F×n; then (α,β )n = 1 for all α ∈ F×. Let β /∈ F×n, then L = F( n
√

β ) 6= F , and L/F
is a nontrivial abelian extension. By Theorem 20.9 the subgroup NL/FL× does not coincide with
F×. If we take an element α ∈ F× such that α /∈NL/FL× then, by property (5), we get (α,β )n 6= 1.
(7): For γ ∈ Fsep,γnm = β , one has

(α,β )m
nm =

(
γ
−1

ΨF(α)(γ)
)m

=
(
γ
−m

ΨF(α)(γm)
)
= (α,β )n,

because (γm)n = β .
(8): Theorem 20.9 shows that

(α,β )n,L = γ
−1

ΨL(α)(γ) = γ
−1

ΨF
(
NL/F(α)

)
(γ) =

(
NL/Fα,β

)
n,F ,

where γ ∈ Fsep,γn = β .
(9): Theorem 20.9 shows that for γ ∈ Fsep,γn = β ,

(σα,σβ )n,σL = σ
(
γ
−1

ΨL(α)(γ)
)
= σ(α,β )n,L.

�

COROLLARY. The Hilbert symbol induces the nondegenerate pairing

( ·, ·)n : F×/F×n×F×/F×n −→ µn.

Kummer theory asserts that abelian extensions L/F of exponent n (µn ⊂ F×, p -n if char(F) =

p) are in one-to-one correspondence with subgroups BL⊂F×, such that BL⊃F×n, L=F( n
√

BL)=

F(γi : γn
i ∈ BL) and the group BL/F×n is dual to Gal(L/F).

THEOREM. Let µn ⊂ F×, p -n, if char(F) = p. Let A be a subgroup in F× such that F×n ⊂A.
Denote its orthogonal complement with respect to the Hilbert symbol ( ·, ·)n by B = A⊥, i.e.,

B = {β ∈ F× : (α,β )n = 1 for all α ∈ A}.

Then A = NL/FL×, where L = F( n
√

B) and A = B⊥.

Proof. We first recall that F×n is of finite index in F× by Proposition 4.9.
Let B be a subgroup in F× with F×n ⊂ B and |B : F×n|= m. Let A = B⊥. Then ΨF(α), for

α ∈ A, acts trivially on F( n
√

β ) for β ∈ B. This means that ΨF(α) acts trivially on L = F( n
√

B)
and, by Theorem 20.9, α ∈ NL/FL×. Hence

A⊂ NL/FL×.
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Conversely, if α ∈ NL/FL×, then ΨF(α) acts trivially on F( n
√

β )⊂ L and

α ∈ NF( n
√

β )/FF( n
√

β )×

for every β ∈ B. Property (5) of the previous Proposition shows that (α,β )n = 1 and hence
NL/FL× ⊂ A. Thus, A = NL/FL×.

Furthermore, to complete the proof it suffices to verify that a subgroup A in F× with F∗n ⊂A
coincides with (A⊥)⊥. Restricting the Hilbert symbol on A×F× we obtain that it induces the
nondegenerate pairing A/F∗n×F×/A⊥ −→ µn. The order of A/F∗n coincides with the order of
F×/A⊥. Similarly, one can verify that the order of A⊥/F×n is the same as that of F×/(A⊥)⊥,
and hence the order of F×/A⊥ equals the order of (A⊥)⊥/F×n. From A⊂ (A⊥)⊥ we deduce that
A = (A⊥)⊥. �

The problem to find explicit formulas for the norm residue symbol originates from Hilbert. In
the case under consideration the challenge is to find a formula for the Hilbert symbol (α,β )n in
terms of the elements α,β of the field F . This problem is very complicated when p|n. There is a
simple answer when p -n.

PROPOSITION. Let n be relatively prime with p and µn ⊂ F×. Then

(α,β )n = c(α,β )(q−1)/n,

where q is the cardinality of the residue field F and

c : F××F× −→ µq−1

is the tame symbol defined by the formula

c(α,β ) = pr
(

β
vF (α)

α
−vF (β )(−1)vF (α)vF (β )

)
,

with the projection pr : UF −→ µq−1 induced by the decomposition UF ∼= µq−1×U1,F , i.e., pr(u)
is the multiplicative representative of u ∈ F.

Proof. Note that the elements of the group µn, for p - n, are isomorphically mapped onto the
subgroup in the multiplicative group F×q . Hence, n|(q− 1). Note also that the prime elements
generate F×. Indeed, if α = πaε with ε ∈UF , then α = π1πa−1 for the prime element π1 = πε ,
when a 6= 1, and α = π2 for the prime element π2 = πε , when a = 1. Using properties (1) and (7)
of the Hilbert symbol it suffices to verify that c(π,β ) = (π,β )q−1 for β ∈ F×.

Let β = (−π)aθε with a = vF(β ),θ ∈ µq−1,ε ∈U1,F . Then c(π,−π) = 1. Since ε = ε
q−1
1

for some ε1 ∈ U1,F due to (q− 1)-divisibility of U1,F , we obtain c(π,ε) = 1. Hence c(π,β ) =
c(π,θ) = θ . Property (3) of the Hilbert symbol shows that (π,−π)q−1 = 1. Since the group
U1,F is (q− 1)-divisible, (π,ε)q−1 = 1. Finally, since the extension F( n

√
θ)/F is unramified, for

η ∈ Fsep,ηq−1 = θ we have

(π,θ)q−1 = η
−1

ΨF(π)(η) = η
−1

ϕF(η) = η
q−1 = θ .

We conclude that (π,β )q−1 = θ = c(π,β ). �
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REMARK. There are two types of explicit formulas for the prth Hilbert symbol: explicit
formulas of Shafarevich, Vostokov, Kato type and explicit formulas of Eisenstein, Kummer, Artin–
Hasse, Iwasawa, Sen, Coates–Wiles, Kato–Kurihara type.

Here is the Vostokov formula for the Hilbert pairing. Let F contain a primitive pnth root ζpn

of unity, p > 2,n> 1. Choose a prime element π of F . Let O0 be the ring of integers of the inertia
subfield F0 = F ∩Qur

p of F . Let Tr = TrO0/Zp and let ϕ be the Frobenius automorphism of Qp.
Then for α,β ∈ F×

(α,β )pn = ζ
TrresΦ(A,B)(1/S+1/2)
pn ,

Φ(A,B) = l(B)dA/A− l(A)
1
p

dB4/B4,

where A,B ∈ O0((X))× are any series such that A(π) = α,B(π) = β , S = Spn

1 −1, the series S1 ∈
1+XO0[[X ]] is any series such that S1(π) = ζpn , l(A) = log

(
Ap/A4)/p, (∑aiX i)4 = ∑ϕ(ai)X pi,

res(∑aiX idX) = a−1. Thus, this formula for the Hilbert pairing involves indeterminacies in rela-
tion to the choice of π,A,B,S1.

The right hand side of the previous displayed formula is defined independently of class field
theory, it is called the Vostokov symbol. Vostokov symbol can be used to provide an alternative
presentation of class field theory for Kummer extensions without using the local reciprocity map.

21.5. Artin–Schreier pairing is important in positive characteristic.
Abelian extensions of exponent p of a field F of characteristic p are described by the Artin–

Schreier theory. The polynomial ℘(X) = X p−X is additive. Abelian extensions L/F of exponent
p are in one-to-one correspondence with subgroups B ⊂ F such that ℘(F) ⊂ B. The quotient
group B/℘(F) is dual to Gal(L/F), where

L = F
(
℘
−1(B)

)
= F

(
γ :℘(γ) ∈ B

)
.

For a complete discrete valuation field F of characteristic p with a finite residue field we define
the map

( ·, · ] : F××F −→ Fp

by the formula

(α,β ] = ΨF(α)(γ)− γ,

where γ is a root of the polynomial X p−X−β . All the roots of this polynomial are γ +c where c
runs through Fp, therefore we deduce that the pairing ( ·, · ] is well defined.

PROPOSITION. The map ( ·, · ] has the following properties:

(1) (α1α2,β ] = (α1,β ]+ (α2,β ], (α,β1 +β2] = (α,β1]+ (α,β2];
(2) (−α,α] = 0 for α ∈ F×;
(3) (α,β ] = 0 if and only if α ∈ NF(γ)/FF(γ)×, where γ p− γ = β ;
(4) (α,β ] = 0 for all α ∈ F× if and only if β ∈℘(F);
(5) (α,β ] = 0 for all β ∈ F if and only if α ∈ F×p;
(6) (π,β ] = TrFq/Fp θ0, where π is a prime element in F and β = ∑i>a θiπ

i with θi ∈ Fq.
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Proof.
(1): One has

ΨF(α1α2)(γ)− γ = ΨF(α1)
(
ΨF(α2)(γ)− γ

)
+ΨF(α1)(γ)− γ

= ΨF(α1)(γ)− γ +Ψ(α2)(γ)− γ,

since ΨF(α2)(γ)− γ ∈ F . One also has

ΨF(α)(γ1 + γ2)− (γ1 + γ2) = ΨF(α)(γ1)− γ1 +ΨF(α)(γ2)− γ2.

(3): (α,β ] = 0 if and only if ΨF(α) acts trivially on F(γ), where γ p−γ = β . Theorem 20.9 shows
that this is equivalent to α ∈ NF(γ)/FF(γ)×.
(2): If α ∈℘(F), then (−α,α] = 0 by property (3). If a root γ of the polynomial X p−X−α does
not belong to F , then −α = NF(γ)/F(−γ) and property (3) shows that (−α,α] = 0.
(4): If β /∈℘(F), then L = F(γ) 6= F for a root γ of the polynomial X p−X−β ; L/F is an abelian
extension of degree p, and hence NL/FL× 6= F×. For an element α ∈ F×, such that α /∈ NL/FL×,
we deduce by Theorem 20.9 that ΨF(α) acts nontrivially on L, i.e., ΨF(α)(γ) 6= γ and (α,β ] 6= 0.
(5): Let A denote the set of those α ∈ F×, for which (α,β ] = 0 for all β ∈ F . Note that for
α,β ∈ F× properties (1) and (2) imply

(−β ,αβ ] = (−αβ ,αβ ]− (α,αβ ] =−(α,αβ ].

Hence, the condition α ∈ A is equivalent to (α,αβ ] = 0 for all β ∈ F× and to (−β ,αβ ] = 0
for all β ∈ F×. Then, if α1,α2 ∈ A we get (−β ,(α1 +α2)β ] = (−β ,α1β ]+ (−β ,α2β ] = 0, and
(−β ,−α1β ] =−(−β ,α1β ] = 0. This means that α1+α2,−α1 ∈A. Obviously, α1α2 ∈A,α−1

1 ∈
A. Therefore, the set A∪{0} is a subfield in F . Further, F p ⊂ A∪{0} by property (1), and we
obtain F p ⊂ A∪{0} ⊂ F .

One can identify the field F with Fq((π)). Then the field F p is identified with the field
Fq((π

p)) and we obtain that the extension Fq((π))/Fq((π
p)) is of degree p. Hence, A∪{0}= F p

or A∪{0} = F . Since ℘(F) 6= F , property (4) shows that (α,β ] 6= 0 for some β ∈ F,α ∈ F×.
Thus, A∪{0} 6= F , i.e., A = F×p.
(6): If θ ∈ Fq and γ ∈ Fsep, γ p− γ = θ , then F(γ) = F or F(γ)/F is the unramified extension of
degree p. Theorem 20.9 implies

(π,θ ] = ϕF(γ)− γ = γ
q− γ = θ

q/p +θ
q/p2

+ · · ·+θ = TrFq/Fp θ .

Let a be a positive integer and θ ∈ F×q . Then

a(π,θπ
a] = (πa,θπ

a] = (θπ
a,θπ

a] = (−1,θπ
a] = 0,

since the group F×q is p-divisible and −1 ∈ Fp
q . Hence (π,θπa] = 0 for p -a. Finally, let a = psb,

where s > 0 and p -b,b > 0. Then

θπ
a = (θ1π

ps−1b)p−θ1π
ps−1b +θ1π

ps−1b ∈ θ1π
ps−1b +℘(F) ,

where θ
p
1 = θ . Continuing in this way we deduce that θπa = θsπ

b +℘(λ ), where θ
ps

s = θ and
λ ∈ F . Then (π,θπa] = (π,θsπ

b] = 0. We obtain property (6) and complete the proof. �
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COROLLARY. The pairing ( ·, · ] determines the nondegenerate pairing

F×/F×p×F/℘(F)−→ Fp

To obtain an explicit formula for ( ·, · ], introduce a map dπ as follows.
Let π be a prime element of a complete residue field F of characteristic p with the residue

field Fq. Then an element α ∈ F can be uniquely expanded as

α = ∑
i>a

θiπ
i, θi ∈ Fq.

Put
dπα = ∑

i>a
iθiπ

i−1dπ, resπ

(
∑ηiπ

idπ
)
= η−1.

Define the Artin–Schreier pairing

Dπ : F××F −→ Fp, Dπ(α,β ) = TrFq/Fp resπ(βdπα/α).

PROPOSITION. The map Dπ possesses the following properties:

(1) linearity

Dπ(α1α2,β ) = Dπ(α1,β )+Dπ(α2,β ),

Dπ(α,β1 +β2) = Dπ(α,β1)+Dπ(α,β2);

(2) if π1 is a prime element in F, then

Dπ(π1,β ) = Dπ1(π1,β ) = TrFq/Fp θ0,

where β = ∑i>a θiπ
i
1,θi ∈ Fq;

(3) if θ ,η ∈F×q then Dπ(1+θπ i,ηπ j) = 0 if i>− j, i> 0; Dπ(1+θπ i,ηπ j) =TrFq/Fp(θη)

if i =− j > 0.

Proof.
(1): We have

dπ(α1α2)

α1α2
=

dπα1

α1
+

dπα2

α2
,

since dπα can be treated as a formal differential dα(X)|X=π
for the series α(X) = ∑aiX i. Hence,

we get Dπ(α1α2,β ) = Dπ(α1,β )+Dπ(α2,β ).
The other formula follows immediately.
(2): Let C = Z[X1,X2, . . . ], where X1,X2, . . . are independent indeterminates. Let X be an

indeterminate over C. Put

α(X) = X1X +X2X2 +X3X3 + · · · ∈C[[X ]].

For an element ∑ j>a κ jX j ∈C[[X ]],κi ∈C, we put

d(∑
j>a

κ jX j) = ∑
j>a

jκ jX j−1dX , resX
(
∑
j>a

κ jX jdX
)
= κ−1.

Note that
resX d

(
∑
j>a

κ jX j)= 0.
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Hence, for i 6= 0 we get

resX
(
α(X)i−1dα(X)

)
= resX

(
1
i
d
(
α(X)i))= 0.

One can define a ring-homomorphism C[[X ]]−→ F as follows: Xi ∈C→ ηi ∈ Fq,X→ π . The
series α(X) is mapped to α(π) = η1π +η2π2 + · · · ∈ F , and we conclude that

resπ

(
α(π)i−1dπα(π)

)
= 0 if i 6= 0.

Now let β = ∑i>a θiπ
i
1,θi ∈ Fq. The definition of Dπ1 shows that

Dπ1(π1,β ) = TrFq/Fp θ0.

Writing π1 = η1π +η2π2 + · · ·= α(π) with ηi ∈ Fq, we get

Dπ(π1,θiπ
i
1) = resπ

(
θiπ

i−1
1 dππ1

)
= resπ

(
θiα(π)i−1dπα(π)

)
= 0 if i 6= 0,

and

Dπ(π1,θ0) = resπ

(
θ0α(π)−1dπα(π)

)
= resπ((θ0π

−1 +δ )dπ) = TrFq/Fp θ0

where δ ∈ OF . Thus Dπ1(π1,β ) = Dπ(π1,β ) = TrFq/Fp θ0, as desired.
(3) follows immediately from the definitions. �

PROPOSITION. Let F be a complete discrete valuation field of characteristic p with the
residue field Fq. Then the pairing ( ·, · ] coincides with Dπ . In particular, the pairing Dπ does
not depend on the choice of the prime element π .

Proof. As the prime elements generate F×, it suffices to show, using property (1) of ( ·, · ] and
property (1) of Dπ , that for a prime element π1 in F the following equality holds:

(π1,β ] = Dπ(π1,β ), β ∈ F.

Let β = ∑i>a θiπ
i
1. Then property (6) of ( ·, · ] and property (2) of dπ imply that

(π1,β ] = Dπ(π1,β ) = TrFq/Fp θ0,

as desired. �

REMARKS.
1. One can prove directly, without using class field theory, that Dπ induces a continuous

perfect pairing F×/F×p×F/℘(F)−→ Fp, using explicit computations of Dπ in the Proposition
preceding the previous one. Using Artin–Schreier theory, this gives an algebraic and topological
isomorphism F×/F×p ∼−→ Gal(Fp/F) where Fp is the composite of all cyclic extensions of degree
p of F .

2. Similar to the study of the Hilbert symbol, one can prove that for an open subgroup A in F×

such that F×p ⊂ A, its orthogonal complement B with respect to the Artin–Schreier pairing ( , ]

produces an abelian extension L = F(℘−1(B)) of F such that A = NL/FL×. In particular, every
open subgroup A of index p in F× is the norm group NL/FL× of L = F(℘−1(β )) where β 6∈℘(F)

satisfies (A,β ] = 0.
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3. Using Witt vectors over F one can extended the previous theory to the Artin–Schreier–Witt
pairing. A map defined by

( ·, · ]n : F××Wn(F)−→Wn(Fp)∼= Z/pnZ

by the formula

(α,x]n = ΨF(α)(z)− z,

where z ∈Wn(Fsep) and zp− z = x, produces a nondegenerate pairing

F×/F×pn

×Wn(F)/℘Wn(F)−→Wn(Fp)∼= Z/pnZ.

Similar to the previous material, there is an explicit formula for it.

21.6. FURTHER REMARKS.

1. Let L be an infinite arithmetically profinite extension of a local number field F , and let E/L
be a finite Galois extension. If L is the union of finite field extensions Li of F and E = L(α), then
E is the union of Ei = Li(α) and Ei/Li is Galois extension with the Galois group isomorphic to
Gal(E/L) for all sufficiently large i. Define

ϒE/L : Gal(E/L)−→ N(L|F)×/NN(E|F)/N(L|F)N(E|F)×

as the inverse limit of ϒEi/Li : Gal(E/L) ∼−→ Gal(Ei/Li)−→ L×i /NEi/LiE
×
i with respect to the norm

maps. Then ϒE/L equals the composition of Gal(E/L) ∼−→ Gal(N(E|F)/N(L|F)) and the homo-
morphism ϒN(E|F)/N(L|F) : Gal(N(E|F)/N(L|F)) −→ N(L|F)×/NN(E|F)/N(L|F)N(E|F)×. Thus,
the reciprocity map in characteristic 0 or zero is connected with the reciprocity map in charac-
teristic p.

Using this observation and the explicit formula for the Artin–Schereir pairing and its gener-
alisation, the Artin-Scheirer–Witt pairing, and field of norms of a local number field contains µpn

and its appropriate arithmetically profinite extension L/F , one can obtain new proofs of explicit
formulas for the prth Hilbert symbol. Using the arithmetically profinite extension described in
Remark 4 of 17.1 one obtains explicit formulas of Shafarevich, Vostokov, ... type. Using the
arithmetically profinite extension generated by all roots of order a power of p one obtains explicit
formulas of Kummer, Artin–Hasse, Iwasawa, ... type.

An open question is whether there is another class of arithmetically profinite extensions that
can lead to a new type of explicit formulas for the Hilbert symbol.

2. Let π be a prime element in F and ΨF(π) = ϕ . Then ϕ|Fur = ϕF , and for the fixed field Fπ

of ϕ we get

Fπ ∩Fur = F, FπFur = Fab.

The prime element π belongs to the norm group of every finite subextension L/F of Fπ/F . The
group Gal(Fab/Fπ) is mapped isomorphically onto Gal(Fur/F) and the group Gal(Fπ/F) is iso-
morphic to Gal(Fab/Fur), the inertia subgroup of Gab

F = Gal(Fab/F).
We have

Gal(Fab/F)∼= Gal(Fπ/F)×Gal(Fur/F), Gal(Fπ/F)∼=UF , Gal(Fur/F)∼= Ẑ
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and

ΨF(F×) = 〈ϕ〉×Gal(Fab/Fur),

where 〈ϕ〉 is the cyclic group generated by ϕ .
The field Fπ can be explicitly generated by roots of iterated powers of the isogeny of a formal

Lubin–Tate group associated to π .

3. Other approaches to class field theory of local fields with finite residue field:
– historically the first one, by Hasse, using the computation of the Brauer group of the field to

define a canonical pairing of the group of characters of the field k with k× and use its properties to
derive the reciprocity map

– historically the second one, using group cohomology, e.g. Artin–Tate
– explicit cohomology-free approach of Hazewinkel (in a way the inverse to the Neukirch

approach in the local field case)
– in positive characteristic Kawada–Satake’s cohomology-free approach uses Artin–Schreier–

Witt theory and explicit pairings
– explicit cohomology-free approach using formal Lubin–Tate groups
– using φ -γ modules theory, by Herr.

Hazewinkel’s approach to local class field theory constructs ΨL/F : F×/NL/FL×−→Gal(L/F)ab

for a totally ramified Galois extension L/F by sending α ∈UL to σ ∈ Gal(L/F) that satisfies the
congruence π

1−σ

L ≡ β ϕ−1 mod U1−σ

L where L is the completion of Lur and β ∈UL is such that
NL/Fβ = α .

4. It is an open question whether there is another local class field theory with different deg,
for example, using the Ẑ-quotient of the maximal abelian extension of Qp.

5. Generalisation of class field theory to local fields with quasi-finite residue field F , i.e.
GF
∼= Ẑ, using AF = F× can be produced by checking axioms A1 and A2. When the residue field

is infinite, existence theorem becomes much more complicated, and the formal Lubin–Tate groups
approach is not extendable.

Generalisation of class field theory to local fields with perfect residue field F of characteristic
p such that F 6=℘(F), i.e. the field F is not separably p-closed, i.e., it has nontrivial separable
extensions of degree p. Let Fabur denote the maximal abelian unramified p-extension of F and let
L/F be a finite Galois totally ramified p-extension. Fesenko’s class field theory for such F defines
a generalisation ϒL/F of the Neukirch method. The reciprocity map ϒL/F induces an isomorphism

HomZp

(
Gal(Fabur/F),Gal(L/F)ab) ∼−→U1,F/NL/FU1,L,

where HomZp denotes continuous Zp-homomorphisms from the group Gal(Fabur/F) endowed
with the topology of profinite group to the discrete finite group Gal(L/F)ab.

The group U1,F/NL/FU1,L is no longer finite if the residue field if not quasi-finite, so the
numerical property in A2 has to be replaced with the isomorphism property U1,F/NL/FU1,L

∼−→
HomZp

(
Gal(Fabur/F),Gal(L/F)ab

)
for cyclic totally ramified extensions L/F of degree p. In this

theory one uses a generalisation of Hazewinkel’s reciprocity map ΨL/F and the easy to check fact
that ΨL/F ◦ϒab

L/F is the identity map on Gal(L/F)ab.
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Existence theorem in this theory implies the following property: let π be a prime element in F
and let Fπ be the compositum of all finite abelian extensions L of F such that π ∈ NL/FL×. Then
Fπ is a maximal abelian totally ramified p-extension of F and the maximal abelian p-extension
Fabp of F is the compositum of linearly disjoint extensions Fπ and Fabur. No explicit construction
of Fπ is known unless the residue field is finite.

6. There is even a generalisation of class field theory to some partial class field theory of
complete discrete valuation fields with general (i.e. possibly imperfect) residue field F of charac-
teristic p such that F 6=℘(F). Unlike the other local class field theories, there is no induction on
the degree in this theory.

At the same time, class field theory of a n-dimensional local field F , see 3.5, with last finite
residue field describes abelian extensions of F by using the Milnor Kn(F)-group of F , and induc-
tion on the degree works fine there. This theory works with AF = Kn(F) with the appropriate defi-
nitions of v and deg, so that the axioms A1, A2 are satisfied. However, there is in general no Galois
descent, i.e. Kn(F) 6∼−→ Kn(L)Gal(L/F), and the map Kn(F) −→ Kn(L) induced by field embedding
is not in general injective, so one needs to modify the abstract class field theory to be applicable
here. The theory constructs the higher local reciprocity map AF = Kn(F) −→ Gal(Fab/F) with
everywhere dense image and with the kernel ∩m>1mKn(F), such that all the properties in section
20 hold.

7. Arithmetic non-abelian class field theory for a local field F with finite residue field (Fes-
enko). Let ϕ in the absolute Galois group GF of F be an extension of the Frobenius automorphism
ϕF . Let Fϕ be the fixed field of ϕ . It is a totally ramified extension of F and its compositum with
Fur coincides with the maximal separable extension of F . For every finite subextension E/F of
Fϕ/F put πE = ϒE(ϕ|Eab). Then πE is a prime element of E and from functorial properties of the
reciprocity maps we deduce that πM = NE/MπE for every subextension M/F of E/F .

Let L ⊂ Fϕ be an infinite Galois totally ramified arithmetically profinite extension of F .
Then the prime elements (πE) in finite subextensions E of Fϕ/F supply the sequence of norm-
compatible prime elements (πE) in finite subextensions of L/F and therefore by the theory of
fields of norms a prime element X of the local field N = N(L|F). Denote by ϕ the automorphism
of Nur and of its completion N̂ur ∼= N(L̂ur/F̂ur) corresponding to ϕ . Note that N and N̂ur are
GF -modules.

Define a noncommutative local reciprocity map

ΘL/F : Gal(L/F)−→UN̂ur/UN

by

ΘL/F(σ) =U mod UN ,

where U ∈UN̂ur satisfies the equation

Uϕ−1 = X1−σ .

The element U exists by the properties of local fields with separably closed residue field. Compare
this equation with that in Remark 20.4.
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The ground component uF̂ur of U = (uM̂ur) belongs to F . We have compatibility with the usual
local class field theory at the lowest component:

ΘL/F(σ)F̂ur = uF̂ur = ϒF(σ) mod NL/FUL.

The reciprocity map ΘL/F is injective and satisfies the 1-cocyle relation:

ΘL/F(στ) = ΘL/F(σ)σ(ΘL/F(τ)).

For arithmetically profinite extensions whose Galois group is n-nilpotent, this noncommuta-
tive reciprocity map iimplies Koch–de Shalit–Gurevich class field theory.

22. Adeles of Global Fields

22.1. A global field F is either a number field, i.e. a finite extension of Q, or a global function
field, i.e. a finite separable extension of Fp(t).

The largest finite subfield of a global function field is called its constant field or field of con-
stants.

Note that every finitely generated extension F of Fp of transcendence degree 1 over Fp is
a global function field. Indeed, if F = Fp(a1, . . . ,an) with a1 transcendental over Fp, then by
induction one can assume that Fp(a2, . . . ,an) is a finite separable extension of Fp(a2), so F is a
finite separable extension of Fp(a1,a2). Find a non-zero irreducible polynomial f (X1,X2) over Fp

such that f (a1,a2) = 0, it contains a term in which the degree of Xi is prime to p for i equal 1 or
2, and then F is separable over Fp(a j) where {i, j}= {1,2}.

Many results of algebraic number theory hold for global function fields, with Z replaced by
Fp[t]. The ring of integers OF of a global field is a Dedekind ring, hence with unique factorisation
of non-zero proper ideals into the product of maximal ideals. The norm N(I) of ideals is a mul-
tiplicative function and the maximal ideals of OL lying over maximal ideals of OF are described
similarly to the number field case. Instead of working with the ideal class group of the ring of in-
tegers OF it is better to work with the Picard group of an associated smooth irreducible projective
curve, as we will see later in this section.

DEFINITION. A completion Fv of F is a local field with finite residue field or R or C such that
there is a ring isomorphism ξ between F and its dense subfield.

Two completions Fv, F ′v of F are called equivalent if there is a ring isomorphism τ : Fv −→ F ′v
such that ξ = ξ ′ ◦ τ .

A place of F is an equivalence class of completions of F . A place is called (archimedean or
infinite) real, resp. complex, if the completion is isomorphic to R, resp. C. The rest of the places
is called finite or non-archimedean.

EXAMPLES.
1. Finite places of Q correspond to positive primes, and there is one infinite real place.
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2. A complex place has two representatives, a complex embedding and its composite with
complex conjugation.

3. All places of Fq(t) are finite, they correspond to monic irreducible polynomials over Fq or
to −deg, see Example 2 of 1.3.

Similarly to section 9,

DEFINITION. For a finite separable extension L/F of global fields a place w of L is said to lie over
a place v of F , we write w|v, if Lw/Fv is a finite extension of complete fields.

Due to Remark 1 of 9.7, for a finite separable extension L/F of global fields and a place v of
F places w of L over v are determined from the isomorphisms

L⊗F Fv ∼=⊕w|v Lw

(the same argument as in 9.7 works for infinite places as well). So

∑
w|v

e(w|v) f (w|v) = ∑
w|v
|Lw : Fv|= |L : F |

and

TrL/F(α) = ∑
w|v

TrLw/Fv(αw), NL/F(α) = ∏
w|v

NLw/Fv(αw)

where (αw) is the image of an element α of L in ⊕w|vLw.
Let L/F be a finite Galois extension. Let a place w of L lie over a place v of F . The group

Gal(L/F) acts on the set of w over v, and σ ∈ Gal(L/F) induces an isomorphism Lw ∼= Lσw.
The decomposition group Gal(L/F)w of w in L/F is the subgroup {σ ∈ Gal(L/F) : σw = w}
of Gal(L/F). Each σ ∈ Gal(L/F)w induces a Kv-automorphism of Lw, which is the contin-
uous extension of σ from L to Lw. The restriction of automorphisms gives the injective map
iw : Gal(Lw/Fv)−→ Gal(L/F) whose image is Gal(L/F)w.

Lw

}}}}

L

Fv

}}}}

F

22.2. The name ‘adele’ in number theory is the evolution of ‘ideal number’→ ‘ideal’→
‘idele’→ ‘additive idele’→ ‘adele’.

DEFINITION. For a global field F its ring of adeles AF is the restricted product of all its non-
equivalent completions

AF = ∏
′Fv = {α = (αv) : αv ∈ Fv,αv ∈ Ov for almost all v}

where v runs through all places of F , and Ov is the ring of integers of Fv for finite v. So we do not
need to know what the rings of integers of R and C are.
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Equivalently, AF = lim−→S
AF(S), AF(S) = ∏v∈S Fv×∏v6∈S Ov with S running through all finite

subsets of places of F containing all infinite places. The addition and multiplication on AF(S) are
component-wise.

DEFINITION. Define the translation invariant topology on the additive group AF(S) as the product
topology on the topology of the additive group Fv for v ∈ S and the topology of the additive group
Ov for v 6∈ S. Since Ov are compact and Fv are locally compact, AF(S) is locally compact. Endow
the additive group of AF with the direct limit topology lim−→AF(S), so AF(S) are open subrings of
AF . This topology is translation invariant. A fundamental system of neighbourhoods of zero in
AF is formed by ∏v∈S Wv×∏v 6∈S Ov where Wv are open neighbourhoods of zero in Fv. Since each
Fv and Ov are complete topological space, AF is a complete topological space. Since AF(S) are
locally compact, AF is locally compact.

We have the canonical diagonal injective homomorphism

F −→ AF , a 7→ (a).

We will identify F with its image in AF .

So the set of all ∏v∈S Wv×∏v 6∈S Ov with open neighbourhoods Wv of 0 in Fv and S running
through finite subsets of places of F containing all infinite places, is a basis of fundamental neigh-
bourhoods of 0 in AF .

Due to the relation between completions in finite field extensions, for a finite separable exten-
sion L/F of global fields we immediately deduce

AL ∼= AF ⊗F L.

Hence we have (see also 22.1) the norm map TrL/F ,NL/F : AL −→ AF satisfy

TrL/F((αw))v = ∑
w|v

NLw/Fvαw, NL/F((αw))v = ∏
w|v

NLw/Fvαw.

22.3. PROPOSITION. The topological additive group of a completion Fv of a global field is
topologically self-dual: it is non-canonically isomorphic to its character group X(Fv).

The topological additive group of AF is topologically self-dual: it is non-canonically isomor-
phic to its character group X(AF).

F is discrete in AF and AF/F is compact.

Proof. Let k = Q in characteristic zero and k = Fp(t) in positive characteristic and a global field
F be a finite separable extension of k.

The additive group Qp is Zp +Ap where Ap = {a/pn : a ∈ Z,n> 0}, and Zp∩Ap = Z, so we
get a continuous additive homomorphism ωp : Qp −→Qp/Zp

∼−→ Ap/Z−→R/Z by sending z+a
to a mod Z, z ∈ Zp,a ∈ Ap. We have ωp(Zp) = 0.

On the additive group of Fv = Fp((t)) we get a continuous additive homomorphism
ωv : Fp((t))−→ Fp((t))/Fp[[t]]−→ Fp→R/Z which sends ∑ait i to ψ(a−1) = ψ ◦ rest(∑ait idt)
where ψ is a homomorphism which sends 1 ∈ Fp to 1/p mod Z and rest is as in 21.5. We have
ωv(Ov) = 0.

Using these homomorphisms, define their analogs for completions of F .



162 3. CLASS FIELD THEORY

For an archimedean completion Fv denote by ψ0
v its character

α 7→ exp(−2πiTrFv/R(α)).

For a non-archimedean completion Fv in characteristic zero denote by ψ0
v its character

α 7→ exp(2πiωp ◦TrFv/Qp(α)).

For a non-archimedean completion Fv in characteristic p denote by ψ0
v its character

α 7→ exp(2πiωv ◦TrFv/Fp((t))(α)).

Since the trace sends integral elements to integral elements, we deduce ψ0
v (Ov) = 1 for all

finite places v.
Denote the character α 7→ ψ0

v (αγ) by γψ0
v . For every character ψv of Fv one can find γ ∈ Fv

such that ψv(α)= γψ0
v , by choosing its successive coefficients of powers of a prime element appro-

priately. Indeed, since ψv is continuous, there is integer m such that ψv(M m
v ) = 1, ψv(M m−1

v ) 6= 1,
and there is a similar m0 for ψ0

v . If πv is a prime element of Fv, let γ = θm0−mπm0−m
v + . . . with a

non-zero multiplicative representative θm0−m ∈ O×v such that the induced by ψv character of the
finite field k(v) = M m−1

v /M m
v coincides with the character induced by γψ0

v . Then γψ0
v ψ−1

v van-
ishes on M m−1

v . Repeat the procedure to get γ = θm0−mπm0−m
v +θ1+m0−mπ1+m0−m

v + · · · ∈ Fv, etc.
Thus, X(Fv) = {γψ0

v : γ ∈ Fv} ∼−→ Fv.
Open neighbourhoods in X(Fv) of the character ψ1, ψ1(Fv) = 1, are W (U) = {ψ ∈ X(Fv) :

ψ(Bv) ⊂U} where U runs through open neighbourhoods of 1 of the complex unit circle and Bv

is some fixed nontrivial closed ball of Fv. The set {γ ∈ Fv : γψ0
v ∈W (U)} equals W = {γ ∈ Fv :

ψ0
v (γBv) ⊂U} which is open in Fv. Conversely, for any non-empty open subset V of Fv the set
{γψ0

v : γ ∈V} is open in X(Fv) since V contains an open set {γ ∈V : ψ0
v (γBv)⊂U} for some open

U and hence {γψ0
v : γ ∈V} contains W (U).

Then the pairing Fv×Fv −→ R/Z, (α,β ) 7→ ψ0
v (αβ ) induces an algebraic and topological

isomorphism of the additive group Fv and its group of characters X(Fv). For R and C these are
classical statements.

A character ψ of the additive group of AF induces a character of AF(S) and ψv on Fv which
is trivial on almost all Ov, so ψ(α) = ∏ψv(αv). Conversely, if ψv are characters of Fv trivial on
almost all Ov, then (αv) 7→∏ψv(αv) is a character of AF . Thus, we have the character

ψ
0 = ψ

0
AF

= ∏
v

ψ
0
v .

The definitions imply that for a finite separable extension of global fields we have

ψ
0
AL

= ψ
0
AF
◦TrL/F .

Similarly to the local situation, the pairing AF ×AF −→ R/Z, (α,β ) 7→ ψ0(αβ ) induces an
(algebraic and topological) isomorphism of AF with its group of characters.

Due to the formula AL = AF⊗F L for a finite separable field extension L/F , it suffices to show
the last claim of the Proposition for k. In the first case, by using the first paragraph of the proof,
Ak = k +Ak(∞), Ak(∞) = ∏Zp×R, and k ∩Ak(∞) = Z. Hence we have a homeomorphism
Ak/k ∼−→ Ak(∞)/Z. The group Z is discrete in Ak(∞) as one immediately sees looking at the
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real component, hence Q is discrete in AQ. Also, AQ = Q+∏Zp× [−1/2,1/2], Q∩∏Zp×
[−1/2,1/2] = {0}, where [−1/2,1/2] is isomorphic to the complex unit circle with respect to
α 7→ exp(2πiα). We obtain a homeomorphism of AQ/Q with the compact set ∏Zp× [−1/2,1/2].
In the case of positive characteristic, using kv = Ov + k∩Ak({v}) for every place v, we deduce
Ak = Ak( /0) + k. Since k∩Ak( /0) = Fp, we get a homeomorphism Ak/k ∼−→ ∏v Ov/Fp, so k is
discrete in Ak and Ak/k is compact. �

REMARKS. 1. For the character (sometimes called standard character) ψ0 we have ψ0(F)= 1.
Due to the definitions, it suffices to check that ψ0(k) = 1. In characteristic zero this follows from
−α +∑p ωp(α) ∈ Z for α ∈Q, since vq(ωp(α)+Z)> 0 if p 6= q and vp(ωp(α)−α)> 0.

In positive characteristic, it is sufficient to check for a rational function f (t) = g(t)/h(t)n ∈
Fp(t) where h(t) is an irreducible monic polynomial over Fp corresponding to a discrete valuation
v and deg(g) < ndeg(h). We have ψ0

−deg( f ) = ψ ◦ rest−1( f (t)dt−1) = ψ(rest( f (t)dt)) = ψ(−a)
where a is the coefficient of degree ndeg(h)−1 of g. If α is a root of h(t), then h(t) = ∏(t−σiα)

with σi running through the Galois group of Fp(α)/Fp. Writing f (t) = ∑i ∑m>−n a(i)m (t−σiα)m

we obtain that the t−1 coefficient of f (t) is

∑
i

rest−σi(α)( f (t)dt) = TrFp(α)/Fq rest−α( f (t)dt).

Hence ψ0
h(t)( f ) = ψ ◦TrFp(α)/Fp ◦ rest−α( f (t)dt) = ψ(a). Thus, ψ0(F) = 1.

2. The orthogonal complement F⊥ of F with respect to ψ0 is F . Indeed, this complement is
isomorphic to the group of characters of the compact group AF/F , hence it is a discrete subgroup
of AF . Hence F⊥/F is a discrete subgroup of the compact AF/F , so it is finite. Therefore, since
F⊥ is an F-vector space, it coincides with F .

22.4. Adeles in the function field case and the Riemann–Roch theorem. Let F be a global
function field, i.e. the function field of a smooth proper irreducible curve C over a finite field Fq.
For a divisor d = ∑v(d)[v] of the curve C define

AF(d) = {α = (αv) ∈ AF : v(αv)>−v(d) for all v}

where [v] is the class of the valuation (or the closed point which defines it). In particular, AF(0) =

AF( /0). We have an adelic complex

AF(d) : F⊕AF(d)−→ AF , (a,b) 7→ a−b,

and

H0(AF(d)) = F ∩AF(d), H1(AF(d)) = AF/(F +AF(d)).

For a non-zero differential form ω ∈Ω1
F/Fq

define a map

dω : AF −→ Fq, (αv) 7→∑
v

Trk(v)/Fq resv(αvω),

where k(v) is the residue field of Fv and resv(βvdπ) for Fv is resπ(βvdπ) in 21.5 for a prime element
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π of Fv. There are only finitely many non-zero terms in the sum, since almost all αv ∈ Ov and ω

has poles at finitely many places.
Characters of AF are in one-to-one correspondence with continuous linear maps from AF to

Fp. The composite of the map TrFq/Fp ◦dω with an isomorphism from Fp to the cyclic group of
order p on the unit circle is a non-trivial character of AF . One can easily show that the space of
continuous linear maps from AF to Fq which vanish on F , is isomorphic to Ω1

F/Fq
.

Composing with the multiplication AF ×AF −→ AF we get the differential pairing

AF ×AF −→ Fq, (α,β ) 7→∑
v

Trk(v)/Fq resv(αvβvω).

For a subspace H denote H⊥ = {β ∈ AF : (H,β ) = 0}. By Remark 2 in the previous sub-
section, F⊥ = F . The complement AF(0)⊥ of AF(0) with respect to the pairing is AF(κ), κ is
the divisor of ω and is called a canonical divisor of C . We get AF(d)⊥ = AF(κ − d), hence
the space of continuous linear maps from H0(AF(d)) to Fq is isomorphic to AF/H0(AF(d))⊥,
i.e. to H1(AF(κ − d)). The space AF(0) and hence AF(d) are compact, and their intersection
with F is discrete, which implies that H0(AF(d)) is of finite Fq-dimension and so is H1(AF(d)).
We now obtain dimFq H0(AF(d)) = dimFq H1(AF(κ − d)) and χAF (d) := dimFq H0(AF(d))−
dimFq H1(AF(d)) = χAF (κ−d).

We will use the virtual dimension of two Fq-commensurable spaces G,H (i.e G∩H is of
Fq-finite codimension in each of them), dimFq(G : H) := dimFq G/(G∩H)− dimFq H/(G∩H).
Noting it is additive on short exact sequences and comparing AF(d) and AF(0), we obtain

degFq
d = dimFq(AF(d) : AF(0)) = χAF (d)−χAF (0).

Using formulas

degFq
d = χAF (d)−χAF (0), dimFq H0(AF(d)) = dimFq H1(AF(κ−d))

we get

−degFq
d = dimFq H0(AF(0))−dimFq H0(AF(κ))−dimFq H0(AF(d))+dimFq H0(AF(κ−d)).

Thus, we obtain

dimFq H0(AF(d)) = dimFq H0(AF(κ−d))+degFq
d +χAF (0),

the adelic Riemann–Roch Theorem. If C is geometrically irreducible then dimFq H0(AF(0)) = 1

and χAF (0) = 1−g where g is the genus dimFq H1(AF(0)).

REMARK. This adelic proof is extendable to any (not necessarily smooth) proper irreducible
curve over a perfect field (in particular, C) by working with its adelic space and complex.
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22.5. Ideles is the multiplicative group of the ring of adeles AF :

JF = A×F = ∏
′F×v = {α = (αv) : αv ∈ F×v ,αv ∈Uv for almost all v}

where v runs through all places of F , Uv = O×v .
Its topology is not the induced topology from AF . Namely, the topology of A×F is the induced

topology from AF ×AF in which A×F is viewed with respect to the embedding α 7→ (α,α−1).
Then JF is a topological group. Note that the topology of the multiplicative group of a complete
discrete valuation field is the induced topology from F×F in which F× is viewed with respect to
the embedding α 7→ (α,α−1), see 18.1; hence the topology of JF induces the usual topology on
each local multiplicative F×v .

For a finite set S of places containing all archimedean ones in characteristic zero denote
JF(S) = AF(S)× = ∏v∈S F×v ×∏v 6∈S Uv. Then JF = lim−→JF(S). Define the translation invariant
topology on JF(S) as the product topology on the topology of F×v for v ∈ S and the topology of
O×v for v 6∈ S. Since O×v are compact and F×v are locally compact, JF(S) is locally compact. The
direct limit topology of JF is equivalent to the previously defined topology. Then JF is locally
compact.

We have the diagonal injective homomorphism F× −→ A×F . We will identify F× with its
image in A×F .

The quotient CF = A×F /F× is called the idele class group.

DEFINITION. For a local field with (surjective) discrete valuation v and finite residue field define
the normalised absolute value |α|v = |k(v)|−v(α) where |k(v)| is the cardinality of the residue field
k(v). For a field isomorphic to R define its absolute value as the usual absolute value, for a field
isomorphic to C define its absolute value is the square of the usual complex norm/module. Note
that the triangle inequality does not hold for this absolute value on C.

Due to Theorem 9.5 for an extension Lw/Fv of complete discrete valuation fields, the nor-
malised absolute values are related by the formula

|α|w = |NLw/Fvα|v,

since w = f (w|v)−1v ◦NLw/Fv , |k(w)| = |k(v)| f (w|v). Also, for the extension of archimedean com-
pletions Lw/Fv we have the same formula |α|w = |NLw/Fvα|v as easily checked from the definitions.

When F0 is Q or Fp(t) we have the product formula ∏v |α|v = 1 for α ∈ F× where v runs
through all places of F0. Hence, for a global field F and α ∈ F× we obtain the product formula

∏
w
|α|w = ∏

v
∏
w|v
|NFw/F0

v
α|v = ∏

v
|NF/F0α|v = 1.

REMARK. Approximation Theorem 2.8 for discrete valuations can be rewritten as a statement
about non-equivalent absolute values | |v, and then to also include archimedean absolute values,
with exactly the same proof. Thus, for any ε > 0 and finitely many distinct places vi and elements
αi ∈ Fvi there is an element a ∈ F such that |a−αi|vi < ε for all i.

In particular, for any α ∈ A×F and εi > 0 there is a ∈ F× such that |a−α−1
vi
|vi < εi.
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Thus, given positive integer nvi and choosing εi = |αvi |−1
vi
|k(v)|−nvi and εi = |αvi |−1

vi
at real vi,

there is a ∈ F× such that aαvi ∈UFvi ,nvi
for finite vi and aαvi > 0 for real vi.

The adelic module

| |= ∏ | |v : JF −→ R×>0

is a continuous homomorphism. Its image is R×>0 in the number field case: look, for example, at
the image of ideles with only one infinite place component different from 1. Its image is an infinite
cyclic group in positive characteristic: for each completion the image of the local absolute value
is a nontrivial subgroup of qZ, where q is the cardinality of the largest finite subfield of F . Hence
the image of the adelic module is its nontrivial subgroup as well.

Its kernel J1
F is a closed subgroup of JF .

Since F is discrete in AF , F× is a discrete subgroup of JF . Due to the product formula F× is a
subgroup of J1

F . It is closed since the intersection of F× with {(αv) : |αv|= 1 for v 6= v0, |αv0 |< 1}
is 1. Thus, C1

F = J1
F/F× is a closed subgroup of CF .

DEFINITION. Let S be a finite set, containing S∞ in the number field case. The intersection

F×(S) = F×∩ JF(S) = {α ∈ F× : |α|v = 1 for all v 6∈ S}

is called the group of S-units of F .
In particular, F×(S∞) = F×∩∏v∈S∞

F×v ×∏v6∈S∞
O×v is the group of units O×F of OF .

The quotient CF(S) = JF(S)/F×(S) is called the group of S-idele classes of F .
Put C1

F(S) = J1
F(S)/F×(S).

LEMMA. The topology of J1
F induced by the topology of JF is equivalent to the topology

induced by the topology of AF .

Proof. If 1 ∈ V ∩ J1
F for an AF -neighbourhood V of 1 of the type |βv− 1|v < ε for v ∈ S and

|βv|v 6 1 for v 6∈ S for a finite set S, then V ∩J1
F ⊃W ∩J1

F with a JF -neighbourhood W for which6
is replaced with = for v 6∈ S. If 1∈W ∩J1

F for an JF -neighbourhood W of 1 of the type |βv−1|v < ε

for v ∈ S and |βv|v = 1 for v 6∈ S for a finite set S containing all infinite places, we can assume ε

is small enough so that |β | < 2. Since the nearest to and smaller than 1 element of |F×v |v is
p−1 6 1/2, we deduce that W ∩J1

F =V ∩J1
F with an AF -neighbourhood V for which = is replaced

with 6 for v 6∈ S. �

22.6. Let L/F be a finite Galois extension of global fields, G = Gal(L/F). The group G
acts on AL, σ(αw) = (σαw)σw. We have σw = w if and only if σ belongs to the decomposition
subgroup Gw ∼= Gal(Lw/Fv) where v is the place of F under w.

The G-fixed elements are AG
L = AF , JG

L = JF .

LEMMA. For a separable extension L/F the map CF −→CL induced by JF −→ JL is injective.
For a finite Galois extension L/F the group CL is a G-module and CG

L =CF .



22. ADELES OF GLOBAL FIELDS 167

Proof. To check the first assertion, we can assume L/F is a finite Galois extension, then JF ∩L× ⊂
(JF ∩L×)G = JF ∩F×.

For the second assertion, we only need to show the surjectivity of JG
L = JF −→ CG

L . Let
α ∈ JL, σ ∈ G, and σ(αL×) = αL×. Then σα = αβσ for some βσ ∈ L×, and βστ = βσ β σ

τ for
all σ ,τ ∈G. Since automorphisms σ ∈G are linearly independent as L-operators, there is δ ∈ L×

such that γ−1 = ∑τ∈G βτδ τ ∈ L×. Then γ−σ = ∑τ β σ
τ δ στ = β−1

σ γ−1, so ασ−1 = βσ = γσ−1 for all
σ , hence αγ−1 ∈ JF and αL× = (αγ−1)L×. �

PROPOSITION. In a finite separable extension L/F only finitely many places v of F have at
least one ramification index e(w|v)> 1.

Proof. Let α ∈ OL such that L = F(α). Denote by K the largest ideal of OL which is contained
in the subset OF [α] of OL. Every maximal ideal Q of OL not dividing K satisfies Q+K = OL

and taking the nth power, it satisfies Qn + K = OL. Hence for every maximal ideal P of OF

such that POL = ∏Qei
i with Qi not dividing K, we have POL +K = OL and POL +OF [α] = OL.

Then OF [α]∩POL = (POL +OF [α])(OF [α]∩POL) ⊂ POF [α] and so OF [α]∩POL = POF [α].
Therefore,

OL/POL ∼= OF [α]/POF [α]∼= (OF/P)[X ]/( f )

where f is the monic irreducible polynomial of α over F . Then the factorisation f = ∏ fi
ei into

powers of irreducible polynomials fi over OF/P corresponds to the factorisation of POL = ∏Qei
i

into the product of maximal ideals Qi of OL and Qi = POL + fi(α)OL, the proof is entirely similar
to that to the proof of Theorem 3.5.9 in Chapter 1. The product ∏i ei = 1 if and only if f has no
multiple roots if and only if the discriminant of f is not in Q (and Q does not divide K). Thus,
there are only finitely many maximal ideals of OF which have at least one ramification index > 1
in L/F . �

COROLLARY. For a finite Galois extension L/F the norm group NL/FCL is an open subgroup
of CF .

Proof. By the previous Lemma almost all places v of F are unramified in L/F . The norm map
in finite unramified extensions sends the group of units surjectively on the group of units. For the
remaining finitely many places the local norm is continuous and open, see the proof of Theorem
21.2 in the case of finite places and the case of infinite places is obvious. Open neighbourhoods of
1 in JF contain the product of the group of local units for almost all places. Thus, we deduce that
NL/F : JL −→ JF is continuous and open. Hence for a finite Galois extension L/F the norm group
NL/FCL is an open subgroup of CF . �

22.7. For a non-zero element α ∈ OF and a maximal ideal P of OF the valuation vP(α) is
the power of P participating in the factorisation of the principal ideal αOF into the product of
maximal ideals. This immediately extends by multiplicativity to the discrete valuation vP of F and
its completion FvP .
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In the number field case we have a surjective continuous homomorphism

ρ : JF −→ IF , ρ((αv)) = ∏
P

PvP(αvP )

where IF is the group of fractional ideals of OF generated by maximal ideals P of OF and endowed
with the discrete topology. The kernel of ρ is JF(S∞) where S∞ is the set of all infinite places of F .
Adjusting archimedean components, we see that ρ induces a surjective homomorphism J1

F −→ IF .
The image ρ(F×) is the group PF of principal fractional ideals. Hence we have the induced
isomorphism JF/(F×JF(S∞)) ∼−→ IF/PF with the class group of OF . We also have a surjective
continuous homomorphism

ρ : C1
F −→ IF/PF .

In positive characteristic, let C be a smooth proper geometrically irreducible curve over a
finite field Fq with the function field F . We have a surjective continuous homomorphism

ρ : JF −→ Div(C ), ρ((αv)) = ∑v(αv)[v]

where [v] is the class of the closed point of C corresponding to v. The kernel of ρ is JF( /0). The
group Div(C ) is endowed with the discrete topology. The image ρ(F×) is the group of principal
divisors PDiv(C ). Hence we have an induced isomorphism JF/(F×JF( /0)) ∼−→ Div(C )/PDiv(C )

isomorphic to the Picard group Pic(C ) of C . It induces the surjective continuous homomorphism

ρ : J1
F/(F

×JF( /0))−→ Pic0(C ),

the latter is the degree zero subgroup of the Picard group of C .
Also, forgetting the components of ideles for valuations lying over v∞, we have, similar to the

number field case, a continuous homomorphism

ρ : JF −→ IF , ρ((αv)) = ∏
P

PvP(αv),

where P runs through maximal ideals of OF .

PROPOSITION. C1
F and C1

F(S) are compact. CF and CF(S) are locally compact.

Proof. Let’s show that there is a constant c > 0 such that for every adele α = (αv)v ∈ AF with
|α| > c there is an element a ∈ F× such that |a|v 6 |αv|v for all places v. By 22.3 AF/F is a
compact abelian group, let µ0 be its probability measure and let µ be the translation invariant
measure on AF whose quotient on AF/F is µ0. Let c−1 = µ({γ = (γv)v ∈AF : |γv|v 6 1 for all v})
and let |α|> c. Then the compact set L = {δ = (δv)v : |δv|v 6 |αv|v for all v} has volume > 1, so
there are two distinct elements λi of L which have the same image in AF/F , so their dif and only
iference λ = λ1−λ2 ∈ F and |λ |v 6 |αv|v for all v.

Now for the compact subset K = {(βv) : |βv|v6 |αv|v} of AF , where |α|> c, and any γ =(γv)∈
J1

F there is an a∈F× such that |a|v6 |γ−1
v αv|v for all v. Hence γa∈K∩J1

F . Thus, J1
F =(K∩J1

F)F
×,

and Lemma 22.5 implies J1
F/F× is compact.

Since C1
F(S) is a closed subgroup of C1

F , it is compact.
The last sentence of the Proposition follows from the description of the quotient CF/C1

F , using
the adelic module, in 22.5. �
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COROLLARY 1. In the number field case the class group IF/PF is finite. In the global function
field case the group Pic0(C ) is finite.

For sufficiently large finite sets S including S∞ we have JF = F×JF(S).

Proof. Since C1
F is compact, its ρ-image is compact. Therefore the discreteness of the class group

IF/PF and of Pic0(C ) implies their finiteness.
Since the class group and Pic0(C ) are finite, enlarging the set S∞ (or the empty set in the global

function field case) to a finite non-empty set S to include in it places corresponding to finitely many
maximal ideals that generate the class group or Pic0(C ), we have J1

F = F×J1
F(S). In characteristic

zero |JF |= |JF(S)|, hence we deduce JF = F×JF(S). In positive characteristic enlarge S to include
places at which components of an idele whose adelic module generates |JF | are not units, then
|JF(S)|= |JF | and hence JF = F×JF(S). �

COROLLARY 2. For a finite Galois extension the norm group NL/FCL is an open subgroup of
finite index in CF .

Proof. From Corollary 22.6 we know that NL/FCL is an open subgroup of CF . Hence NL/FC1
L is

an open subgroup of compact C1
F and so it is of finite index in C1

F . In the number field case, the
adelic module of the image with respect to NL/F of the subgroup of ideles where all components
except at one infinite place are 1 and at that infinite place the component runs through all elements
of the corresponding completion is R×>0. In the global function field case, the adelic module of the
image with respect to NL/F of the subgroup of ideles where all components except at one place are
1 and at that place the component runs through all elements of the corresponding completion is a
subgroup of finite index in |JF |. Hence NL/FCL is a subgroup of finite index in CF . �

REMARKS.
1. This gives a new proof of the finiteness of the class group, using the compactness of C1

F .
In turn, using the finiteness of the class group and of the zero part of the Picard group, one can
deduce the compactness property of C1

F .
2. The arguments in the first paragraph of the proof can be used for an adelic proof of

Minkowski’s bound theorem 3.6.6 of Ch.1.
3. An alternative independent and very different proof of the compactness of C1

F will be
obtained later, see Remark 2 of 23.6.

22.8. For a finite S with s > 0 elements and containing S∞ in the number field case we have
a homomorphism

LogS : JF(S)−→ Rs, (αv) 7→ (log |αv|v)

which sends J1
F(S) to the hyperplane Hs = {(x1, . . . ,xs) ∈Rs : x1 + · · ·+xs = 0} of Rs. The homo-

morphism LogS induces the homomorphism

logS : F×(S)−→ Hs.
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PROPOSITION. Let S be a finite non-empty set of places containing S∞ in the number field
case. The kernel of logS is µF , the image is a discrete subgroup of rank s−1 of Hs, i.e. a complete
lattice of Hs, s = |S|. Hence the group of units F×(S) is isomorphic to the direct sum of its torsion
part and a free group of rank s−1.

Proof. The kernel of LogS is UJF where UJF = ∏v S1
v and S1

v = {αv ∈ Fv : |αv|v = 1} for all v,
so UJF is a compact subgroup of JF(S). The kernel of logS is the intersection of the discrete set
F×(S) in JF with the compact subgroup UJF , hence it is a finite group, so the kernel consists of
all roots of unity in F . The intersection of logS(F

×(S)) with the product of s balls of radius 1 in
R is the image of the intersection of the discrete set F× with the compact set ∏v 6∈S S1

v×∏v∈S Bv of
JF where Bv = {αv ∈ Fv :−16 log |α|v 6 1}, so it is finite. Thus, logS(F

×(S)) is discrete in Hs.
We have |JF(S)/UJF | = |JF(S)| and log sends it isomorphically to R in characteristic zero

and to an infinite cyclic group ∼= Z in the positive characteristic case. The group JF(S)/UJF

is isomorphic via LogS to Rr ×Zs−r where r is the cardinality of S∞ in the number field case
and r = 0 in the global function field case. Thus, applying the absolute value to JF(S)/UJF

corresponds to a surjective additive homomorphism λ : Rr ×Zs−r −→ Y where Y = R in the
number field case and Y = Z in the global function field case. Hence there exist ai ∈ R in the
number field case and ai ∈ Z in the global function field case such that λ (x1, . . . ,xs) = ∑aixi.
The quotient J1

F(S)/(F
×(S)UJF) is compact and is isomorphic to the quotient of J1

F(S)/UJF by
F×(S)UJF/UJF . Hence the quotient ker(λ )/L is compact, where L = logS(F

×(S)). Extend λ

to the additive map Λ : Rs −→ Y by the formula Λ(x1, . . . ,xs) = ∑aixi. The group Hs ∼= ker(Λ)
contains a subgroup L′ generated by e j ∈ Rs, 2 6 j 6 s, the first component of e j is a j, the jth
component is −a1 and all other components are 0. Since {e j} is a basis of Hs, L′ is a full lattice in
Hs and the quotient Hs/L′ is compact. Moreover, L′ ⊂ ker(λ ). Therefore, Hs/ker(λ ) is compact.
Since ker(λ )/L is compact as well, the quotient Hs/L is compact. Since L is discrete in Hs∼=Rs−1,
we conclude L∼= Zs−1. �

22.9. Let A be an abelian group written additively and let f ,g : A−→ A be group homomor-
phisms such that f ◦ g = g ◦ f = 0. Denote by A f the kernel of f and by A f the image of f . The

Herbrand quotient Q f ,g(A) is
|A f : Ag|
|Ag : A f |

.

LEMMA. Q f ,g(A) = 1 for a finite group A. If B is a subgroup of A such that f (B),g(B) ⊂ B,
then Q f ,g(A) = Q f ,g(B)Q f ,g(A/B) when two of the factors are finite.

Proof. For the first property, consider finite groups A ⊃ Ag ⊃ A f ⊃ 0 ⊂ Ag ⊂ A f ⊂ A in which
the index for the first inclusion equals the index for the fourth inclusion, the index for the third
inclusion equals the index for the sixth inclusion. Hence the index for the second inclusion equals
the index for the fifth inclusion.

For the second property, denote C = A/B. We have an exact sequence of homomorphisms

B f /Bg −→ A f /Ag −→C f /Cg −→ Bg/B f −→ Ag/A f −→Cg/C f −→ B f /Bg
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in which the first, second, fourth, fifth maps are induced by B −→ A and A −→C. To define the
third map, take c ∈ C such that f (c) = 0, take any a ∈ A such that a+C = c, then f (a) ∈ Bg.
Similarly one defines the sixth map. The exactness is immediate and one deduces Q f ,g(A) =
Q f ,g(B)Q f ,g(A/B). �

We will use Q in the situation when a cyclic group G of order n with a generator σ acts on an
abelian group A, f = 1−σ and g=∑

n−1
i=0 σ i, so A f =AG, A f = IGA= {aσ−1 : a∈A}, Ag = ker TrG,

Ag = TrG(A).
We denote Q(G,A) = Q f ,g(A).

EXAMPLES.
1. If the action on an infinite cyclic group A∼= Z is trivial, then Q(G,A) = n.
2. If A =⊕σ∈GσB, then Q(G,A) = 1.
3. Let L/F be a cyclic extension of local fields with finite residue field, G = Gal(L/F) of

order n. Then

Q(G,L×) =
|F× : NL/FL×|
|kerNL/F : L×1−σ |

= n

by local class field theory and Hilbert 90 Theorem. We also have Q(G,UL) = 1 due to L×/UL ∼= Z
and Example 1.

THEOREM. Let L/F be a cyclic extension of global fields with Galois group G of prime order
n. Then Q(G,CL) = n.

Proof. For a finite place v of F and a place w of L, w|v, the preceding Examples imply Q(G,L×w ) =
|Lw : Fv| and Q(G,ULw) = 1.

In positive characteristic we have

Q(G,CL) = Q(G,JL/J1
L)Q(G,J1

L/L×JL( /0))Q(G,L×JL( /0)/L×),

and Q(G,JL/J1
L) = Q(G,Z) = n, Q(G,J1

L/(L
×JL( /0))) = 1 since J1

L/(L
×JL( /0)) is isomorphic to

finite Pic0(C ), see 22.7, Q(G,L×JL( /0)/L×) = Q(G,JL( /0))Q(G,L×( /0))−1 = Q(G,JL( /0)) since
L×( /0) is the multiplicative group of the finite field of constants of L. Using Q(G,JL( /0)) =

∏v Q(G,ULv) = 1, we conclude Q(G,CL) = n.

For number fields L/F choose a finite set S of places of L, which is invariant under the acton of
G and which contains all archimedean places and is sufficiently large so that JL = L×JL(S). Then
CL = JL/L× = (L×JL(S))/L× ∼= JL(S)/L×(S) and Q(G,CL) = Q(G,JL(S))Q(G,L×(S))−1. Denote
by S0 the set of places of F under the places in S. We get Q(G,JL(S)) =∏v∈S0 Q(G,∏σ∈G/Gv σL×w )
where Gv = Gal(Lw/Fv), w|v. Since the order of G is prime, either Gv = 1 or Gv = G. Using
Example 2 in the first case, we obtain Q(G,∏σ∈G/Gv σL×w ) = Q(Gv,L×w ) = nv where nv = |Gv|.
Hence Q(G,JL(S) = ∏v∈S0 nv. To complete the proof, it remains to show that Q(G,L×(S)) =
n−1

∏v∈S0 nv.
In order to achieve that, use the map logS : L×(S) −→ Rs. Let {ew : w ∈ S} be the standard

basis of V = Rs. Let the group G act on V by σew = eσw. Then logS(σa) = ∑w∈S log |σa|wew =

σ ∑w∈S log |a|σ−1weσ−1w = σ logS(a). Hence, logS(L
×(S)) together with e′ = ∑w∈S ew generate a
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G-invariant complete lattice M in V . Note that σe′ = e′ for every σ ∈ G. We have M/Ze′ ∼=
logS(L

×(S)), so, since the kernel of logS is finite,

Q(G,L×(S)) = Q(G, logS(L
×(S))) = Q(G,Z)−1Q(G,M) = n−1Q(G,M).

Denote by | | the sup-norm with respect to the coordinates of the basis ew of V . Since M
is a lattice, there is c > 0 such that for every x ∈ V there is m ∈ M such that |x−m| < c. For
every v ∈ S0 choose wv ∈ S such that wv|v. Let t = ncs+ 1. Then for each v ∈ S0 there is mv ∈
M such that for xv = tewv −mv we have |xv| < c. Due to the definition of the action of G on
V we also have |σxv| < c for every σ ∈ G. For w ∈ S, w|v define zw = ∑σ :σwv=w σmv. Then
τzw = ∑σ :σwv=w τσmv = ∑ρ:ρwv=τw ρmv = zτw for every τ ∈ G. Let’s show that zw are linearly
independent. We have

zw = ∑
σ :σwv=w

σmv = t ∑
σ :σwv=w

ew− yw = tnvew− yw, yw = ∑
σ :σwv=w

σxv,

and |yw|6 nvc. Write yw′ =∑w∈S dw
w′ew with real dw

w′ , then |dw
w′ |6 nv′c when w′|v′. Let ∑w∈S cwzw =

0 with real cw. From t ∑v∈S0 nv ∑w|v cwew = ∑w′∈S yw′cw′ = ∑w∈S ∑w′∈S cw′dw
w′ew we deduce tnvcw =

∑w′∈S dw
w′cw′ and nvncs|cw|< |tnvcw|= |∑v′∈S0 ∑w′|v′ dw

w′cw′ |6 c∑v′∈S0 nv′nn−1
v′ max{|cw′ | : w′|v′}6

cnsmax{|cw′ |}when w|v, so cw = 0 for all w. Thus, the vectors zw, w∈ S, are linearly independent.
Hence M′ = ∑Zzw is a sublattice of M of finite index, and it is a complete G-invariant lat-

tice of Rs and σzw = zσw. So M′ = ⊕v∈S0M′v where M′v = ⊕σ∈G/GvZσwv. Hence, Q(G,M) =

Q(G,M′) = ∏v∈S0 Q(G,⊕σ∈G/GvZσwv). Since the order of G is prime, either Gv = 1 or Gv = G.
Using Example 2 in the first case, we obtain Q(G,⊕σ∈G/GvZσwv) = Q(Gv,Z). Hence, Q(G,M) =

∏v∈S0 Q(Gv,Z) = ∏v∈S0 nv by Example 1, and the proof is completed. �

COROLLARY 1. |CF : NL/FCL| = |JF : F×NL/FJL| is divisible by |L : F | for cyclic extensions
of prime degree.

Proof. Q(G,CL) =
|CF : NL/FCL|
|kerNL/F : C1−σ

L |
= n. �

A place v of F is said to split completely (or totally decomposed) in L/F is Lw = Fv for every
place w|v of L. In other words, due to the formula |L : F | = ∑w|v e(w|v) f (w|v), there are exactly
|L : F | distinct places w of L over the place v and for each of them e(w|v) = f (w|v) = 1.

COROLLARY 2. Let L/F be a nontrivial finite Galois extension. Then there are infinitely
many places of F which do not split completely in L.

Proof. Take any cyclic subgroup of prime order of Gal(L/F) and consider its fixed field E, then
L/E is cyclic of prime order. If Lw = Fv for almost all places v of F and w|v then Lw = Eu for
almost all places u of E and w|u. Let α ∈ JE . Denote by S the set of places of E where Lw 6= Eu.
Using Remark 22.5 find an element a ∈ E× such that αa−1 is a local norm at every u ∈ S. Then
αa−1 ∈ NL/EJL, so CE/NL/ECL = 1, a contradiction. �

COROLLARY 3. Let F be a global field whose field of constants is Fq. Then for the adelic
module |JF |= qZ.
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Proof. Let qd be the greatest common divisor of the cardinalities of the residue fields of places of
F , and let F ′ = FFqd . Since for every place v the residue field of Fv contains Fqd , Fv = F ′w for w|v.
Hence F = F ′ by Corollary 2 and d = 1. �

23. Zeta Functions and Zeta Integrals

23.1. Zeta functions is one of the key objects of number theory.

DEFINITION. The zeta function of a scheme X of finite type over Spec(Z) is

ζX(s) = ∏
x∈X0

(1−|k(x)|−s)−1,

where x runs through closed points of X , k(x) is the finite residue field of x.

EXAMPLES.
1. When X = Spec(Z), this is the Euler–Riemann zeta function

ζSpec(Z)(s) = ζQ(s) = ∏
p
(1− p−s)−1 = ∑

n>1

1
ns

where p runs through all positive primes.

2. When X = Spec(OF), OF is the ring of integers of an algebraic number field, this is the
Dedekind zeta function

ζSpec(OF )(s) = ζF(s) = ∏
v
(1−|k(v)|−s)−1 = ∏

P
(1−N(P)−s)−1 = ∑

I
N(I)−s,

where v runs through all finite places of F , P runs through maximal ideals of OF , I runs through
non-zero-ideals of OF . The number N(P) is |k(v)| where P = Pv corresponds to v.

3. When X corresponds to a smooth proper irreducible curve C over a finite field Fq with
function field F , this is

ζC (s) = ζF(s) = ∏
x∈C0

(1−|k(x)|−s)−1 = ∏
v
(1−|k(v)|−s)−1

= ∏
w|v∞

(1−|k(w)|−s)−1
∏

P
(1−N(P)−s)−1 = ∏

w|v∞

(1−|k(w)|−s)−1
∑

I
N(I)−s,

where v runs through all places of F , P runs through maximal ideals of OF , I runs through non-
zero ideals of OF ; the first factor corresponds to the discrete valuations w of F over the discrete
valuation v∞ = −deg of Fp(t). Each Euler factor (1−|k(x)|−s)−1 absolutely and uniformly con-
verges for ℜe(s) > 0 and meromorphically extends to the complex plane with the only pole at
s = 0.
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The series ∑I N(I)−s can be written as a Dirichlet series ∑n>1 an/ns. If it converges at real s0

then it converges absolutely and uniformly on compact subsets for ℜe(s)> s0. Indeed, all partial
sums qr = qr(s0) = ∑

n=r
n=1 an/ns0 are bounded by some positive constant, and

n=r

∑
n=m

an/ns =
n=r−1

∑
n=m

qn
(
1/ns−s0−1/(n+1)s−s0

)
−qm−1/ms−s0 +qr/rs−s0 ,

1/ms−s0 − 1/rs−s0 = (s− s0)
∫ r

m dx/xs−s0+1. Thus, for |s− s0| bounded and ℜe(s) > s0 + ε with
positive ε the sum ∑

n=r
n=m an/ns tends uniformly to 0 when m,r→+∞.

If |∑n=r
n=1 an|6 r, then for the Dirichlet series ∑n>1 an/ns we have

|qr(s)−qm(s)|6
n=r−1

∑
n=m+1

ns
∫ n+1

n
dx/xs+1 +1/rs−1,

and ∑
n=r−1
n=m+1 n

∫ n+1
n dx/xs+1 6

∫ r
m+1 dx/xs. Thus, this Dirichlet series is a holomorphic function on

ℜe(s)> 1.
The Dirichlet series for ζQ(s) diverges at s = 1 and converges absolutely and uniformly

on compact subsets for ℜe(s) > 1 and there ζQ(s) = ∑n>1
1
ns = ∏(1− p−s)−1. In particular,

logζQ(s) = ∑m>1 ∑p(mpms)−1 for ℜe(s) > 1. We also deduce from the previous calculation that
for real s > 1

1/(s−1)6
∫

∞

1
1/xs 6 ζQ(s)6 1+1/(s−1).

Use the notation f ∼ g for two functions with singularity at s = 1 whose dif and only iference
does not have a singularity at s = 1. Hence

ζQ(s)∼ 1/(s−1).

Since ∑m>2 ∑p(mpms)−1 converges uniformly and absolutely for ℜe(s)> 1/2+ ε , we deduce

logζQ(s)∼∑
p

p−s.

For a number field F and a maximal ideal P of OF its index in OF is its norm N(P) = p f (P|pZ)

where pZ is the ideal of Z lying under P. Since there are at most n = |F : Q| maximal ideals over
pZ, for ℜe(s)> 1 we have

log∏
P
(1−N(P)−s)−1 = ∑

m>1
∑
P

m−1N(P)−ms 6 n ∑
m>1

∑
p

m−1 p−ms = n logζQ(s).

Therefore ζF(s) = ∏P(1−N(P)−s)−1 converges absolutely and uniformly on compact subsets for
ℜe(s)> 1 and there ζF(s) = ∑I N(I)−s. Now, and similarly to ζQ(s),

logζF(s)∼ ∑
N(P) is prime

N(P)−s

where P runs through maximal ideals whose residue field has prime cardinality.

Maximal ideals of Fq[t] are principal ideals generated by monic irreducible polynomials f
over Fq, so for ℜe(s)> 1 we have ∏P(1−N(P)−s)−1 = ∏ f (1−q−sdeg( f ))−1 = ∑g q−sdeg(g) where
g runs through all monic polynomials in Fq[t], their number of degree m is qm, so the latter sum
= ∑m>0 qmq−sm = (1−q−s+1)−1. Taking into account v∞, ζP1(Fq)(s) = (1−q−s)−1(1−q−s+1)−1
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converges absolutely and uniformly on compact subsets for ℜe(s)> 1 for ℜe(s)> 1 with the only
poles at s such that qs = 1 or qs−1 = 1. We also have

logζP1(Fq)(s)∼− log(1−q−s+1)∼− log(s−1).

An arbitrary global field of characteristic p is a finite separable extension of Fq(t), and simi-
larly to the discussion of the relation between the zeta function of an algebraic number field and
of Q, the zeta function of a smooth proper irreducible curve C over a finite field Fq converges
absolutely and uniformly on compact subsets for ℜe(s)> 1. Similarly to the number field case,

logζF(s)∼ ∑
|k(v)| is prime

|k(v)|−s

where v runs through discrete valuations of the function field of C whose residue field has a prime
number of elements.

23.2. Each time when |k(v)| shows up in a product/sum, this means that v runs through the
appropriate set of finite v.

Denote by jv : F×v −→ JF the homomorphism sending α ∈ F×v to the idele all of whose com-
ponents are 1 except the v-component which is equal α .

Now we define twists of zeta functions by characters, they are traditionally called L-functions.

DEFINITION. Let χ be a non-trivial character of JF of finite order.
For example, such characters come from characters of the ideal class group IF/PF using the

surjective homomorphism JF/F× −→ IF/PF .
The group χ−1(1) is a closed subgroup of JF of finite index, so it is open and it contains jv(Uv)

for almost all v. Let C be a finite set of finite places v of F . Define

LC(s,χ) = ∏
v6∈C

(1−χ(v)|k(v)|−s)−1

where

χ(v) =

0 if χ( jv(Uv)) 6= 1

χ( jv(πv)) if χ( jv(Uv)) = 1,

where in the second case χ(v) = χ( jv(πv)) where πv is any prime element of Fv, the value
χ( jv(πv)) does not depend on the choice of prime element.

Then LC(s,1) = ∏v6∈C(1− |k(v)|−s)−1 which, when multiplied with the finitely many Euler
factors for v ∈C, is ζF(s).

The product of finitely many factors (1− χ(v)|k(v)|−s)−1 does not affect the behaviour near
s = 1.

Except finitely many factors corresponding to places in positive characteristic over v∞, the
product ∏v 6∈C(1−χ(v)|k(v)|−s)−1 is the product ∏v 6∈C(1−χ(Pv)N(Pv)

−s)−1 where P runs through
maximal ideals of OF and χ(Pv) = χ(v). By the same reasons as for ζF(s), the product converges
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absolutely and uniformly on compact subsets of ℜe(s)> 1, and there we have for the main factor
LC(s,χ)∗, i.e. for non-zero ideals I of OF

LC(s,χ)∗ = ∑
I,(I,C)=1

χ(I)N(I)−s,

logLC(s,χ)∼ logLC(s,χ)∗ = ∑
m>1

∑
C

χ(P)/(mN(P)ms)∼ ∑
v6∈C,N(Pv) is prime

χ(Pv)N(Pv)
−s,

where I runs through ideals of OF coprime to C, Pv runs through maximal ideals of OF for finite
v 6∈C and not over v∞, χ(∏Pni

i ) = ∏ χ(Pi)
ni .

23.3. The additive and multiplicative group of local fields with finite residue field and of
adeles are abelian locally compact groups, so they have a nontrivial translation invariant measure.
Such a measure is defined up to multiplication by a positive constant.

This translation invariant measure µv on the additive group of a local field Fv with finite residue
field with the ring of integers Ov and maximal ideal Mv is easy to describe. Counting indices and
using the virtual index similarly to 22.4, we immediately get the measure of closed balls

µv(α +M n
v ) = µv(M

n
v ) = |Ov : M n

v |−1
µv(Ov),

thus one only needs to fix µv(Ov) ∈ R>0.

DEFINITION. For a finite v denote by dv the maximal integer such that ψ0
v sends the fractional ideal

M−dv
v to 1. In other words, in the notation of the proof of Proposition 22.3, TrFv/kv(M

−dv
v )⊂ Okv

and TrFv/kv(M
−dv−1
v ) 6⊂ Okv . The ideal M dv

v is called the absolute different of Fv. The numbers dv

are zero for almost all v since only finitely many places ramify in F/k.

DEFINITION. Choose normalised measures µv as the self-dual measures with respect to the char-
acter ψ0

v , i.e. we will have the property that the double Fourier transform of g(x) gives g(−x).
Namely, µv is the usual Lebesque measure on R, twice the usual Lebesque measure on the com-
plex plane, and for finite v the normalisation is µv(Ov) = |k(v)|−dv/2. Choose the translation
invariant measure µAF = µ = ∏v µv on AF , it is well defined since µv(Ov) = 1 for almost all v.

The normalised absolute values | |v defined in 22.5 are the module functions associated to µv,
i.e. for every α ∈ F×v we have |αv|v = µv(αvA)/µv(A) for any measurable subset A of Fv of non-
zero volume. For finite places this comparison follows immediately from the displayed formula
above. Hence |α|= µ(αA)/µ(A) for any measurable subset A of AF of non-zero volume.

DEFINITION. On the multiplicative group F×v define the translation invariant measure µ×v by
the formula µ×v = (1− |k(v)|−1)−1µv/| |v in the non-archimedean case and µ×v = µv/| |v in the
archimedean case. Then µv(O×v ) = 1 for almost all v. Choose the translation invariant measure
µJF = µ× = ∏v µ×v on A×F , it is well defined.
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23.4. We now define certain spaces of functions on which one has Fourier transforms.

DEFINITION. Define spaces of functions S(Fv) as locally constant functions on Fv with compact
support in the non-archimedean case and as as smooth functions on Fv such that the product with
any polynomial function tends to 0 when the absolute value of the argument tends to infinity.
Define S(AF) as the space spanned by functions ⊗vgv with gv ∈ S(Fv) such that gv|Ov = 1 for
almost all v.

Define the Fourier transforms for gv ∈ S(Fv) and g ∈ S(AF) as

Fv(gv)(αv) =
∫

Fv

gv(βv)ψ
0
v (αvβv)dµv(βv), F (g)(α) =

∫
AF

g(β )ψ0(αβ )dµ(β ).

The definitions and the computations in the next paragraph imply F (⊗vgv) = ⊗Fv(gv) ∈
S(AF) for ⊗vgv ∈ S(AF).

LEMMA. F ◦F (g)(α) = g(−α) for any g ∈ S(AF).

Proof. General harmonic analysis results show that there is a constant c such that F ◦F (g)(α) =

cg(−α) for all g ∈ S(AF). To show that c = 1, it is sufficient to check for some non-zero function.

DEFINITION. Choose
fv(α) = exp(−π|α|2v) when v is real,
fv(α) = exp(−2π|α|v) when v is complex,
fv = charOv when v is finite.

Then Fv( fv) = fv for infinite v and Fv( fv)(αv) = |δv|1/2
v fv(δvαv) where δv ∈ F×v is such that

|δv|v = |k(v)|−dv . These fv are eigenfunctions of Fv with eigenvalue 1 for all v except finitely
many finite v.

For f = ⊗ fv we have F ( f )(α) = |δ |1/2 f (δα) where δ ∈ JF has components δv at finite
places and 1 at infinite places (in the number field case). Thus,

|δ |= ∏
v
|k(v)|−dv .

If g ∈ S(AF) then for every β ∈ JF the function gβ : α 7→ g(αβ ) belongs to S(AF). We have

F (gβ )(α) =
∫

AF

g(βγ)ψ0(αγ)µAF (γ)

= |β |−1
∫

AF

f (γ ′)ψ0(γ ′β−1
α)µAF (γ

′) = |β |−1F (g)(β−1
α),

where γ ′ = γβ . Thus, F (gβ ) = |β |−1F (g)β−1 .

For β ∈ JF with infinite components 1 we now deduce

F fβ = |δ |1/2|β |−1 fδβ−1 .

Hence, F ◦F ( f )(α) = |δ |1/2|δ |1/2|δ |−1 f (α) = f (−α). �
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REMARK. In characteristic zero it is not dif and only ificult to show that |δ | = |dF |−1 where
dF is the discriminant of F . In positive characteristic 22.4 implies that the image of δ ∈ JF with
respect to ρ : JF −→ Div(C ) of 22.7 is a canonical divisor κ = ∑dv[v] of C and |δ | = q−degκ =

q2−2g where q is the cardinality of the constant subfield of F and g is the genus of the curve C .

23.5. The additive group F is a discrete locally compact group, its translation invariant mea-
sure is an atomic measure where each point have volume c > 0. Choose the measure µF which is
the counting measure, i.e. c = 1. As common in harmonic analysis, define the measure µAF/F on
AF/F such that µAF = µAF/F ⊗µF , i.e. for all f ∈ S(AF) the equality∫

AF

f µAF =
∫

AF/F

(∫
F

f (β +a)µF(a)
)

µAF/F(β )

holds where β = β +F .
Since the measure on F is atomic counting,∫

F
g(a)µF(a) = ∑

a∈F
g(a).

Recall that the orthogonal complement of F with respect to ψ0 is F . Hence the group of char-
acters of AF/F is isomorphic to F , see Remark 2 of 22.3. When applying inverse Fourier trans-
form, one needs to involve the dual measure on the group of characters. The following proposition
shows in particular that the measure µAF/F is dual to the counting measure µF .

PROPOSITION. The volume of AF/F with respect to µAF/F is 1, so µAF/F is dual to µF .
Let g ∈ S(AF) and β ∈ JF . Then (Gauß–Cauchy–Poisson summation formula)∫

F
g(a)µF(a) =

∫
F
F (g)(a)µF(a).

We also have (Riemann–Roch type formula)∫
F

g(βa)µF(a) = |β |−1
∫

F
F (g)(β−1a)µF(a).

Proof. For g ∈ S(AF) let ĝ(α) =
∫

F g(α +a)µF(a), this is a function on AF/F . Denote by FAF/F

the Fourier transform of functions on compact AF/F using the character induced by ψ0, since
ψ0(F) = 1. Then for b ∈ F

FAF/F(ĝ)(b) =
∫

AF/F
ĝ(β )ψ0(bβ )µAF/F(β ) =

∫
AF/F

∫
F

g(β +a)µF(a)ψ0(bβ )µAF/F(β )

=
∫

AF/F

∫
F

g(β +a)µF(a)ψ0(b(β +a))µAF/F(β ) =
∫

AF

g(γ)ψ0(γb)µAF (γ) = F (g)(b),

where γ = β +a.
Denote by m the volume of AF/F with respect to µAF/F . Applying the inverse Fourier trans-

form to the function FAF/F(ĝ) on F , we obtain

ĝ(β ) = m−1
∫

F
F (g)(a)ψ0(aβ )µF(a).

Thus,
∫

F g(a)µF(a) = ĝ(0) = m−1 ∫
F F (g)(a)µF(a). Since g ∈ S(AF), all the computations are

justified. Using Lemma 23.4, applying this formula to F (g), we deduce m = 1.
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Thus, we get the Gauß–Cauchy–Poisson formula. The second formula follows from it and
23.4. �

REMARK. The second formula of the Proposition implies another proof of the Riemann–
Roch formula in positive characteristic. Namely, for a divisor d of a smooth proper geometrically
irreducible curve C over a finite field Fq with function field F , let β ∈ JF be such that the map ρ ′

defined in 22.7 sends it to d. Then for the specific function f defined in 23.4, the last formula of the
previous Proposition tand the observation |F∩AF(d)|=

∫
F f (βa)µF(a) imply the Riemann–Roch

formula stated and proved differently in 22.4.
In the number field case the second formula of the Proposition can be viewed as a one-

dimensional predecessor of Arakelov geometry on arithmetic surfaces.

23.6. We will use the counting measure µF× on the discrete group F×, so∫
F

g µF = g(0)+
∫

F×
g µF× .

DEFINITION. Define the translation invariant measure µJF/F× such that µJF = µJF/F× ⊗ µF× .
Hence for all h = gχ with g ∈ S(AF), χ is a character of JF that sends F× to 1, the equality∫

JF

h µJF =
∫

JF/F×

(∫
F×

h(βa)µF×(a)
)

µJF/F×(β )

holds.
Recall that |JF |=R×>0 in the number field case and |JF |= qZ in the global function case when

the constant field of F is Fq (see Corollary 3 of 22.9). Choose a subgroup M of JF such that JF =

M× J1
F . Hence M ∼= |JF |. Endow M with the standard multiplicative measure µR/| | of positive

reals or with the counting discrete measure. Define the translation invariant measure µJ1
F

such that
µJF = µJ1

F
⊗µM. Define the translation invariant measure µJ1

F/F× such that µJ1
F
= µJ1

F/F×⊗µF× .

For a character χ of JF of finite order we have χ(M) = 1 since characters of finite order of
R×>0 and of Z are trivial. Thus χ(mγ) = χ(γ) for m ∈M, γ ∈ J1

F .

DEFINITION. For g ∈ S(AF), s ∈ C and a character χ of JF that vanishes on F× and is of finite
order, the zeta integral is

ζ (g,s,χ) =
∫

JF

g(α)|α|sχ(α)µJF (α).

There are two ways to compute it, thus providing the equality for the two results of computa-
tion.

The first computation. The first way is the use JF = ∏
′F×v and do local computations.

Let’s start with the case of χ = 1 and let g be f defined in 23.4. Then

ζ ( f ,s,1) = ζF( f ,s,1) = ∏
v

ζv( fv,s,1), ζv( fv,s,1) =
∫

F×v
fv(α)|α|sv µF×v (α).
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Calculations immediately show that

ζv( fv,s,1) =


|k(v)|−dv/2(1−|k(v)|−s)−1 if v is finite,

ΓR(s) = π−s/2Γ(s/2) if v is real,

ΓC(s) = (2π)−sΓ(s) if v is complex,

dv was defined in 23.3. Recall that Γ(s) is defined for ℜe(s) > 0 as
∫

∞

0 ys exp(y)dy/y, it has a
meromorphic continuation to the complex plane, has no zeros there and has simple poles at non-
positive integers.

Since ζF(s) absolutely and uniformly converges for ℜe(s)> 1, the zeta integral ζ ( f ,s,1) has
the same property. Note that the function ζF,∞(s)∏v |k(v)|−dv/2 is a meromorphic function on the
complex plane and it does not have zeros there.

Thus, for ℜe(s)> 1

ζ ( f ,s,1) = ζF(s)ζF,∞(s)∏
v
|k(v)|−dv/2,

where ζF,∞(s) = ΓR(s)r1ΓC(s)r2 in the number field case and ζF,∞(s) = 1 in positive characteristic.
Therefore, the zeta integral ζ ( f ,s,1) is a holomorphic function on ℜe(s)> 1.

In particular, in the classical case of F =Q, we have ζQ( f ,s,1) = ζQ(s)π−s/2Γ(s/2).
By 23.4 the local components of F ( f ) are equal to |δv|1/2

v fvδv
, so this is fv at all finite places

where dv = 0. We have ζv(F ( fv),s,1) = |k(v)|−dvs(1−|k(v)|−s)−1 at finite places and

ζ (F ( f ),s,1) = ζF(s)ζF,∞(s)∏
v
|k(v)|−dvs.

Now let χ be nontrivial. Let Vχ be the finite set of all finite places v where χ( jv(Uv)) 6= 1, jv is
defined in 23.2. Denote U0,Fv =UFv . For a finite v define the conductor cv = cv(χ) as the smallest
non-negative integer such that χ( jv(Ucv,Fv)) = 1. Thus, v ∈Vχ if and only if cv 6= 0. The definition
in 23.2 shows that χ(v) = 0 when v ∈Vχ . We also have LC(s,χ) = LC∪Vχ

(s,χ).
Note that ζv( fv,s,χ) = 0 when cv > 0, since the sum of the values of a non-trivial character

of a finite group Uv/Ucv,Fv on all of its elements is 0. We will modify fv at v ∈Vχ to get non-zero
local zeta integrals. As a side remark which we do not use, since for 0 < ℜe(s)< 1 one can easily
show that

ζv(F (g1),1− s,χ−1)ζv(g2,s,χ) = ζv(F (g2),1− s,χ−1)ζv(g1,s,χ)

for g1,g2 ∈ S(Fv), the quotient ζv(F (g),1− s,χ−1)/ζv(g,s,χ) when the denominator is non-zero
does not depend on the choice of g ∈ S(Fv).

If v is a real place, for the composite character χ ◦ jv of finite order of R× there is a uniquely
determined number a which is 0 or 1, such that this character sends α ∈ R× to (α/|α|)a; de-
fine ΓR(s,χ) = ΓR(s+ a). If v is complex, for the composite character χ ◦ jv of C× there is a
uniquely determined number n ∈ Z such that this character sends α ∈C× to (α/|α|)n, then define
ΓC(s,χ) = ΓC(s+ |n|/2).
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Now, let’s use, following Tate’s choice,

f χ =⊗v f χ
v , f χ

v (α) =



αa fv(α) if v is real,

α
n fv(α) if v is complex and n> 0,

α−n fv(α) if v is complex and n < 0,

fv(α) if finite v 6∈Vχ ,

ψ0
v (α)char

M dv−cv
v

(α) if finite v ∈Vχ .

Then f χ
v = f χ−1

v at finite places. One calculates

ζv( f χ
v ,s,χ) =



ΓR(s,χ) if v is real,

ΓC(s,χ) if v is complex,

|k(v)|−dv/2(1−χ(v)|k(v)|−s)−1 if finite v 6∈Vχ ,

|k(v)|(cv+dv)s×non-zero constant if finite v ∈Vχ .

Note that ζv( f χ
v ,s,χ) has no complex zeros.

We have

F ( f χ
v )(α) =



ia f χ
v (α) if v is real,

i|n| f χ−1

v (α) if v is complex,

|δv|1/2
v fv(δvα), if finite v 6∈Vχ ,

|k(v)|dv/2+cvcharUcv,Fv
if finite v ∈Vχ

Then

ζv(F ( f χ
v ),s,χ) =



iaΓR(s,χ) if v is real,

i|n|ΓC(s,χ) if v is complex,

χ(v)dv |k(v)|−dvs(1−χ(v)|k(v)|−s)−1 if finite v 6∈Vχ ,

non-zero constant if v ∈Vχ .

For a finite set of places C the function LC(s,χ) is defined in 23.2. We obtain that for ℜe(s)> 1

ζ ( f χ ,s,χ) = LC(s,χ)ζF,∞(s,χ) ∏
v∈C∪Vχ

ζv( f χ
v ,s,χ) ∏

v 6∈C∪Vχ

|k(v)|−dv/2,

ζ (F ( f χ),s,χ) = LC(s,χ)ibζF,∞(s,χ) ∏
v∈C∪Vχ

ζv(F ( f χ
v ),s,χ) ∏

v 6∈C∪Vχ

χ(v)dv |k(v)|−dvs,

where in the number field case ζF,∞(s,χ) = ΓR(s,χ)r1ΓC(s,χ)r2 , integer b depends on the num-
bers a, n for real and complex places, and ζF,∞(s,χ) = 1 in positive characteristic. The function
ζF,∞(s,χ)∏v∈C∪Vχ

ζv( f χ
v ,s,χ) is a holomorphic function on ℜe(s)> 0, therefore the zeta integral

ζ ( f ,s,χ) is a holomorphic function on ℜe(s)> 1.

The second computation. The second way to compute the zeta integral is to use the filtration
JF > J1

F > F× and the equality of sets F = F× ∪{0}. This is a global computation. It can be
viewed as an analog of the radial computation of the Gaussian integral. For m ∈M denote

ζm(g,s,χ) = |m|s
∫

J1
F

g(mγ)χ(γ)µJ1
F
(γ).



182 3. CLASS FIELD THEORY

Using the previous Proposition to pass from the third to the fourth line, we get

ζm(g,s,χ)+ |m|sg(0)
∫

C1
F

χ(γ)µC1
F
(γ)

= |m|s
∫

C1
F

χ(γ)
∫

F×
g(mγa)µF×(a)µC1

F
(γ)+ |m|sg(0)

∫
C1

F

χ(γ)µC1
F
(γ)

= |m|s
∫

C1
F

χ(γ)
∫

F
g(mγa)µF(a)µC1

F
(γ)

= |m|s−1
∫

C1
F

χ(γ)
∫

F
F (g)(m−1

γ
−1a)µF(a)µC1

F
(γ)

= |m|s−1
∫

C1
F

χ(γ)−1
∫

F
F (g)(m−1

γa)µF(a)µC1
F
(γ)

= ζm−1(F (g),1− s,χ−1)+ |m|1−sF (g)(0)
∫

C1
F

χ
−1(γ)µC1

F
(γ).

Thus,

ζm(g,s,χ)+|m|sg(0)
∫

C1
F

χ(γ)µC1
F
(γ)= ζm−1(F (g),1−s,χ−1)+|m|1−sF (g)(0)

∫
C1

F

χ
−1(γ)µC1

F
(γ).

Now represent the measure space M as M− ∪M+ where M−, M+ correspond to (0,1] and
[1,+∞) with their measures in the number field case and M−, M+ correspond to {qn : n < 0}∪{1}
and {qn : n> 0}∪{1}where qn is given volume 1 when n 6= 0 and {1} in both sets is given volume
1/2. We have

ζ (g,s,χ) =
∫

M
ζm(g,s,χ)µM(m) =

∫
M−

ζm(g,s,χ)µM−(m)+
∫

M+

ζm(g,s,χ)µM+(m).

Assume from now on that g = f χ . Then both integrals converge for ℜe(s) > 1. The second
integral converges even better when ℜe(s) gets smaller since m ∈M+, hence the second integral
extends to an entire function ξ (g,s,χ) on the complex plane. For the first integral, using the
previous computation for ζm(g,s,χ), we get∫

M−
ζm(g,s,χ)µM−(m) =

∫
M−

ζm−1(F (g),1− s,χ−1)µM−(m)+∆(g,s,χ)

=
∫

M+

ζm(F (g),1− s,χ−1)µM+(m)+∆(g,s,χ)

= ξ (F (g),1− s,χ−1)+∆(g,s,χ)

where

∆(g,s,χ) =
∫

M−

(
F (g)(0)|m|s−1

∫
C1

F

χ(γ)−1
µC1

F
(γ)−g(0)|m|s

∫
C1

F

χ(γ)µC1
F
(γ)

)
µM−(m).

If χ = 1 then
∫

C1
F

χ(γ)µC1
F
(γ) = µC1

F
(C1

F) and

ζ (g,s,1) = ξ (g,s,1)+ξ (F (g),1− s,1)−µC1
F
(C1

F)
(
g(0)/s+F (g)(0)/(1− s)

)
in characteristic zero, and

ζ (g,s,1) = ξ (g,s,1)+ξ (F (g),1− s,1)

−µC1
F
(C1

F)
(
g(0)/(1−q−s)+F (g)(0)/(1−q1−s)+(F (g)(0)−g(0))/2

)
in positive characteristic.
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Thus, ζ (g,s,1) extends to a meromorphic function on the complex plane. Taking g = f , so
f (0) and F ( f )(0) are non-zero, we also obtain that µC1

F
(C1

F) < ∞. Since every locally compact
abelian group of finite measure is compact, we deduce from the computation of the zeta integral
that C1

F is compact. We also have µC1
F
(C1

F)> 0 since otherwise µJ1
F
= 0, µJF = 0 and ζ ( f ,s,1) = 0

which contradicts the first computation of the zeta integral.
Therefore, the poles of ζ ( f ,s,1) are at s = 0 and s = 1 in characteristic zero and at qs = 1 and

q1−s = 1 in positive characteristic.

If χ(C1
F) 6= 1 then

∫
C1

F
χ(γ)−1µC1

F
(γ) is zero and

ζ (g,s,χ) = ξ (g,s,χ)+ξ (F (g),1− s,χ−1)

extends to an entire function on the complex plane.
When F ◦F (g)(α) = g(α), we get the functional equation for the zeta integral

ζ (g,s,χ) = ζ (F (g),1− s,χ−1).

THEOREM. The zeta integral ζ ( f ,s,1) extends to a meromorphic function on the complex
plane and its only poles are at s = 0 and s = 1 in characteristic zero and at qs = 1 and q1−s = 1
in positive characteristic. It satisfies the functional equation

ζ ( f ,s,1) = ζ (F ( f ),1− s,1).

For a character χ of JF such that χ(JF) 6= 1 = χ(F×) and χ is of finite order, the zeta integral
ζ ( f χ ,s,χ) extends to an entire function on the complex plane and satisfies the functional equation

ζ ( f χ ,s,χ) = ζ (F ( f χ),1− s,χ−1).

The zeta function ζF(s) extends to a meromorphic function on the complex plane, with the only
poles at s= 0 and s = 1 in characteristic zero and at qs = 1 and q1−s = 1 in positive characteristic.
Denote ζ̂F(s) = (π−s/2Γ(s/2))r1((2π)1−sΓ(s))r2ζF(s) in characteristic zero and ζ̂F(s) = ζF(s) in
positive characteristic. It satisfies the functional equation

ζ̂F(s) = |δ |−1/2+s
ζ̂F(1− s),

i.e.
ζ̂F(s) = |dF |1/2−s

ζ̂F(1− s) in characteristic zero,

ζF(s) = (q2g−2)1/2−s
ζF(1− s) in positive characteristic.

If χ 6= 1, for a finite set C of finite places the function LC(s,χ) extends to an entire function on
the complex plane and it satisfies the functional equation relating LC(s,χ) and LC(1− s,χ−1).

Proof. It only remains to use the above computations.
From the comparison of the entire function ζ ( f χ ,s,χ) and the function LC(s,χ) and the fact

that the function ζF,∞(s,χ)∏v∈C∪Vχ
ζv( f χ

v ,s,χ) has no complex zeroes, we obtain that LC(s,χ)
extends to an entire function on C. The functions equation for LC(s,χ) follows from the two
displayed lines in the last paragraph of the first computation. �
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COROLLARY. For a finite abelian extension L/F the group JF/(F×NL/FJL) is finite by Corol-
lary 2 of (22.7). Let χ be a non-trivial character of the finite group JF/(F×NL/FJL). Then for a
finite set C of finite places the function LC(s,χ) extends to an entire function on the complex plane
and in particular the order of its zero at s = 1 is non-negative.

REMARKS.
1. The proof the Theorem uses subsections 22.1–22.3, including the local compactness prop-

erty of the additive and multiplicative groups of completions of a global field and its adelic ring,
and self-duality of the additive groups of completions of a global field and its adelic ring in Propo-
sition 22.3. It does not use any other non-trivial results of sections 1–22.

2. The computation of the zeta integral in the proof of the Theorem proves compactness of C1
F

by proving µ(C1
F)< ∞. This proof is different from the proof in 22.7 and in Chapter 1. Following

the lines of how Proposition 22.8 was deduced from compactness of the idele classes of adelic
module 1 and discreteness of non-zero global elements in ideles.

3. There are classical analytic ways without involving zeta integrals to prove Corollary 2
and to prove the Theorem (Hecke’s proof of the functional equation of the L-functions of number
fields). In the proof included in this section, due to Iwasawa and Tate, the functional equation
is implied by the structure of the zeta integral, self-duality of adeles, the Fourier transform on
functions on adeles and the right mixture of the additive and multiplicative structures.

4. Generalisations of the zeta integral play key roles in the Langlands program and in higher
zeta integrals theory.

23.7. Now let’s look at an analytic proof of the second inequality by using L-functions.

THEOREM. The index of NL/FCL in CF for a global field F and a cyclic extension L/F of
prime degree does not exceed the degree of the extension. Hence, in view of Corollary 1 of (22.8),

|CF : NL/FCL|= |L : F |, kerNL/F =C1−σ

L .

Proof. Denote by C the set of all finite places v for which e(w|v)> 1 in L/F , hence e(w|v) = |L : F |
since the latter is a prime number. This set is finite due to Proposition 22.6. So finite v 6∈ C are
unramified in L/F .

Denote m = |JF : F×NL/FJL|, n = |L : F |.

By Theorem 23.6, logζF(s)∼− log(s−1). The function ζF(s) is the product of LC(s,1) and
the product of finitely many Euler factors (1−|k(v)|−s)−1 each of which is a holomorphic function
on ℜe(s)> 0, hence logLC(s,1)∼ logζF(s)∼− log(s−1).

For a non-trivial character χ of the finite abelian group JF/(F×NL/FJL) denote by n(χ) the
order of zero of LC(s,χ) at s = 1. Then logLC(s,χ) ∼ n(χ) log(s− 1). By Corollary of 23.6,
n(χ)> 0 for characters χ different from the trivial character.

For ℜe(s)> 1 we have

logLC(s,χ)∼ ∑
v 6∈C

χ(v)|k(v)|−s = ∑χ(v)|k(v)|−s ∼ ∑
α∈JF/(F×NL/F JL)

χ(α) ∑
v: jv(πv)∈αF×NL/F JL

|k(v)|−s
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where πv as in 23.2. Summing over all characters of the finite abelian group JF/(F×NL/FJL) ∼=
CF/NL/FCL we obtain

logζF(s)+ ∑
χ 6=1

logLC(s,χ)∼∑
χ

∑
α∈JF/(F×NL/F JL)

χ(α) ∑
v: jv(πv)∈αF×NL/F JL

|k(v)|−s.

The sum ∑α∈JF/(F×NL/F JL) χ(a) equals zero if a is different from the identity of the quotient group
and equals its order otherwise.

Denote by SL/F the set of finite places of OF which split completely in L/F , so there are n
places w of OL over v and k(w) = k(v). For every v ∈ SL/F we have jv(F×v )⊂ NL/FJL. Using the
notation & to indicate that the left-hand side is not smaller than the right-hand side plus a constant
when real s→ 1, we get(

1− ∑
χ 6=1

n(χ)
)

log
1

s−1
∼ m ∑

v: jv(πv)∈F×NL/F JL

|k(v)|−s & m ∑
v∈SL/F

|k(v)|−s =
m
n ∑

w:w|v,v∈SL/F

|k(w)|−s

&
m
n ∑

w:|k(w)| is prime
|k(w)|−s ∼ m

n ∑
w
|k(w)|−s ∼ m

n
log

1
s−1

.

Therefore, m6 n. Now, by Corollary 1 of 22.8, we deduce m = n, and in the displayed formulas,
n(χ) = 0 for all χ 6= 1, ∑v∈SL/F

|k(v)|−s ∼ 1
n log 1

s−1 . �

REMARKS.
1. The method of using the singularity at s = 1 of series ∑P∈B N(P)−s has a long tradition

starting from Dirichlet’s proof of the theorem about primes in arithmetic progressions.

2. A purely algebraic proof (by Chevalley) of the first statement of the Theorem can be ob-
tained using Kummer theory and in positive characteristic p for Galois extensions of degree p by
using Artin–Schreier theory, so without using L-functions. The proof above, essentially due to
Weber, but in adelic language, is a historical approach to class field theory via the study of the
density of primes in arithmetic progressions and splitting of maximal ideals using L-functions.

24. Global Class Field Theory

Infinitely divisible elements of a group have to go to the identity element of a profinite group
with respect to any homomorphism from the former to the latter.

DEFINITION. For the field of real numbers define the reciprocity map

ΨR = ΨC/R : R× −→ Gal(C/R)

as r 7→ τ(1−sign(r))/2 where τ ∈ Gal(C/R) is the complex conjugation. Of course, we can identify
Gal(C/R) ∼−→ Z/2Z with the group {±1}. For the field of complex numbers define the reciprocity
map ΨC : C× −→ Gal(C/C) = {1} as the map which sends everything to 1.

Even though we do not have profinite extensions of archimedean completions with Galois
groups isomorphic to Ẑ and hence frobenius elements in the sense of 20.1 and no analog of the
map ϒ of section 20, one checks immediately that for infinite places we have analogs of the
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commutative diagrams of Theorem 20.9. Indeed, the Galois groups involved are either trivial or
Gal(C/R). In particular, if E/L/F , E/M/F are finite extension of archimedean completions, then
ΨE/M(β )|L = ΨL/F(NM/F(β )) for β ∈M×.

24.1. For abelian extensions the decomposition group Gal(L/F)w of a place w of L over a
place v of F depends on v only, due to the equality Gal(L/F)w =σ−1 Gal(L/F)wσ =Gal(L/F)σw.
Keeping in mind 22.1, for abelian L/F we will denote Gal(L/F)w by Gal(L/F)v, Lw = Lv, iw by
iv : Gal(Lv/Fv)−→ Gal(L/F), iv(Gal(Lv/Fv)) = Gal(L/F)v.

DEFINITION. Let F be a global field. Using the local reciprocity maps for all completions of Fv,
define for a finite abelian extension L/F the homomorphism

ΦL/F : JF −→ Gal(L/F), ΦL/F(α) = ∏
v

iv ◦ΨLv/Fv(αv)

where v runs through all places of F , ΨLv/Fv : F×v −→ Gal(Lv/Fv) is the local reciprocity map.
The product is well defined, since for almost all v the element αv ∈UFv and the extension Lv/Fv is
unramified by Proposition 22.6.

PROPOSITION. Let M/F,E/L be finite separable extensions of global fields and L/F and
E/M be finite abelian extensions. Then the diagram

JM
ΦE/M−−−−→ Gal(E/M)

NM/F

y y
JF

ΦL/F−−−−→ Gal(L/F)

is commutative, where the right vertical map is the restriction of Galois automorphisms and the
left vertical map is the norm map NM/F .

Proof. For an idele (βw) of JM and w|v for a place v of F we know from Theorem 20.9, section
21 and the Definition preceding subsection 24.1 that ΨEw/Mw(βw)|Lv = ΨLv/Fv(NMw/Fv(βw)) where
w|v. Since NM/F((βw))v = ∏w|v NMw/Fv(βw) by 22.2, we get

ΦL/F(NM/F((βw))) = ∏
v

iv ◦ΨLv/Fv(NM/F(βw)v) = ∏
v

∏
w|v

iv ◦ΨLv/Fv(NMw/Fv(βw))

= ∏
v

∏
w|v

iv ◦ΨEw/Mw(βw)|Lv = ΦE/M((βw))|L.

�

DEFINITION. For an infinite abelian extension R/F define

ΦR/F : JF −→ Gal(R/F)

as the inverse limit of ΦL/F(α) for finite subextensions L/F of R/F , using the previous Proposition
for M = F .
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COROLLARY. The equality ΦR/F(α) = ∏v iv ◦ΨRv/Fv(αv) remains valid for infinite abelian
extensions R/F, where Rv is the compositum of completions of all finite subextensions E/F of R/F
with respect to (any of) extensions of v on E. The previous Proposition remains true for infinite
L/F and E/M.

Proof. The product ∏v iv ◦ΨRv/Fv(αv) converges to ΦR/F(α) in Gal(R/F). Indeed, for a finite
subextension E/F of R/F let σE = ∏v iv ◦ΨEv/Fv(αv). By the previous Proposition for any finite
subextension M/F of E/F , σE |M = ∏v iv ◦ΨMv/Fv(αv) = ΦM/F(α) = σM, so {σE}E converge to
ΦR/F(α) in the profinite topology of Gal(R/F). The second assertion of the Corollary follows
immediately. �

24.2. In characteristic zero, the maximal cyclotomic extension Qcycl is the composite of all
finite cyclotomic extensions Q(ζm) of Q, and

Gal(Qcycl/Q)∼= lim←− (Z/nZ)× ∼= Ẑ×.

We have Ẑ× = ∏pZ×p and from the description of the units of local number fields we know that
Z×p ∼= Z/(p−1)Z×Zp for odd prime p and Z×2 ∼= Z/2Z×Z2. Hence

Ẑ× ∼= T × Ẑ, T = Z/2Z×∏
p>2

Z/(p−1)Z.

Since Ẑ has no nontrivial torsion, the torsion subgroup of Gal(Qcycl/Q) coincides with the torsion
subgroup of T . The latter contains Z/2Z⊕⊕p>2Z/(p−1)Z whose closure in Ẑ× coincides with
T .

DEFINITION. For k =Q denote by k̃ the fixed field of T , it is a Ẑ-extension of k.
In positive characteristic, the field k = Fp(t) has the Ẑ-extension k̃ = Fsep

p (t).

LEMMA. Let l be a prime number and m a positive integer. For a finite extension K of Q let
K̆/K be the Zl-subextension of K̃/K. Then for every finite extension E of Qp containing K, the
image of Gal(EK̆/E) in Gal(K̆/K) is a nontrivial open subgroup of the latter and the intersection
E ∩ K̆ is of finite degree over K.

Proof. For a prime number l denote by Al the subextension of Q̃/Q with the Galois group Zl ,
so Q̃ = ∏Al . Put l′ = l if l is odd and l′ = 4 if l = 2. The field Al is linearly disjoint with
Q(ζl′) and their composite is the maximal l-cyclotomic extension Q(ζl∞) of Q. Since the finite
extension E(ζl′) of E does not include E(ζl∞), the extension EK̆/E is nontrivial. Hence the image
of Gal(EK̆/E) in Gal(K̆/K) is a subgroup of finite index. �

We get the surjective homomorphism

deg: Gk −→ Gal(k̃/k)−→ Ẑ.

For every finite separable extension F of k we get, similar to section 20, the surjective homo-
morphism

degF = f−1
F deg: GF −→ Gal(F̃/F)−→ Ẑ,
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where fF = |F ∩ k̃ : k|, F̃ = Fk̃. It is continuous, since the restriction of Galois automorphisms is
continuous.

We denote the element of Gal(F̃/F) that is sent by degF to 1 ∈ Ẑ as ϕF . This is the frobenius
element in abstract class field theory in the sense of 20.1, but we will not use this name in the
case of global fields in order not to confuse it with the Frobenius automorphisms of completions
of global fields.

THEOREM. For a global field F let

wF = degF ◦ΦF̃/F : JF −→ Ẑ.

Then wF(F×) = 1. The homomorphism wF induces the continuous homomorphism vF : CF −→ Ẑ.

Proof. Since ΦF̃/F(α) = Φk̃/k(NF/k(α)) by Corollary of Proposition 24.1, it is sufficient to prove
the statement for k =Q and k = Fp(t).

In characteristic zero, it suffices to show that ΦQ(ζ )/Q(a) = 1 for every root ζ and a ∈
Q×. If ζ1,ζ2 are roots of orders m1,m2 and (m1,m2) = 1, then ζ = ζ1ζ2 is of order m1m2 and

from Proposition 24.1 we deduce (ζ ΦQ(ζ )/Q(a)−1)m1 = (ζ
ΦQ(ζ2)/Q(a)−1
2 )m1 , so it is sufficient to show

ζ
ΦQ(ζ )/Q(a)−1 = 1 for every root ζ of order ln > 2, l a prime number.

When l is different from a prime p, the extension Qp(ζ )/Qp is unramified. Therefore we
obtain ΦQp(ζ )/Qp(a)(ζ ) = ζ pvp(a) by Remark 18.2. When p = l then by Corollary 21.2 we know

ΦQp(ζ )/Qp(a)(ζ ) = ζ u−1
where a = pvp(a)u with u ∈ Z×p . When v is infinite then R(ζ ) = C and

ΦR(ζ )/R(a)(ζ ) = ζ sign(a). Since u = sign(a)∏p6=l pvp(a), we deduce ΦQ(ζ )/Q(a) = 1.

In positive characteristic p, for a root ζ of order prime to p and a ∈ k×, kv(ζ )/kv is unramified
for all places v of k and Φkv(ζ )/kv(a)(ζ ) = ζ |k(v)|

v(a)
. Since 1 = |a−1| = ∏v |k(v)|v(a), we obtain

Φk(ζ )/k(a) = 1.
Thus, ΦF̃/F induces the homomorphism CF −→ Gal(F̃/F) and we have the homomorphism

vF : CF −→ Ẑ.
The map ΦF̃/F is continuous, since the preimage of Gal(F̃/L) for a finite subextension L/F

of F̃/F contains F× and the image of the norms of Lw/Fv for w|v and places v of F by 22.2, hence
it also contains NL/FJL. The group NL/FCL is an open subgroup in CF by Corollary 22.6. �

REMARK. In positive characteristic vF has a simple description. Denote by kF the finite
coefficient field of F . Note that the restriction of the local Frobenius automorphism of Fur

v /Fv on
F̃ = F⊗kF ksep

F is ϕ
|k(v):kF |
F and by local class field theory ΨFur

v /Fv(αv) = ϕ
v(αv)
Fv

. Hence ΦF̃/F(α) =

ϕ
∑v v(αv)|k(v):kF |
F = ϕ

− log|kF | |α|
F and vF(α) = − log|kF | |α|. In particular, ΦF̃/F(α) = 1 if and only if

α ∈ J1
F .

PROPOSITION. In characteristic zero vF(CF) = Ẑ. In positive characteristic vF(CF) is iso-
morphic to the group Z. For every finite separable extension L/F we have

vF(NL/FCL) = |L∩ F̃ : F |−1vL(CL).
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Proof. To prove the first assertion, note that for every finite subextension L/F of F̃/F the im-
age ΦL/F(JF) contains all the decomposition groups Gal(L/F)v = iv(Gal(Lv/Fv)) where v runs
through all places of F , since ΦLv/Fv(F

×
v ) = Gal(Lv/Fv). Denote by M the fixed field of ΦL/F(JF),

then Mv = Fv for all places v of F . By Corollary 2 of 22.9 we deduce M = F . Thus, ΦF̃/F(JF)|L =
Gal(L/F) for every finite subextension L/F of F̃/F . Therefore, the image ΦF̃/F(CF) is dense in

Gal(F̃/F).
In characteristic zero CF/C1

F
∼=R×>0 which is a divisible group, hence ΦF̃/F(CF) = ΦF̃/F(C

1
F).

Since C1
F is compact and ΦF̃/F is continuous, ΦF̃/F(C

1
F) is closed and so ΦF̃/F(CF) = Gal(F̃/F).

In positive characteristic, for every completed Fv the image ΨFv(F
×

v ) restricted on F̃ = FFsep
q

is an infinite cyclic subgroup of the infinite cyclic subgroup generated by ϕF , hence vF(CF)∼= Z.
Using Corollary of Proposition 24.1 we deduce

wF(NL/FCL) = degF ◦ΦF̃/F(NL/FJL) = |L∩ F̃ : F |−1 degL ◦ΦL̃/L(JL) = |L∩ F̃ : F |−1wL(CL).

�

24.3. The map degk : Gk −→ Ẑ for class field theory of section 20 is the surjective homo-
morphism degk : Gk −→ Gal(k̃/k)∼= Ẑ.

DEFINITION. Put A = lim−→CE where E runs through all finite separable extensions of k. This is a
Gk-module. Then AF =CF by Lemma 22.6.

The map v = vk : Ak −→ Z is defined in the Theorem and Proposition 24.2. The required for
abstract class field theory compatibility of v with the norm map and deg as in 20.3 is established
in Proposition 24.2.

Properties A1 and A2 of 20.7, i.e. for cyclic extensions L/F of prime degree the kernel of the
norm map NL/F : CL −→CF equals C1−σ

L , σ is a generator of Gal(L/F), and the index of the norm
group NL/FCL equals to the degree, hold true by Theorem 23.7.

Thus, section 20 implies

THEOREM. For a finite Galois extension L/F of global fields we have the homomorphism

ϒL/F : Gal(L/F)−→CF/NL/FCL,

its kernel is [Gal(L/F),Gal(L/F)] and it is surjective. All the properties of section 20 hold.
The inverse homomorphism is the surjective homomorphism

ΨL/F : CF −→ Gal(L/F)ab

with kernel is NL/FCL.
We also have the global reciprocity map

ΨF : CF −→ Gab
F

with all the properties in 20.8 and 20.9 satisfied. The map ΨF is continuous.
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Proof. Continuity of ΨF follows from Ψ
−1
F (Gal(L/F)) = NL/FCL for a finite abelian extension

L/F and the openness of the norm group in Corollary 22.6. �

COROLLARY. For every finite cyclic extension L/F of global fields with a generator σ prop-
erties A1 and A2 hold, i.e.

kerNL/F =C1−σ

L , CF/NL/FCL ∼= Gal(L/F).

Proof. The second assertion follows from the isomorphism property of ΨL/F . The first asser-
tion can be proved by induction on the degree of cyclic L/F . Let M/F be a subextension of
L/F of prime degree m. Proposition 20.6 for the abelian L/F implies that the homomorphism
j : AF/NL/FAL −→ AM/NL/MAL induced by AF −→ AM corresponds via the reciprocity maps to
the homomorphism Gal(L/F)−→Gal(L/M), σ 7→ σm. For cyclic L/F it is surjective, and hence
j is surjective. Therefore, AM ⊂ AFNL/MAL. Now, if α ∈ AL is in the kernel of NL/F then by the
induction assumption NL/Mα = β σ−1 for some β ∈ AM and σ ∈ Gal(L/F). Write β = γNL/Mδ

with γ ∈ AF and δ ∈ AL. Then NL/Mα = β σ−1 = NL/Mδ σ−1, so αδ 1−σ is in the kernel of NL/M,
and so α ∈C1−σ

L . �

COROLLARY 2. For a finite cyclic extension L/F an element a ∈ F× is in the norm group
NL/FL× if and only if its image in every completion F×v is in the image of the local norm maps
NLv/Fv .

Proof. If a is in the image of the local maps NLv/Fv for all v, then a = NL/Fβ for an idele β ∈ JL.
Hence NL/F(βL×) = 1 in CF . Therefore by Corollary 1 we obtain β = γ1−σ b for some γ ∈ JL and
b ∈ L×. Thus, a = NL/Fb. �

24.4. One can ask about compatibility of the local reciprocity maps and the global reci-
procity map.

THEOREM. For every finite abelian extension L/F and every place v of F we have the com-
mutative diagram

F×v
ΨLv/Fv−−−−→ Gal(Lv/Fv)

jv

y yiv

CF
ΨL/F−−−−−−→ Gal(L/F)

where jv send an element α ∈ F×v to the class of the idele with components 1 everywhere except
at v where its component is α .

Proof. Let F be a number field.
First consider infinite places where there are no maps ϒ. If F×v is infinitely divisible the

diagram commutes. If Lv = Fv then jv(F×v ) ∈ NL/FCL and the diagram commutes. If v is a real
place and α ∈ F×v is not infinitely divisible, then it is −1 modulo the subgroup R×>0 of infinitely
divisible elements; if Lv/Fv is nontrivial then Lv∼=C, hence |L : F | is even. Then ΨL/F( jv(−1))2 =
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1 and we only need to check that ΨL/F( jv(−1)) =−1. Consider the special case L = F(ζ4) where
ζ 2

4 = −1. If ΨL/F( jv(−1)) = 1 then jv(−1) ∈ NL/FCL, i.e. jv(−1) = NL/F(β )b for some β ∈ JL

and b∈ F×. Then (i) b∈NLv′/Fv′
L×v′ for v′ 6= v, and (ii)−b∈NLv/FvL

×
v . On the other hand, wF(b) =

1 by Theorem 24.2, so from (i) we deduce b ∈ NLv/FvL
×
v . But then from (ii) −1 ∈ NLv/FvL

×
v , a

contradiction. Thus, for the special case L = F(ζ4) we have ΨL/F( jvα) = iv ◦ΨLv/Fv(α). In the
general case of real v, define L′ = L(ζ4) and choose F ′ as the fixed field of the restriction of the
complex conjugation to L′. Then L′ is an extension of F ′ of degree 2, L′/F ′ is the special case as
above, L′ ⊃ L, F ′ ⊃ F , F ′v ∼= R and L′v ∼= C. Therefore, Fv = F ′v , Lv = L′v. For L′/F ′ we already
know that ΨL′/F ′( j′vα) = iv ◦ΨLv/Fv(α), where j′v : Fv = F ′v −→CF ′ . Due to formula for the norm
map on ideles in 22.2, jv(α) = NF ′/F( j′v(α)). Using the first Proposition of 20.5 we conclude
ΨL/F( jv(α)) = iv ◦ΨLv/Fv(α).

Now we deal with finite places v in characteristic zero. By Theorem 20.9 degF ◦ΨF̃/F =

vF . Since wF = degF ◦ΦF̃/F , in the special case of a finite subextension L/F of F̃/F we get
ΨL/F(α) = ∏v ΨLv/Fv(αv) and, in particular, the diagram is commutative. We will reduce the
general case to this special case, similar how in the study of ϒ one reduces the general case of
finite Galois extensions to the case of finite Galois extensions inside F̃/F .

We have the diagram

Gal(Lv/Fv)
ϒLv/Fv−−−−→ F×v /NLv/FvL

×
v

iv

y y j∗v

Gal(L/F)
ϒL/F−−−−→ CF/NL/FCL,

where j∗v is induced by jv, and the horizontal maps are isomorphisms. Its commutativity is equiv-
alent to the commutativity of the diagram in the statement of the Theorem.

Since elements of prime power order generate finite abelian groups, we can assume that the
order of σ is lm for a prime l and a positive integer m. We can also assume that σ generates
Gal(L/F) by passing to the fixed field of σ . We use the notation Q̆ for the Zl-extension of Q,
similar to Lemma 24.2. Put F̆ = FQ̆, F̆v = FvQ̆. The restriction map gives the homomorphism
GFv −→Gal(F̆v/Fv)−→Gal(F̆/F). By Lemma 24.2, nl = |Fv∩F̆ : F | is a positive integer. So there
is an isomorphism Gal(F̆v/Fv)∼= Gal(F̆/F̆ ∩Fv)∼= Zl and we have the surjective homomorphism

deg`Fv
: GFv −→ Gal(F̆v/Fv)∼= Zl

which is different from the degFv
in local class field theory.

For the local fields extension Lv/Fv and a σ ∈ Gal(Lv/Fv) we can use deg`Fv
as in Remark

20.2. Hence, there is an element φ of Frob`(Lv/Fv) = {τ ∈ Gal(L̆v/Fv) : deg`Fv
(τ) ∈ Z>0} such

that φ |Lv = σ . We have degF(φ |F̆) = nl deg`Fv
(φ) ∈ Z>0. Denote by K the fixed field of φ |L̆, by

20.2 it is of finite degree over F . Denote M = KL, by 20.2 it is of finite degree over K and L and
is inside K̆ = L̆. Denote by Mw the completion of M with respect to a place w of M over v of L,
then Mw ⊃ Lv. Denote by the same notation w the place of K under the place w of M. The fixed
field of φ is of finite degree over Fv, and contains K and Fv, therefore it contains Kw. We deduce
that the restriction map Gal(Mw/Kw) −→ Gal(Lv/Fv) sends φ |Mw to σ . The extension M/K is of
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the special type, so the preceding diagram is commutative for M/K, Mw/Kw. It remains to use the
following cube diagram all side diagrams except the bottom square are commutative. Hence the
bottom square is commutative for σ (note that K,M depend on σ ).

Gal(Mw/Kw) //

wwnnnnnnnnn

��

K×w /NMw/KwM×w

NKw/Fv

��

vvmmmmmmmmm

Gal(M/K) //

��

CK/NM/KCM

NK/F

��

Gal(Lv/Fv) //

wwnnnnnnnnn
F×v /NLv/FvL

×
v

vvmmmmmmmmm

Gal(L/F) // CF/NL/FCL

Finally, in positive characteristic F̃ = F ⊗Fq F
sep
q and for each completion Fv we have F̃v =

Fur
v = Fv⊗F F̃ . We argue similarly to the characteristic zero case argument, with the simplification

due to the fact that degv
Fv

is the usual degFv
in local class field theory of local fields of positive

characteristic with finite residue field. �

REMARK. In the last part of the proof for number fields it would be more satisfying to work
with local extensions FvF̃/Fv, however unlike Lemma 24.2 for Zl-extensions, the intersection
Q̃∩Qp is not of finite degree over Q. Indeed, for odd primes l different from p and a primitive lth
root ζl it is easy to check that the degree of the unramified extension Qp(ζl)/Qp is rl where rl is the
minimal positive integer such that prl ≡ 1 mod l. Hence the fixed field Rl of the decomposition
group Gal(Qp(ζl)/Qp) of p in Gal(Q(ζl)/Q) is of degree (l−1)/rl over Q. By the last sentence
in the proof of Theorem 23.7, there are infinitely many primes which split completely in Q(

√
p)/Q,

hence, by Theorem 3.5.9 in Chapter 1, there are infinitely many primes l such that p is a quadratic
residue modulo l, and hence (l−1)/rl > 2. So Q̃∩Qp contains disjoint nontrivial extensions Rl

of Q for infinitely many l.

COROLLARY 1. For every abelian extension L/F of global fields and α = (αv) ∈ JL

ΨL/F(α) = ∏
v

iv ◦ΨLv/Fv(αv).

For every principal idele a ∈ F× the reciprocity law holds

∏
v

iv ◦ΨLv/Fv(a) = 1.

Proof. The first formula for idele jv(b) and every place v is the content of the previous Theorem.
Hence it holds for the subgroup of ideles which have almost all of their components equal to 1.
This subgroup is a dense subgroup of ideles. Since the reciprocity map ΨL/F is continuous by
Theorem 24.3, we have the first statement of the Corollary. The second statement follows. �

COROLLARY 2. For every finite abelian extension L/F and every place v

jv(F×v )∩F×NL/FJL = jv(NLv/FvL
×
v ),
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and the places of L over the place v of F are in one-to-one correspondence with elements of the
finite group JF/(F×v NL/FJL).

Proof. The ⊃ inclusion follows from the description of the norm map in 22.2. Let jv(α) ∈
F×NL/FJL for α ∈ F×v , i.e. jv(α) = aNL/F(β ) for some a ∈ F× and β ∈ JL. This implies
ΨLv′/Fv′

(a)= 1 for all places v′ 6= v, hence by Corollary 1, ΨLv/Fv(a)= 1, and therefore ΨLv/Fv(α)=

1, so α ∈ NLv/FvL
×
v .

The places of L over v correspond the cosets of Gal(L/F)v = jv(Gal(Lv/Fv)) in Gal(L/F),
and since ΨL/F and ΨLv/Fv are isomorphisms, we deduce the last statement. �

To state the next Corollary we need to make several definitions and observations.
The Hilbert symbol ( , )n,Fv : F×v ×F×v −→ µn for local fields Fv with finite residue field con-

taining a primitive nth root of unity was defined and studied in 21.4. Similarly we can define it for
archimedean completions Fv using the same formula (α,β )n,Fv = γ−1ΨFv(α)(γ) where γn = β .
Then (α,β )n,C = 1 for all non-zero complex α,β since C× is infinitely divisible; (α,β )2,R = 1 if
α > 0 or β > 0 and =−1 otherwise.

For a finite v such that µn ⊂ Fv, α ∈ F×v and v(n) = v(α) = 0 the nth power residue symbol(
α

v

)
n : O×v −→ µn is defined as(

α

v

)
n,Fv

:= α
(|k(v)|−1)/n mod Mv.

So
(

α

v

)
n,Fv

= 1 if and only if α ∈ k(v)×n, which explains the name.

For a non-zero fractional ideal I of F with factorisation I = ∏Pni
vi

with non-zero integer ni, let
an integer n > 1 be such that µn ⊂ F , vi(n) = 0 for all i and let a ∈ F× be such that vi(a) = 0 for
all i. Define the nth power residue symbol(

a
I

)
n

:= ∏

(
a
vi

)ni

n,Fvi

.

If the fractional ideal I = bOF , b ∈ F×, satisfies the restrictions above, then(
a
b

)
n

:=
(

a
bOF

)
n
.

When F = Q and n = 2, for coprime positive odd integers a,b the symbol
(a

b

)
2 is the Legendre

quadratic symbol.

COROLLARY 3. (Reciprocity Law for nth power residue symbols). Denote by S′ the set of
archimedean places of F in characteristic zero and the set of places over−deg in positive charac-
teristic. Let a,b∈ F×. Assume that for every finite place v of F if one of v(a),v(b),v(n) is non-zero
then the other two are 0. Then(

a
b

)
n

(
b
a

)−1

n
= ∏

v(n)> 0 or v ∈ S′
(a,b)n,Fv .
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Proof. Corollary 2 implies that for a,b ∈ F×, µn ⊂ F , and γn = b

∏
v
(a,b)n,Fv = γ

−1(
∏

v
ΨFv(a)

)
(γ) = γ

−1
ΨF(a)(γ) = 1.

For finite v such that v(n) = v(a) = 0 we know from the proof of the second Proposition 21.4

that (b,a)n,Fv =

(
a
v

)v(b)

n,Fv

and this is 1 if also v(b) = 0. So

(
a
b

)
n

(
b
a

)−1

n
= ∏

v(b)6=0

(
a
v

)v(b)

n,Fv

∏
v(a)6=0

(
b
v

)−v(a)

n,Fv

= ∏
v(ab)6=0

(
a
v

)v(b)

n,Fv

(
b
v

)−v(a)

n,Fv

= ∏
v(ab)6=0

(b,a)n,Fv = ∏
v(n)=0

(b,a)n,Fv ,

where v 6∈ S′. Applying the first sentence of the proof, the proof is completed. �

Thus, explicit formulas for the nth Hilbert symbol give the answer to Hilbert’s Problem 9
about explicit description of

(a
b

)
n

(b
a

)−1
n .

An easy computation show that (a,b)2,Q2 = (−1)(a−1)(b−1)/4 for a,b∈Z×2 . The partial case of
Corollary 3 for F =Q, n = 2 gives a proof of Gauß’ quadratic reciprocity law for coprime positive
odd integers a,b. It is the only proof which explains why this law holds. The auxiliary formula for(2

b

)
2 also follows immediately.

24.5. EXISTENCE THEOREM. The reciprocity map ΨF is continuous. its kernel coincides
with the intersection of all open subgroups of finite index in CF . It is surjective in characteristic
zero. In positive characteristic its image is everywhere dense, and it sends C1

F isomorphically onto
Gal(Fab/F̃).

The correspondence between open subgroups of finite index in CF and the norm subgroups
of finite abelian extensions L/F: N ↔ NL/FCL, N = Ψ

−1
F (Gal(Fab/L)), is an order reversing

bijection between the lattice of open subgroups of finite index in CF (with respect to the intersection
N1∩N2 and the product N1N2) and the lattice of finite abelian extensions of F (with respect to the
compositum L1L2 and intersection L1∩L2).

Proof. Continuity of ΨF is in Theorem 24.3.
By Theorem 20.9 the image of ΨF is dense in Gal(Fab/F). In characteristic zero CF =M×C1

F

where M∼=R×>0 is an infinite divisible group. Hence ΨF(CF) = ΨF(C1
F). Since C1

F is compact and
ΨF is continuous, ΨF(CF) is closed, so ΨF is surjective. In positive characteristic, due to Remark
24.2 the image ΨF(C1

F) is in Gal(Fab/F̃), it is dense and closed hence ΨF(C1
F) = Gal(Fab/F̃),

and the cokernel of the reciprocity map is isomorphic to Ẑ/Z.
To verify that an open subgroup N of finite index in CF coincides with the norm subgroup

NL/FCL of some finite abelian extension L/F , it suffices to verify that N contains the norm
subgroup NM/FCM of some finite separable extension M/F . Indeed, in this case N contains
NE/FCE , where E/F is a finite Galois extension, E ⊃ M. Then by Proposition 20.8 we deduce
that N = NM/FCM, where M is the fixed field of ΨE/F(N) and M/F is abelian.

Denote by n the index of N in CF (in fact, it suffices to consider the case of n a power of
prime number, but the argument there is the same as below). Assume first that n is not divisible
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by characteristic of F . The preimage of N in JF is open of index n subgroup of JF , so it contains
the product of F× and the subgroup NS = ∏v6∈S Uv×∏v∈S F×n

v for some finite subset S containing
all infinite places in characteristic zero.

Denote E = F(ζn) for a primitive nth root ζn. Enlarge S so that it contains all ramified places
in E/F (their number is finite by Proposition 22.6) and all places dividing n. Denote by S′ the
set of all places of E over places in S. Further enlarge finite S so that the set S′ of all places of E
over places in S has the property JE = E×JE(S′) (see Corollary 1 of 22.7). Consider the Kummer
extension M of E obtained by extracting all nth roots from all elements of E×(S′). By Proposition
22.8 the group E×(S′) is isomorphic to the product of a free abelian group of rank s−1, s = |S′|,
and the finite group of roots in E. Since µn⊂E, we obtain |E×(S′) : E×(S′)n|= ns and by Kummer
theory the extension M/E has degree ns. Each place w 6∈ S′ is unramified in M/E, so the group Uw

of units of the ring of integers of Ew is in the norm group NMw/EwM×w . For w ∈ S′ the nth powers
E×n

w are in NMw/EwM×w since Gal(Mw/Ew)
n = 1. Hence by Corollary 2 of 24.4 we deduce that

E×NM/EJM contains the product of E× and NS′ = ∏w6∈S′Uw×∏w∈S′ E×n
w .

Note that NS′ ∩E× = E×(S′)n. To show the nontrivial inclusion, for an element a ∈ NS′ ∩E×

consider the cyclic Kummer extension K = E( n
√

a). Then Kw = Ew for all w ∈ S′ and Kw/Ew is
unramified for all w 6∈ S′. Hence every idele in JE(S′) is in E×NK/EJK by Corollary 2 of 24.4.
Since E×JE(S′) = JE , we deduce CE = NK/ECK and therefore K = E and a ∈ E×n. Therefore,
NS′ ∩E× ⊂ E×n∩ JE(S′)⊂ E×(S′)n.

We have JE/(E×NS′) ∼= E×JE(S′)/(E×NS′) and its order is the quotient of the order r of the
group JE(S′)/NS′ by ns = the order of (JE(S′)∩E×)/(NS′ ∩E×) = E×(S′)/E×(S′)n. We also have
JE(S′)/NS′

∼= ∏w∈S′ E×w /E×n
w and due to the description in 18.3 in the non-archimedean case and

the fact that M has no real places if n > 2, we obtain |E×w : E×n
w | = n2|n|−1

w for all places w of E.
Since |n|w = 1 for w 6∈ S′, we obtain r = n2s

∏w |n|−1
w = n2s. Thus, the order of JE/(E×NS′) is

ns = |M : E| and hence using Theorem 24.3 we derive E×NS′ = E×NM/EJM. Therefore, F×NS ⊃
F×NM/FJM. Thus, N ⊃ NM/FCM, as desired.

To handle the case when n is divisible by char(F) = p, it is sufficient to show by induction on
m> 1 that any open subgroup N of index pm in CF contains a norm group, and then, similarly to
the proof of local Existence Theorem 21.2, one only needs to treat the case m = 1 where one can
use Remark 1 below, working with the adelic version of the Artin–Schreier pairing of 21.5.

Everything else follows from Proposition 20.8. �

REMARKS.
1. Let F be a finite separable extension of Fp(t). Using the local Artin–Schreier pairings from

21.5, define a pairing

( , ] : JF ×F −→ Fp, (α,b] = ∑
v
(αv,b]v, (αv,b]v = Trk(v)/Fp resv(bdtα/α)

where resv is resπv for any prime element πv of Fv as in 21.5, dtα = dt dπvα/dπvt. Since only
finitely many places ramify in F/Fp(t) by Proposition 22.6, the element t is a local parameter of
Fv for almost all places v of F , and hence ( , ]v is the local Artin–Schreier pairing for almost all v.
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If (JF ,b] = 0 then b ∈℘(Fv) for almost all v by 21.5, hence the extension F(℘−1(b))/F splits
completely for almost all v, hence F(℘−1(b)) = F by Corollary 2 of 22.9 and thus b ∈℘(F).
If (α,F ] = 0 then dω(Fα−1dtα) = 0 where ω = dt and dω is defined in 22.4, hence by 22.4
α−1dtα = cdt for some c ∈ F . Let Dert be the operator of taking the derivative with respect to
t and Mβ be the operator of multiplication by β . The equality for α and c can be rewritten as
Dert +Mc = Mα−1 ◦Dert ◦Mα . Hence (Dert +Mc)

m = Mα−1 ◦Derm
t ◦Mα . Since Der p

t = 0, there
is a maximal m < p for which l = (Dert +Mc)

m(1) 6= 0. Then (Dert +Mc)l = 0, c = l Dert(l−1)

and Dert(αl) = 0. So each v-component of αl is in F p
v and so αl ∈ Jp

F , α ∈ Jp
FF×.

Thus, we obtain the perfect continuous pairing CF/Cp
F ×F/℘(F) −→ Fp which induces, by

Artin–Schreier theory, the continuous isomorphism CF/Cp
F
∼−→Gal(Fp/F) where Fp is the maximal

abelian extension of F of exponent p. This implies that every open subgroup N of index p in CF

is the norm group of the Artin–Schreier extension L = F(℘−1(b)) of F where bFp +℘(F) is the
complement of N with respect to the perfect pairing.

2. Similarly to Remark 1 and alternatively to the preceding proof, when µn ⊂ F , one can use
the local Hilbert symbols to define the pairing

CF/Cn
F ×F×/F×n −→ µn

check its non-degenerate property and an adelic analog of Remark 1 of 21.5, to prove that every
open subgroup N of index n in CF is the norm group of the Kummer extension L = F( n

√
b) of F

and N is the complement of b with respect to the pairing.

The following Corollary is not used in this class field theory course, in contrast to the brief
introduction to class field theory in sect. 5 of Chapter 1.

COROLLARY. (Kronecker–Weber Theorem) The maximal abelian extension Qab of Q coin-
cides with the maximal cyclotomic extension Qcycl.

Proof. By the previous Theorem it is sufficient to show that every open subgroup N of CQ contains
the norm group of a cyclotomic extension of Q. Since N is open, for some positive integer m the
group N contains JQ(m)Q×/Q×, where m = ∏ pnp and

JQ(m) = R×>0×∏
p|m

Unp,Qp×∏
p-m

UQp .

Without loss of generality we can assume that n2 > 1.
Let’s show that JQ(m)Q×/Q× = NQ(ζm)/QCQ(ζm). We can use the computations of the norm

groups of cyclotomic extensions of p-adic fields in Proposition 21.2 where it was shown that
the norm group of Qp(ζpnp )/Qp is 〈p〉 ×Unp,Qp if pnp > 2. The group Unp,Qp is contained in
the norm group of any unramified extension of Qp, so the norm group of Qp(ζm)/Qp contains
Unp,Qp . By Corollary 2 of 24.4, NQ(ζm)/QCQ(ζm) contains JQ(m)Q×/Q×. We have JQ/Q× ∼=
R×>0×∏pUQp and JQ(m)Q×/Q× ∼=R×>0×∏p-mUQp×∏p|mUnp,Qp , so the quotient is isomorphic
to ∏p|mUQp/Unp,Qp

∼= (Z/mZ)×. Hence, the index of JQ(m)Q×/Q× in CQ equals the degree of
Q(ζm)/Q. Theorem 24.3 now implies NQ(ζm)/QCQ(ζm) = JQ(m)Q×/Q×. �
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24.6. REMARKS.
1. There is a certain analogy between Neukirch’s approach to class field theory and the zeta

integral theory of Iwasawa–Tate: in both cases one extends the original math subjects area (finite
Galois extensions/zeta functions) to something much larger where one has richer arithmetic and
topological structures (infinite Galois groups/ideles and adeles) and uses that richer structure to
produce, in an almost obvious way, the construction of axiomatic class field theory or the proof of
the functional equation and meromorphic continuation of the zeta function.

2. One can show that the equality Fab = Fcycl holds for F = Q only. Historically, without
using abstract class field theory, one develops special class field theory for Q, called cyclotomic
class field theory (Kronecker and others), using explicit cyclotomic methods. Special in the sense
of using more information about Galois action on torsion element than the abstract general class
field theory of section 20 does. Another special class field theories are known for quadratic imag-
inary fields with complex multiplication (Kronecker–Weber–Hilbert), and more generally, for to-
tally imaginary extensions of totally real fields (Shimura). General functorial class field theory
such as in this lectures is very much different from those special theories, both conceptually and
technically.

3. Other approaches to class field theory of global fields include

general class field theories:
– by Artin, building on Takagi’s work, using L-functions and Chebotarev density theorem,
– by Hasse, using central division algebras and the computation of the Brauer group of

the field to define a canonical pairing of the group of characters of the field with, in the modern
language, the idele class group and use its properties to derive the reciprocity map

– by Chevalley using ideles and not using L-functions,
– by Weil, Hochschild, Nakayama, Artin, Tate, the Galois cohomology approach.

In positive characteristic only:
– by Kawada and Satake using Artin–Schreier–Witt pairing,
– by Rosenlicht, Lang, ‘geometric’ class field theory for varieties over finite fields,
– by Hayes, Drinfeld, special class field theory using Drinfeld modules of rank 1.

4. Higher adelic theory studies adelic structures associated to two-dimensional arithmetic
schemes. There are two main adelic structures there: one of more geometric (1-cocyles) nature
(its use leads to an adelic proof of the Riemann–Roch theorem for surfaces and a two-dimensional
version of the homomorphism ρ of 22.7 and one of more arithmetic (0-cycles) nature crucial for
a two-dimensional version of the Iwasawa–Tate theory and applications to meromorphic continu-
ation and functional equation of the zeta function of the scheme and properties of its poles.

5. Three main generalisations of class field theory are higher class field theory, Langlands
program, anabelian geometry. They will be discussed in the sequel lecture courses. For more
information about these generalisations, as well as existing class field theories, see this paper.

https://ivanfesenko.org/wp-content/uploads/232.pdf




CHAPTER 4

Exercises

1. Algebraic Numbers Exercises

1.1. Let A be an integral domain and K is its fraction field. Prove that A is a Dedekind ring
if and only if every non-zero proper ideal of A can be written as a product of prime ideals if and
only if every non-zero ideal I of A satisfies A = {a ∈ K : aI ⊂ A}I.

1.2.
(a) Let F be an algebraic number field of degree d. Let m be a positive integer. For ai ∈ F×

and independent variables X1, . . . ,Xm put

f (X1, . . . ,Xm) = NF/Q(a1X1 + · · ·+amXm) = ∏
σ∈HomQ(F,C)

(σ(a1)X1 + · · ·+σ(am)Xm).

Show that f (X1, . . . ,Xm) is a homogeneous polynomial of degree d (i.e. every monomial expres-
sion is a monomial of total degree d) with coefficients from Q.

(b) Show that f defined in (a) is irreducible over Q.
(c) Let g(X1, . . . ,Xr) be a homogeneous polynomial of degree d with rational coefficients.

Assume that g is irreducible over Q. Assume also that there exists an algebraic number field L
such that g splits into the product of linear polynomials over L. Show that then there is an algebraic
number field F , a positive integer m and elements ai ∈ F×, 1 6 i 6 m, such that g = NF/Q( f ) as
in (a).

1.3. Let b > 1 be an odd number and let m > 1 be an integer. Suppose that d = bm− 1 is
square-free.

(a) Show that d ≡ 2 mod 4.
(b) Show that (b)m = (1+d) factorizes into the product of ideals (1+

√
−d) and (1−

√
−d)

of Z[
√
−d].

(c) Show that if a proper non-zero ideal I of Z[
√
−d] divides both (1+

√
−d) and (1−

√
−d),

then 2 is contained in I and therefore 22 = 4 is contained in the product (1+
√
−d)(1−

√
−d) =

(1+d). Deduce from (a) that this is impossible; thus, the ideals (1+
√
−d) and (1−

√
−d) don’t

have common factors.
(d) Prove that there are ideals I,J of Z[

√
−d] such that (1+

√
−d) = Im and (1−

√
−d) = Jm

and IJ = (b).

199
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(e) Let n be the minimal positive integer such that In is a principal ideal, say (e+ c
√
−d) of

Z[
√
−d] for some e,c ∈ Z. Show that c 6= 0.
(f) Show that bn = e2+dc2 > d = bm−1 and deduce that n>m. Conclude that the ideal class

group of Q(
√
−d) has an element (namely, I) of order m.

Example: b = 3, m = 3, d = 26, the class number of Q(
√

26) is > 3.

1.4. Let d be a positive square free integer, d 6= 5. Suppose that 4n +1 = da2 with integer a.
Prove that 2n +a

√
d is a fundamental unit of Q(

√
d) following the steps below.

(a) Show that d is odd.
(b) Assume that 2n +a

√
d isn’t a fundamental unit, and arrive at a contradiction (in d) and e)

below). Since 2n + a
√

d is a mth power of a fundamental unit with m > 1, we can take a prime
divisor p of m and deduce that

2n +a
√

d = ((b+ c
√

d)/2)p

for some integers b,c. Show that then

2n−a
√

d = ((b− c
√

d)/2)p

and hence −1 = 4n−da2 = (b2−dc2)p/4p. Deduce that p must be odd and b2−dc2 =−4.
(c) Show that

2p+n =
(p−1)/2

∑
i=0

(
p
2i

)
c2idibp−2i = be, e =

(p−1)/2

∑
i=0

(
p
2i

)
c2idibp−1−2i.

(d) If b is odd, then since it is a divisor of 2p+n, it must be equal to 1. Show that then
b2−dc2 = 1−dc2 =−4 and d = 5, a contradiction.

(e) If b = 2b1 is even, then c = 2c1 must be even and then b2
1−d1c2

1 =−1. Show that

2n = b1e1, e1 =
(p−1)/2

∑
i=0

(
p
2i

)
c2i

1 dibp−1−2i
1 =

(p−1)/2

∑
i=0

(
p
2i

)
(1+b2

1)
ibp−1−2i

1 = p+b1 f

with integer f . Deduce that e1 ≡ p mod b1, so e1 is odd, > 1 and divides 2n, a contradiction.

1.5. Let P be a maximal ideal of the ring of integers of an algebraic number field F , such
that Pn = aOF is a principal ideal. Prove that the ideal POL, generated by P in OL, a a principal
ideal of the ring OL of integers of the field L = K( n

√
a).

1.6. Prove that each algebraic number field F has a finite extension L such that every ideal
of the ring of integers of F generates a principal ideal of OL.

2. Local Fields Exercises

2.1. A subring O of a field F is said to be a valuation ring if α ∈ O or α−1 ∈ O for every
nonzero element α ∈ F . Show that the ring of integers of a valuation of F is a valuation ring.
Conversely, for a valuation ring O in F one can order the group F×/O× as follows: αO× 6 βO×
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if and only if βα−1 ∈ O . Show that the map F → (F×/O×)∪+∞, which sends 0 to +∞, is a
valuation with the ring of integers O .

2.2. Show that every isomorphism of Qp onto a subfield of Qp is continuous.

2.3. Let F be a field with a discrete valuation v and ring of integers O and maximal ideal
M . Show that the following conditions are equivalent:

(a) F is a Henselian discrete valuation field.
(b) If f (X) = Xn +αn−1Xn−1 + · · ·+α0 is an irreducible polynomial over F and α0 ∈O , then

αi ∈ O for 06 i6 n−1.
(c) If f (X)=Xn+αn−1Xn−1+· · ·+α0 is an irreducible polynomial over F , n> 1,αn−2, . . . ,α0 ∈

O , then αn−1 ∈ O .
(d) If f (X)=Xn+αn−1Xn−1+· · ·+α0 is an irreducible polynomial over F , n> 1,αn−2, . . . ,α0 ∈

M ,αn−1 ∈ O , then αn−1 ∈M .

2.4. Let F be a Henselian field with respect to nontrivial valuations v,v′ : F → Q. Assume
the topologies induced by v and v′ are not equivalent.

(a) Show that if v is discrete, then v′ is not.
(b) Deduce that F is separably closed.

2.5. Let π be a prime element of a discrete valuation field F , and let Fsep be of infinite degree
over F .

(a) Let Fi be finite unramified extensions of F , Fi ⊂ Fj, Fi 6= Fj for i < j. Put

αn =
n

∑
i=1

θiπ
i,

where θi ∈OFi+1 , /∈OFi . Show that the sequence {αn}n>0 is a Cauchy sequence in Fur, but limαn /∈
Fur.

(b) Show that Fsep is not complete, but the completion of Fsep is separably closed.

2.6. Prove that for every finite extension of complete discrete valuation fields L/F there is a
finite extension K′ of a maximal complete discrete valuation subfield K of F with perfect residue
field such that e(K′L|K′F) = 1 following the steps below

(a) Let M1/F , M2/F be finite Galois subextensions of L/F . Show that the set of upper rami-
fication jumps of M1/F is a subset of upper ramification jumps of M2/F . Denote by B(L/F) the
union of all upper ramification jumps of finite Galois subextensions of L/F .

(b) For a real x define L(x) = ∪MM(x) where M runs over all finite Galois extensions of F in
L and M(x) is the fixed field of Gal(M/F)(x) inside M. Show that if x1 < x2, then L(x1) 6= L(x2)

if and only if [x1,x2)∩B(L/F) 6= /0.
(c) Show that if x is the limit of a monotone increasing sequence xn, then L(x) = ∪L(xn).
(d) Show that if x is the limit of a monotone decreasing sequence xn and x 6∈ B(L/F), then

L(x) = ∩L(xn).
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(e) Let x be the limit of a strictly monotone decreasing sequence xn. Define L[x] =∪M(∩nM(xn))

where M runs over all finite Galois extensions of F in L. Show that L[x] = ∩nL(xn). Show that
L[x] = L(x) is and only if x 6∈ B(L/F).

(f) A subfield E of L, F ⊂ E is called a ramification subfield if for every finite Galois subex-
tension M/F of L/F there is y such that E ∩M = M(y). Show that every ramifications subfield of
L over F coincides either with some L(x) or with some L[x].

(g) Deduce that the set of all upper ramification jumps of L/F is the union of B(L/F) and the
limits of strictly monotone decreasing sequences of elements of B(L/F).

2.7. Let L/F be a cyclic totally ramified extension of complete discrete valuation fields,
|L : F |= pn. Let char(F) = 0, char(F) = p, and let F be perfect.

(a) Show that L/F has n ramification numbers x1 < x2 < · · ·< xn.
(b) Show that if xi are divisible by p, then xi = x1 +(i−1)e for 16 i6 n, where e = e(F).
(c) For the rest of this Exercise assume that a primitive pth root of unity ζ belongs to F . Let

NL/F(α) = ζ and vL(α−1) = i. Show that if x1 < e/(p−1), then x1 6 i 6 hL/F(e/(p−1)) and
if x1 > e/(p−1), then i = e/(p−1).

(d) Assume that M/F is cyclic of degree pn−1 and L = M( p
√

α) with α ∈M∗. Let α−1σ(α) =

β p for a generator σ of Gal(L/F). Show that NM/F(β ) is a primitive pth root of unity.
(e) Show that if x1 > e/(p−1), then xi = x1 +(i−1)e for 16 i6 n.
(f) Let n > 2. Show that if xn−1 > pn−2e/(p− 1), then xn = xn−1 + pn−1e, and if xn−1 6

pn−2e/(p−1), then

(1+ p(p−1))xn−1 6 xn 6 pne/(p−1)− (p−1)xn−1.

2.8. Let Ln be a cyclic totally ramified extension of F of degree pn, p = char(F) and Ln ⊂
Ln+1. Let L = ∪Ln. Show that i(Ln+1|Ln) > i(Ln|Ln−1)+ 1. Deduce that L/F is arithmetically
profinite.

2.9. Let F be a complete field with respect to some nontrivial valuation v : F× → Q. Let
the perfect residue field F be of characteristic p > 0. Put F(n) = F , and let R×(F) = lim←− F(n)×

with respect to the homomorphism of the raising to the pth power F(n+1) ↑p−→ F(n). Put R(F) =

R×(F)∪{0}.
(a) Show that if A = (α(n)),B = (β (n)) ∈ R(F), then the sequence (α(n+m)+β (n+m))pm

con-
verges as m→ +∞. Put γ(n) = limm→+∞(α

(n+m)+β (n+m))pm
and define A+B = Γ = (γ(n)); put

δ (n) = α(n)β (n) and define A ·B = ∆ = (δ (n)). Show that R(F) is a perfect field of characteristic
p.

(b) For A = (α(n)) put v(A) = v(α(0)). Show that v possesses the properties of a valuation.
Let θ ∈ F be the multiplicative representative of a ∈ F and Θ = (θ (n)) with θ (n) = θ 1/pn

. Show
that R : a→ Θ is an isomorphism of F onto a subfield in R(F) which is isomorphic to the residue
field of R(F).

(c) Show that if v : F×→ Z is discrete, then R(F) can be identified with F .
(d) Show that if F is of characteristic p, then the homomorphism A = (α(n)) 7→ α(0) is an

isomorphism of R(F) with the maximal perfect subfield in F .



2. LOCAL FIELDS EXERCISES 203

2.10. Let L be an infinite arithmetically profinite extension of a local field F with residue
field of characteristic p. Assume that the Hasse–Herbrand function hL/F grows relatively fast, i.e.,
there exists a positive c such that hL/F(x0)/h′L/F(x0)> c for all x0 where the derivative is defined.
Let C be the completion of the separable closure of F .

(a) For (αE) ∈ N(L/F) show that there exists β (n) = limE α
|E:L1|/pn

E ∈ C where L1/F is the
maximal tamely ramified subextension of L/F and E runs over all finite extensions of L1 in L.
Show that (β (n)) belongs to R(C).

(b) Show that the homomorphism N(L|F) −→ R(C) is a continuous (with respect to the dis-
crete valuation topology on N(L|F) and the topology associated with the valuation v defined in the
previous exercise) field homomorphism.

(c) Let E be a separable extension of L. Let S be the completion of the (p-)radical closure of
N(E,L|F), i.e., the completion (with respect to the extension of the valuation) of the subfield of
N(E,L|F)alg generated by pn√

α for all n and α ∈N(E,L|F). Show that there is a field isomorphism
from S to R(Ê) where Ê is the completion of E. Deduce that if F is of positive characteristic, then
Ê is a perfect field.

2.11. Let F be a discrete valuation field of characteristic 0 with residue field of characteristic
p, and let C be the completion of the separable closure of F . Define the map

g : W (OR(C))→ OC

by the formula g(A0,A1, . . .) = ∑n>0 pnα
(n)
n , where Am = (α

(n)
m ) ∈ OR(C).

(a) Show that g is a surjective homomorphism. Show that its kernel is a principal ideal in
W (OR(C)), generated by some element (A0,A1, . . .) for which, in particular, v(α(0)

0 ) = v(p).
(b) Let WF(R) = W (OR(C))⊗W (F) F . Show that g can be uniquely extended to a surjective

homomorphism of K-algebras g : WF(R)→C.
(c) Show that the kernel I of this homomorphism is a principal ideal.
(d) Let B+ be the completion of WF(R) with respect to I-adic topology and let B be its quotient

field. Show that B does not depend on the choice of F and is a complete discrete valuation field
with residue field C. The ring B plays a role in the theory of p-adic representations and p-adic
periods.

2.12. For n> 0, find a local number field F such that µpn ⊂ F,µpn+1 6⊂ F , and the extension
F(µpn+1)/F is unramified.

2.13. Let L be a finite Galois extension of a local number field F with Galois group G. Show
that L/F is tamely ramified if and only if the ring of integers OL is a free OF [G]-module of rank 1.

2.14. Let F be a finite extension of Qp, n = |F : Qp|. Let L/F be a finite Galois extension,
G = Gal(L/F). A field L is said to possess a normal basis over F , if the group U1,L of principal
units decomposes, as a multiplicative Zp[G]-module, into the direct product of a finite group and
a free Zp[G]-module of rank n.

(a) Show that if G is of order relatively prime to p, then L possesses a normal basis over F .
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(b) Suppose the F has no roots of order p. Show that L possesses a normal basis over F if and
only if L/F is tamely ramified.

3. Class Field Theory Exercises

3.1. Let L/F be a finite Galois totally ramified extension and E be the maximal abelian
extension of F in L. Let α ∈ F× and α = NLur/Furβ for some β ∈ Lur. Let β ϕ−1 = ∏

m
i=1 γ

σ̃i−1
i with

γi ∈ Lur∗ and σ̃i ∈ Gal(Lur/Fur). Show that

ΨL/F(α)|E = σ̃
−1|E

where σ̃ = σ̃
v(γ1)
1 . . . σ̃

v(γm)
m ∈ Gal(Lur/Fur) and v is the discrete valuation of Lur. Deduce that, in

particular, if β ϕ−1 = π σ̃−1 for a prime element π of Lur, then ΨL/F(α)|E = σ̃−1|E .

3.2. Let p be an odd prime, and let ζp be a primitive pth root of unity.
(a) Show that X p−Y p = ∏

p−1
i=0

(
ζ i

pX−ζ−i
p Y
)

and ∏
p−1
i=1

(
ζ i

p−ζ−i
p
)
= p.

(b) Put c(ζp) = ∏

p−1
2

i=1

(
ζ i

p−ζ−i
p
)
. Show that c(ζp)

2 = (−1)
p−1

2 p.
(c) For a positive integer b put

(
b
p

)
=


0 if p|b,

1 if p -b,b≡ a2 mod p for

−1, otherwise.

Show that (
b
p

)
=

c(ζ b
p )

c(ζp)
.

(d) Let q be an odd prime, q 6= p, and let ζq be a primitive qth root of unity. Show that

(
q
p

)
=

p−1
2

∏
i=1

q−1
2

∏
j=1

(
ζ

i
pζ

j
q −ζ

−i
p ζ

− j
q
)
.

(e) Deduce on of the proofs of the quadratic reciprocity law: if p,q are odd primes, p 6= q,
then (

p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 ,

(
2
p

)
= (−1)

p2−1
8 .

3.3. Let F be a local field with finite residue field, and let L be a totally ramified infinite
arithmetically profinite extension of F . Let N = N(L|F). Show that there is a homomorphism
Ψ : N×→ Gal(Lab/L) induced by the reciprocity maps ΨE : E× 7→ Gal(Eab/E) for finite subex-
tensions E/F in L/F . Show that χ ◦Ψ = ΨN , where the homomorphism χ : Gal(Lab/L) →
Gal(Nab/N) is defined similarly to the homomorphism τ 7→ T in 17.6 of Ch.2.
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3.4. Let ζp be a primitive pth root of unity, p > 2. Let F =Qp(ζp), π = ζp−1, Tr = TrF/Qp .
(a) Show that

1
p

Tr(ζpπ
i)≡

{
1 mod p if i = p−1

0 mod p if i 6= p−1, i> 1,

(b) Let α ≡ 1 mod π2, β ≡ 1 mod π . If γ = ∑aiπ
i, ai ∈ Zp, then let

d logγ := γ
−1 (

∑ iaiπ
i−1) ,

this depends on the choice of expansion of β in a series in π . Let

logβ := (β −1)− (β −1)2

2
+

(β −1)3

3
− . . . .

Prove the Artin–Hasse formula

(α,β )p = ζ
Tr(ζp logα ·d logβ )/p
p

(c) Using a suitable expansion in a series in π , show that d logζp can be made equal to −ζ−1
p ,

d logπ to π−1. Prove the Artin–Hasse formulas

(ζp,β )p = ζ
Tr(logβ )/p
p for β ≡ 1 mod π,

(β ,π)p = ζ
Tr(ζpπ

−1 logβ )/p
p for β ≡ 1 mod π.

3.5. Let F =Qp(ζpn), where ζpn is a pnth primitive root of unity, p> 2. Denote Tr=TrF/Qp .
Let πn = ζpn−1; then πn is prime in F . Prove the Artin–Hasse formulas

(ζpn ,β )pn = ζ
Tr(logβ )/pn

pn , (β ,πn)pn = ζ
Tr(ζpnπ

−1
n logβ )/pn

pn for β ≡ 1 mod πn.

3.6. Let A be a commutative topological ring with unity containing a subfield F . Show that
A is isomorphic to the ring of adeles AF of a global field F if and only if A is locally compact but
not compact and not discrete, F is discrete in A, A/F is compact, and the intersection of all closed
maximal ideals of A is 0.

3.7. Let g(x1, . . . ,xn) be a quadratic form in several variables with coefficients in a number
field F . Prove Hasse theorem: that the equation g(x1, . . . ,xn) = 0 has a solution a1, . . . ,an ∈ F
different from 0 if and only if it has a solution different from 0 in each completion of F .

3.8. For a number field F let L be the maximal abelian extension of F which is unramified at
all finite places and in which real places stay real. Prove that the Galois group of L/F is isomorphic
to the ideal class group of F . The field L is called the Hilbert class field for F .

3.9. Let DF be the kernel of the reciprocity map for a global field F .
(a) Prove that DF is an infinitely divisible group.
(b) Prove that DF = {1} in positive characteristic.
(c) Prove that in characteristic zero DF is topologically and algebraically isomorphic to (R/Z)r2×

((∏Zp×R)/Z)r where r = r1 +2r2 are the standard numbers associated to the number field F .
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3.10. Let F be an algebraic number field.
(a) For a cycle z = ∑nv[v], a linear combination with non-negative integer coefficients, almost

all equal to 0, of classes of finite places v, define the z-ray idele class group Cz
F := Jz

FF×/F× where
Jz

F := ∏Unv,Fv×∏U ′Fv
. Here the first product is over finite places, U0,Fv =UFv , the second product

is over infinite places and U ′Fv
is the subgroup of all infinitely divisible elements of F×v . Show that

the set of open subgroups of finite index of CF coincides with the set of closed subgroups of CF

which contain one of ray idele class groups. The finite abelian extension Fz/F corresponding to
Cz

F by the existence theorem is called the ray class field for the cycle z.
(b) Denote by Iz

F the group of fractional ideals of F generated by maximal ideals whose places
have coefficient 0 in z = ∑nv[v]. Denote by Pz

F principal ideals generated by elements a such that
a− 1 ∈ ∏Pnv

v and the image of a in each real completion Fv is in U ′Fv
. Using Remark 5.1 Ch.3

show that ρ : JF −→ IF of 5.3 Ch.3 induces an isomorphism

CF/Cz
F
∼= Iz

F/Pz
F .

3.11. Let F be an algebraic number field.
(a) For a subset M of finite places of F its Dirichlet’s density is

d(M) := lim
s→1+0

∑v∈M |k(v)|−s

∑v |k(v)|−s

if exists. Deduce from 6.6 Ch.3 that

d(M) := lim
s→1+0

∑v∈M |k(v)|−s

log 1
s−1

.

(b) For a cycle z let χ be a nontrivial character of Iz
F/Pz

F . By the previous exercise it corre-
sponds to a non-trivial character of finite order of JF/Jz

F . Let C be the support of z, i.e. those v for
which nv 6= 0. Show that LC(χ,1) 6= 1.

(c) Let R be a subgroup of Iz
F , R ⊃ Pz

F . Let Ma+R for a ∈ Iz
F be the set of finite places

whose maximal ideals belong to the coset a+R. Using the proof of Theorem 6.7 Ch.3 show
that d(Ma+R) = |Iz

F : R|−1.
(d) Deduce Dirichlet’s theorem on prime numbers in arithmetic progressions: for a positive

integer m and an integer a prime to m there are infinitely many prime numbers congruent to a
modulo m.

3.12. Let F be an algebraic number field and L/F be a finite Galois extension.
(a) Let L/F be a cyclic extension. For a σ ∈Gal(L/F) let Mσ be the set of all finite places v of

F which are unramified in L/F and such that σ is the Frobenius automorphism of Gal(Lv/Fv) ⊂
Gal(L/F). Using the proof of Theorem 6.7 Ch.3 show that d(Mσ ) = |L : F |−1 .

(b) Let L/F be a finite Galois extension. For a σ ∈ Gal(L/F) let Mσ be the set of all finite
places v of F which are unramified in L/F and such that the conjugate class Σ of σ in Gal(L/F)

is the conjugate class of the Frobenius automorphism of Gal(Lw/Fv)⊂ Gal(L/F) for a place w of
L over v. Deduce Chebotarev’s theorem: |L : F |d(Mσ ) is the number of elements of Σ.
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