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1d theory

In dimension one, for global fields, the computation of the adelic zeta integral

ζ̂Z(s) =
∫
A×Q

f (x)|x |sdµA×Q
(x)

uses self-duality of the additive group of adeles AQ ' X (AQ),

characters X (AQ/Q)'Q,

Fourier transform F on spaces of functions on adeles,

∫
Q
g =

∫
Q

F (g),

radial double integral
∫
A×Q

=
∫
A×Q/Q×

∫
Q×

,

from × to +
∫
Q×

+
∫

∂Q×
=
∫
Q
.
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1d theory

The discreteness of global elements Q in adeles AQ and compactness of AQ/Q are
associated properties.

In the general case of global fields k the compactness of A1
k/k

× (A1
k is the preimage of 1

with respect to | |) follows from the computation of the zeta integral and it immediately
implies the finiteness of the class number.

This computation of the zeta function also implies the Dirichlet’s unit theorem.

The Galois group at the background is Gal(kab/k).

Even though it uses objects of class field theory (ideles and idele class group), class field
theory is not used in this (1d) Iwasawa–Tate theory.
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1d GLn theory

For the L-function of an irreducible GLn-representation of the absolute Galois group Gk

of a global field k, its conjectural automorphicity, due to the converse theorems, is closely
related to the following conjectural property:

its completed L-function and its twists by appropriate characters, after multiplying with
appropriate Gamma-factors, are equal to a zeta integral for an appropriate
Mn(Ak)-Bruhat–Schwartz function f :

∫
GLn(Ak )

f (α)c(α) |det(α)|s dµGLn(Ak )(α).

The additional factor c(α) =
∫
GLn(Ak )1/GLn(k)

g1(γα)g2(γ)dµ(γ) for n > 1 involves two
cuspidal functions gi .
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Part of the tree of number theory

CFT = class field theory
HAT = higher adelic theory
2d = two-dimensional (i.e. for arithmetic surfaces)

CFT Iwasawa–Tate theory

Langlands program 2d CFT anabelian geometry

2d Langlands program? HAT IUT
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2d objects of HAT

There are several types of data associated to an integral normal 2d scheme S flat over Z
or Fp (surface), a closed point x on an irreducible projective curve y on S :

� 2d global field: the function field K of S ;

� 2d local fields/semi-fields: the quotient Kx ,y of the completion of the localisation of the
local ring at x at the local equation of y ;

� 2d cdvfs for y : the function field Ky of the completion of the local ring of y ;

� 2d rings for x : the tensor product Kx of K and the completion of the local ring of x .
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Two integral structures in 2d local fields

Let F be a 2d local field whose residue field is a 1d nonarchimedean local field.
Denote by O the ring of integers of F with respect to its discrete valuation of rank 1 and
by t2 a local parameter.

E.g. OQp((t2)) =Qp[[t2]].

Denote by O the ring of integers with respect to any of its discrete valuations of rank 2.
Then O is the preimage of the ring of integers of the residue field. This integral structure
O is important for integration on 2d local fields and for 2d zeta integrals.

E.g. OQp((t2)) = Zp + t2Qp[[t2]].

Denote by t1 a lift of a local parameter of the residue field. Then

O = ∪j∈Zt
j
1O.
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Two integral structures in 2d local fields

We have the following 2d picture of O-submodules of F :

· · · · · · · · · · · ·

t2O = ∪j t2t
j
1O · · · ⊃ t2t

−1
1 O ⊃ t2O ⊃ t2t1O ⊃ ·· · t22O = ∩j t2t

j
1O

O = ∪j t
j
1O · · · ⊃ t−1

1 O ⊃ O ⊃ t1O ⊃ ·· · t2O = ∩j t
j
1O

t−1
2 O = ∪j t−1

2 t j1O · · · ⊃ t−1
2 t−1

1 O ⊃ t−1
2 O ⊃ t−1

2 t1O ⊃ ·· · O = ∩j t−1
2 t j1O

· · · · · · · · · · · ·
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Two adelic structures in dimension 2

For a curve y define OAy as a subring of ∏x∈y Ox ,y such that for every positive integer r
the (x ,y)-component is in Ox +Ox ,y t

r
y for almost all closed points x of y .

Define
Ay = ∪n∈Ztny OAy , OA= ∏OAy , OAy = OAy ∩∏

x∈y
Ox ,y .

In equal characteristic,

Ay , OAy , OAy can be identified with

Ak(y)((ty )), Ak(y)[[ty ]], OAk(y)+ tyAk(y)[[ty ]] respectively,

where OAk(y) are integral adeles.

Then A as the restricted product of Ay , for all curves y , with respect to OAy .

For all fibres and a fixed set of finitely many horizontal curves of E , the second adelic
structure A is the restricted product of OAy with respect to OAy .

Ivan Fesenko Higher adelic approach to the TBSD conjecture 9 / 35



Two adelic structures in dimension 2

For a curve y define OAy as a subring of ∏x∈y Ox ,y such that for every positive integer r
the (x ,y)-component is in Ox +Ox ,y t

r
y for almost all closed points x of y .

Define
Ay = ∪n∈Ztny OAy , OA= ∏OAy , OAy = OAy ∩∏

x∈y
Ox ,y .

In equal characteristic,

Ay , OAy , OAy can be identified with

Ak(y)((ty )), Ak(y)[[ty ]], OAk(y)+ tyAk(y)[[ty ]] respectively,

where OAk(y) are integral adeles.

Then A as the restricted product of Ay , for all curves y , with respect to OAy .

For all fibres and a fixed set of finitely many horizontal curves of E , the second adelic
structure A is the restricted product of OAy with respect to OAy .

Ivan Fesenko Higher adelic approach to the TBSD conjecture 9 / 35



Two adelic structures in dimension 2

For a curve y define OAy as a subring of ∏x∈y Ox ,y such that for every positive integer r
the (x ,y)-component is in Ox +Ox ,y t

r
y for almost all closed points x of y .

Define
Ay = ∪n∈Ztny OAy , OA= ∏OAy , OAy = OAy ∩∏

x∈y
Ox ,y .

In equal characteristic,

Ay , OAy , OAy can be identified with

Ak(y)((ty )), Ak(y)[[ty ]], OAk(y)+ tyAk(y)[[ty ]] respectively,

where OAk(y) are integral adeles.

Then A as the restricted product of Ay , for all curves y , with respect to OAy .

For all fibres and a fixed set of finitely many horizontal curves of E , the second adelic
structure A is the restricted product of OAy with respect to OAy .

Ivan Fesenko Higher adelic approach to the TBSD conjecture 9 / 35



Two adelic structures in dimension 2

From these objects one produces

A= ∏
′Kx ,y complete, local-local

B= ∏
′Ky = A∩∏Ky incomplete, local-global

C= ∏
′Kx = A∩∏Kx incomplete, local-global

K discrete

and
A,
B= A∩∏Ky
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2d objects of HAT

Higher (2d) adelic theory (HAT) operates with six adelic objects on surfaces:

A A

C B B

K

Geometric adelic structure A is related to rank 1 local integral structure and to algebraic
geometry.

Self-duality of its additive group, endowed with appropriate topology, is stronger than
Serre duality and it implies the Riemann–Roch theorem on surfaces.

Analytic/arithmetic adelic structure A is related to rank 2 local integral structure and to
2d zeta integrals.
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Zeta functions

The zeta function of a scheme X of finite type over Spec(Z)

ζX (s) = ∏
x∈X0

(1−|k(x)|−s)−1,

x runs through closed points of X , k(x) is the finite residue field of x .

The zeta function ζX (s) factorises into the product of some auxiliary factors and several
L-factors or their inverses.

When the function field of X is of characteristic zero and X is two- or higher
dimensional, very little is understood about ζX (s).
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Zeta functions of elliptic surfaces

Let E be an elliptic curve over a global field k, and let E be a regular model:

E → B proper flat, the generic fibre of E is E , where B is the spectrum of the ring of
integers of k or a proper smooth curve over a finite field with function field k.
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Zeta functions of elliptic surfaces

Then

ζE (s) = nE (s)ζE (s), ζE (s) =
ζB(s)ζB(s−1)

LE (s)
,

nE (s) = ∏
b∈B0,1≤i≤nb

(1−|k(b)|ni ,b(1−s))−1

where mb is the number of components in the reduced part of the geometric fibre
E ×B k(b)sep of E over a closed point b of B; so mb = 1 for almost all b.

If mb 6= 1, i.e. the special fibre Eb is singular, then ni ,b are certain positive integers,
1≤ i ≤ nb, such that

∑
1≤i≤nb

ni ,b =mb−1,

the number nb is the number of (k(b)-rational) components of the special fibre Eb with
the component intersecting the zero section excluded.
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Zeta functions of elliptic surfaces

The function ζE (s) does not depend on the choice of a model E .

The numerator of ζE (s) is the product of the zeta functions in dimension one.
Its denominator is the L-function of E .

HAT studies the zeta function ζE directly, using commutative 2d methods.

The Galois group at the background is Gal(Kab/K), K = k(E ) is a 2d global field.
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HAT and elliptic curves

Aims of HAT in the case of arithmetic surfaces E :

understand ζE (and hence partially LE ) via working with a higher zeta integral on 2d
adelic spaces using adelic dualities, and then apply to the study of main open problems
about ζE .

Some of the difficulties:

(1) 2d local fields Kx ,y are not locally compact spaces, there is no nontrivial real valued
translation invariant measure on them,

(2) unlike 1d, arithmetic and geometric issues are separated from each other in 2d.

Ways to address them:

(1) locally compactness is not so important, we can work with R((X ))-valued translation
invariant measure on Kx ,y and K×x ,y discovered in 2001;

(2) arithmetic and geometry adelic structures are intertwined at the level of their
multiplicative groups and the zeta integral provides a bridge between them.
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Measure and integration on 2d local fields

Let A be the ring of sets generated by closed balls with respect to rank 2 discrete
valuation a+ t i2t

j
1O.

Define a function
µ(a+ t i2t

j
1O) = X iq−j , q = |O : t1O|.

Theorem
µ is extended to a well defined finitely additive translation invariant map on A taking
values in R((X )).

Moreover, for countably many disjoint An ∈A such that ∪An ∈A and such that
∑ µ(An) absolutely converges in R((X )), we get

µ(A) = ∑µ(An).

This higher Haar measure and integration theory is compatible with the measure and
integration on the residue field, with discrete valuation rk 2 structure, but it is not
compatible with topology or metrics.
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Zeta integral

The general form of 2d zeta (unramified) integral is

ζ (f , | |s) =
∫
A××A×

f (α) |α|s dµ(α)

where f is a 2d Bruhat–Schwartz function (such as ⊗charOx ,y×Ox ,y
),

µ is the (appropriately normalised) measure (tensor product of the local measures),

| | is the module function associated to µ (|a|= µ(aD)/µ(D)),

and the space A is for a set S ′ of all vertical curves and a finitely many irreducible regular
horizontal curves.
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Zeta integral

If f =⊗fy then
ζ (f , | |s) = ∏ζy (fy , | |s).

Assume that every singular point of every fibre is a split ordinary double point and the
reduction in residual characteristic 2 and 3 is good or multiplicative.

Then for a centrally normalized function f and vertical fibre y = Eb over b ∈ B

ζy (f , | |s) = |k(b)|(fb+mb−1)(1−s)
ζy (s)

2

where fb is the conductor, mb is the number of irreducible geometric components.

For a horizontal curve y the zeta integral ζy (f , | |s) is a meromorphic function satisfying
FE with respect to s→ 2− s, holomorphic outside its poles of multiplicity 2 at s = 0,2,
qs = 1,q2.

In characteristic zero on horizontal curve ζy (f , | |s) = ζ̂k(y)(s/2)2.
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Zeta integral

Theorem (first local computation of the zeta integral)

On ℜ(s)> 2 the zeta integral ζ (f , | |s) equals the product of ζE (s)
2 times an exponential

factor which takes into account the conductor of the model E and times finitely many
horizontal zeta integrals.

Hence the zeta integral is a holomorphic function on that half plane.

The functional equation and meromorphic continuation (the RH) for the zeta integral
ζ (f , | |s), if established, implies the same properties for the zeta function ζE (s) and of
the L-function LE (s).

This theorem essentially gives an integral representation of ζE (s)
2.
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The B××B×

Put
T0 = B××B×.

Denote by d
−1/2
y the cardinality of the multiplicative group of the maximal finite subfield

of k(y).

For a function g on A×A such that for almost every fibre y the integral

dy

∫
g dµ(By×By )× = 1

(for example g =⊗charOx ,y×Ox ,y
), define∫

T0
g dµT0 = lim

So

dSo ∏
y∈So

∫
g dµ(By×By )×

where dSo
is the product of all dy attached to vertical fibres in finite So ⊂ S ′.

So the measure on T0 is the tensor product of the rescaled fibre measures, and is not the
lift of the discrete measure on k(y)××k(y)×.
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∫
∂T0

The weak boundary of T0,y = (By ×By )
× is By ×By \ (By ×By )

×.

Let ∂T0 be the weak boundary of T0, i.e. the union of the product of the weak
boundaries of T0,y with y in a finite subset of fibres and horizontal curves and the
product of T0,y at all other y .

Define the integral
∫

∂T0
similarly to the definition of

∫
T0

.

Ivan Fesenko Higher adelic approach to the TBSD conjecture 22 / 35



2d theta formula

Theorem
For a centrally normalized f its transform can be written

F (f )(α) = f (ν−1
α), |ν |= 1.

We get ∫
T0

(
f (αβ )−|α|−1 f (ν−1

α
−1

β )
)
dµT0(β )

=
∫

∂T0

(
|α|−1 f (ν−1

α
−1

β )− f (αβ )
)
dµ∂T0(β ).

Applying this theorem, one obtains
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Radial computation of the zeta integral

Theorem (second global computation of the zeta integral)

On the half plane Re(s)> 2 the zeta integral is the sum of three terms

ζ (f , | |s) = ξ (s)+ξ (2− s)+ω(s).

The function ξ (s) extends to an entire function on the complex plane.

The boundary term (in characteristic 0) is

ω(s) =
∫ 1

0
h(x)xs−2dx/x

where

h(x) =
∫
(A××A×)1/T0

(∫
∂T0

(
x2 f (xβγ)− f (ν−1x−1

βγ
−1)
)
dµ(β )

)
dµ(γ).

The function h satisfies h(x−1) =−x−2h(x).
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Mean-periodicity and FE of the zeta function

Definition
Let X be a space of complex valued functions on the real line in which the Hahn-Banach
theorem holds.

A function g ∈ X is called X -mean-periodic if it satisfies one of the equivalent conditions:

(i) there exists a closed proper linear subspace of X which contains all translates of g ;

(ii) g is a solution of a homogeneous convolution equation g ∗τ = 0 where τ is a non-zero
element in the dual space of X .
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HAT and meromorphic continuation and FE of the zeta function

Theorem
Let K be of characteristic 0.
Assume that the function

H(t) = h(e−t)

is mean-periodic in the space of smooth functions on the real line of not more than
exponential growth.

Then the boundary term and the zeta integral and hence ζE (s) and LE (s) have
meromorphic continuation and satisfy the functional equation wrt s→ 2− s.
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HAT and the poles

Theorem
Maintaining the assumption of mean-periodicity, let in addition

the fourth derivative of H keep its sign near infinity.

Then if the zeta function does not have real poles in the strip Re(s) ∈ (1,2) ,

the zeta function does not have complex poles in the same strip.

Note the fundamental difference with the 1d case. It is easier to study analytically the
location of poles in 2d than the location of zeros in 1d.
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HAT and the Tate–BSD conjecture

To compute the local behaviour of ζE (s) at s = 1 assume that the zeta function has a
meromorphic continuation and FE.

Tate reformulated the rank part of the BSD conjecture as the equality

the Euler characteristic of O×E equals to the order of the pole of ζE (s) at s = 1

HAT reduces the study of the pole of the zeta integral at s = 1 to the study of the pole
of the boundary term at s = 1.

The latter involves an integral over the boundary ∂T0 of analytic adeles of a certain
function related to f .
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HAT and the Tate–BSD conjecture

To relate the arithmetic r and analytic ranks of E , use the previous theory and the fact
that geometric adeles know about the Picard rank of E and the arithmetic rank of E(k).

The group B×/
(
B× ∩ OA×

)
is isomorphic to the group of divisors on E , similarly to the

one dimensional classical case.

Thus,

FE = coker
(
K× −→ B×/

(
B× ∩ OA×

))
is isomorphic to the Picard group of E .
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HAT and the Tate–BSD conjecture

The group Div(E ) is the direct sum of vertical divisors and horizontal divisors, the latter
correspond to divisors on its generic fibre.

Choose horizontal curves yi , i ∈ I , |I |= r +1, the images of sections of

π : E −→ B

which include the image of the zero section and the curves on the surface, corresponding
to a choice of free generators of the group E(k).

For every singular fibre Eb take all the (k(b)-rational) components of its reduced part
except one which intersects the zero section and denote them by yj , 1≤ j ≤ nb, where nb
is the number of components of the special fibre Eb with the component intersecting the
zero section excluded.

In addition, choose one nonsingular fibre y∗, and if K is of positive characteristic add it
to the above curves.

Denote the whole collection of curves by yi , i ∈ I , yj , j ∈ J.

Then |J|= ∑nb in characteristic zero and |J|= ∑nb+1 in positive characteristic.
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HAT and the Tate–BSD conjecture

In positive characteristic the free part of NS(E ) has rank r +1+∑nb (Kodaira, Shioda,
Tate).

The group π∗Pic0(B) is of finite index in the subgroup of divisors numerically equivalent
to 0, and the kernel of the natural surjective map from NS(E ) modulo its torsion to
Num(E ) is an isomorphism.

Thus, in positive characteristic the group FE has rank r +2+∑nb and its subgroup
generated by classes of B×yi ,B

×
yj , i ∈ I , j ∈ J, is of finite index.

In characteristic zero, extending the argument in the positive characteristic, we have a
similar description: the subgroup generated by classes of B×yi ,B

×
yj , i ∈ I , j ∈ J, is of finite

index in FE and its rank is r +1+∑nb.
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Local diagramme
For x ∈ y the integral ring Ox ,y of rank 1 with fraction field Kx ,y , and the integral ring
Ox ,y of rank 2. Then

K×x ,y = O×x ,y ×〈t2x ,y 〉, O×x ,y =O×x ,y ×〈t1x ,y 〉.
The following commutative diagramme plays an important role in explicit 2d class field
theory

O×x ,y ⊗K×x ,y/O
×
x ,y

�� **
O×x ,y ×O×x ,y/O

×
x ,y

// K t
2(Kx ,y )/UK

t
2(Kx ,y )

where UK t
2(Kx ,y ) is the kernel of the double boundary map from K t

2(Kx ,y ) to K t
1 and

then to K0, the horizontal map is

(t1
i
x ,yu,t1

j
x ,y ) 7→ (i+ j){t1x ,y ,t2x ,y}, u ∈O×x ,y

the diagonal map is the symbol map

α⊗β 7→ {α,β},
and the vertical continuous map is

α⊗ t2
m
x ,y 7→ (αm,1).
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A-diagramme

For a set S ′ of curves that include all vertical curves and finitely many horizontal curves
the previous diagramme implies the adelic commutative diagramme

A×⊗A×S ′/units

�� ))
A××A×/units // K t

2(AS ′)/units.

The diagramme glues together the adelic structures A× and A×.
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B-diagramme

The previous diagramme leads to the commutative diagramme

B× ⊗ B×S ′/(B
×
S ′ ∩units)

�� **
T0 // B× × B×/(B×∩units) // K t

2(B)/
(
K t

2(B)∩units
)
.

Ivan Fesenko Higher adelic approach to the TBSD conjecture 34 / 35



HAT and the Tate–BSD conjecture

Using this relation between the two adelic structures and the second computation of the
zeta integral, the pole of the boundary term at s = 1 comes as the product of the poles
of finitely many 1d zeta integrals for yi and yj and the pole corresponding to the image
of global elements.

One obtains:

The contribution of the image of global elements via B×⊗B×/units
in the boundary term at s = 1 is a non-zero number if and only if
the rank part of the Tate–Birch–Swinnerton-Dyer conjecture holds.

The discreteness of global elements in geometric adeles is a crucial property to use.

This discreteness was established in positive characteristic and recently in characteristic
zero. This is closely related to the higher adelic Riemann–Roch theorem.
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