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Abstract

In the final paper of a series of papers concerning inter-universal Teichmüller theory,
Mochizuki verified various numerically non-e¤ective versions of the Vojta, ABC, and

Szpiro Conjectures over number fields. In the present paper, we obtain various numer-

ically e¤ective versions of Mochizuki’s results. In order to obtain these results, we first

establish a version of the theory of étale theta functions that functions properly at
arbitrary bad places, i.e., even bad places that divide the prime ‘‘2’’. We then proceed

to discuss how such a modified version of the theory of étale theta functions a¤ects
inter-universal Teichmüller theory. Finally, by applying our slightly modified version of

inter-universal Teichmüller theory, together with various explicit estimates concerning
heights, the j-invariants of ‘‘arithmetic’’ elliptic curves, and the prime number theorem,

we verify the numerically e¤ective versions of Mochizuki’s results referred to above.
These numerically e¤ective versions imply e¤ective diophantine results such as an e¤ec-

tive version of the ABC inequality over mono-complex number fields [i.e., the rational
number field or an imaginary quadratic field] and e¤ective versions of conjectures of

Szpiro. We also obtain an explicit estimate concerning ‘‘Fermat’s Last Theorem’’

(FLT)—i.e., to the e¤ect that FLT holds for prime exponents > 1:615 ! 1014—which
is su‰cient, in light of a numerical result of Coppersmith, to give an alternative proof

of the first case of FLT. In the second case of FLT, if one combines the techniques
of the present paper with a recent estimate due to Mihăilescu and Rassias, then the

lower bound ‘‘1:615 ! 1014’’ can be improved to ‘‘257’’. This estimate, combined with
a classical result of Vandiver, yields an alternative proof of the second case of FLT.

In particular, the results of the present paper, combined with the results of Vandiver,
Coppersmith, and Mihăilescu-Rassias, yield an unconditional new alternative proof of

Fermat’s Last Theorem.
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Introduction

In [19], Mochizuki applied the theory of [16], [17], [18], [19] [cf. also [20] for
a detailed survey of this theory] to prove the following result [cf. [19], Corollary
2.2, (ii), (iii)]:

Theorem. Write X for the projective line over Q; D " X for the divisor
consisting of the three points ‘‘0’’, ‘‘1’’, and ‘‘y’’; ðMellÞQ for the moduli stack
of elliptic curves over Q. We shall regard X as the ‘‘l-line’’—i.e., we shall
regard the standard coordinate on X as the ‘‘l’’ in the Legendre form ‘‘y2 ¼
xðx& 1Þðx& lÞ’’ of the Weierstrass equation defining an elliptic curve—and hence
as being equipped with a natural classifying morphism UX ¼def XnD ! ðMellÞQ.
Write

logðqE
ð&ÞÞ

for the R-valued function on ðMellÞQðQÞ, hence also on UX ðQÞ, obtained by

forming the normalized degree ‘‘degð&Þ’’ of the e¤ective arithmetic divisor deter-
mined by the q-parameters of an elliptic curve over a number field at arbitrary
nonarchimedean places. Let

KV " UX ðQÞ

be a compactly bounded subset that satisfies the following conditions:
(CBS1) The support of KV contains the nonarchimedean place ‘‘2’’.
(CBS2) The image of the subset ‘‘K2 " UX ðQ2Þ’’ associated to KV via the

j-invariant UX ! ðMellÞQ ! A1
Q is a bounded subset of A1

QðQ2Þ ¼ Q2,
i.e., is contained in a subset of the form 2Nj-inv ! OQ2

" Q2, where

Nj-inv A Z, and OQ2
" Q2 denotes the ring of integers [cf. the condi-

tion ð'j-invÞ of [19], Corollary 2.2, (ii)].
Then there exist

( a positive real number Hunif which is independent of KV and
( positive real numbers CK and HK which depend only on the choice of the
compactly bounded subset KV
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such that the following property is satisfied: Let d be a positive integer, ed and e
positive real numbersa 1. Then there exists a finite subset

Exce;d " UX ðQÞad

—where we denote by UX ðQÞad " UX ðQÞ the subset of Q-rational points defined
over a finite extension field of Q of degreea d—which depends only on KV , e, d,
and ed , and satisfies the following properties:

( The function logðqE
ð&ÞÞ is

aHunif ! e&3 ! e&3
d ! d 4þed þHK

on Exce;d .
( Let EF be an elliptic curve over a number field F " Q that determines a

Q-valued point of ðMellÞQ which lifts [not necessarily uniquely!] to a point xE A
UX ðF Þ \UX ðQÞad such that

xE A KV ; xE B Exce;d :

Write Fmod for the minimal field of definition of the corresponding point
A ðMellÞQðQÞ and

Fmod " Ftpd ¼def FmodðEFmod ½2+Þ " F

for the ‘‘tripodal’’ intermediate field obtained from Fmod by adjoining the fields of
definition of the 2-torsion points of any model of EF ,F Q over Fmod [cf. [19],
Proposition 1.8, (ii), (iii)]. Moreover, we assume that the ð3 ! 5Þ-torsion points of
EF are defined over F , and that

F ¼ Fmodð
ffiffiffiffiffiffiffi
&1

p
;EFmod ½2 ! 3 ! 5+Þ ¼def Ftpdð

ffiffiffiffiffiffiffi
&1

p
;EFtpd ½3 ! 5+Þ

—i.e., that F is obtained from Ftpd by adjoining
ffiffiffiffiffiffiffi
&1

p
, together with the fields of

definition of the ð3 ! 5Þ-torsion points of a model EFtpd of the elliptic curve EF ,F Q
over Ftpd determined by the Legendre form of the Weierstrass equation discussed
above. Then EF and Fmod arise as the ‘‘EF ’’ and ‘‘Fmod’’ for a collection of initial
Y-data as in [19], Theorem 1.10, that satisfies the following conditions:

(C1) ðlogðqE
xE
ÞÞ1=2 a la 10d ! ðlogðqE

xE
ÞÞ1=2 ! logð2d ! logðqE

xE
ÞÞ;

(C2) we have an inequality

1

6
! logðqE

xE
Þa ð1þ eÞ ! ðlog-di¤X ðxEÞ þ log-condDðxEÞÞ þ CK

—where we write d ¼def 212 ! 33 ! 5 ! d; log-di¤X for the [normalized ] log-di¤erent
function on UX ðQÞ [cf. [15], Definition 1.5, (iii)]; log-condD for the [normalized ]
log-conductor function on UX ðQÞ [cf. [15], Definition 1.5, (iv)].

In the present paper, we prove a numerically e¤ective version of this theorem
without assuming the conditions (CBS1), (CBS2) [cf. the portion of Corollary 5.2
that concerns k=k log=K]. Moreover, we prove that if one restricts one’s atten-
tion to the case where the point ‘‘xE ’’ is defined over a mono-complex number
field [i.e., Q or an imaginary quadratic field—cf. Definition 1.2], then one may
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eliminate the compactly bounded subset ‘‘KV ’’ from the statement of this theorem
[cf. the portion of Corollary 5.2 that does not concern k=k log=K].

In order to obtain Corollary 5.2, we establish a version of the theory of étale
theta functions that functions properly at arbitrary bad places, i.e., even bad places
that divide the prime ‘‘2’’. Roughly speaking, this is achieved by modifying the
notion of evaluation points at which the theta function is evaluated [cf. the expla-
nation of §3 below for more details].

We then proceed to apply Corollary 5.2 to verify the following e¤ective
diophantine results [cf. Theorems 5.3, 5.4; Remarks 5.3.3, 5.3.4, 5.3.5; Corollary
5.8; the notations and conventions of §0]:

Theorem A (E¤ective versions of ABC/Szpiro inequalities over mono-
complex number fields). Let L be a mono-complex number field [i.e., Q or an
imaginary quadratic field—cf. Definition 1.2]; a; b; c A L, nonzero elements of L
such that

aþ bþ c ¼ 0;

e a positive real numbera 1. Write Ea;b; c for the elliptic curve over L defined by

the equation y2 ¼ xðx& 1Þ xþ a

c

" #
; jðEa;b; cÞ for the j-invariant of Ea;b; c; DL for

the absolute value of the discriminant of L; d ¼def ½L : Q+;

HLða; b; cÞ ¼def
Y

v AVðLÞ
maxfjajv; jbjv; jcjvg;

ILða; b; cÞ ¼def fv A VðLÞnon jafjajv; jbjv; jcjvgb 2g " VðLÞnon;

radLða; b; cÞ ¼def
Y

v A ILða;b; cÞ
aðOL=pvÞ;

hdðeÞ ¼def 3:4 ! 1030 ! e&166=81 ðd ¼ 1Þ
6 ! 1031 ! e&174=85 ðd ¼ 2Þ:

$

Then the following hold:
(i) We have [cf. Definition 1.1, (i)]

1

6
! hnonð jðEa;b; cÞÞamax

1

d
! ð1þ eÞ ! logðDL ! radLða; b; cÞÞ;

1

6
! hdðeÞ

$ %

a
1

d
! ð1þ eÞ ! logðDL ! radLða; b; cÞÞ þ

1

6
! hdðeÞ:

(ii) We have

HLða; b; cÞa 25d=2 !max exp
d

4
! hdðeÞ

" #
; ðDL ! radLða; b; cÞÞ3ð1þeÞ=2

$ %

a 25d=2 ! exp d

4
! hdðeÞ

" #
! ðDL ! radLða; b; cÞÞ3ð1þeÞ=2:
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Theorem B (E¤ective version of a conjecture of Szpiro). Let a, b, c be
nonzero coprime integers such that

aþ bþ c ¼ 0;

e a positive real numbera 1. Then we have

jabcja 24 !maxfexpð1:7 ! 1030 ! e&166=81Þ; ðradðabcÞÞ3ð1þeÞg

a 24 ! expð1:7 ! 1030 ! e&166=81Þ ! ðradðabcÞÞ3ð1þeÞ

—which may be regarded as an explicit version of the inequality

“jabcjaCðeÞ
Y

pjabc
p

0

@

1

A
3þe

”

conjectured in [26], §2 [i.e., the ‘‘forme forte’’ of loc. cit., where we note that the
‘‘p’’ to the right of the ‘‘

Q
’’ in the above display was apparently unintentionally

omitted in loc. cit.].

Corollary C (Application to ‘‘Fermat’s Last Theorem’’). Let

p > 1:615 ! 1014

be a prime number. Then there does not exist any triple ðx; y; zÞ of positive
integers that satisfies the Fermat equation

xp þ yp ¼ z p:

The proof of Corollary C is obtained by combining
( the slightly modified version of [16], [17], [18], [19] developed in the present
paper with

( various estimates [cf. Lemmas 5.5, 5.6, 5.7] of an entirely elementary
nature.

In fact, the lower bound of Corollary C may be strengthened roughly by a factor
of 2 by applying the results of [8], [9] [cf. Remarks 5.7.1, 5.8.2], which are
obtained by means of techniques of classical algebraic number theory that are
somewhat more involved than the argument applied in the corresponding portion
of the proof of Corollary C. The original estimate of Corollary C is su‰cient,
in light of a numerical result of Coppersmith, to give an alternative proof [i.e., to
the proof of [28]] of the first case of Fermat’s Last Theorem [cf. Remark 5.8.1].
In the second case of Fermat’s Last Theorem, if one combines the techniques of
the present paper with a recent estimate due to Mihăilescu and Rassias, then the
lower bound ‘‘1:615 ! 1014’’ of Corollary C can be improved to ‘‘257’’ [cf. Remark
5.8.3, (i)]. This estimate, combined with a classical result of Vandiver, yields an
alternative proof [i.e., to the proof of [28]] of the second case of Fermat’s Last
Theorem [cf. Remark 5.8.3, (ii)]. In particular,
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the results of the present paper, combined with the results of Vandiver,
Coppersmith, and Mihăilescu-Rassias, yield an unconditional new alter-
native proof [i.e., to the proof of [28]] of Fermat’s Last Theorem.

[The authors have received informal reports to the e¤ect that one mathe-
matician has obtained some sort of numerical estimate that is formally similar
to Corollary C, but with a substantially weaker [by many orders of magnitude!]
lower bound for p, by combining the techniques of [19], §1, §2, with e¤ective
computations concerning Belyi maps. On the other hand, the authors have not
been able to find any detailed written exposition of this informally advertized
numerical estimate and are not in a position to comment on it.]

We also obtain an application of the ABC inequality of Theorem B to a
generalized version of Fermat’s Last Theorem [cf. Corollary 5.9], which does not
appear to be accessible via the techniques involving modularity of elliptic curves
over Q and deformations of Galois representations that play a central role in [28].

In the following, we explain the content of each section of the present paper
in greater detail.

In §1, we examine various [elementary and essentially well-known] properties
of heights of elliptic curves over number fields. Let F " Q be a number field;
E an elliptic curve over F that has semi-stable reduction over the ring of integers
OF of F . Suppose that E is isomorphic over Q to the elliptic curve defined by
an equation

y2 ¼ xðx& 1Þðx& lÞ

—where l A Qnf0; 1g. For simplicity, assume further that

QðlÞ is mono-complex

[i.e., Q or an imaginary quadratic field—cf. Definition 1.2]. Write jðEÞ A Q for
the j-invariant of E. In Corollary 1.14, (iii), we verify that the [logarithmic]
Weil height

hð jðEÞÞ

[cf. Definition 1.1, (i)] of jðEÞ satisfies the following property:
(H1) Let l be a prime number. Suppose that E admits an l-cyclic sub-

group scheme, and that l is prime to the local heights of E at each
of its places of [bad] multiplicative reduction [i.e., the orders of the
q-parameter at such places—cf. [15], Definition 3.3]. Then the non-
archimedean portion of hð jðEÞÞ is bounded by an explicit absolute
constant A R.

To verify (H1), we make use of the following two types of heights:
( the Faltings height hFalðEÞ [cf. the discussion entitled ‘‘Curves’’ in §0],
( the symmetrized toric height hS-torðEÞ [cf. Definition 1.7].

These heights hFalðEÞ and hS-torðEÞ may be related to hð jðEÞÞ by means of
numerically explicit inequalities [cf. Propositions 1.8, 1.10, 1.12] and satisfy the
following important properties:
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(H2) Let E 0 be an elliptic curve over F ; f : E ! E 0 an isogeny of degree d.
Then it holds that hFalðE 0Þ & hFalðEÞa 1

2 logðdÞ [cf. [5], Lemma 5].
(H3) The archimedean portion of hS-torðEÞ is bounded above by the non-

archimedean portion of hS-torðEÞ [cf. Proposition 1.9, (i)].
[Here, we note that (H3) is an immediate consequence of the product formula,
together with the assumption that the cardinality of the set of archimedean places
of the mono-complex number field QðlÞ is one.] The property (H1) then follows,
essentially formally, by applying (H2) and (H3), together with the numerically
explicit inequalities [mentioned above], which allow one to compare the di¤erent
types of heights.

In §2, we review
( a result concerning the j-invariants of ‘‘arithmetic’’ elliptic curves [cf.
Proposition 2.1];

( certain e¤ective versions of the prime number theorem [cf. Proposition
2.2].

In §3, we establish a version of the theory of étale theta functions [cf. [14],
[17]] that functions properly at arbitrary bad places, i.e., even bad places that
divide the prime ‘‘2’’. Here, we note that the original definition of the notion of
an evaluation point—i.e., a point at which the theta function is evaluated that is
obtained by translating a cusp by a 2-torsion point [cf. [14], Definition 1.9; [16],
Example 4.4, (i)]—does not function properly at places over 2 [cf. [19], Remark
1.10.6, (ii)]. Thus, it is natural to pose the following question:

Is it possible to obtain a new definition of evaluation points that func-
tions properly at arbitrary bad places by replacing the ‘‘2-torsion point’’
appearing in the [original] definition of an evaluation point by an
‘‘n-torsion point’’, for some integer n > 2?

Here, we recall that the definition of an evaluation point obtained by translating
a cusp by an n-torsion point functions properly at arbitrary bad places if the
following two conditions are satisfied:

(1) The various ratios of theta values at the Galois conjugates of [the
point of the Tate uniformization of a Tate curve corresponding to a
primitive 2n-th root of unity] z2n are roots of unity [cf. [17], Remark
2.5.1, (ii)].

(2) The theta value at z2n is a unit at arbitrary bad places [cf. [19], Remark
1.10.6, (ii)].

One fundamental observation—due to Porowski—that underlies the theory of the
present paper is the following:

n satisfies the conditions (1), (2) if and only if n ¼ 6

[cf. Lemma 3.1; Proposition 3.2; the well-known fact that 1& z4, 1& z8 are non-
units at places over 2]. Following this observation, in Definition 3.3, we intro-
duce a new version of the notion of an ‘‘étale theta function of standard type’’
[cf. [14], Definition 1.9] obtained by normalizing étale theta functions at points
arising from 6-torsion points of the given elliptic curve. In the remainder of §3,
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we then proceed to discuss how the adoption of such ‘‘étale theta functions of
m6-standard type’’ a¤ects the theory developed in [14].

Next, in §4, we discuss how the modifications of §3 a¤ect [16], [17], [18].
Roughly speaking, we observe that, once one makes suitable minor technical
modifications,

(') the theory developed in [16], [17], [18] remains essentially una¤ected even
if, in the notation of [16], Definition 3.1, (b), one eliminates the assump-
tion ‘‘of odd residue characteristic’’ that appears in the discussion of
‘‘Vbad

mod’’.
In §5, we begin by proving a ‘‘m6-version’’ [cf. Theorem 5.1] of [19], Theorem

1.10, i.e., that applies the theory developed in §2, §3, §4. This allows us to
obtain a ‘‘m6-version’’ [cf. Corollary 5.2] of [19], Corollary 2.2, (ii), (iii) [i.e., the
‘‘Theorem’’ reviewed at the beginning of the present Introduction] without assum-
ing the conditions (CBS1), (CBS2) that appear in the statement of this Theorem
concerning the nonarchimedean place ‘‘2’’. The proof of Corollary 5.2 makes
essential use of the theory of §1, §2 [cf., especially, Corollary 1.14; Propositions
2.1, 2.2]. In the case of mono-complex number fields, we then derive

( Theorem 5.3 from Corollary 5.2 by applying the product formula, together
with the essential assumption that the number field under consideration is
mono-complex [cf. the property (H3) discussed above] and various elemen-
tary computations [such as Proposition 1.8, (i)];

( Theorem 5.4 from Theorem 5.3, together with various elementary compu-
tations [such as Proposition 1.8, (i)].

Finally, we apply
( Theorem 5.3, together with various elementary considerations, to ‘‘Fermat’s
Last Theorem’’ [cf. Corollary 5.8] and

( Theorem 5.4, again together with various elementary computations, to a
generalized version of ‘‘Fermat’s Last Theorem’’ [cf. Corollary 5.9].

In this context, we note [cf. Remark 5.3.2] that it is quite possible that, in the
future, other interesting applications of Theorems 5.3, 5.4 to the study of nu-
merical aspects of diophantine equations can be found.
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0. Notations and conventions

Numbers:
Let S be a set. Then we shall write aS for the cardinality of S.
Let E " R be a subset of the set of real numbers R. Then for l A R, ifk denotes ‘‘< l’’, ‘‘a l’’, ‘‘> l’’, or ‘‘b l’’, then we shall write Ek " E for the

subset of elements that satisfy the inequality ‘‘k’’. If E is finite, then we shall
write max E for the smallest real number l such that Eal ¼ E and min E for the
largest real number l such that Ebl ¼ E.

For any nonzero integer n B f1;&1g, we shall write radðnÞ for the product
of the distinct prime numbers p which divide n. We shall define radð1Þ and
radð&1Þ to be 1.

Let F be a field. Then we shall write F t ¼def Fnf0; 1g.
Let Q be an algebraic closure of the field of rational numbers Q, F " Q

a subfield. Then we shall write OF " F for the ring of integers of F ; Z ¼def OQ;
Primes " Z for the set of all prime numbers; VðF Þnon (respectively, VðFÞarc) for
the set of nonarchimedean (respectively, archimedean) places of F ;

VðFÞ ¼def VðF Þarc [VðFÞnon:

For v A VðFÞ, we shall write Fv for the completion of F at v.
Now suppose that F is a number field, i.e., that ½F : Q+ < y.
Let v A VðF Þnon. Write pv " OF for the prime ideal corresponding to v;

pv for the residue characteristic of Fv; fv for the residue field degree of Fv over
Qpv ; ordv for the normalized valuation on Fv determined by v, where we take the
normalization to be such that ordv restricts to the standard pv-adic valuation on
Qpv . Then for any x A Fv, we shall write

kxkv ¼def p&ordvðxÞ
v ; jxjv ¼def kxk½Fv:Qpv +

v :

Let v A VðFÞarc. Write sv : F ,! C for the embedding determined, up to
complex conjugation, by v. Then for any x A Fv, we shall write

kxkv ¼def ksvðxÞkC; jxjv ¼def kxk½Fv:R+
v

—where we denote by k ! kC the standard [complex] absolute value on C.
Note that for any w A VðQÞ that lies over v A VðF Þ, the absolute value

k ! kv : Fv ! Rb0 extends uniquely to an absolute value k ! kw : Qw ! Rb0. We
shall refer to this absolute value on Qw as the standard absolute value on Qw.
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Curves:
Let E be an elliptic curve over a field. Then we shall write jðEÞ for the

j-invariant of E.
Let E be an elliptic curve over a number field F that has semi-stable reduc-

tion over OF . Write hFalðEÞ for the Faltings height of E [cf. [5], §3, the first
Definition]. Then we shall write

hFalðEÞ ¼def hFalðEÞ þ 1

2
log p

[cf. [10], Definition 2.3; [10], Remark 2.1]. Here, we note that the quantity
hFalðEÞ is una¤ected by passage to a finite extension of the base field F of E
[cf., e.g., [10], Proposition 2.1, (i)].

1. Heights

Let E be an elliptic curve over a number field. In the present section, we
introduce the notion of the symmetrized toric height hS-torðEÞ of E [cf. Definition
1.7]. We then compare hS-torðEÞ with the [logarithmic] Weil height hð jðEÞÞ of
jðEÞ [cf. Proposition 1.8]. Finally, we prove that if E satisfies certain conditions,
then the nonarchimedean portion of hð jðEÞÞ is bounded by an absolute constant
[cf. Corollary 1.14, (iii)].

Definition 1.1. Let F be a number field.
(i) Let a A F . Then for k A fnon; arcg, we shall write

hkðaÞ ¼def 1

½F : Q+
X

v AVðF Þk
log maxfjajv; 1g ðb 0Þ;

hðaÞ ¼def hnonðaÞ þ harcðaÞ

and refer to hðaÞ as the [logarithmic] Weil height of a. We shall also
write h}ðaÞ for hðaÞ.

(ii) Let a A F ,. Then for k A fnon; arcg, we shall write

h tork ðaÞ ¼def 1

2½F : Q+
X

v AVðFÞk
log maxfjajv; jaj

&1
v g ðb 0Þ;

h torðaÞ ¼def h tor
nonðaÞ þ h tor

arcðaÞ

and refer to h torðaÞ as the [logarithmic] toric height of a. We shall also
write h tor

} ðaÞ for h torðaÞ.

Remark 1.1.1. One verifies easily that for k A fnon; arc;}g, the quantities
hkðaÞ and h tork ðaÞ are una¤ected by passage to a finite extension of F .
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Definition 1.2. Let F be a number field. Then we shall say that F is
mono-complex if F is either

the field of rational numbers Q or an imaginary quadratic field.

One verifies easily that F is mono-complex if and only if the cardinality of
VðF Þarc is one.

Lemma 1.3 (Properties of toric heights). Let F be a number field, a A F ,.
Then the following hold:

(i) It holds that

h tork ðaÞ ¼ h tork ða&1Þ; h tork ðaÞ ¼ 1

2
! fhkðaÞ þ hkða&1Þg

for k A fnon; arc;}g.
(ii) It holds that

hðaÞ ¼ h torðaÞ:

In particular, we have hðaÞ ¼ hða&1Þ [cf. (i)].
(iii) Suppose that F is mono-complex. Then we have

h tor
arcðaÞa h tor

nonðaÞ:

(iv) Let x; y A F ; x tor; y tor A F ,. Then we have

hkðxÞ þ hkðyÞb hkðx ! yÞ;

h tork ðx torÞ þ h tork ðy torÞb h tork ðx tor ! y torÞ

for k A fnon; arc;}g.

Proof. First, we consider assertion (i). The first equality follows immedi-
ately from the various definitions involved. The second equality follows imme-
diately from the various definitions involved, together with the following [easily
verified] fact: For any s A R>0, it holds that

maxfs; s&1g ¼ maxfs; 1g !maxfs&1; 1g:

Next, we consider assertion (ii). Write d ¼def ½F : Q+. Then we compute:

2d ! h torðaÞ ¼
X

v AVðFÞ
log maxfjajv; jaj

&1
v g ¼

X

v AVðFÞ
logðjaj&1

v !maxfjaj2v ; 1gÞ

¼ 2d ! hðaÞ þ
X

v AVðF Þ
logjaj&1

v ¼ 2d ! hðaÞ

—where the final equality follows from the product formula. This completes the
proof of assertion (ii).
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Next, we consider assertion (iii). Let w be the unique element of VðFÞarc.
In light of the first equality of assertion (i), to verify assertion (iii), we may
assume without loss of generality that jajw b 1. Then we compute:

2d ! h tor
arcðaÞ ¼ logjajw ¼

X

v AVðFÞnon
logjaj&1

v

a
X

v AVðFÞnon
log maxfjajv; jaj

&1
v g ¼ 2d ! h tor

nonðaÞ

—where the second equality follows from the product formula. This completes
the proof of assertion (iii). Finally, we consider assertion (iv). It follows
immediately from the second equality of assertion (i) that to verify the second
inequality of assertion (iv), it su‰ces to verify the first inequality of assertion (iv).
But the first inequality follows immediately from the following [easily verified]
fact: For any s; t A Rb0, it holds that

maxfst; 1gamaxfs; 1g !maxft; 1g:

This completes the proof of assertion (iv). r

Remark 1.3.1. It may appear to the reader, at first glance, that the notion
of the toric height of an element of a number field F is unnecessary [cf. Lemma
1.3, (ii)]. In fact, however, the toric height of an element a A F , satisfies the
following important property [cf. Lemma 1.3, (iii)]:

If F is mono-complex, then the archimedean portion of the toric height
of a is bounded by the nonarchimedean portion of the toric height of a.

This property is an immediate consequence of the product formula [cf. the proof
of Lemma 1.3, (iii)]. We note that, in general, the notion of the Weil height does
not satisfy this property. For instance, for any n A Z>0, we have

hnonðnÞ ¼ 0; harcðnÞ ¼ logðnÞ;

h tor
nonðnÞ ¼

1

2
logðnÞ; h tor

arcðnÞ ¼
1

2
logðnÞ:

Definition 1.4. Let F be a field; j ! j : F ! Rb0 a map satisfying the fol-
lowing conditions:

(i) The restriction of j ! j to F , determines a group homomorphism
F , ! R>0 [relative to the multiplicative group structures on F ,, R>0].

(ii) It holds that j0j ¼ 0.
(iii) For any x A F , it holds that jxþ 1ja jxjþ 1.

Then for a A F t, we shall write

JðaÞ ¼def ja2 & aþ 1j3 ! jaj&2 ! ja& 1j&2

¼ jað1& aÞ & 1j3 ! jaj&2 ! j1& aj&2;
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J0yðaÞ ¼def maxfjaj; jaj&1g;

J1yðaÞ ¼def maxfja& 1j; ja& 1j&1g;

J01ðaÞ ¼def maxfja& 1j ! jaj&1; jaj ! ja& 1j&1g:

Lemma 1.5 (Comparison between JðaÞ and jaj2). In the notation of Defini-
tion 1.4, suppose that jajb 2. Then we have

jaj2 a 28 ! JðaÞ:

Proof. First, we note that since ja& 1ja jajþ 1, we have

ja2 & aþ 1j ¼ ja2 & ða& 1Þjb jaj2 & ja& 1jb jaj2 & ðjajþ 1Þ:

Thus, we conclude that

28 ! ja2 & aþ 1j3 ! jaj&2 ! ja& 1j&2 b 28 ! ðjaj2 & jaj& 1Þ3 ! jaj&2 ! ðjajþ 1Þ&2

b jaj2

—where we observe that since x2 & x& 1b x x& 3
2

& '
, &ðxþ 1Þ2 b&ð2xÞ2, and

the function
3

2x& 3
is monotonically decreasing for x A Rb2, the final inequality

follows from the elementary fact that

28 ! ðx2 & x& 1Þ3 & x4 ! ðxþ 1Þ2 b x3 ! 28 ! x& 3

2

" #3
& x ! ðxþ 1Þ2

( )

b 22 ! x3 ! 26 ! x& 3

2

" #3
& x3

( )

b 28 ! x3 ! x& 3

2

" #3
! 1& 2&6 ! 1þ 3

2x& 3

" #3( )

b 0

for x A Rb2. r

Lemma 1.6 (Comparison between JðaÞ and J0yðaÞ ! J1yðaÞ ! J01ðaÞ). In the
notation of Definition 1.4, the following hold:

(i) Write z for the rational function given by the standard coordinate on P1
Z

and

A ¼def fz; z&1; 1& z; ð1& zÞ&1; z ! ðz& 1Þ&1; ðz& 1Þ ! z&1g;

B ¼def fd " A jad ¼ 2; if we write d ¼ fa; bg; then

it holds that A ¼ fa; a&1; b; b&1;&ab;&ðabÞ&1gg:
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Then the set B coincides with the set

B 0 ¼def ffz; ð1& zÞ&1g; fz; ðz& 1Þ ! z&1g; fz&1; 1& zg;

fz&1; z ! ðz& 1Þ&1g; f1& z; z ! ðz& 1Þ&1g;

fð1& zÞ&1; ðz& 1Þ ! z&1gg:

Moreover, the map

f : B ! A

fa; bg 7! &ab

is bijective. Here, we recall that the symmetric group on 3 letters S3

admits a natural faithful action on the projective line P1
Z over Z, hence

also on the set of F-rational points ðP1
Znf0; 1;ygÞðF Þ !@ F t, and that the

orbit S3 ! z of z coincides with the set A. In particular, the action of S3

on A induces, via f&1, a transitive action of S3 on B.
(ii) For every d ¼ fa; bg A B, write

Dd ¼def f f A F t j jað f Þjb 1; jbð f Þjb 1g " F t:

We note that the action of S3 on B [cf. (i)] induces a transitive action
on the set [of subsets of F t] fDdgd AB. Then we have

F t ¼
[

d AB

Dd:

(iii) For any e A Rb0, we have

2&2 ! J0yðaÞ ! J1yðaÞ ! J01ðaÞamaxf26þe ! JðaÞ; 1g

a 29þe ! J0yðaÞ ! J1yðaÞ ! J01ðaÞ:

(iv) Suppose that j ! j is nonarchimedean, i.e., that for any x A F , it holds that
jxþ 1jamaxfjxj; 1g. [Thus, for any x A F such that jxj < 1, it holds
that jxþ 1j ¼ 1.] Then we have

maxfJðaÞ; 1g ¼ J0yðaÞ ! J1yðaÞ ! J01ðaÞ:

Proof. First, we consider assertion (i). To verify assertion (i), it su‰ces to
show that B ¼ B 0. [Indeed, it follows from this equality thataB ¼ 6. Thus, to
verify that f is bijective, it su‰ces to show that f is surjective. But this surjec-
tivity follows immediately from the equality B ¼ B 0 and the various definitions
involved.] The inclusion B 0 " B follows immediately from the various definitions
involved. Thus, it su‰ces to verify the inclusion B " B 0. First, we observe that
A is the [disjoint] union of the following sets:

A0y ¼def fz; z&1g; A1y ¼def f1& z; ð1& zÞ&1g; A01 ¼def fz ! ðz& 1Þ&1; ðz& 1Þ ! z&1g:
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Let d A B. Note that [as is easily verified] d B fA0y;A1y;A01g. Thus, we may
write

d ¼ fa; bg

—where the pair ða; bÞ satisfies precisely one of the following three conditions:

ð1Þ a A A0y; b A A1y; ð2Þ a A A1y; b A A01; ð3Þ a A A01; b A A0y:

On the other hand, in each of these three cases, one verifies immediately that the
condition

A ¼ fa; a&1; b; b&1;&ab;&ðabÞ&1g

implies that there are precisely two possibilities for d, and, moreover, that these
two possibilities are A B 0, as desired. This completes the proof of assertion (i).

Next, we consider assertion (ii). Assertion (ii) follows immediately from the
following claim:

Claim 1.6A: For f A F t, d A B, write dð f Þ ¼def fðdÞð f Þ. Suppose that it
holds that

jdð f Þj ¼ max
e AB

fjeð f Þjg:

Then we have f A Dd.

Let us verify Claim 1.6A. Write d ¼ fa; bg. Suppose that f B Dd. Then we
may assume without loss of generality that jað f Þj < 1. Thus, we have

jdð f Þj ¼ jað f Þj ! jbð f Þj < jbð f Þj:

On the other hand, since we have jbð f Þj A feð f Þge AB [cf. the latter portion of
assertion (i), i.e., the fact that f is a bijection], we obtain a contradiction.
Therefore, we conclude that f A Dd. This completes the verification of Claim
1.6A, hence also of assertion (ii).

Next, we consider assertions (iii) and (iv). First, we observe that, in asser-
tion (iii), we may assume without loss of generality, that e ¼ 0. Write

D ¼def Df1&z; z!ðz&1Þ&1g ¼ f f A F t j j f jb j f & 1jb 1g " F t:

Then we observe that

F t ¼
[

s AS3

ðs !DÞ

[cf. assertion (ii)], and that for a A F t, s A S3, we have

J0yðaÞ ! J1yðaÞ ! J01ðaÞ ¼ J0yðs ! aÞ ! J1yðs ! aÞ ! J01ðs ! aÞ;

JðaÞ ¼ Jðs ! aÞ

[cf. the fact discussed in the proof of Lemma 1.3, (i); Definition 1.4; the equality
‘‘A ¼ S3 ! z’’ discussed in assertion (i); the manifest invariance of JðaÞ with
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respect to the transformations a 7! 1& a, a 7! a&1, which correspond to a pair
of generators of S3]. Thus, to verify assertions (iii) and (iv), we may assume
without loss of generality that a A D. Then observe that J0yðaÞ ¼ jajb 1,
J1yðaÞ ¼ ja& 1jb 1, J01ðaÞ ¼ jaj ! ja& 1j&1 b 1, hence that

J0yðaÞ ! J1yðaÞ ! J01ðaÞ ¼ jaj2 ðb 1Þ:

Now let us verify assertion (iii). The inequality

J0yðaÞ ! J1yðaÞ ! J01ðaÞa 22 !maxf26 ! JðaÞ; 1g

follows immediately from Lemma 1.5. On the other hand, the inequality

maxf26 ! JðaÞ; 1ga 29 ! J0yðaÞ ! J1yðaÞ ! J01ðaÞ

follows immediately from the following computation:

JðaÞ ¼ jaða& 1Þ þ 1j3 ! jaj&2 ! ja& 1j&2

a 23 ! jaj&2 ! ja& 1j&2 !maxfjaj3 ! ja& 1j3; 1g

¼ 23 ! jaj ! ja& 1ja 23 ! jaj2 ¼ 23 ! J0yðaÞ ! J1yðaÞ ! J01ðaÞ:

—where we apply the easily verified fact that jxþ 1j3 a 23 !maxfjxj3; 1g for
x A F . This completes the proof of assertion (iii).

Finally, let us verify assertion (iv). First, observe that it follows immedi-
ately from our assumption that j ! j is nonarchimedean that

D ¼ f f A F t j j f j ¼ j f & 1jg:

Suppose that jaj ¼ ja& 1j ¼ 1 (respectively, jaj ¼ ja& 1j > 1). Then we have

JðaÞ ¼ jaða& 1Þ þ 1j3 a ðmaxfjaj ! ja& 1j; 1gÞ3 ¼ 1 ¼ jaj2

ðrespectively; JðaÞ ¼ jaða& 1Þ þ 1j3 ! jaj&4 ¼ jaj6 ! jaj&4 ¼ jaj2Þ:

Thus, we conclude that

maxfJðaÞ; 1g ¼ jaj2 ¼ J0yðaÞ ! J1yðaÞ ! J01ðaÞ;

as desired. This completes the proof of assertion (iv). r

Definition 1.7. Let Q be an algebraic closure of Q, F " Q a number field,
E an elliptic curve over F . Recall that E is isomorphic over Q to the elliptic
curve defined by an equation

y2 ¼ xðx& 1Þðx& lÞ

—where l A Qt
[cf. [24], Chapter III, Proposition 1.7, (a)]. Recall further that

the j-invariant jðEÞ of E satisfies

jðEÞ ¼ 28
ðl2 & lþ 1Þ3

l2ðl& 1Þ2
ðA F Þ
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[cf. [24], Chapter III, Proposition 1.7, (b)], and that the symmetric group on
3 letters S3 admits a natural faithful action on the projective line P1

Q over

Q, hence also on the set of Q-rational points ðP1
Qnf0; 1;ygÞðQÞ !@ Qt

. Fork A fnon; arcg, we shall write

hS-tork ðEÞ ¼def
X

s AS3

h tork ðs ! lÞ;

hS-torðEÞ ¼def hS-tor
non ðEÞ þ hS-tor

arc ðEÞ

[cf. Remark 1.1.1] and refer to hS-torðEÞ as the symmetrized toric height of E.
We shall also write hS-tor

} ðEÞ for hS-torðEÞ. One verifies easily that hS-tor
non ðEÞ,

hS-tor
arc ðEÞ, hS-torðEÞ do not depend on the choice of ‘‘l’’ [cf. the proof of [24],

Chapter III, Proposition 1.7, (c)].

Remark 1.7.1. One verifies easily [cf. Remark 1.1.1] that for k A
fnon; arc;}g, the quantity hS-tork ðEÞ is una¤ected by passage to a finite extension
of the base field F of E.

Remark 1.7.2. It follows immediately from Lemma 1.3, (i), that for k A
fnon; arc;}g, we have

hS-tork ðEÞ ¼
X

s AS3

hkðs ! lÞ:

Proposition 1.8 (Comparison between hS-tork ðEÞ and hkð jðEÞÞ). In the nota-
tion of Definition 1.7, the following hold:

(i) 0a hS-tor
non ðEÞ & hnonð jðEÞÞa 8 log 2.

(ii) &11 log 2a hS-tor
arc ðEÞ & harcð jðEÞÞa 2 log 2.

Proof. If v A VðFÞ, then it is well-known that k ! kv satisfies the condi-
tions (i), (ii), and (iii) of Definition 1.4, and, moreover, that, if v A VðFÞnon, then
k ! kv is nonarchimedean in the sense of Lemma 1.6, (iv). Observe that, in the
remainder of the proof, we may assume without loss of generality that, in the
situation of Definition 1.7, l A F t [cf. Remark 1.7.1]. In the following, for
v A VðFÞ, we shall write JðlÞv, J0yðlÞv, J1yðlÞv, J01ðlÞv for the ‘‘JðaÞ’’, ‘‘J0yðaÞ’’,
‘‘J1yðaÞ’’, ‘‘J01ðaÞ’’ of Definition 1.4, where we take

( ‘‘F ’’ to be F ;
( ‘‘a’’ to be l;
( ‘‘j ! j’’ to be k ! kv.

Here, we observe that, for k A fnon; arcg, we have

hS-tork ðEÞ ¼ 2 ! h tork ðlÞ þ 2 ! h tork ð1& lÞ þ 2 ! h tork ðl ! ðl& 1Þ&1Þ

[cf. Lemma 1.3, (i); the set ‘‘A’’ of Lemma 1.6, (i)].
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First, we consider assertion (i). It follows from Lemma 1.6, (iv), that

½F : Q+ ! hS-tor
non ðEÞ ¼

X

v AVðFÞnon
½Fv : Qpv + ! logðJ0yðlÞv ! J1yðlÞv ! J01ðlÞvÞ

¼
X

v AVðFÞnon
½Fv : Qpv + ! log maxfJðlÞv; 1g:

Thus, to verify assertion (i), it su‰ces to show that, for every v A VðFÞnon lying
over 2, it holds that

0a log maxfJðlÞv; 1g& log maxf2&8 ! JðlÞv; 1ga 8 log 2

[cf. the equality 2&8 ! JðlÞv ¼ k jðEÞkv]. The first inequality follows immediately
from the inequality JðlÞv b 2&8 ! JðlÞv. Next, we verify the second inequality.
If JðlÞv a 1, then

log maxfJðlÞv; 1g& log maxf2&8 ! JðlÞv; 1g ¼ 0& 0a 8 log 2:

Thus, we may assume that JðlÞv > 1, hence that maxfJðlÞv; 1g ¼ JðlÞv. In par-
ticular, if 2&8 ! JðlÞv > 1 (respectively, 2&8 ! JðlÞv a 1), then we have

log JðlÞv & log maxf2&8 ! JðlÞv; 1g ¼ &logð2&8Þ ¼ 8 log 2

(respectively,

log JðlÞv & log maxf2&8 ! JðlÞv; 1g ¼ log JðlÞv a 8 log 2Þ:

This completes the verification of the second inequality, hence also of assertion
(i).

Next, we consider assertion (ii). Observe that

½F : Q+ ! hS-tor
arc ðEÞ ¼

X

v AVðFÞ arc
½Fv : R+ ! logðJ0yðlÞv ! J1yðlÞv ! J01ðlÞvÞ:

Assertion (ii) then follows immediately from Lemma 1.6, (iii)—where we take the
‘‘e’’ of Lemma 1.6, (iii), to be 2 [cf. the equality 28 ! JðlÞv ¼ k jðEÞkv]. r

Proposition 1.9 (Comparison between hnonð jðEÞÞ and harcð jðEÞÞ). In the
notation of Definition 1.7, suppose that QðlÞ is mono-complex. [Here, note that
the fact that QðlÞ is mono-complex does not depend on the choice of ‘‘l’’ [cf. the
set ‘‘A’’ of Lemma 1.6, (i)].] Then the following hold:

(i) hS-tor
arc ðEÞa hS-tor

non ðEÞ.
(ii) harcð jðEÞÞa hnonð jðEÞÞ þ 19 log 2.
(iii) If C A R, then the element jðEÞ A Q is completely determined up to a

finite number of possibilities by the condition hnonð&ÞaC.

Proof. Assertion (i) follows immediately from Lemma 1.3, (iii), and the
various definitions involved. Assertion (ii) follows from assertion (i) and Prop-
osition 1.8, (i), (ii). Finally, we consider assertion (iii). It follows from assertion
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(ii) [cf. also Definition 1.1, (i)] that

hð jðEÞÞ ¼ hnonð jðEÞÞ þ harcð jðEÞÞa 2hnonð jðEÞÞ þ 19 log 2:

Thus, assertion (iii) follows immediately from Northcott’s theorem, i.e., the well-
known fact that the set of algebraic numbers of bounded degree and bounded
height is finite [cf. [3], Theorem 1.6.8]. r

Proposition 1.10 (Comparison between hð jðEÞÞ and hFalðEÞ, I). Let F be
a number field; E an elliptic curve over F that has semi-stable reduction over OF .
Then, in the notation of Definitions 1.1, (i); 1.7 [cf. also the discussion entitled
‘‘Curves’’ in §0], we have

0a
1

12
! hð jðEÞÞ & hFalðEÞa 1

2
! logð1þ hð jðEÞÞÞ þ 2:071:

Proof. This follows immediately from [10], Proposition 3.1 [and the sur-
rounding discussion]. r

Remark 1.10.1. In the notation of Proposition 1.10, we observe that
(a) the normalized degree [cf. [19], Definition 1.9, (i)] of the [e¤ective] arith-

metic divisor determined by the q-parameters of E at the elements of
VðFÞnon

coincides with
(b) hnonð jðEÞÞ.

Indeed, this follows immediately from [24], Chapter VII, Proposition 5.5; the
discussion at the beginning of [25], Chapter V, §5. Moreover, we observe that
both (a) and (b) are una¤ected by passing to finite extensions of the number field
F [cf. [15], Remark 3.3.1]. In particular, the assumption [cf. the statement of
Proposition 1.10] that E has semi-stable reduction over OF is, in fact, inessential.

Lemma 1.11 (Linearization of logarithms). Let a A R>0 be a positive real
number. Then we have

0a a& logðaÞ & 1:

In particular, [by taking ‘‘a’’ to be a ! ð1þ xÞ] we have

logð1þ xÞ & a ! xa a& logðaÞ & 1

for all nonnegative real x A Rb0.

Proof. Lemma 1.11 is well-known and entirely elementary. r

Proposition 1.12 (Comparison between hð jðEÞÞ and hFalðEÞ, II). Let
x A R>0 be a positive real number. Write

CðxÞ ¼def 1
2
! x

6ð1þ xÞ & log
x

6ð1þ xÞ & 1

$ %
þ 2:071:
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Then, in the notation of Proposition 1.10, we have

1

12ð1þ xÞ
! hð jðEÞÞ & hFalðEÞaCðxÞ:

Proof. Indeed, we have

1

12ð1þ xÞ ! hð jðEÞÞ & hFalðEÞ

¼ 1

12
! hð jðEÞÞ & hFalðEÞ

$ %
& x

12ð1þ xÞ
! hð jðEÞÞ

a
1

2
! logð1þ hð jðEÞÞÞ & x

6ð1þ xÞ
! hð jðEÞÞ

$ %
þ 2:071aCðxÞ

—where the first (respectively, second) inequality follows from Proposition 1.10

(respectively, Lemma 1.11, where we take ‘‘a’’ to be
x

6ð1þ xÞ
and ‘‘x’’ to be

hð jðEÞÞ). r

Definition 1.13. Let ka 1 be a positive real number; S a finite subset
of VðQÞ such that VðQÞarc " S. Write S " VðQÞ for the inverse image of
S " VðQÞ via the natural restriction map VðQÞ !! VðQÞ. Recall the set of
rational functions ‘‘A’’ of Lemma 1.6, (i). Then we shall write

KSðkÞ ¼def x A Qt
((((min
w AS

min
a AA

fkaðxÞkwgb k

$ %
" Qt

[cf. the discussion entitled ‘‘Numbers’’ in §0] and refer to KSðkÞ as a compactly
bounded subset of Qt

. Thus, the subset KSðkÞ " Qt
is stabilized by the natural

action of S3 on Qt
[cf. Lemma 1.6, (i)].

Corollary 1.14 (Upper bounds for hnonð jðEÞÞ). In the notation of Proposi-
tion 1.12, let l be a prime number. Suppose that E admits an l-cyclic subgroup
scheme [cf. [15], Lemma 3.5], and that l is prime to the local heights [cf. [15],
Definition 3.3] of E at each of its places of [bad ] multiplicative reduction [a
condition that is satisfied, for instance, if l is > these local heights]. Then the
following hold:

(i) We have

l

12ð1þ xÞ ! hnonð jðEÞÞa hFalðEÞ þ 1

2
logðlÞ þ CðxÞ:

In particular, by applying the first inequality of Proposition 1.10, we
obtain that

l & ð1þ xÞ
12ð1þ xÞ

! hnonð jðEÞÞa
1

12
! harcð jðEÞÞ þ

1

2
logðlÞ þ CðxÞ:
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(ii) In the notation of Definitions 1.7, 1.13, suppose that

l A KSðkÞ:

[Note that the issue of whether or not l A KSðkÞ does not depend on the
choice of the particular element ‘‘l’’ within the S3-orbit of ‘‘l’’ [cf. the
final portion of Definition 1.13].] Then we have

l & ð1þ xÞ
12ð1þ xÞ

! hnonð jðEÞÞa
1

2
logðlÞ þ CðxÞ & 1

4
logðkÞ þ 11

12
logð2Þ:

Suppose, moreover, that lb 1015. Then, by taking x to be 1, we obtain
that

hnonð jðEÞÞa
24

l & 2

1

2
logðlÞ þ Cð1Þ & 1

4
logðkÞ þ 11

12
logð2Þ

$ %

a
24

l & 2

1

2
logðlÞ þ 2:86& 1

4
logðkÞ þ 0:64

$ %

a 5 ! 10&13 & 6:01 ! 10&15 logðkÞ

—where we apply the estimates
logðlÞ
l & 2

a3:46 ! 10&14,
6

l & 2
a6:01 ! 10&15,

11

12
logð2Þa 0:64, and Cð1Þa 2:86.

(iii) Suppose that QðlÞ is mono-complex. Then we have

l & 2ð1þ xÞ
12ð1þ xÞ

! hnonð jðEÞÞa
1

2
logðlÞ þ CðxÞ þ 19

12
logð2Þ:

Suppose, moreover, that lb 1015. Then, by taking x to be 1, we obtain
that

hnonð jðEÞÞa
24

l & 4

1

2
logðlÞ þ Cð1Þ þ 19

12
logð2Þ

$ %

a
24

l & 4

1

2
logðlÞ þ 2:86þ 1:1

$ %

a 4:16 ! 10&13 þ 0:96 ! 10&13 ¼ 5:12 ! 10&13

—where we apply the estimates
logðlÞ
l & 4

a3:46 ! 10&14,
24

l & 4
a2:41 ! 10&14,

19

12
logð2Þa 1:1, and Cð1Þa 2:86.

Proof. First, we consider assertion (i). Let H " E be an l-cyclic subgroup
scheme. Write EH ¼def E=H. [In particular, EH is isogenous to E, hence has
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semi-stable reduction at all v A VðFÞnon.] Thus, by applying the same arguments
as those applied in the proof of [15], Lemma 3.5, we obtain the following
equality:

hnonð jðEHÞÞ ¼ l ! hnonð jðEÞÞ

[cf. also Remark 1.10.1]. On the other hand, it follows from the discussion
entitled ‘‘Curves’’ in §0; [5], Lemma 5, that we have the following inequality:

hFalðEHÞa hFalðEÞ þ 1

2
logðlÞ:

In light of the above equality and inequality, assertion (i) follows from Proposi-
tion 1.12.

Next, we consider assertion (ii). Note that, since l A KSðkÞ, for each v A
VðQðlÞÞarc, we have:

maxfklkv; klk
&1
v ga k&1; maxfkl& 1kv; kl& 1k&1

v ga k&1;

maxfkl& 1kv ! klk
&1
v ; klkv ! kl& 1k&1

v ga k&1:

Thus, we conclude from Proposition 1.8, (ii), that

harcð jðEÞÞ & 11 logð2Þa hS-tor
arc ðEÞ

a
1

½QðlÞ : Q+
X

v AVðQðlÞÞ arc
½QðlÞv : R+ ! logðk&3Þ

¼ logðk&3Þ:

Assertion (ii) then follows immediately from the second inequality of assertion (i).
Finally, assertion (iii) follows immediately from the second inequality of assertion
(i) and Proposition 1.9, (ii). r

2. Auxiliary numerical results

In the present section, we recall
( a numerical result concerning the j-invariants of certain special elliptic
curves over fields of characteristic zero;

( certain e¤ective versions of the prime number theorem.
These results will be applied in §5.

Proposition 2.1 ( j-invariants of arithmetic elliptic curves). Let F be a field
of characteristic zero; E an elliptic curve over F . Suppose that the hyperbolic
curve obtained by removing the origin from E is ‘‘arithmetic’’, i.e., fails to admit an
F-core [cf. [13], Remark 2.1.1]. Then the j-invariant jðEÞ of E coincides with one
of the following:
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(
488095744

125
¼ 214 ! 313 ! 5&3,

(
1556068

81
¼ 22 ! 733 ! 3&4,

( 1728 ¼ 26 ! 33,
( 0.

Proof. Proposition 2.1 follows immediately from [23], Table 4 [cf. also [23],
Lemma 1.1.1; [13], Proposition 2.7]. r

Proposition 2.2 (E¤ective versions of the prime number theorem). For
x A Rb2, write

pðxÞ ¼defafp A Primes j pa xg;

yðxÞ ¼def
X

p APrimes;pax

logðpÞ:

Set

hprm ¼def 5 ! 1020; xprm ¼def 1015:

Then the following hold:
(i) For any real number xb hprm, it holds that

pðxÞa 1:022 ! x

logðxÞ
[cf. [19], Proposition 1.6].

(ii) For any real number xb xprm, it holds that

jyðxÞ & xja 0:00071 ! x:

In particular, if A is a finite subset of Primes, and we write

yA ¼def
X

p AA

logðpÞ

[where we take the sum to be 0 if A ¼ j], then there exists a prime
number p B A such that

pa ð1& 0:00071Þ&1 ! ðyA þ xprmÞa 1:00072 ! ðyA þ xprmÞ

[cf. [19], Proposition 2.1, (ii)].

Proof. First, we consider assertion (i). Observe that logðxÞb logðhprmÞb

47:66b
1:17

0:0246
. Thus, it holds that

pðxÞa x

logðxÞ & 1& 1:17

logðxÞ

a
x

logðxÞ & 1:0246
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[cf. [1], Corollary 3.4; [2]]. Therefore, we conclude that

1:022 ! x

logðxÞ
b

x

logðxÞ & 1:0246
b pðxÞ:

Next, we consider assertion (ii). Observe that logðxÞb logðxprmÞb 34:53. Then

since
0:0242269

logðxÞ a 0:00071, assertion (ii) follows immediately from [22], Theorem
7. r

3. m6-theory for [14]

In the present section, we introduce a slightly modified version of the notion
of an étale theta function of standard type [cf. Definitions 3.3, 3.5], a notion which
plays a central role in the theory developed in [14]. We then proceed to discuss
how the adoption of such a modified version of the notion of an étale theta
function of standard type a¤ects the theory developed in [14].

We begin with certain elementary observations concerning roots of unity and
theta functions.

Lemma 3.1 (Group actions on primitive roots of unity). Let nb 2 be an
even integer; k an algebraically closed field of characteristic zero. Write m,

2n " k,

for the set of primitive 2n-th roots of unity in k; Autðm,
2nÞ for the group of

automorphisms of the set m,
2n; G& " Autðm,

2nÞ (respectively, G& " Autðm,
2nÞ) for

the subgroup of cardinality two generated by the automorphism of m,
2n defined as

follows: Ez A m,
2n,

z 7! &z ðrespectively; z 7! z&1Þ:

[Note that since n is even, it follows that &z A m,
2n.] Then the following conditions

are equivalent:
(1) n A f2; 4; 6g.
(2) The action of G& , G& on m,

2n is transitive.

Proof. The fact that ð1Þ ) ð2Þ is immediate from the definitions. Thus,
it remains to verify that ð2Þ ) ð1Þ. First, we observe that the transitivity of
the action of the group G& , G& [whose cardinality is four] on m,

2n implies that
aðm,

2nÞa 4. In light of this observation, one verifies easily that

n A f1; 2; 3; 4; 5; 6g:

Since n is even, we thus conclude that n A f2; 4; 6g. This completes the proof of
Lemma 3.1. r

Proposition 3.2 (Theta values at primitive 12-th roots of unity). In the
notation of [14], Proposition 1.4: Suppose that €KK contains a primitive 12-th root
of unity z12. Thus, we note that the set of primitive 12-th roots of unity in €KK
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coincides with the set

fz12; z512; z
7
12; z

11
12g " €KK :

Recall the theta function €YY of [14], Proposition 1.4,

€YYðUÞ ¼ q
&1=8
X !

X

n AZ
ð&1Þn ! qð1=2Þðnþ1=2Þ2

X ! €UU 2nþ1;

which satisfies the relations €YYð €UUÞ ¼ &€YYð €UU&1Þ ¼ &€YYð& €UUÞ [cf. [14], Proposition
1.4, (ii)]. Then the following hold:

(i) We have

€YYðz12Þ; €YYðz512Þ; €YYðz712Þ; €YYðz1112Þ A f€YYðz12Þ;&€YYðz12Þg:

(ii) We have €YYðz12Þ A O,
€KK
.

Proof. Assertion (i) follows immediately from Lemma 3.1 and [14], Prop-
osition 1.4, (ii). Assertion (ii) follows immediately from the fact that z12 & z&1

12 A
O,

€KK
[cf. the equality &ðz12 & z&1

12 Þ
2 ¼ 1]. r

Remark 3.2.1. Lemma 3.1 and Proposition 3.2 arose from observations due
to Porowski. These observations are, in some sense, the starting point of the
theory developed in the present paper.

In the remainder of the present §3, we consider a slightly modified version of
[14] based on ‘‘étale theta functions of m6-standard type’’.

Definition 3.3. In the notation of [14], Definition 1.9, suppose that K
contains a primitive 12-th root of unity. Note that the primitive 12-th roots of
unity in K determine precisely four 12-torsion points

ft1; t2; t3; t4g

of [the underlying elliptic curve of ] _XX whose restriction to the special fiber lies in
the interior of [i.e., avoids the nodes of ] the unique irreducible component of the
special fiber.

(i) We shall refer to either of the following four sets of values [cf. [14],
Proposition 1.4, (iii)] of €hhY;Z

€hhY;Zjt1 ; €hh
Y;Zjt2 ; €hh

Y;Zjt3 ; €hh
Y;Zjt4 " K,

as a m6-standard set of values of €hhY;Z.
(ii) If €hhY;Z satisfies the property that the unique value A K, [cf. Proposi-

tion 3.2, (i); Remark 4.2.3, (vi); [17], Remark 2.5.1, (ii)] of maximal order
[i.e., relative to the valuation on K ] of some m6-standard set of values
of €hhY;Z is equal to G1, then we shall say that €hhY;Z is of m6-standard
type.
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Remark 3.3.1. By applying Definition 4.3, together with a similar argument
to the argument applied in the proof of [14], Theorem 1.10, one may prove a
‘‘m6-version’’ of [14], Theorem 1.10, i.e., the assertion obtained by replacing, in
[14], Theorem 1.10, (iii),

‘‘odd’’ ! ‘‘arbitrary’’

[cf. Proposition 3.2, (ii); [19], Remark 1.10.6, (ii)]. Note that, in the notation of
[14], Theorem 1.10,

the dual graphs of the special fibers of the various coverings of Ca, Cb are
somewhat more complicated in the case where p A f2; 3g.

On the other hand, since one may still reconstruct the dual graphs group-
theoretically, this will not a¤ect the proof of the m6-version of [14], Theorem 1.10,
in any significant way.

Definition 3.4. Let lb 1 be an integer coprime to 6. In the notation of
[14], §1, suppose that

( the residue characteristic of K is arbitrary;
( K ¼ €KK ;
( K contains a primitive 12-th root of unity z12

[cf. [14], Definition 1.7, and the preceding discussion; [14], Definition 2.5].
(i) Suppose, in the situation of [14], Definitions 2.1, 2.3, that the quotient

P
ell
X !! Q factors through the natural quotient PX !! Z determined by

the quotient P tp
X !! Z discussed at the beginning of [14], §1, and that the

choice of a splitting of Dx ! GK [cf. [14], Proposition 2.2, (ii)] that deter-
mined the covering X log ! X log is compatible with the ‘‘fG1g-structure’’
of the m6-version of Theorem 1.10, (iii), of Remark 3.3.1. Then we
shall say that the orbicurve of type ð1; l-torsÞ (respectively, ð1; l-torsYÞ;
ð1; l-torsÞG; ð1; l-torsYÞG) under consideration is of type ð1;Z=lZÞ (respec-
tively, ð1; ðZ=lZÞYÞ; ð1;Z=lZÞG; ð1; ðZ=lZÞYÞG).

(ii) In the notation of the above discussion and the discussion at the end
of [14], §1, we shall refer to a smooth log orbicurve isomorphic to the
smooth log orbicurve

_XX
log ðrespectively; _XX

log
; _CC

log
; _CC

logÞ

obtained by taking the composite of the covering

X log ðrespectively; X log; C log; C logÞ

of C log with the covering _CC log ! C log, as being of type ð1; m2 , Z=lZÞ
(respectively, ð1; m2 , ðZ=lZÞYÞ; ð1; m2 , Z=lZÞG; ð1; m2 , ðZ=lZÞYÞG).

Remark 3.4.1. In the ‘‘m6-version’’ of [14], Remark 2.5.1, the portion con-
cerning ‘‘ _CC ’’ should be eliminated.
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Definition 3.5. In the notation of Definition 3.3 and the discussion pre-
ceding of [14], Definition 2.7, if €hhY;Z is of m6-standard type, then we shall also
refer to €hhY; l!Z, €hhY; l!Z, €hhY; l!Z,m2 , €hhY; l!Z,m2 , €hhY;Z,m2 as being of m6-standard type.

Remark 3.5.1. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1], the exposition of [14], §1, §2, goes through without essential change under
the assumptions stated in the first paragraph of Definition 3.4, with the following
exception: In the ‘‘m6-versions’’ of [14], Proposition 2.12; [14], Remark 2.12.1,
the portions concerning the hyperbolic orbicurves whose notation contains a ‘‘_’’
[i.e., a single ‘‘overline dot’’] should be eliminated.

Remark 3.5.2. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1, 3.5.1], the exposition of [14], §3, §4, goes through without essential change
under the assumptions stated in the first paragraph of Definition 3.4, with the
following exception: In the ‘‘m6-version’’ of [14], Example 3.9, the portions
concerning the hyperbolic orbicurves whose notation contains a ‘‘_’’ [i.e., a single
‘‘overline dot’’] should be eliminated.

Remark 3.5.3. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1, 3.5.1, 3.5.2], the exposition of [14], §5, goes through without essential change
under the assumptions stated in the first paragraph of Definition 3.4, with the fol-
lowing exceptions:

(i) Throughout the ‘‘m6-version’’ of [14], §5, the portions concerning the
hyperbolic orbicurves whose notation contains a ‘‘_’’ [i.e., a single ‘‘overline dot’’]
should be eliminated.

(ii) In the ‘‘m6-version’’ of the statement and proof of [14], Proposition 5.3,
as well as the preceding discussion, the notation ‘‘ €YY’’ should be replaced by
‘‘Y’’.

(iii) In the ‘‘m6-version’’ of [14], Theorem 5.7, as well as the ‘‘m6-version’’ of
the remainder of [14], §5, the following modification should be made:

‘‘€YYð
ffiffiffiffiffiffiffi
&1

p
Þ&1 ! €YY’’ ! ‘‘€YYðz12Þ&1 ! €YY’’.

4. m6-theory for [16], [17], [18]

In the present section, we introduce a slightly modified version of the notion
of initial Y-data [cf. Definition 4.1], a notion which plays a central role in
the theory developed in [16], [17], [18], [19]. We then proceed to discuss how the
adoption of such a modified version of the notion of initial Y-data a¤ects the
theory developed in [16], [17], [18].

Definition 4.1. We shall refer to as m6-initial Y-data any collection of data

ðF=F ;XF ; l;CK ;V;Vbad
mod; eÞ

satisfying the following conditions:
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( [16], Definition 3.1, (a), (c), (d);
( The ‘‘m6-version’’ of [16], Definition 3.1, (b), i.e., the condition obtained by
replacing, in [16], Definition 3.1, (b),

‘‘odd ’’ ! ‘‘arbitrary’’;

( The ‘‘m6-versions’’ of [16], Definition 3.1, (e), (f ), i.e., the conditions ob-
tained by replacing, in [16], Definition 3.1, (e), (f ),

‘‘[14], Definition 2.5, (i)’’ ! ‘‘Definition 3.4, (i)’’

[cf. Remark 4.1.1 below].

Remark 4.1.1. In the notation of Definition 4.1, write EF for the elliptic
curve over F determined by XF [so XF " EF ]. Then since

ffiffiffiffiffiffiffi
&1

p
A F [cf. [16],

Definition 3.1, (a)], and, moreover, the 3-torsion points of EF are rational over F
[cf. [16], Definition 3.1, (b)], we conclude that F contains a primitive 12-th root
of unity z12 [cf. the conditions in the first display of Definition 3.4].

Remark 4.1.2. By applying Definitions 3.3, 3.4, 3.5, 4.1 [cf. also Remarks
3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1], the exposition of [16], §3, goes through
without essential change, with the following exceptions: In the ‘‘m6-version’’ of
[16], Example 3.2, the following modifications should be made:

( In [16], Example 3.2, (ii),

‘‘
ffiffiffiffiffiffiffi
&1

p
’’ ! ‘‘z12’’;

( In [16], Example 3.2, (iv),

‘‘
ffiffiffiffiffiffiffiffi&qv

p
’’ ! ‘‘z12

ffiffiffiffiffi
qv

p
’’;

‘‘m2lðTX
v
Þ-multiple’’ ! ‘‘m6lðTX

v
Þ-multiple’’;

‘‘m2lð&Þ-orbit’’ ! ‘‘m6lð&Þ-orbit’’.
( In [16], Example 3.2, (v),

‘‘m2lð&Þ-orbit’’ ! ‘‘m6lð&Þ-orbit’’.

Remark 4.1.3. By applying Definitions 3.3, 3.4, 3.5, 4.1 [cf. also Remarks
3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2], the exposition of [16], §4, §5, §6, goes
through without essential change, with the following exceptions: In the ‘‘m6-
version’’ of [16], Example 4.4, the following modifications should be made:

( In [16], Example 4.4, (i),

‘‘the unique torsion point of order 2’’ ! ‘‘a torsion point of order 6’’.

Thus, throughout the m6-version of [16], Example 4.4, (i)—and indeed
throughout the remainder of the ‘‘m6-version’’ of [16], [17], [18], [19]—‘‘m&’’
is to be regarded as being allowed to vary among the torsion points of
order 6 that satisfy the condition stated in the initial definition of ‘‘m&’’,
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with the following exception: In [16], Remark 5.2.3, the notation ‘‘m&’’ is
to be understood in the original ‘‘non-m6’’ sense, i.e., as the unique torsion
point of order 2 discussed in the original ‘‘non-m6’’ version of [16], Example
4.4, (i).

( In [16], Example 4.4, (i),

‘‘evaluation points’’ ! ‘‘m6l-evaluation points’’;

‘‘evaluation sections’’ ! ‘‘m6l-evaluation sections’’;

‘‘m2l-orbit’’ ! ‘‘m6l-orbit’’.

Definition 4.2. Suppose that we are in the situation of [17], Remark 1.4.1
[cf. also Remark 4.2.2 below]. Write

t A XkðkÞ

for a torsion point of order 6 whose closure in any stable model of Xk over Ok

intersects the same irreducible component of the special fiber of the stable model
as the zero cusp [cf. Remark 4.1.3]. Since k contains a primitive 12l-th root of
unity [cf. Remark 4.2.2 below], it follows from the definition of an ‘‘étale theta
function of m6-standard type’’ [cf. Definitions 3.3, (ii); 3.5] that there exists a
rational point

t €YY A €YY
k
ðkÞ

such that t €YY 7! t. Write

Dt " P tp
€YY
k

for the decomposition group of t €YY [which is well-defined up to D tp
€YY
k

-conjugacy].
We shall refer to either of the pairs

ði €YY A Autð €YY
k
Þ; t €YY Þ; ði €YY A AutðP tp

€YY
k

Þ=InnðD tp
€YY
k

Þ;DtÞ

as a m6-pointed inversion automorphism. Again, we recall from Definitions 3.3,
(ii); 3.5, that

an ‘‘étale theta function of m6-standard type’’ is defined precisely by the
condition that its restriction to Dt be a 2l-th root of unity.

Remark 4.2.1. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3], the exposition of
the Abstract and Introduction of [17] goes through without essential change, with
the following exceptions:

(i) In the ‘‘m6-version’’ of the Abstract of [17], the following modification
should be made:

‘‘2-torsion point’’ ! ‘‘6-torsion point’’.

203explicit estimates in inter-universal teichmüller theory



(ii) In the ‘‘m6-version’’ of the first display and the discussion immediately
following the first display of the Introduction of [17], the following modifications
should be made:

“
ffiffiffiffiffiffiffi
&1

p
!
X

m AZ
qð1=2Þðmþ1=2Þ2
v

 !

” ! “
ffiffiffiffiffiffiffi
&1

p
!
X

m AZ
zmþ2
3 qð1=2Þðmþ1=2Þ2

v

 !

”;

‘‘2-torsion point’’ ! ‘‘6-torsion point &z3’’;

‘‘2l-th root of unity’’ ! ‘‘6l-th root of unity’’.

(iii) In the ‘‘m6-version’’ of the paragraph of the Introduction of [17] that
begins ‘‘Constant multiple rigidity’’, the following modifications should be
made:

‘‘[2-]torsion point’’ ! ‘‘[6-]torsion point’’;

‘‘2l-th roots of unity’’ ! ‘‘6l-th roots of unity’’.

Remark 4.2.2. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3], the exposition of
[17], §1, goes through without essential change, with the following exceptions:

(i) In the ‘‘m6-version’’ of the discussion preceding [17], Definition 1.1, the
following modifications should be made:

‘‘odd prime number’’ ! ‘‘prime numberb 5’’;

‘‘of odd residue’’ ! ‘‘of arbitrary residue’’;

‘‘4l-th root’’ ! ‘‘12l-th root’’.

(ii) In the ‘‘m6-version’’ of [17], Remark 1.12.2, (ii), the following modifi-
cations should be made:

‘‘the 2-torsion point ‘‘m&’’ of [16], Example 4.4, (i)’’

! ‘‘a 6-torsion point ‘‘t’’ as in Definition 4.2’’;

‘‘the 2-torsion point ‘‘m&’’ are reconstructed’’

! ‘‘6-torsion points ‘‘t’’ are reconstructed’’.

(iii) In the ‘‘m6-version’’ of [17], Remark 1.12.2, (iii), the following modi-
fication should be made:

‘‘where we recall that . . . is assumed to be’’

! ‘‘where we assume, for simplicity, that . . . is’’.

(iv) In the ‘‘m6-version’’ of [17], Remark 1.12.4, the following modification
should be made:

‘‘the point ‘‘m&’’ ’’ ! ‘‘6-torsion points ‘‘t’’ ’’.
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Remark 4.2.3. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2], the exposition
of [17], §2, goes through without essential change, with the following exceptions:

(i) In the ‘‘m6-version’’ of [17], Corollary 2.4, (ii), (b), the following modifi-
cations should be made:

‘‘Dd
m&
’’ ! ‘‘Dd

t ’’;

‘‘the torsion point ‘‘m&’’ of Remark 1.4.1, (i), (ii)’’

! ‘‘some torsion point ‘‘t’’ as in Definition 4.2’’.

(ii) In the ‘‘m6-version’’ of [17], Corollary 2.4, (ii), (c), the following mod-
ifications should be made:

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’;

‘‘[16], Example 4.4, (i)’’ ! ‘‘Remark 4.1.3’’;

‘‘m&-translate’’ ! ‘‘t-translate’’.

(iii) In the ‘‘m6-version’’ of [17], Corollary 2.5, (ii), the following modifica-
tions should be made:

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’;

‘‘yield m2l-,’’ ! ‘‘yield m6l-,’’.

(iv) In the ‘‘m6-version’’ of [17], Corollary 2.5, (iii), the following modifi-
cation should be made:

‘‘m2l ’’ ! ‘‘m6l ’’.

(v) In the ‘‘m6-version’’ of [17], Remark 2.5.1, (i), the following modification
should be made:

‘‘m2l ’’ ! ‘‘m6l ’’.

(vi) In the ‘‘m6-version’’ of [17], Remark 2.5.1, (ii), the following modification
should be made:

‘‘G
ffiffiffiffiffiffiffi
&1

p
’’ ! ‘‘GzG1

12 ’’.

(vii) In the ‘‘m6-version’’ of [17], Remark 2.5.1, (iii), the following modifi-
cation should be made:

‘‘m2l-orbit’’ ! ‘‘m6l-orbit’’.

(viii) In the ‘‘m6-version’’ of [17], Remark 2.5.2, (i), the following modifi-
cation should be made:

‘‘Dg1
t;m&

’’ ! ‘‘Dg1
t; t’’.

(ix) In the ‘‘m6-version’’ of [17], Corollary 2.6, (ii), the following modifica-
tions should be made:
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‘‘m2l ’’ ! ‘‘m6l ’’;

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’.

(x) In the ‘‘m6-version’’ of [17], Remark 2.6.3, (i), the following modification
should be made:

‘‘m&-translates’’ ! ‘‘t-translates’’.

(xi) In the ‘‘m6-version’’ of [17], Corollary 2.8, (i), the following modifications
should be made:

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’;

‘‘yield m2l-,’’ ! ‘‘yield m6l-,’’.

(xii) In the ‘‘m6-version’’ of [17], Corollary 2.8, (ii), the following modifi-
cation should be made:

‘‘m2l ’’ ! ‘‘m6l ’’.

(xiii) In the ‘‘m6-version’’ of [17], Corollary 2.9, (i), the following modifi-
cations should be made:

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’;

‘‘yield m2l-,’’ ! ‘‘yield m6l-,’’.

(xiv) In the ‘‘m6-version’’ of [17], Corollary 2.9, (ii), the following modifi-
cation should be made:

‘‘m2l ’’ ! ‘‘m6l ’’.

Remark 4.2.4. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2, 4.2.3], the
exposition of [17], §3, goes through without essential change, with the following
exceptions:

(i) In the ‘‘m6-version’’ of [17], Corollary 3.5, (i), the following modification
should be made:

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’.

(ii) In the ‘‘m6-version’’ of [17], Corollary 3.5, (ii), the following modifica-
tions should be made:

‘‘ð2lÞ l
o,
’’ ! ‘‘ð6lÞ l

o,
’’;

‘‘C2l!xðMY
' Þ’’ ! ‘‘C6l!xðMY

' Þ’’;

‘‘x2l!N’’ ! ‘‘x6l!N’’;

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’;

‘‘C2l!x1ðM
Y
' Þ ¼ C2l!x2ðM

Y
' Þ’’ ! ‘‘C6l!x1ðM

Y
' Þ ¼ C6l!x2ðM

Y
' Þ’’.
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(iii) In the ‘‘m6-version’’ of [17], Remark 3.5.1, (i), the following modification
should be made:

‘‘Dd
t;m&

’’ ! ‘‘Dd
t; t’’.

(iv) In the ‘‘m6-version’’ of [17], Corollary 3.6, (ii), the following modification
should be made:

‘‘C2l!xð&Þ’’ ! ‘‘C6l!xð&Þ’’.

(v) In the ‘‘m6-version’’ of [17], Definition 3.8, (ii), (iii), the following mod-
ifications should be made:

‘‘F2l!xðMY
' Þ’’ ! ‘‘F6l!xðMY

' Þ’’;

‘‘FF2l!xðyFv
Þ’’ ! ‘‘FF6l!xðyFv

Þ’’;

‘‘C2l!xð&Þ’’ ! ‘‘C6l!xð&Þ’’.

Remark 4.2.5. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2, 4.2.3, 4.2.4],
the exposition of [17], §4, goes through without essential change, with the fol-
lowing exceptions: In the ‘‘m6-version’’ of [17], Definition 4.9, (ii), the following
modifications should be made:

‘‘2l-torsion subgroup’’ ! ‘‘6l-torsion subgroup’’;

‘‘m2lðzAÞ’’ ! ‘‘m6lðzAÞ’’.

Remark 4.2.6. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2, 4.2.3, 4.2.4,
4.2.5], the exposition of [18], §1, §2, §3, goes through without essential change,
with the following exceptions:

(i) In the ‘‘m6-version’’ of [18], Proposition 3.5, (ii), (c), the following mod-
ification should be made:

‘‘2l-torsion subgroup’’ ! ‘‘6l-torsion subgroup’’.

(ii) In the ‘‘m6-version’’ of [18], Remark 3.11.4, (i), the following modification
should be made:

‘‘2l-th roots of unity’’ ! ‘‘6l-th roots of unity’’.

(iii) In the ‘‘m6-version’’ of [18], Fig. 3.4, the following modification should
be made:

‘‘m2l ’’ ! ‘‘m6l ’’.

5. m6-theory for [19]

In the present section, we first give explicit log-volume estimates for the
‘‘m6-version’’ of Y-pilot objects [cf. Theorem 5.1; Corollary 5.2]. [We refer to
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[19], Theorem 1.10; [19], Corollary 2.2, (ii), (iii), for the original ‘‘non-m6’’
versions of these results.] Theorem 5.1 follows directly from the modified version
of [16], [17], [18] discussed in §4 [cf. also §3], together with certain estimates from
§2, while Corollary 5.2 is obtained by combining Theorem 5.1 with the theory
of §1, §2. We then examine Corollary 5.2 in more detail in the case of mono-
complex number fields; this yields an e¤ective version of the ABC inequality over
mono-complex number fields [cf. Theorem 5.3], as well as an e¤ective version of
a conjecture of Szpiro over the field of rational numbers [cf. Theorem 5.4]. As
an application, we compute an explicit integer n0 > 0 such that for any prime
number pb n0, the Fermat equation xp þ yp ¼ z p does not have any positive
integer solutions [cf. Corollary 5.8], i.e., we give an alternative approach, via
fundamentally di¤erent techniques, to verifying an e¤ective asymptotic version of
‘‘Fermat’s Last Theorem’’, as proven in [28]. We also apply the e¤ective version
of the ABC inequality that we obtain to a generalized version of the Fermat
equation [cf. Corollary 5.9].

Theorem 5.1 (Log-volume estimates for the ‘‘m6-version’’ of Y-pilot objects).
Fix a collection of m6-initial Y-data [cf. Definition 4.1]. Suppose that we are in
the situation of the ‘‘m6-version’’ of [18], Corollary 3.12 [cf. Remark 4.2.6], and that
the elliptic curve EF has good reduction at every place A VðFÞgood \VðF Þnon that
does not divide 2 ! 3 ! 5 ! l. In the notation of Definition 4.1, let us write dmod ¼def

½Fmod : Q+, ð1aÞ emod ða dmodÞ for the maximal ramification index of Fmod [i.e., of

places A Vnon
mod] over Q, d '

mod ¼def 212 ! 33 ! 5 ! dmod, e'mod ¼def 212 ! 33 ! 5 ! emod ða d '
modÞ,

and

Fmod " Ftpd ¼def FmodðEFmod ½2+Þ " F

for the ‘‘tripodal’’ intermediate field obtained from Fmod by adjoining the fields of
definition of the 2-torsion points of any model of EF ,F F over Fmod [cf. [19],
Proposition 1.8, (ii), (iii)]. Moreover, we assume that the ð3 ! 5Þ-torsion points of
EF are defined over F , and that

F ¼ Fmodð
ffiffiffiffiffiffiffi
&1

p
;EFmod ½2 ! 3 ! 5+Þ ¼def Ftpdð

ffiffiffiffiffiffiffi
&1

p
;EFtpd ½3 ! 5+Þ

—i.e., that F is obtained from Ftpd by adjoining
ffiffiffiffiffiffiffi
&1

p
, together with the fields of

definition of the ð3 ! 5Þ-torsion points of a model EFtpd of the elliptic curve EF ,F F
over Ftpd determined by the Legendre form of the Weierstrass equation [cf., e.g.,
the statement of Corollary 5.2, below; [19], Proposition 1.8, (vi)]. [Thus, it follows
from [19], Proposition 1.8, (iv), that EF GEFtpd ,Ftpd F over F , and from Definition
4.1 that l0 5.] If Fmod " Fk " K is any intermediate extension which is Galois
over Fmod, then we shall write

dFk
ADiv A ADivRðFkÞ

for the e¤ective arithmetic divisor determined by the di¤erent ideal of Fk
over Q,

qFk
ADiv A ADivRðFkÞ
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for the e¤ective arithmetic divisor determined by the q-parameters of the elliptic
curve EF at the elements of VðFkÞbad ¼def Vbad

mod ,Vmod VðFkÞ ð0jÞ [cf. [15],
Remark 3.3.1],

fFkADiv A ADivRðFkÞ
for the e¤ective arithmetic divisor whose support coincides with SuppðqFk

ADivÞ, but all
of whose coe‰cients are equal to 1—i.e., the conductor—and

logðdFk
v Þ ¼def degVðFkÞv

ðdFk
ADivÞ A Rb0; logðdFk

vQ
Þ ¼def degVðFkÞvQ

ðdFk
ADivÞ A Rb0

logðdFkÞ ¼def degðdFk
ADivÞ A Rb0

logðqvÞ ¼def degVðFkÞv
ðqFk

ADivÞ A Rb0; logðqvQÞ ¼def degVðFkÞvQ
ðqFk

ADivÞ A Rb0

logðqÞ ¼def degðqFk
ADivÞ A Rb0

logðfFkv Þ ¼def degVðFkÞv
ðfFkADivÞ A Rb0; logðfFkvQ Þ ¼def degVðFkÞvQ

ðfFkADivÞ A Rb0

logðfFkÞ ¼def degðfFkADivÞ A Rb0

—where v A Vmod ¼def VðFmodÞ, vQ A VQ ¼ VðQÞ, VðFkÞv ¼def VðFkÞ ,Vmod fvg,
VðFkÞvQ ¼def VðFkÞ ,VQ fvQg [cf. also [19], Definition 1.9]. Here, we observe
that the various ‘‘logðqð&ÞÞ’s’’ are independent of the choice of Fk, and that
the quantity ‘‘jlogðqÞj A R>0’’ defined in the m6-version of [18], Corollary 3.12

[cf. Remark 4.2.6], is equal to
1

2l
! logðqÞ A R [cf. the definition of ‘‘q

v
’’ in [16],

Example 3.2, (iv)]. Moreover, suppose that

lb 1015:

Then one may take the constant ‘‘CY A R’’ of the m6-version of [18], Corollary 3.12
[cf. Remark 4.2.6], to be

l þ 1

4 ! jlogðqÞj
!
$

1þ 12 ! dmod

l

" #
! ðlogðdFtpdÞ þ logðfFtpdÞÞ þ 4:08803 ! e'mod ! l

& 1

6
! 1& 12

l 2

" #
! logðqÞ

%
& 1

and hence, by applying the inequality ‘‘CY b&1’’ of the m6-version of [18],
Corollary 3.12 [cf. Remark 4.2.6], conclude that

1

6
! logðqÞa 1þ 20 ! dmod

l

" #
! ðlogðdFtpdÞ þ logðfFtpdÞÞ þ 4:0881 ! e'mod ! l

a 1þ 20 ! dmod

l

" #
! ðlogðdF Þ þ logðfF ÞÞ þ 4:0881 ! e'mod ! l:

Proof. Theorem 5.1 follows by applying a similar argument to the argu-
ment applied in the proof of [19], Theorem 1.10. In the present paper, however,
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we replace some of the estimates applied in the proof of [19], Theorem 1.10, as
follows:

( We replace the estimate ‘‘
4ðl þ 5Þ
l þ 1

a
20

3
’’ appearing in the final portion of

Step (v) of the proof of [19], Theorem 1.10, by the estimate

4ðl þ 5Þ
l þ 1

¼ 4þ 16

l þ 1
a 4þ 100

l
a 4þ 10&13

—cf. our assumption that lb 1015.
( We replace the estimate ‘‘l 'mod ! logðsaÞa 4

3 ! ðe
'
mod ! l þ hprmÞ’’ appearing in

Step (viii) of the proof of [19], Theorem 1.10, by the estimate

l 'mod ! logðs
aÞa 1:022 ! e'mod ! l

—cf. Proposition 2.2, (i); our assumption that lb 1015, which implies the esti-
mate e'mod ! lb 212 ! 33 ! 5 ! 1015 b hprm ¼ 5 ! 1020.

( We replace the estimate

“
1

3
! 4
3
! e'mod ! lb 2 ! 2 ! 212 ! 3 ! 5 ! lb 2 ! logðlÞ þ 56”

appearing in Step (viii) of the proof of [19], Theorem 1.10, by the estimate

10&5 ! 1:022 ! e'mod ! lb ð10&5 ! 212 ! 32 ! 5Þ ! 3lb 3lb 2 ! logðlÞ þ 56

—where the first (respectively, second; third) inequality follows from the estimate
1:022b 1 (respectively, 212 ! 32 ! 5b 105; lbmaxf56; logðlÞg [which is a conse-
quence of our assumption that lb 1015]).

In light of these [three] modifications, together with the estimate

ð4þ 10&13 þ 10&5Þ ! 1:022a ð4þ 2 ! 10&5Þ ! 1:022a 4:08803;

we conclude that one may take the constant ‘‘CY A R’’ to be the constant stated
in Theorem 5.1.

Finally, by replacing the estimate ‘‘ 1& 12

l 2

" #&1

a 2’’ appearing in the final

portion of Step (viii) of the proof of [19], Theorem 1.10, by the estimate

1& 12

l 2

" #&1

¼ 1þ 12

l2 & 12
a 1þ 100

l
a 1þ 10&13

[where we apply the estimates lb 1015, l2 & 12b l], we obtain [by applying
the estimate 4:08803 ! ð1þ 10&13Þa 4:0881] the final inequality of Theorem 5.1.

r

Corollary 5.2 (Construction of suitable m6-initial Y-data). Write X for the
projective line over Q; D " X for the divisor consisting of the three points ‘‘0’’,
‘‘1’’, and ‘‘y’’; ðMellÞQ for the moduli stack of elliptic curves over Q. We shall
regard X as the ‘‘l-line’’—i.e., we shall regard the standard coordinate on X as
the ‘‘l’’ in the Legendre form ‘‘y2 ¼ xðx& 1Þðx& lÞ’’ of the Weierstrass equation
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defining an elliptic curve—and hence as being equipped with a natural classifying

morphism UX ¼def XnD ! ðMellÞQ [cf. the discussion preceding [19], Proposition
1.8]. Let k A R>0 \Ra1;

K ¼def KVðQÞ arcðkÞ " UX ðQÞ ð!@ QtÞ

a compactly bounded subset [cf. Definition 1.13]; d A Z>0 [cf. [19], Corollary 2.2,
(ii), (iii)]; e A R>0 \Ra1 [cf. [19], Corollary 2.2, (iii)]. Write

logðqE
ð&ÞÞ

for the R-valued function on ðMellÞQðQÞ, hence on UX ðQÞ, obtained by forming the
normalized degree ‘‘degð&Þ’’ of the e¤ective arithmetic divisor determined by the
q-parameters of an elliptic curve over a number field at arbitrary nonarchimedean
places [cf. [19], Corollary 2.2, (i)]; UX ðQÞad " UX ðQÞ for the subset of Q-rational
points defined over a finite extension field of Q of degreea d; UX ðQÞmcx " UX ðQÞ
for the subset of Q-rational points defined over a mono-complex number field [cf.
Definition 1.2]. Set

d ¼def 212 ! 33 ! 5 ! d ¼ 552960 ! d;

k log ¼def 5 ! 10&13 & 6:01 ! 10&15 logðkÞ

[cf. the term ‘‘HK’’ in the first display of [19], Corollary 2.2, (iii)];

hdðeÞ ¼def
3:4 ! 1030 ! e&166=81 ðd ¼ 1Þ
6 ! 1031 ! e&174=85 ðd ¼ 2Þ
3:4 ! 1030 ! e&166=81 ! d 5 ðdb 3Þ

8
><

>:

[cf. the term ‘‘Hunif ! e&3 ! e&3
d ! d 4þed ’’ in the first display of [19], Corollary 2.2, (iii),

where we take ‘‘ed ’’ to be 1]. Then there exists a finite subset

Exck;d; e " UX ðQÞad ðrespectively; Excmcx
d; e " UX ðQÞad \UX ðQÞmcxÞ

—which depends only on k, d, e (respectively, d, e) and contains all points corre-
sponding to elliptic curves that admit automorphisms of order > 2—satisfying the
following properties:

( The function logðqE
ð&ÞÞ is

amaxfk log; hdðeÞg ðrespectively; a hdðeÞÞ

on Exck;d; e (respectively, Excmcx
d; e ).

( Let EF be an elliptic curve over a number field F " Q that determines a
Q-valued point of ðMellÞQ which lifts [not necessarily uniquely!] to a point

xE A UX ðFÞ \UX ðQÞad \K

ðrespectively; xE A UX ðF Þ \UX ðQÞad \UX ðQÞmcxÞ

such that

xE B Exck;d; e ðrespectively; xE B Excmcx
d; e Þ:
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Write Fmod for the minimal field of definition of the corresponding point
A ðMellÞQðQÞ and

Fmod " Ftpd ¼def FmodðEFmod ½2+Þ " F

for the ‘‘tripodal’’ intermediate field obtained from Fmod by adjoining the fields
of definition of the 2-torsion points of any model of EF ,F Q over Fmod [cf. [19],
Proposition 1.8, (ii), (iii)]. Moreover, we assume that the ð3 ! 5Þ-torsion points of
EF are defined over F , and that

F ¼ Fmodð
ffiffiffiffiffiffiffi
&1

p
;EFmod ½2 ! 3 ! 5+Þ ¼def Ftpdð

ffiffiffiffiffiffiffi
&1

p
;EFtpd ½3 ! 5+Þ

—i.e., that F is obtained from Ftpd by adjoining
ffiffiffiffiffiffiffi
&1

p
, together with the fields of

definition of the ð3 ! 5Þ-torsion points of a model EFtpd of the elliptic curve EF ,F Q
over Ftpd determined by the Legendre form of the Weierstrass equation discussed
above [cf. [19], Proposition 1.8, (vi)]. [Thus, it follows from [19], Proposition 1.8,
(iv), that EF GEFtpd ,Ftpd F over F , so xE A UX ðFtpdÞ " UX ðF Þ; it follows from
[19], Proposition 1.8, (v), that EF has stable reduction at every element of
VðF Þnon.] Write

logðqEÞ

for the result of applying the function ‘‘logðqE
ð&ÞÞ’’ to xE. Then EF and Fmod arise

as the ‘‘EF ’’ and ‘‘Fmod’’ for a collection of m6-initial Y-data as in Theorem 5.1 that
satisfies the following conditions:

(C1) ð1015 ! daÞ ðlogðqEÞÞ1=2 a la 1:464d ! ðlogðqEÞÞ1=2 ! logð1:45d ! logðqEÞÞ;
(C2) we have an inequality

1

6
! logðqEÞa ð1þ eÞ ! ðlog-di¤X ðxEÞ þ log-condDðxEÞÞ

—where we write log-di¤X for the [normalized ] log-di¤erent function on UX ðQÞ
[cf. [15], Definition 1.5, (iii)]; log-condD for the [normalized ] log-conductor function
on UX ðQÞ [cf. [15], Definition 1.5, (iv)].

Proof. First, let us recall that if the once-punctured elliptic curve associated
to EF fails to admit an F-core, then it holds that

jðEF Þ A f214 ! 313 ! 5&3; 22 ! 733 ! 3&4; 26 ! 33; 0g

[cf. Proposition 2.1]. Thus, if we take the set Exck;d; e (respectively, Exc
mcx
d; e ) to be

the [ finite!] collection of points corresponding to these four j-invariants, then we
may assume that the once-punctured elliptic curve associated to EF admits an
F-core—hence, in particular, does not have any automorphisms of order > 2 over
Q—and that it holds that

logðqE
ð&ÞÞamaxflogð53Þ; logð34Þg ¼ logð53Þ
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on Exck;d; e (respectively, Exc
mcx
d; e ) [cf. Remark 1.10.1]. [In the discussion to follow,

it will in fact be necessary to enlarge the finite set Exck;d; e (respectively, Excmcx
d; e )

several times.]
Next, let us write

h ¼def logðqEÞ ¼ 1

½F : Q+
!
X

v AVðFÞnon
hv ! fv ! logðpvÞ

—that is to say, hv ¼ 0 for those v at which EF has good reduction; hv A Nb1 is
the local height of EF [cf. [15], Definition 3.3] for those v at which EF has bad
multiplicative reduction. Now it follows [from [15], Proposition 1.4, (iv) [cf. also
the proof of [19], Corollary 2.2, (i)] (respectively, from Proposition 1.9, (iii), of the
present paper)] that the inequality h1=2 < 1015 ! d implies that there is only a finite
number of possibilities for the j-invariant of EF . Thus, by possibly enlarging the
finite set Exck;d; e (respectively, Exc

mcx
d; e ), we may assume without loss of generality

that

h1=2 b 1015 ! d ðb xprmÞ;

[cf. the notation of Proposition 2.2], and that it holds that

logðqE
ð&ÞÞamaxflogð53Þ; 1030 ! d 2g ¼ 1030 ! d 2

on Exck;d; e (respectively, Excmcx
d; e ).

Thus, since ½F : Q+a d [cf. the properties (E3), (E4), (E5) in the proof of [19],
Theorem 1.10], it follows that

d ! h1=2 b ½F : Q+ ! h1=2 ¼
X

v

h&1=2 ! hv ! fv ! logðpvÞ

b
X

v

h&1=2 ! hv ! logðpvÞb
X

hvbh1=2

h&1=2 ! hv ! logðpvÞ

b
X

hvbh1=2

logðpvÞ

and

1:45d ! h1=2 ! logð1:45d ! hÞ

b 1:45 ! ½F : Q+ ! h1=2 ! logð1:45 ! ½F : Q+ ! hÞ

b
X

hv00

1:45 ! h&1=2 ! logð1:45 ! hv ! fv ! logðpvÞÞ ! hv ! fv ! logðpvÞ

b
X

hv00

h&1=2 ! logðhvÞ ! hv b
X

hvbh1=2

h&1=2 ! logðhvÞ ! hv

b
X

hvbh1=2

logðhvÞ
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—where the sums are all over v A VðF Þnon [possibly subject to various condi-
tions, as indicated], and we apply the elementary estimate 1:45 ! logðpvÞb
1:45 ! logð2Þb 1.

Thus, in summary, we conclude from the estimates made above that if we
take

A

to be the [ finite!] set of prime numbers p such that p either
(S1) is a h1=2,
(S2) divides a nonzero hv for some v A VðFÞnon, or
(S3) is equal to pv for some v A VðF Þnon for which hv b h1=2,

then it follows from Proposition 2.2, (ii), together with our assumption that
h1=2 b xprm, that, in the notation of Proposition 2.2, (ii),

yA a 2 ! h1=2 þ d ! h1=2 þ 1:45d ! h1=2 ! logð1:45d ! hÞ

¼ ð2þ dþ 1:45d ! logð1:45d ! hÞÞ ! h1=2

a 1:4621d ! h1=2 ! logð1:45d ! hÞ

—where we apply the estimates 1þ 0:00071a 2;

2a 0:0121d ! logð1:45d ! 1030Þ & da 0:0121d ! logð1:45d ! hÞ & d

[cf. the fact that the function

0:0121x ! logð1:45x ! 1030Þ & x

is monotonically increasing for x A Rb552960]. On the other hand, since we have

xprm a h1=2 a 0:0001d ! h1=2 ! logð1:45d ! hÞ

[cf. the estimates 1a 0:0001d and 1a logð1:45d ! hÞ], we obtain that

1:00072 ! ðyA þ xprmÞa 1:464d ! h1=2 ! logð1:45d ! hÞ

[cf. the estimate 1:00072 ! ð1:4621þ 0:0001Þa 1:464]. In particular, it follows
from Proposition 2.2, (ii), that there exists a prime number l such that

(P1) ð1015 ! daÞ h1=2 a la 1:464d ! h1=2 ! logð1:45d ! hÞ [cf. the condition (C1)
in the statement of Corollary 5.2];

(P2) l does not divide any nonzero hv for v A VðFÞnon;
(P3) if l ¼ pv for some v A VðFÞnon, then hv < h1=2.
Next, let us observe that, again by possibly enlarging the finite set Exck;d; e

(respectively, Excmcx
d; e ), we may assume without loss of generality that, in the ter-

minology of [15], Lemma 3.5,
(P4) EF does not admit an l-cyclic subgroup scheme,

and that it holds that

logðqE
ð&ÞÞamaxf1030 ! d 2; k logg

ðrespectively; logðqE
ð&ÞÞamaxf1030 ! d 2; 5:12 ! 10&13g ¼ 1030 ! d 2Þ

214 mochizuki, fesenko, hoshi, minamide and porowski



on Exck;d; e (respectively, Excmcx
d; e ). Indeed, the existence of an l-cyclic subgroup

scheme of EF , together with the fact that lb 1015 [cf. (P1)], would imply that

ha k log ðrespectively; ha 5:12 ! 10&13Þ

[cf. (P2); Remark 1.10.1; Corollary 1.14, (ii) (respectively, Corollary 1.14, (iii))].
On the other hand, [by [15], Proposition 1.4, (iv) [cf. also the proof of [19],
Corollary 2.2, (i)] (respectively, Proposition 1.9, (iii))] this implies that there is
only a finite number of possibilities for the j-invariant of EF . This completes the
proof of the above observation.

Next, we observe that
(P5) if we write Vbad

mod for the set of nonarchimedean places A Vmod that
do not divide l and at which EF has bad multiplicative reduction, then
Vbad

mod 0j.
Indeed, if Vbad

mod ¼ j, then it follows, in light of the definition of h, from (P3)
that

ha h1=2 ! logðlÞ:

In particular, we have

h1=2 a logðlÞa logð1:464dÞ þ 0:5 ! logðhÞ þ logðlogð1:45d ! hÞÞ

a logð1:464dÞ þ 0:5 ! logðhÞ þ logð1:45d ! hÞ

¼ 1:5 ! logðhÞ þ logð1:464dÞ þ logð1:45dÞ

a 1:5 ! logðhÞ þ 2 ! logð2dÞ

—where the second inequality follows from (P1); the third inequality follows
from the fact that logðxÞa x for all x A Rb1; the fourth inequality follows from
the estimate 1:464 ! 1:45a 4. Thus, if we write f ðxÞ for the function

x1=2 & 1:5 ! logðxÞ & 2 ! logð2dÞ;

then it holds that f ðhÞa 0. On the other hand, since [as is easily verified] f ðxÞ
is monotonically increasing for x A Rb9, we obtain that

f ðhÞb f ð1030 ! d 2Þ

¼ 1015 ! d & 3 ! logð1015 ! dÞ & 2 ! logð213 ! 33 ! 5 ! dÞ

b 1015 ! d & 5 ! logð1015 ! dÞ > 0

—where we apply the estimate 213 ! 33 ! 5a 1015; the fact that 5 ! logðxÞ < x for
all x A Rb13—a contradiction. This completes the proof of the above observa-
tion. This property (P5) implies that

(P6) the image of the outer homomorphism GalðQ=FÞ ! GL2ðFlÞ deter-
mined by the l-torsion points of EF contains the subgroup SL2ðFlÞ "
GL2ðFlÞ.
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Indeed, since, by (P5), EF has bad multiplicative reduction at some place
A Vbad

mod 0j, (P6) follows formally from (P2), (P4), and [15], Lemma 3.1, (iii)
[cf. the proof of the final portion of [15], Theorem 3.8].

Now it follows formally from (P1), (P2), (P5), and (P6) that, if one takes
‘‘F ’’ to be Q, ‘‘F ’’ to be the number field F of the above discussion, ‘‘XF ’’ to be
the once-punctured elliptic curve associated to EF , ‘‘l’’ to be the prime number l
of the above discussion, and ‘‘Vbad

mod’’ to be the set Vbad
mod of (P5), then there exist

data ‘‘CK ’’, ‘‘V’’, and ‘‘e’’ such that all of the conditions of Definition 4.1 are
satisfied, and, moreover, that

(P7) the resulting m6-initial Y-data

ðF=F ;XF ; l;CK ;V;Vbad
mod; eÞ

satisfies the various conditions in the statement of Theorem 5.1.
Here, we note in passing that the crucial existence of data ‘‘V’’ and ‘‘e’’ satisfying
the requisite conditions follows, in essence, as a consequence of the fact [i.e., (P6)]
that the Galois action on l-torsion points contains the full special linear group
SL2ðFlÞ.

In light of (P7), we may apply Theorem 5.1 [cf. also the fact that
e'mod a d '

mod] to conclude that

1

6
! logðqÞa 1þ 20 ! dmod

l

" #
! ðlogðdFtpdÞ þ logðfFtpdÞÞ þ 4:0881 ! d '

mod ! l

a ð1þ d ! h&1=2Þ ! ðlogðdFtpdÞ þ logðfFtpdÞÞ þ 5:985 ! d2 ! h1=2 ! logð1:45d ! hÞ

—where we apply (P1), as well as the estimates 20 ! dmod a d '
mod a d and

4:0881 ! 1:464a 5:985.
Next, let us observe that it follows from (P3) that

1

6
! h& 1

6
! logðqÞa 1

6
! h1=2 ! logðlÞ:

Thus, we conclude that

1

6
! ha ð1þ d ! h&1=2Þ ! ðlogðdFtpdÞ þ logðfFtpdÞÞ þ 1

6
! h1=2 ! logðlÞ

þ 5:985 ! d2 ! h1=2 ! logð1:45d ! hÞ

and hence that
(P8) the following equality holds:

1

6
! h ! ð1& h&1=2 ! logðlÞ & 35:91 ! d2 ! h&1=2 ! logð1:45d ! hÞÞ

a ð1þ d ! h&1=2Þ ! ðlogðdFtpdÞ þ logðfFtpdÞÞ:

Now we claim that
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Claim 5.2A: If hb hdðeÞ, then it holds that

71:82 ! d2 ! h&1=2 ! logð1:45d ! hÞa e ! ð1& 10&7Þ:

Indeed, since [as is easily verified] the function x&1=2 ! logð1:45d ! xÞ is monotoni-
cally decreasing for x A R>1, to verify Claim 5.2A, it su‰ces to show that

71:82 ! d2 ! hdðeÞ&1=2 ! logð1:45d ! hdðeÞÞa e ! ð1& 10&7Þ:

Let us prove this inequality. First, suppose that d A f1; 2g. Write d1 ¼def

212 ! 33 ! 5, d2 ¼def 213 ! 33 ! 5. Then one verifies easily that

71:82 ! d2 ! hdð1Þ&1=2 ! logð1:45d ! hdð1ÞÞa 1& 10&7:

Thus, if d ¼ 1, then we have

71:82 ! d2 ! hdðeÞ&1=2 ! logð1:45d ! hdðeÞÞ

¼ 71:82 ! d2 ! hdð1Þ&1=2 ! logð1:45d ! hdð1ÞÞ ! e83=81 ! 1& logðe2=81Þ ! 83
logð1:45d ! hdð1ÞÞ

$ %

a e ! ð1& 10&7Þ ! e2=81 ! ð1& logðe2=81ÞÞa e ! ð1& 10&7Þ;

if d ¼ 2, then we have

71:82 ! d2 ! hdðeÞ&1=2 ! logð1:45d ! hdðeÞÞ

¼ 71:82 ! d2 ! hdð1Þ&1=2 ! logð1:45d ! hdð1ÞÞ ! e87=85 ! 1& logðe2=85Þ ! 87
logð1:45d ! hdð1ÞÞ

$ %

a e ! ð1& 10&7Þ ! e2=85 ! ð1& logðe2=85ÞÞa e ! ð1& 10&7Þ:

Here, we apply the estimate logð1:45d1 ! h1ð1ÞÞb 83; the estimate
logð1:45d2 ! h2ð1ÞÞb 87; our assumption that 0 < ea 1; the fact that
x ! ð1& logðxÞÞa 1 for all x A R>0.

Next, suppose that db 3. Then we have

71:82 ! d2 ! hdðeÞ&1=2 ! logð1:45d ! hdðeÞÞ

¼ 71:82 ! d21 ! h1ðeÞ
&1=2 ! logð1:45d1 ! h1ðeÞÞ ! d&1=2 ! 1þ 6 ! logðdÞ

logð1:45d1 ! h1ðeÞÞ

$ %

a e ! ð1& 10&7Þ ! d&1=2 ! 1þ 6

83
! logðdÞ

" #
a e ! ð1& 10&7Þ

—where we apply the estimate logð1:45d1 ! h1ðeÞÞb logð1:45d1 ! h1ð1ÞÞb 83; the
fact that x&1=2 ! 1þ 6

83 ! logðxÞ
& '

a 1 for all x A Rb3; the estimate obtained above
in the case where d ¼ 1. This completes the proof of Claim 5.2A.

Next, we claim that
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Claim 5.2B: If hb hdðeÞ, then it holds that

2 ! h&1=2 ! logðlÞ þ 71:82 ! d2 ! h&1=2 ! logð1:45d ! hÞ þ d ! h&1=2 a e:

Indeed, since [cf. (P1)] it holds that

71:82 ! d ! logð1:45d ! hÞb 71:82 ! 212 ! 33 ! 5 ! logð1:45 ! 212 ! 33 ! 5 ! 1030Þb 108;

we have

71:82 ! d2 ! h&1=2 ! logð1:45d ! hÞb 108 ! d ! h&1=2:

Moreover, since it holds that

71:82 ! d2 b 71:82 ! ð212 ! 33 ! 5Þ2 b 4 ! 1012;

we have [cf. (P1)]

71:82 ! d2 ! h&1=2 ! logð1:45d ! hÞ

b 1012 ! 2 ! h&1=2 ! logðð1:45d ! hÞ2Þ

b 1012 ! 2 ! h&1=2 ! logð1:464d ! h1=2 ! 1:45d ! hÞ

b 1012 ! 2 ! h&1=2 ! logð1:464d ! h1=2 ! logð1:45d ! hÞÞ

b 1012 ! 2 ! h&1=2 ! logðlÞ

—where the second inequality follows from the estimate 1:45 ! h1=2 b 1:464; the
third inequality follows from the fact that xb logðxÞ for all x A Rb1. Thus, it
follows from Claim 5.2A that

2 ! h&1=2 ! logðlÞ þ 71:82 ! d2 ! h&1=2 ! logð1:45d ! hÞ þ d ! h&1=2

a ð10&12 þ 1þ 10&8Þ ! 71:82 ! d2 ! h&1=2 ! logð1:45d ! hÞ

a ð10&12 þ 1þ 10&8Þ ! e ! ð1& 10&7Þa e

—where we apply the estimate ð10&12 þ 1þ 10&8Þ ! ð1& 10&7Þa 1. This com-
pletes the proof of Claim 5.2B.

Here, note that the inequality h < hdðeÞ implies [by [15], Proposition 1.4, (iv)
[cf. also the proof of [19], Corollary 2.2, (i)] (respectively, Proposition 1.9, (iii))]
that there is only a finite number of possibilities for the j-invariant of EF . Thus,
by possibly enlarging the finite set Exck;d; e (respectively, Exc

mcx
d; e ), we may assume

without loss of generality that

hb hdðeÞ;

and that it holds that

logðqE
ð&ÞÞamaxf1030 ! d 2; k log; hdðeÞg

¼ maxfk log; hdðeÞg
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(respectively,

logðqE
ð&ÞÞamaxf1030 ! d 2; hdðeÞg

¼ hdðeÞÞ

[cf. the estimate hdðeÞb 1030 ! d 2] on Exck;d; e (respectively, Excmcx
d; e ).

Thus, in light of Claim 5.2B, it follows from (P8) [cf. also (P1)] that

1

6
! ha ð1þ eÞ ! ðlogðdFtpdÞ þ logðfFtpdÞÞ

a ð1þ eÞ ! ðlog-di¤X ðxEÞ þ log-condDðxEÞÞ

—where we apply the fact that for any x; y A R>0 such that 2xþ ya e, it holds
that

ð1& xÞ&1 ! ð1þ yÞa 1þ e

[which is a consequence of the fact that 0 < ea 1]. This completes the proof of
(C2), hence [cf. (P1), (P7)] of Corollary 5.2. r

Theorem 5.3 (E¤ective versions of ABC/Szpiro inequalities over mono-
complex number fields). Let L be a mono-complex number field [cf. Definition
1.2]; a; b; c A L, nonzero elements of L such that

aþ bþ c ¼ 0;

e a positive real numbera 1. Write Ea;b; c for the elliptic curve over L defined by

the equation y2 ¼ xðx& 1Þ xþ a

c

" #
; jðEa;b; cÞ for the j-invariant of Ea;b; c; DL for

the absolute value of the discriminant of L; d ¼def ½L : Q+;

HLða; b; cÞ ¼def
Y

v AVðLÞ
maxfjajv; jbjv; jcjvg;

ILða; b; cÞ ¼def fv A VðLÞnon jafjajv; jbjv; jcjvgb 2g " VðLÞnon;

radLða; b; cÞ ¼def
Y

v A ILða;b; cÞ
aðOL=pvÞ;

hdðeÞ ¼def 3:4 ! 1030 ! e&166=81 ðd ¼ 1Þ
6 ! 1031 ! e&174=85 ðd ¼ 2Þ:

$

Then the following hold:
(i) We have [cf. Definition 1.1, (i)]

1

6
! hnonð jðEa;b; cÞÞamax

1

d
! ð1þ eÞ ! logðDL ! radLða; b; cÞÞ;

1

6
! hdðeÞ

$ %

a
1

d
! ð1þ eÞ ! logðDL ! radLða; b; cÞÞ þ

1

6
! hdðeÞ:
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(ii) We have

HLða; b; cÞa 25d=2 !max exp
d

4
! hdðeÞ

" #
; ðDL ! radLða; b; cÞÞ3ð1þeÞ=2

$ %

a 25d=2 ! exp d

4
! hdðeÞ

" #
! ðDL ! radLða; b; cÞÞ3ð1þeÞ=2:

Proof. Assertion (i) follows immediately from Corollary 5.2 [cf. the bound
on the restriction of the function ‘‘logðqE

ð&ÞÞ’’ to ‘‘Excmcx
d; e ’’; the displayed inequality

of (C2)], Remark 1.10.1, and the various definitions involved. Next, we consider
assertion (ii). Write w A VðLÞarc for the unique element of VðLÞarc [cf. Definition
1.2]. First, we claim the following:

Claim 5.3A: It holds that

d ! h tor
non

b

c

" #
¼ 1

2
logjbcjw þ

X

v AVðLÞnon
log maxfjajv; jbjv; jcjvg:

Indeed, we compute:

d ! h tor
non

b

c

" #
¼ 1

2

X

v AVðLÞnon
log max

b

c

((((

((((
v

;
c

b

((((

((((
v

$ %

¼ 1

2

X

v AVðLÞnon
log

1

jbcjv
!maxfjbj2v ; jcj

2
vg

" #

¼ 1

2
logjbcjw þ

X

v AVðLÞnon
log maxfjbjv; jcjvg

¼ 1

2
logjbcjw þ

X

v AVðLÞnon
log maxfjajv; jbjv; jcjvg

—where the third equality (respectively, the fourth equality) follows from the
product formula (respectively, the fact that for v A VðLÞnon,

jajv ¼ jbþ cjv amaxfjbjv; jcjvgÞ:

This completes the proof of Claim 5.3A.
Next, we observe that, to verify assertion (ii), we may assume without loss of

generality that

kakw a kbkw a kckw:

Then we observe the following:

Claim 5.3B: It holds that
b

c

))))

))))
w

b
1

2
, hence that

b

c

((((

((((
w

b
1

2

" #d
.
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Indeed, since aþ bþ c ¼ 0, we have

kckw ¼ kaþ bkw a kakw þ kbkw a 2 ! kbkw:

This completes the proof of Claim 5.3B.
Now we claim the following:

Claim 5.3C: It holds that

1

6
! hnonð jðEa;b; cÞÞb

2

3d
! logðHLða; b; cÞÞ &

5

3
log 2:

Indeed, it follows from Lemma 1.3, (i), (iv); Proposition 1.8, (i); Remark 1.10.1,
that

ð'1Þ
1

6
! hnonð jðEa;b; cÞÞ þ

4

3
log 2b

1

3
! h tor

non

a

c

" #
þ h tor

non

b

c

" #
þ h tor

non

b

a

" #" #

b
2

3
! h tor

non

b

c

" #
:

On the other hand, we have

ð'2Þ d ! h tor
non

b

c

" #
¼ 1

2
logjbcjw þ

X

v AVðLÞnon
log maxfjajv; jbjv; jcjvg

¼ 1

2
log

b

c

((((

((((
w

þ logðHLða; b; cÞÞ

b
d

2
log

1

2
þ logðHLða; b; cÞÞ

—where the first equality (respectively, the second equality; the final inequality)
follows from Claim 5.3A (respectively, the fact that jcjw b jbjw b jajw; Claim
5.3B). The inequality of Claim 5.3C follows immediately from ð'1Þ and ð'2Þ.

Finally, in light of assertion (i) and Claim 5.3C, we obtain that

logðHLða; b; cÞÞamax
d

4
! hdðeÞ;

3

2
ð1þ eÞ ! logðDL ! radLða; b; cÞÞ

$ %
þ 5d

2
log 2:

This completes the proof of assertion (ii). r

Remark 5.3.1. The astronomically large constants in the inequalities estab-
lished in Theorem 5.3 reflect the explicit [i.e., ‘‘non-conjectural ’’] nature of inter-
universal Teichmüller theory. Their size may seem quite unexpected, especially
from the point of view of the classical [‘‘conjectural ’’] literature on such inequal-
ities, where sometimes it is even naively assumed that these constants may be
taken to be as small as 1.

Remark 5.3.2. The approach to applying the version of the ABC inequality
established in Theorem 5.3, (ii), to ‘‘Fermat’s Last Theorem’’ in the present paper
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[cf. Corollary 5.8 below] extends to other diophantine equations [cf. Corollary
5.9 below]. Namely, in view of the very large constants [cf. Remark 5.3.1] that
appear, in order to apply such an inequality to a concrete diophantine equation
of the form uþ v ¼ w with polynomial functions u, v, w which involve, respec-
tively, positive integers l, m, n as exponents, one needs first to establish a lower
bound on potential solutions of this equation [cf. Lemma 5.7 below; the second to
last display of the proof of Corollary 5.9]. One then applies a suitable version of
the ABC inequality to obtain an upper bound on l, m, n, under the condition that
the diophantine equation admits a solution of the desired type [cf. the portion
of the proof of Corollary 5.8 subsequent to the application of Lemma 5.7; the
final display of the proof of Corollary 5.9]. Finally, the existence of solutions to
the diophantine equation for l, m, n satisfying the upper bound may be inves-
tigated by means of computer calculations.

Remark 5.3.3. In the notation of Theorem 5.3, let l A Lt. Write El for the
elliptic curve over L defined by the equation y2 ¼ xðx& 1Þðx& lÞ; DEl

(respec-
tively, fEl

) for the minimal discriminant ideal [cf. [24], Chapter VIII, §8, the first
Definition] (respectively, conductor ideal [cf. [25], Chapter IV, §10, the Definition
preceding Example 10.5]) of El over L. Let us first observe that El has semi-
stable reduction at every place v A VðLÞnon such that l is integral at v, and v does
not divide 2. If v A VðLÞnon is such that l is not integral at v, then observe the
following:

There exists an element u A L, such that u ¼ lw2 for some w A L,, and,
moreover, u is a unit or a uniformizer at v. Thus, El is defined by the
equation

ðy 0Þ2 ¼ x 0ðx 0 & uÞðx 0 & ul 0Þ;

where we write l 0 ¼def l&1 A L, [so u and ul 0 are integral at v], x 0 ¼def ul 0x,
and y 0 ¼def w3y.

In particular, by applying a similar argument to the argument applied in [24],
Chapter VII, §5, the proof of Proposition 5.4, we obtain that

logðNL=QðDEl
ÞÞa d ! hnonð jðElÞÞ þ 6ðlogðNL=QðfEl

ÞÞ & logðradLða; b; cÞÞÞ

þ d ! ð8& ð&4ÞÞ log 2

—where we take ‘‘a’’ (respectively, ‘‘b’’; ‘‘c’’) to be l (respectively, 1& l; &1);
we write ‘‘NL=Qð&Þ’’ for the absolute norm of the ideal ð&Þ of OL; we recall that
NL=QðfEl

Þb radLða; b; cÞ [cf. Remark 1.10.1; [24], Chapter III, §1, Proposition 1.7,
(b), and its proof; [25], Chapter IV, §10, Theorem 10.2, (a); [25], Chapter IV, §10,
Example 10.5; [25], Chapter IV, §11, Ogg’s Formula 11.1 and its proof ]. Then it
follows immediately from Theorem 5.3, (i), that we have

NL=QðDEl
Þa 212d !maxfD6ð1þeÞ

L !NL=QðfEl
Þ6ð1þeÞ; expðd ! hdðeÞÞg

a 212d ! D6ð1þeÞ
L ! expðd ! hdðeÞÞ !NL=QðfEl

Þ6ð1þeÞ:
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This may be regarded as an explicit version of the inequality

“NormeK=QðDEÞaCðK ; eÞðNormeK=QðNEÞÞ6þe”

conjectured in [26], §1, CONJECTURE 1 forme forte, in the case of L and El as
above.

Remark 5.3.4. Let K be a field such that 2 is invertible in K , E an elliptic
curve over K whose 2-torsion points are K-rational. Then, by considering global
sections, with suitable leading terms, of tensor powers of the line bundle on E
determined by the origin [cf., e.g., [6], Chapter IV, the proof of Proposition 4.6],
one concludes immediately that there exists l A K t such that E is isomorphic
over K to the elliptic curve over K defined by the equation y2 ¼ xðx& 1Þðx& lÞ.
Conversely, one verifies immediately that the 2-torsion points of any elliptic curve
El over K defined by an equation of the form y2 ¼ xðx& 1Þðx& lÞ for some
l A K t are rational over K .

Remark 5.3.5. By combining the inequalities in the second to last display of
Remark 5.3.3 with [7], Theorem 0.3, one obtains a numerically explicit version of
the inequality that appears in a conjecture of Lang [cf. [7], Conjecture 0.1] con-
cerning a lower bound on the canonical height of non-torsion points, for elliptic
curves ‘‘El’’ over ‘‘L’’ as in Remarks 5.3.3, 5.3.4. One may also apply the
inequalities in the second to last display of Remark 5.3.3 to obtain a ‘‘partially
numerically explicit’’ version of the displayed inequality of [7], Theorem 0.7, for
elliptic curves ‘‘El’’ over ‘‘L’’ as in Remarks 5.3.3, 5.3.4.

Theorem 5.4 (E¤ective version of a conjecture of Szpiro). Let a, b, c be
nonzero coprime integers such that

aþ bþ c ¼ 0;

e a positive real numbera 1. Then we have

jabcj ¼ kabckC a 24 !maxfexpð1:7 ! 1030 ! e&166=81Þ; ðradðabcÞÞ3ð1þeÞg

a 24 ! expð1:7 ! 1030 ! e&166=81Þ ! ðradðabcÞÞ3ð1þeÞ

—which may be regarded as an explicit version of the inequality

“jabcjaCðeÞ
Y

pjabc
p

0

@

1

A
3þe

”

conjectured in [26], §2 [i.e., the ‘‘forme forte’’ of loc. cit., where we note that the
‘‘p’’ to the right of the ‘‘

Q
’’ in the above display was apparently unintentionally

omitted in loc. cit.].

Proof. First, we claim the following:
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Claim 5.4A: In the notation of Theorem 5.3, suppose that

kakw a kbkw a kckw
—where w A VðLÞarc denotes the unique element of VðLÞarc [cf. Defini-
tion 1.2]. Then it holds that

HLða; b; cÞa 24d=3 !max exp
d

6
! hdðeÞ

" #
; ðDL ! radLða; b; cÞÞ1þe

$ %
! jabc&2j&1=3

w :

Indeed, it follows from Theorem 5.3, (i), that we have

Claim 5.4B: It holds that

1

6
! hnonð jðEa;b; cÞÞamax

1

d
! ð1þ eÞ ! logðDL ! radLða; b; cÞÞ;

1

6
! hdðeÞ

$ %
:

Now we claim the following:

Claim 5.4C: It holds that

1

6
! hnonð jðEa;b; cÞÞb

1

d
! logðHLða; b; cÞÞ þ

1

3d
! logjabc&2jw & 4

3
log 2:

Let us verify Claim 5.4C. First, let us recall the inequality ð'1Þ in the proof of
Theorem 5.3

ðy1Þ
1

6
! hnonð jðEa;b; cÞÞ þ

4

3
log 2b

1

3
! h tor

non

a

c

" #
þ h tor

non

b

c

" #
þ h tor

non

b

a

" #" #
:

On the other hand, we compute:

ðy2Þ d ! h tor
non

a

c

" #
þ h tor

non

b

c

" #
þ h tor

non

b

a

" #" #

¼ 1

2
! ðlogjacjw þ logjbcjw þ logjbajwÞ þ 3

X

v AVðLÞnon
log maxfjajv; jbjv; jcjvg

¼ logjabcjw þ 3
X

v AVðLÞnon
log maxfjajv; jbjv; jcjvg

¼ logjabc&2jw þ 3 ! logðHLða; b; cÞÞ

—where the first equality (respectively, the third equality) follows from Claim
5.3A (respectively, the fact that jcjw b jbjw b jajw). The inequality of Claim 5.4C
follows immediately from ðy1Þ and ðy2Þ. The inequality of Claim 5.4A then
follows immediately from the inequalities of Claims 5.4B, 5.4C.

Next, we observe that, to verify Theorem 5.4, we may assume without loss
of generality that

kakC a kbkC a kckC:
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Now we apply the inequality in Claim 5.4A to the present situation, by taking
‘‘L’’ to be Q. Then we have

kckC a 24=3 !max exp
1

6
! 3:4 ! 1030 ! e&166=81

" #
; ðradðabcÞÞ1þe

$ %
! kabc&2k&1=3

C :

Therefore, by raising this inequality to the 3-rd power, we conclude that

kabckC a 24 !maxfexpð1:7 ! 1030 ! e&166=81Þ; ðradðabcÞÞ3ð1þeÞg:

This completes the proof of Theorem 5.4. r

In the following, we give an alternative approach to proving an e¤ective
asymptotic version of ‘‘Fermat’s Last Theorem’’, as proven in [28]. The following
Lemmas 5.5, 5.6, 5.7 are entirely elementary, but their statements and proofs are
given in full detail for lack of a suitable reference.

Lemma 5.5 (Elementary identity). Let pb 3 be an odd integer; r, s integers
such that rþ s0 0. Then we have

ðr p þ s pÞðrþ sÞ&1 ¼ ps p&1 & ðrþ sÞ
Xp&2

i¼0

ð&1Þ iþ1ði þ 1Þr p&2&is i:

Proof. One verifies immediately that we may assume without loss of gener-
ality that r0 0. Then, to verify Lemma 5.5, it su‰ces to show [by dividing by
r p&1] the following equality of elements A QðxÞ:

ð1þ xpÞð1þ xÞ&1 ¼ px p&1 & ð1þ xÞ
Xp&2

i¼0

ð&1Þ iþ1ði þ 1Þxi:

Write q for the derivation d=dx on QðxÞ. Then:

pxp&1 ¼ qð1þ xpÞ ¼ qfð1þ xpÞð1þ xÞ&1 ! ð1þ xÞg

¼ ð1þ xpÞð1þ xÞ&1 þ ð1þ xÞqfð1þ xpÞð1þ xÞ&1g

¼ ð1þ xpÞð1þ xÞ&1 þ ð1þ xÞq
Xp&2

i¼&1

ð&1Þ iþ1xiþ1

 !

¼ ð1þ xpÞð1þ xÞ&1 þ ð1þ xÞ
Xp&2

i¼0

ð&1Þ iþ1ði þ 1Þxi:

This completes the verification of Lemma 5.5. r

Lemma 5.6 (Elementary properties of possible solutions of the Fermat equa-
tion). Let pb 3 be a prime number; r, s, t nonzero coprime integers such that

r p þ s p þ t p ¼ 0:
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Then the following hold:
(i) Let l be a prime number which divides rþ s; ðr p þ s pÞðrþ sÞ&1 A Z.

Then it holds that l ¼ p.
(ii) Suppose that p does not divide t. Then rþ s and ðr p þ s pÞðrþ sÞ&1 are

coprime. In particular, [since ðrþ sÞ ! ðr p þ s pÞðrþ sÞ&1 ¼ ð&tÞ p] there
exist integers u and ~uu such that

rþ s ¼ up; ðr p þ s pÞðrþ sÞ&1 ¼ ~uup t ¼ &u~uu:

(iii) Suppose that p divides t. Then it holds that

rþ s A pZ; ðr p þ s pÞðrþ sÞ&1 A pZnp2Z:
In particular, if we write t ¼ pkv, where k A Z>0, v A ZnpZ, then [since
ðrþ sÞ ! ðr p þ s pÞðrþ sÞ&1 ¼ ð&tÞ p] there exist integers w B pZ
and ~ww B pZ such that

rþ s ¼ pkp&1wp; ðr p þ s pÞðrþ sÞ&1 ¼ p~wwp; v ¼ &w~ww

[cf. (i)].

Proof. First, we consider assertion (i). Let l be a prime number which
divides rþ s and ðr p þ s pÞðrþ sÞ&1. In particular, it follows from Lemma 5.5
that l divides ps p&1. Thus, if l0 p, then we conclude that l divides s, hence that
l divides r ¼ ðrþ sÞ & s—a contradiction. This completes the proof of assertion
(i).

Next, we consider assertion (ii). Suppose that rþ s and ðr p þ s pÞðrþ sÞ&1

are not coprime. Then it follows from assertion (i) that p divides rþ s and
ðr p þ s pÞðrþ sÞ&1, hence that p divides r p þ s p ¼ ð&tÞ p—a contradiction. There-
fore, we conclude that rþ s and ðr p þ s pÞðrþ sÞ&1 are coprime. This completes
the proof of assertion (ii).

Finally, we consider assertion (iii). We begin by observing that

ðrþ sÞ p 1 r p þ s p 1&t p 1 0 ðmod pÞ;
hence that rþ s1 0 ðmod pÞ. In particular, it follows from Lemma 5.5 that
ðr p þ s pÞðrþ sÞ&1 1 0 ðmod pÞ. Thus, to verify assertion (iii), it su‰ces to prove
the following claim:

Claim 5.6A: It holds that ðr p þ s pÞðrþ sÞ&1 B p2Z.
Indeed, suppose that ðr p þ s pÞðrþ sÞ&1 A p2Z. Write rþ s ¼ pm, where m A Z.
Then since we have

ðr p þ s pÞðrþ sÞ&1 ¼ fr p þ ðpm& rÞ pgðpmÞ&1

¼ r p þ
Xp

i¼0

p

i

" #
ðpmÞ p&ið&rÞ i

( )

ðpmÞ&1

¼
Xp&1

i¼0

p

i

" #
ðpmÞ p&i&1ð&rÞ i;
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our assumption that ðr p þ s pÞðrþ sÞ&1 A p2Z implies that pr p&1 A p2Z. Thus, we
conclude that r A pZ, hence that s ¼ ðrþ sÞ & r A pZ—a contradiction. There-
fore, we conclude that ðr p þ s pÞðrþ sÞ&1 B p2Z. This completes the proof of
Claim 5.6A, hence also of assertion (iii). r

Lemma 5.7 (Elementary estimate for possible solutions of the Fermat equa-
tion). Let pb 3 be a prime number; x, y, z coprime positive integers such that

x p þ yp ¼ z p:

Then it holds that

z >
ðpþ 1Þ p

2
:

Proof. First, we consider the case where p divides xy. [In particular, p
does not divide z.] In this case, to verify Lemma 5.7, we may assume without
loss of generality that p divides x. [In particular, p does not divide y.] Then
it follows by applying Lemma 5.6, (ii), first in the case where we take ‘‘ðr; s; tÞ’’
to be ðx; y;&zÞ, then in the case where we take ‘‘ðr; s; tÞ’’ to be ðz;&x;&yÞ, that
there exist positive integers a and b such that

xþ y ¼ ap; z& x ¼ bp:

Here, observe that

ðz& yÞ p 1 z p & yp 1 xp 1 0 ðmod pÞ;

hence that z& y1 0 ðmod pÞ. Thus, we obtain that

ðb& aÞ p 1 bp & ap 1 ðz& yÞ & 2x1 0 ðmod pÞ;

hence that b& a1 0 ðmod pÞ. Now we claim the following:

Claim 5.7A: It holds that maxfa; bgb pþ 1.

Indeed, suppose that maxfa; bga p. Then it follows from the fact that b& a1
0 ðmod pÞ that a ¼ b, hence that z ¼ 2xþ y. In particular, we conclude that
z p ¼ ð2xþ yÞ p > xp þ yp—a contradiction.

In light of Claim 5.7A, we have

2z > zþ y ¼ ap þ bp > ðpþ 1Þ p:

This completes the proof of Lemma 5.7 in the case where p divides xy.
Next, we consider the case where p does not divide xyz. Then it follows

by applying Lemma 5.6, (ii), first in the case where we take ‘‘ðr; s; tÞ’’ to be
ðx; y;&zÞ, then in the case where we take ‘‘ðr; s; tÞ’’ to be ðz;&x;&yÞ, and finally
in the case where we take ‘‘ðr; s; tÞ’’ to be ðz;&y;&xÞ, that there exist positive
integers a, b, and c such that

xþ y ¼ ap; z& x ¼ bp; z& y ¼ c p:
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Here, observe that

ðz& x& yÞ p 1 z p & xp & yp 1 0 ðmod pÞ;

hence that z& x& y1 0 ðmod pÞ. Thus, we obtain that

ðbþ c& aÞ p 1 bp þ c p & ap 1 2ðz& x& yÞ1 0 ðmod pÞ;

hence that bþ c& a1 0 ðmod pÞ. Now we claim the following:

Claim 5.7B: It holds that ab pþ 1.

Indeed, suppose that aa p. Observe that since ð2xþ yÞ p > xp þ yp ¼ z p,
ðxþ 2yÞ p > xp þ yp ¼ z p, it holds that xþ y > z& x, xþ y > z& y, hence that
a > b, a > c. Thus, we conclude that

&pa&a < bþ c& a < aþ a& aa p;

hence that bþ c& a ¼ 0. Next, we claim that

Claim 5.7C: Write E ¼def fk A fa; b; cg jk is eveng. Then it holds that
aE ¼ 1.

Indeed, it follows immediately from the equality bþ c& a ¼ 0 that aEb 1.
Suppose thataEb 2. Then it follows from the equality bþ c& a ¼ 0 that a, b,
and c are even. In particular, since ap ð¼ xþ yÞ divides z p ð¼ xp þ ypÞ, we
conclude that z is even. On the other hand, this implies that x and y are even
[cf. the equalities z& x ¼ bp and z& y ¼ c p]—a contradiction. This completes
the proof of Claim 5.7C.

Now suppose that E ¼ fag [cf. Claim 5.7C]. Here, note that it follows by
applying Lemma 5.6, (ii), in the case where we take ‘‘ðr; s; tÞ’’ to be ðx; y;&zÞ,
that there exists a positive integer ~aa such that ðxp þ ypÞðxþ yÞ&1 ¼ ~aap. [In
particular, we have z ¼ a~aa.] Then since

ðbp þ c pÞðbþ cÞ&1 ¼ ðbp þ c pÞa&1 ¼ ð2z& x& yÞa&1 ¼ 2~aa& ap&1;

we conclude that ðbp þ c pÞðbþ cÞ&1 is an even integer. On the other hand,
since

ðbp þ c pÞðbþ cÞ&1 ¼
Xp&1

i¼0

ð&1Þ ibp&i&1ci;

and, moreover, each term ‘‘bp&i&1ci’’ is odd, we conclude that ðbp þ c pÞðbþ cÞ&1

is odd—a contradiction.
Thus, it follows from Claim 5.7C that E A ffbg; fcgg. Moreover, to verify

Claim 5.7B, we may assume without loss of generality that E ¼ fbg. Next,
observe that it follows by applying Lemma 5.6, (ii), in the case where we take
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‘‘ðr; s; tÞ’’ to be ðz;&x;&yÞ, that there exists a positive integer ~bb such that
ðz p & xpÞðz& xÞ&1 ¼ ~bbp. [In particular, we have y ¼ b~bb.] Then since

ðap & c pÞða& cÞ&1 ¼ ðap & c pÞb&1 ¼ ð2yþ x& zÞb&1 ¼ 2~bb& bp&1;

we conclude that ðap & c pÞða& cÞ&1 is an even integer. On the other hand,
since

ðap & c pÞða& cÞ&1 ¼
Xp&1

i¼0

ap&i&1ci;

and, moreover, each term ‘‘ap&i&1ci’’ is odd, we conclude that ðap & c pÞða& cÞ&1

is odd—a contradiction. This completes the proof of Claim 5.7B.
In light of Claim 5.7B, we have

2z > xþ y ¼ ap b ðpþ 1Þ p:

This completes the proof of Lemma 5.7 in the case where p does not divide xyz.
Finally, we consider the case where p divides z. [In particular, p does not

divide xy.] Then it follows by applying Lemma 5.6, (ii), first in the case where
we take ‘‘ðr; s; tÞ’’ to be ðz;&x;&yÞ, then in the case where we take ‘‘ðr; s; tÞ’’ to be
ðz;&y;&xÞ, that there exist positive integers b and c such that

z& x ¼ bp; z& y ¼ c p:

Moreover, it follows by applying Lemma 5.6, (iii), in the case where we take
‘‘ðr; s; tÞ’’ to be ðx; y;&zÞ, that there exist positive integers w B pZ and k, together
with a negative integer v B pZ, such that

xþ y ¼ pkp&1wp; z ¼ &pkv:

Next, observe that

ðbþ cÞ p 1 bp þ c p 1 2z& x& y1 0 ðmod pÞ;

hence that bþ c1 0 ðmod pÞ. In particular, it follows from the equality

bp þ c p ¼ pcp&1ðbþ cÞ & ðbþ cÞ2
Xp&2

i¼0

ð&1Þ iþ1ði þ 1Þbp&2&ic i

[cf. Lemma 5.5] that bp þ c p A p2Z. Thus, since we have

&2pkv ¼ 2z ¼ ðz& xÞ þ ðz& yÞ þ ðxþ yÞ ¼ bp þ c p þ pkp&1wp A p2Z

[cf. the fact that kp& 1b 2], we conclude that kb 2. Therefore, we conclude
that

2z > xþ yb p2p&1wp > ðpþ 1Þ p

[cf. the fact that g2g&1 > ðgþ 1Þg for all g A Rb3]. This completes the proof of
Lemma 5.7 in the case where p divides z. r
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Remark 5.7.1.
(i) In the notation of Lemma 5.7, we observe that a stronger estimate

z > z& x > ð2p20=7Þ p

may be obtained by means of techniques of classical algebraic number theory
that are somewhat more involved than the argument given above in the proof of
Lemma 5.7 [cf. [8]; [9], Theorem 2].

(ii) In fact, it follows from [8], (4), that, in the situation of (i), if we assume
further that p divides xyz, then a stronger estimate

z >
p3p&1

2

may be obtained.

Remark 5.7.2. In the notation of Lemma 5.7, suppose that p divides xyz,
and that pb 257. Then we observe that an even stronger estimate [i.e., than the
estimate of Remark 5.7.1, (ii)]

zb pð5=2Þ
p&1

may be obtained by means of techniques that are somewhat more involved than
the argument given above in the proof of Lemma 5.7 [cf. [12], Theorem 1]. [A
similar, but weaker estimate may be found in [11], Lemma 2.] These techniques
of Mihăilescu [and Rassias] use Mihăilescu’s technique of working with a map of
the Stickelberger ideal into the algebraic integers and related power series develop-
ments associated to the image of this map, as well as a new insight on lattices
and an ‘‘inhomogeneous Siegel box principle’’.

Corollary 5.8 (Application to ‘‘Fermat’s Last Theorem’’). Let

p > 1:615 ! 1014

be a prime number. Then there does not exist any triple ðx; y; zÞ of positive
integers that satisfies the Fermat equation

xp þ yp ¼ z p:

Proof. Suppose that there exists a triple ðx; y; zÞ of positive integers such
that xp þ yp ¼ z p. Here, we may assume without loss of generality that x, y, z
are coprime. Then it follows from Lemma 5.7 that

z >
ðpþ 1Þ p

2
:

Now we apply Theorem 5.3, (ii), to the present situation, by taking
( ‘‘L’’ to be Q;
( ‘‘ða; b; cÞ’’ to be ðxp; yp;&z pÞ;
( ‘‘e’’ to be 1.
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Then, in the notation of Theorem 5.3, we have

z p a 25=2 ! exp 1

4
! h1ð1Þ

" #
! ðradQðxp; yp;&z pÞÞ3

a 25=2 ! exp 1

4
! h1ð1Þ

" #
! ðxyzÞ3

a 25=2 ! exp 1

4
! h1ð1Þ

" #
! ðz3Þ3

—where we apply the fact that zbmaxfx; yg. Thus, we obtain that

ðpþ 1Þ p

2

$ %p&9

< zp&9 a 25=2 ! exp 1

4
! h1ð1Þ

" #
:

In particular, we conclude that

ðp& 9Þð&1þ p ! log2ðpþ 1ÞÞ < 5

2
þ log2ðeÞ !

1

4
! h1ð1Þ < 1:227 ! 1030:

On the other hand, since [as is easily verified] the function

ðx& 9Þð&1þ 1:44x ! logðxþ 1ÞÞ

is monotonically increasing for x A Rb9, we have

ðp& 9Þð&1þ p ! log2ðpþ 1ÞÞ ¼ ðp& 9Þ &1þ 1

logð2Þ
! p ! logðpþ 1Þ

" #

> ðp& 9Þð&1þ 1:44 ! p ! logðpþ 1ÞÞ

> 1:227 ! 1030

—where the first (respectively, second) inequality follows from the estimate
1

logð2Þ > 1:44 (respectively, our assumption that p > 1:615 ! 1014)—a contradic-

tion. This completes the proof of Corollary 5.8. r

Remark 5.8.1. By combining Corollary 5.8 with the numerical estimate of
[4] [cf. [4], Abstract; the discussion following the first display of [4], §3], we obtain
[by applying the estimate 7:568 ! 1017 > 1:615 ! 1014] the following result:

Let p be an odd prime number. Then there does not exist any triple
ðx; y; zÞ of positive integers such that p does not divide xyz, and, more-
over, the Fermat equation

xp þ yp ¼ z p

is satisfied.

This assertion is often called the first case of Fermat’s Last Theorem.
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Remark 5.8.2.
(i) If we apply the estimate

z > ð2p20=7Þ p

of Remark 5.7.1, (i), instead of Lemma 5.7 in the proof of Corollary 5.8, then the
quantity ‘‘1:615 ! 1014’’ in Corollary 5.8 may be replaced by 9:58 ! 1013. Indeed,
by applying this estimate of Remark 5.7.1, (i), we obtain the estimate

ð2p20=7Þpðp&9Þ < zp&9 a 25=2 ! exp 1

4
! h1ð1Þ

" #
:

In particular, we conclude that

pðp& 9Þ 1þ 20

7
! log2ðpÞ

" #
<

5

2
þ log2ðeÞ !

1

4
! h1ð1Þ < 1:227 ! 1030:

Thus, it su‰ces to observe that the manifestly monotonically increasing function

xðx& 9Þ 1þ 20

7
! log2ðxÞ

" #

satisfies the inequality > 1:227 ! 1030 for x > 9:58 ! 1013.
(ii) Suppose that p divides xyz. That is to say, we suppose that we are in

the situation of what is often called the second case of Fermat’s Last Theorem.
Then if we apply the estimate

z >
p3p&1

2

of Remark 5.7.1, (ii), instead of Lemma 5.7 in the proof of Corollary 5.8,
then the quantity ‘‘1:615 ! 1014’’ in Corollary 5.8 may be replaced by 9:39 ! 1013.
Indeed, by applying this estimate of Remark 5.7.1, (ii), we obtain the estimate

p3p&1

2

" #ðp&9Þ

< zp&9 a 25=2 ! exp 1

4
! h1ð1Þ

" #
:

In particular, we conclude that

ðp& 9Þðð3p& 1Þ log2ðpÞ & 1Þ < 5

2
þ log2ðeÞ !

1

4
! h1ð1Þ < 1:227 ! 1030:

Thus, it su‰ces to observe that the manifestly monotonically increasing function

ðx& 9Þðð3x& 1Þ log2ðxÞ & 1Þ

satisfies the inequality > 1:227 ! 1030 for x > 9:39 ! 1013.

Remark 5.8.3.
(i) Observe that the estimate of Remark 5.7.2 due to [12] implies the

following consequence:
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Let

pb 257

be a prime number. Then there does not exist any triple ðx; y; zÞ of
positive integers such that p divides xyz, and the Fermat equation

xp þ yp ¼ z p

is satisfied.

[A similar, but weaker lower bound for p follows, by a similar argument, from
[11], Lemma 2.] Indeed, by applying the estimate of Remark 5.7.2 [instead of
Lemma 5.7] in the proof of Corollary 5.8, we obtain the estimate

pð5=2Þ
p&1ðp&9Þ a zp&9 a 25=2 ! exp 1

4
! h1ð1Þ

" #
:

In particular, we conclude that

5

2

" #p&1

ðp& 9Þ log2ðpÞa
5

2
þ log2ðeÞ !

1

4
! h1ð1Þ < 1:227 ! 1030:

Thus, it su‰ces to observe that the manifestly monotonically increasing function

5

2

" #x&1

ðx& 9Þ log2ðxÞ

satisfies the inequalityb 1:227 ! 1030 for xb 257.
(ii) By combining (i) with the classical result of [27] [cf. [27], Theorem VIIa,

as well as [21], pp. 200–202], we obtain [by applying the estimate 269 > 257] an
alternative proof [i.e., to the proof of [28]] of the second case of Fermat’s Last
Theorem [cf. Remark 5.8.2, (ii)]. In particular, in light of Remark 5.8.1, we
conclude that the results of the present paper, combined with the results of [27],
[4], and [12], yield an unconditional new alternative proof [i.e., to the proof of [28]]
of Fermat’s Last Theorem.

Finally, we give an application of the ABC inequality of Theorem 5.4 to
a generalized version of Fermat’s Last Theorem, which does not appear to be
accessible via the techniques involving modularity of elliptic curves over Q and
deformations of Galois representations that play a central role in [28].

Corollary 5.9 (Application to a generalized version of ‘‘Fermat’s Last
Theorem’’). Let r, s, t be nonzero integers every two of which are coprime.
Write

S ¼def fðX ;Y ;ZÞ A Z3 j kXYZkC b 2g:

Let l, m, n be positive integers such that

minfl;m; ng > maxf2:453 ! 1030; log2krstkC; 10þ 5 log2ðradðrstÞÞg:
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Then there does not exist any triple ðx; y; zÞ A S of coprime [i.e., the set of prime
numbers which divide x, y, and z is empty] integers that satisfies the equation

rxl þ sym þ tzn ¼ 0:

Proof. Write k ¼def minfl;m; ng. Suppose that there exists a triple ðx; y; zÞ A
S of coprime integers such that rxl þ sym þ tzn ¼ 0. Then we claim the fol-
lowing:

Claim 5.9A: rxl , sym, and tzn are coprime.

Indeed, suppose that a prime number p divides rxl , sym, and tzn. Let us
consider the set

E ¼def fk A fx; y; zg j p divides kg:

Then, by applying our assumption that ðx; y; zÞ are coprime (respectively, every
two of ðr; s; tÞ are coprime), we conclude that aEa 2 (respectively, aEb 2),
hence that aE ¼ 2. Thus, to verify Claim 5.9A, we may assume without loss
of generality that p divides x and y. [In particular, p does not divide z.] Then
observe that pk divides rxl and sym, hence also tzn. In particular, since p does
not divide z, we conclude that pk divides t. Thus, we have

log2krstkC b log2ktkC b log2 pk b k

—a contradiction. This completes the proof of Claim 5.9A.
Now we apply Theorem 5.4 to the present situation, by taking
( ‘‘ða; b; cÞ’’ to be ðrxl ; sym; tznÞ [cf. Claim 5.9A];
( ‘‘e’’ to be 1.
Then we have

krstkC ! kxyzkk
C a krstxlymznkC
a 24 !maxfexpð1:7 ! 1030Þ; ðradðrstxlymznÞÞ6g

¼ 24 !maxfexpð1:7 ! 1030Þ; ðradðrstxyzÞÞ6g:

On the other hand, since

krstkC ! kxyzkk
C b radðrstÞ ! kxyzkk

C

> 24 ! ðradðrstÞÞ6 ! kxyzk6C
b 24 ! ðradðrstxyzÞÞ6

[cf. our assumptions that k > 4þ ð6& 1Þ ! log2ðradðrstÞÞ þ 6 and kxyzkC b 2], we
obtain that

2k a krstkC ! kxyzkk
C a 24 ! expð1:7 ! 1030Þ;

hence that ka 2:453 ! 1030—a contradiction. This completes the proof of Cor-
ollary 5.9. r
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