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Abstract

In the final paper of a series of papers concerning inter-universal Teichmiiller theory,
Mochizuki verified various numerically non-effective versions of the Vojta, ABC, and
Szpiro Conjectures over number fields. In the present paper, we obtain various numer-
ically effective versions of Mochizuki’s results. In order to obtain these results, we first
establish a version of the theory of étale theta functions that functions properly at
arbitrary bad places, i.e., even bad places that divide the prime “2”. We then proceed
to discuss how such a modified version of the theory of étale theta functions affects
inter-universal Teichmiiller theory. Finally, by applying our slightly modified version of
inter-universal Teichmiiller theory, together with various explicit estimates concerning
heights, the j-invariants of “arithmetic” elliptic curves, and the prime number theorem,
we verify the numerically effective versions of Mochizuki’s results referred to above.
These numerically effective versions imply effective diophantine results such as an effec-
tive version of the ABC inequality over mono-complex number fields [i.e., the rational
number field or an imaginary quadratic field] and effective versions of conjectures of
Szpiro. We also obtain an explicit estimate concerning “‘Fermat’s Last Theorem”
(FLT)—i.e., to the effect that FLT holds for prime exponents > 1.615-10'*—which
is sufficient, in light of a numerical result of Coppersmith, to give an alternative proof
of the first case of FLT. In the second case of FLT, if one combines the techniques
of the present paper with a recent estimate due to Mihdilescu and Rassias, then the
lower bound “1.615-10' can be improved to “257”. This estimate, combined with
a classical result of Vandiver, yields an alternative proof of the second case of FLT.
In particular, the results of the present paper, combined with the results of Vandiver,
Coppersmith, and Mihailescu-Rassias, yield an unconditional new alternative proof of
Fermat’s Last Theorem.
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Introduction

In [19], Mochizuki applied the theory of [16], [17], [18], [19] [cf. also [20] for
a detailed survey of this theory] to prove the following result [cf. [19], Corollary
2.2, (i), (iii)]:

THEOREM. Write X for the projective line over Q; D C X for the divisor
consisting of the three points “0”, “1”, and *“o0”; (Men)q for the moduli stack
of elliptic curves over Q. We shall regard X as the “A-line”—i.e., we shall
regard the standard coordinate on X as the “)” in the Legendre form > =
x(x = 1)(x — A)” of the Weierstrass equation defining an elliptic curve—and hence
as being equipped with a natural classifying morphism Uy ey \D — («Wen)Q-
Write

log(a/" )

Jor the R-valued function on (Me)q(Q), hence also on Ux(Q), obtained by
Sforming the normalized degree “deg(—)" of the effective arithmetic divisor deter-
mined by the g-parameters of an elliptic curve over a number field at arbitrary
nonarchimedean places. Let

Hy C Ux(Q)

be a compactly bounded subset that satisfies the following conditions:
(CBS1) The support of Ay contains the nonarchimedean place 2.
(CBS2) The image of the subset “#> C Ux(Q,)” associated to Ay via the
Jj-invariant Uy — (Men)q — A(IQ is a bounded subset of A}D((]_)z) =Q,,
i.e., is contained in a subset of the form 2Nf-i“"'@q—22 C ©Q,, where
Niinv € Z, and @0—22 C Q, denotes the ring of integers [cf. the condi-
tion (*inv) of [19], Corollary 2.2, (ii)].
Then there exist
* a positive real number H,ni¢ which is independent of ¢} and
* positive real numbers Cy and H., which depend only on the choice of the
compactly bounded subset .7}
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such that the following property is satisfied: Let d be a positive integer, ¢; and &
positive real numbers < 1. Then there exists a finite subset

Exc, g C Uy(Q)=*

—where we denote by Ux(Q)=? C Ux(Q) the subset of Q-rational points defined
over a finite extension field of Q of degree < d—which depends only on Ay, &, d,
and ¢4, and satisfies the following properties:

* The function log(q ) is

< Hyir - e 3 '8;3 e 4 Hy

on Cxc, 4. _
_* Let Ep be an elliptic curve over a number field F C Q that determines a
Q-valued point of (Men)q which lifts [not necessarily uniquely] to a point xg €

Uy (F)N Uy (Q)=" such that
xpe Ay, xpé¢Cxey.

Write Fpoq for the minimal field of definition of the corresponding point

S («ﬂell)Q(Q) and
def

Froa € Ftpd = Fmod(EFmod [2}) CF
Jor the “tripodal” intermediate field obtained from Fyoq by adjoining the fields of
definition of the 2-torsion points of any model of Ep xp Q over Fupoq [cf [19],
Proposition 1.8, (ii), (iii)]. Moreover, we assume that the (3 -5)-torsion points of
Er are defined over F, and that
def

F= FmOd(\/__l_v EF, . [2 -3 5]) = Ftpd(\/__l_v EFlpd [3 ’ 5])

—i.e., that F is obtained from Fpq by adjoining V=1, together with the fields of
definition of the (3 - 5)-torsion points of a model EF,, of the elliptic curve Er X Q
over Fipq determined by the Legendre form of the Weierstrass equation discussed
above. Then Ep and Fyoq arise as the “Er” and “Fpod” for a collection of initial
O-data as in [19], Theorem 1.10, that satisfies the following conditions:

(C1) (log(ay,))"* <1< 105 - (log(a},))'"? - log(25 - log(aY, ));

(C2) we have an inequality

1 .
g log(qiE) < (1 +e) - (log-diff y (xg) + log-cond,(xg)) + Cx

—where we write s 212.33.5. 4, log-diffy for the [normalized] log-different

Sunction on Ux(Q) [cf. [15], Definition 1.5, (iii)]; log-cond,, for the [normalized]
log-conductor function on Ux(Q) [cf. [15], Definition 1.5, (iv)].

In the present paper, we prove a numerically effective version of this theorem
without assuming the conditions (CBS1), (CBS2) [cf. the portion of Corollary 5.2
that concerns x/x'°2/#’]. Moreover, we prove that if one restricts one’s atten-
tion to the case where the point “xg” is defined over a mono-complex number
field [i.e., @ or an imaginary quadratic field—cf. Definition 1.2], then one may
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eliminate the compactly bounded subset “#}” from the statement of this theorem
[cf. the portion of Corollary 5.2 that does not concern r/Kk'°¢/).

In order to obtain Corollary 5.2, we establish a version of the theory of étale
theta functions that functions properly at arbitrary bad places, i.e., even bad places
that divide the prime “2”. Roughly speaking, this is achieved by modifying the
notion of evaluation points at which the theta function is evaluated [cf. the expla-
nation of §3 below for more details].

We then proceed to apply Corollary 5.2 to verify the following effective
diophantine results [cf. Theorems 5.3, 5.4; Remarks 5.3.3, 5.3.4, 5.3.5; Corollary
5.8; the notations and conventions of §0]:

THEOREM A (Effective versions of ABC/Szpiro inequalities over mono-
complex number fields). Let L be a mono-complex number field [i.e., Q@ or an
imaginary quadratic field—cf. Definition 1.2]; a,b,c € L* nonzero elements of L
such that

a+b+c=0;
¢ a positive real number < 1. Write E, . for the elliptic curve over L defined by

the equation y* = x(x — 1) <x+g>; J(Eap.c) for the j-invariant of E, p .5 Ap for

the absolute value of the discriminant of L; d & [L:Q];

Hy(a,b,c) def H max{|al,, |b|,, |c|,};
veV(L)

Ir(a,b,c) € {ve V(L) |#{|al, b],, c|,} =2} € V(L)™

rady (a,b,c) & H #(OL/p,);

velp(a,b,c)
def [ 3.4-10%0 . g7166/81 (g = 1)
hale) = {6- 10371485 (4 =2),
Then the following hold.
(i) We have [cf. Definition 1.1, (i)]

€) - log(Ar - rady(a, b, c)),

hd(g)}

(1 +¢)-log(AL -radp(a,b,c)) + é - ha(e).

O‘\I"

g (L

N —

“hnon (J(Ea,p,c)) < rnax{l

<

Ul —

(i) We have

Hy(a,b,c) <252 max{exp (%l : hd(8)> ,(Ar - radg(a, b, c))”“)/z}

£25d/2-exp(%l-hd( )) (Ap -radg(a,b,c))> 92,
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THEOREM B (Effective version of a conjecture of Szpiro). Let a, b, ¢ be
nonzero coprime integers such that

a+b+c=0;
& a positive real number < 1.  Then we have
|abe| < 2* - max{exp(1.7 - 10% - £~'%9/81) (rad(abc)) )}
< 2% exp(1.7-10% - £ 1¢/81) _ (rad(abc)) >+

—which may be regarded as an explicit version of the inequality
3+e

“labe| < C(e) H pl|l 7
plabe

conjectured in [26], §2 [i.e., the “forme forte” of loc. cit., where we note that the
“p” to the right of the “[[” in the above display was apparently unintentionally
omitted in loc. cit.].

CoroLLARY C (Application to “Fermat’s Last Theorem™). Let
p>1.615.-10"

be a prime number. Then there does not exist any triple (x,y,z) of positive
integers that satisfies the Fermat equation

xP 4 pP = 2P,

The proof of Corollary C is obtained by combining
+ the slightly modified version of [16], [17], [18], [19] developed in the present
paper with
+ various estimates [cf. Lemmas 5.5, 5.6, 5.7] of an entirely elementary
nature.
In fact, the lower bound of Corollary C may be strengthened roughly by a factor
of 2 by applying the results of [8], [9] [cf. Remarks 5.7.1, 5.8.2], which are
obtained by means of techniques of classical algebraic number theory that are
somewhat more involved than the argument applied in the corresponding portion
of the proof of Corollary C. The original estimate of Corollary C is sufficient,
in light of a numerical result of Coppersmith, to give an alternative proof [i.e., to
the proof of [28]] of the first case of Fermat's Last Theorem [cf. Remark 5.8.1].
In the second case of Fermat’s Last Theorem, if one combines the techniques of
the present paper with a recent estimate due to Mihailescu and Rassias, then the
lower bound “1.615 - 10'*” of Corollary C can be improved to “257” [cf. Remark
5.8.3, (i)]. This estimate, combined with a classical result of Vandiver, yields an
alternative proof [i.e., to the proof of [28]] of the second case of Fermat's Last
Theorem |[cf. Remark 5.8.3, (ii)]. In particular,
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the results of the present paper, combined with the results of Vandiver,
Coppersmith, and Mihailescu-Rassias, yield an unconditional new alter-
native proof [i.e., to the proof of [28]] of Fermat’s Last Theorem.

[The authors have received informal reports to the effect that one mathe-
matician has obtained some sort of numerical estimate that is formally similar
to Corollary C, but with a substantially weaker [by many orders of magnitude!]
lower bound for p, by combining the techniques of [19], §1, §2, with effective
computations concerning Belyi maps. On the other hand, the authors have not
been able to find any detailed written exposition of this informally advertized
numerical estimate and are not in a position to comment on it.]

We also obtain an application of the ABC inequality of Theorem B to a
generalized version of Fermat's Last Theorem [cf. Corollary 5.9], which does not
appear to be accessible via the techniques involving modularity of elliptic curves
over Q and deformations of Galois representations that play a central role in [28].

In the following, we explain the content of each section of the present paper
in greater detail.

In §1, we examine various [elementary and essentially well-known] properties
of heights of elliptic curves over number fields. Let F C Q@ be a number field;
E an elliptic curve over F that has semi-stable reduction over the ring of integers
Or of F. Suppose that E is isomorphic over @ to the elliptic curve defined by
an equation

yr=x(x—1)(x—2)
—where Ae @Q\{0,1}. For simplicity, assume further that
Q(2) is mono-complex

[i.e., @ or an imaginary quadratic field—cf. Definition 1.2]. Write j(E) € Q for
the j-invariant of E. In Corollary 1.14, (iii), we verify that the [logarithmic]
Weil height

h(j(E))

[cf. Definition 1.1, (i)] of j(E) satisfies the following property:

(H1) Let / be a prime number. Suppose that E admits an /-cyclic sub-
group scheme, and that / is prime to the local heights of E at each
of its places of [bad] multiplicative reduction [i.e., the orders of the
g-parameter at such places—cf. [15], Definition 3.3]. Then the non-
archimedean portion of h(j(E)) is bounded by an explicit absolute
constant € R.

To verify (H1), we make use of the following two types of heights:

« the Faltings height h¥*(E) [cf. the discussion entitled “Curves” in §0],

« the symmetrized toric height h®*"(E) [cf. Definition 1.7].

These heights AF(E) and AS'T(E) may be related to h(j(E)) by means of
numerically explicit inequalities [cf. Propositions 1.8, 1.10, 1.12] and satisfy the
following important properties:
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(H2) Let E’ be an elliptic curve over F; ¢ : E — E’ an isogeny of degree d.
Then it holds that AF(E") — hF(E) < 1 log(d) [cf. [5], Lemma 5].
(H3) The archimedean portion of h*''(E) is bounded above by the non-
archimedean portion of h®(E) [cf. Proposition 1.9, (i)].
[Here, we note that (H3) is an immediate consequence of the product formula,
together with the assumption that the cardinality of the set of archimedean places
of the mono-complex number field Q (1) is one.] The property (H1) then follows,
essentially formally, by applying (H2) and (H3), together with the numerically
explicit inequalities [mentioned above], which allow one to compare the different
types of heights.
In §2, we review
+ a result concerning the j-invariants of “‘arithmetic” elliptic curves [cf.
Proposition 2.1];
+ certain effective versions of the prime number theorem [cf. Proposition
2.2].

In §3, we establish a version of the theory of étale theta functions [cf. [14],
[17]] that functions properly at arbitrary bad places, i.e., even bad places that
divide the prime “2”. Here, we note that the original definition of the notion of
an evaluation point—i.e., a point at which the theta function is evaluated that is
obtained by translating a cusp by a 2-torsion point [cf. [14], Definition 1.9; [16],
Example 4.4, (i)]—does not function properly at places over 2 [cf. [19], Remark
1.10.6, (ii)]. Thus, it is natural to pose the following question:

Is it possible to obtain a new definition of evaluation points that func-
tions properly at arbitrary bad places by replacing the “2-torsion point”
appearing in the [original] definition of an evaluation point by an
“n-torsion point”, for some integer n > 27

Here, we recall that the definition of an evaluation point obtained by translating
a cusp by an n-torsion point functions properly at arbitrary bad places if the
following two conditions are satisfied:

(1) The various ratios of theta values at the Galois conjugates of [the
point of the Tate uniformization of a Tate curve corresponding to a
primitive 2n-th root of unity] {,, are roots of unmity [cf. [17], Remark
2.5.1, (ii)].

(2) The theta value at {, is a unit at arbitrary bad places [cf. [19], Remark
1.10.6, (ii)].

One fundamental observation—due to Porowski—that underlies the theory of the
present paper is the following:

n satisfies the conditions (1), (2) if and only if n =106

[cf. Lemma 3.1; Proposition 3.2; the well-known fact that 1 — {4, 1 — {3 are non-
units at places over 2]. Following this observation, in Definition 3.3, we intro-
duce a new version of the notion of an “étale theta function of standard type”
[cf. [14], Definition 1.9] obtained by normalizing étale theta functions at points
arising from 6-torsion points of the given elliptic curve. In the remainder of §3,
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we then proceed to discuss how the adoption of such ““étale theta functions of
He-standard type” affects the theory developed in [14].

Next, in §4, we discuss how the modifications of §3 affect [16], [17], [18].
Roughly speaking, we observe that, once one makes suitable minor technical
modifications,

(x) the theory developed in [16], [17], [18] remains essentially unaffected even
if, in the notation of [16], Definition 3.1, (b), one eliminates the assump-
tiori ;‘of odd residue characteristic”” that appears in the discussion of
Sy

In §5, we begin by proving a “ug-version” [cf. Theorem 5.1] of [19], Theorem

1.10, i.e., that applies the theory developed in §2, §3, §4. This allows us to
obtain a “p4-version” [cf. Corollary 5.2] of [19], Corollary 2.2, (ii), (iii) [i.e., the
“Theorem” reviewed at the beginning of the present Introduction] without assum-
ing the conditions (CBS1), (CBS2) that appear in the statement of this Theorem
concerning the nonarchimedean place “2”. The proof of Corollary 5.2 makes
essential use of the theory of §1, §2 [cf., especially, Corollary 1.14; Propositions
2.1, 2.2]. In the case of mono-complex number fields, we then derive
+ Theorem 5.3 from Corollary 5.2 by applying the product formula, together
with the essential assumption that the number field under consideration is
mono-complex [cf. the property (H3) discussed above] and various elemen-
tary computations [such as Proposition 1.8, (i)];
* Theorem 5.4 from Theorem 5.3, together with various elementary compu-
tations [such as Proposition 1.8, (i)].
Finally, we apply
+ Theorem 5.3, together with various elementary considerations, to ““Fermat’s
Last Theorem” [cf. Corollary 5.8] and
* Theorem 5.4, again together with various elementary computations, to a
generalized version of “Fermat’s Last Theorem” [cf. Corollary 5.9].
In this context, we note [cf. Remark 5.3.2] that it is quite possible that, in the
future, other interesting applications of Theorems 5.3, 5.4 to the study of nu-
merical aspects of diophantine equations can be found.
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0. Notations and conventions

Numbers:

Let S be a set. Then we shall write #S for the cardinality of S.

Let E C R be a subset of the set of real numbers IR. Then for A€ R, if
[ denotes “< A7, “< A7, “> 17, or “> A", then we shall write E5 C E for the
subset of elements that satisfy the inequality “[J”. If E is finite, then we shall
write max E for the smallest real number A such that E_, = E and min E for the
largest real number A such that E., = E.

For any nonzero integer n ¢ {1,—1}, we shall write rad(n) for the product
of the distinct prime numbers p which divide n. We shall define rad(1) and
rad(—1) to be 1.

Let F be a field. Then we shall write F" % F \{0, 1}.

Let @ be an algebraic closure of the field of rational numbers @, F C (Q
a subfield. Then we shall write O C F for the ring of integers of F; z¥ (0
Primes C Z for the set of all prime numbers; V(F)"™" (respectively, V(F)**) for
the set of nonarchimedean (respectively, archimedean) places of F;

V(F) &

pa W(F)arc U W(F)non.
For ve V(F), we shall write F, for the completion of F at v.

Now suppose that F is a number field, i.e., that [F: @] < co.

Let ve V(F)"". Write p, C Op for the prime ideal corresponding to v;
p, for the residue characteristic of F,; f, for the residue field degree of F, over
Q,,; ord, for the normalized valuation on F, determined by v, where we take the
normalization to be such that ord, restricts to the standard p,-adic valuation on
Q,,- Then for any x e F,, we shall write

Ix]l, & p, o

def F,:Q,
2 p o x|, x| e,

Let ve V(F)™. Write g,: F — C for the embedding determined, up to
complex conjugation, by v. Then for any x € F,, we shall write

def def F,R]
I¥ll, = llow@lle 1], = ]
—where we denote by |- || the standard [complex] absolute value on C.
Note that for any we V(Q) that lies over ve V(F), the absolute value
|- l, : F» — R extends uniquely to an absolute value | - ||, : @, — Rso. We

shall refer to this absolute value on @, as the standard absolute value on Q,,.
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Curves:

Let E be an elliptic curve over a field. Then we shall write j(E) for the
J-invariant of E.

Let E be an elliptic curve over a number field F that has semi-stable reduc-
tion over Up. Write hF(E) for the Faltings height of E [cf. [5], §3, the first
Definition]. Then we shall write

hFNE) < RT(E) + % log 7

[cf. [10], Definition 2.3; [10], Remark 2.1]. Here, we note that the quantity
hF4(E) is unaffected by passage to a finite extension of the base field F of E
[cf., e.g., [10], Proposition 2.1, (i)].

1. Heights

Let E be an elliptic curve over a number field. In the present section, we
introduce the notion of the symmetrized toric height h**°"(E) of E [cf. Definition
1.7). We then compare /#S'°"(E) with the [logarithmic] Weil height h(j(E)) of
J(E) [cf. Proposition 1.8]. Finally, we prove that if E satisfies certain conditions,
then the nonarchimedean portion of h(j(E)) is bounded by an absolute constant
[cf. Corollary 1.14, (iii)].

DerNiTION 1.1. Let F be a number field.
(i) Let «e F. Then for [Je {non,arc}, we shall write

hl:‘(a) = [F . Q] DGWZ(F)D IOg max{|<x|v, 1} (2 0)7

1) < Trnon (22) + hare (%)
and refer to h(a) as the [logarithmic] Weil height of «. We shall also
write hg (o) for h(a).
(i) Let « € F*. Then for [Je€ {non,arc}, we shall write

2[FlmQ] S logmax{la,. |l '} (20),

veV(F)P

or def

h () =
tor def ; tor tor

R (0) = hygn (o) + Trage (o)

and refer to 1" () as the [logarithmic| toric height of o. We shall also
write /%" () for h'"(a).

Remark 1.1.1. One verifies easily that for [] e {non,arc,®}, the quantities
hoy(e) and hS"(x) are unaffected by passage to a finite extension of F.
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DeriNITION 1.2. Let F be a number field. Then we shall say that F is
mono-complex if F is either

the field of rational numbers Q) or an imaginary quadratic field.

One verifies easily that F is mono-complex if and only if the cardinality of
V(F)™ is one.

LemMa 1.3 (Properties of toric heights). Let F be a number field, o e F*.
Then the following hold.
(i) 1t holds that

S () = b (e h); () = % Aho(@) +ho(eh)}

for [J e {non,arc,®}.
(i) 1t holds that

h(o) = h'" (o).
In particular, we have h(a) = h(a™') [¢f (i)].

(iii) Suppose that F is mono-complex. Then we have

A (o) < h'" (a).

arc — ‘non

(iv) Let x,ye F; x* y* e F*. Then we have

ho(x) + ho(y) = ho(x - y);
h‘t__(\)r(xtor) _i_hgr(ytor) > hlt_jr(xtor . ytor)

for [ € {non,arc, ®}.

Proof. First, we consider assertion (i). The first equality follows immedi-
ately from the various definitions involved. The second equality follows imme-
diately from the various definitions involved, together with the following [easily
verified] fact: For any se R, it holds that

max{s,s '} = max{s, 1} -max{s~' 1}.

Next, we consider assertion (ii). Write d &f [F:@]. Then we compute:

2d-hNo) = D log max{|ol,, |af, "} = D log(lal," - max{|e|?,1})
veV(F) veV(F)

=2d-h(a)+ Y loglal, ' =2d-h(a)

veV(F)

—where the final equality follows from the product formula. This completes the
proof of assertion (ii).
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Next, we consider assertion (iii). Let w be the unique element of V(F)™.
In light of the first equality of assertion (i), to verify assertion (iii), we may
assume without loss of generality that |«|, > 1. Then we compute:

2d - hygi(2) = loglal,, = ) loglal,!
veV(F)"™"
< Y logmax{lal,|af, '} = 2d - hior (%)
L‘EW(F)"OH

—where the second equality follows from the product formula. This completes
the proof of assertion (iii). Finally, we consider assertion (iv). It follows
immediately from the second equality of assertion (i) that to verify the second
inequality of assertion (iv), it suffices to verify the first inequality of assertion (iv).
But the first inequality follows immediately from the following [easily verified]
fact: For any s,7€ R, it holds that

max{st,1} < max{s, 1} - max{z,1}.
This completes the proof of assertion (iv). O
Remark 1.3.1. It may appear to the reader, at first glance, that the notion
of the toric height of an element of a number field F is unnecessary [cf. Lemma

1.3, (ii)]. In fact, however, the toric height of an element o € F* satisfies the
following important property [cf. Lemma 1.3, (iii)]:

If F is mono-complex, then the archimedean portion of the toric height
of o is bounded by the nonarchimedean portion of the toric height of a.

This property is an immediate consequence of the product formula [cf. the proof
of Lemma 1.3, (iii)]. We note that, in general, the notion of the Weil height does
not satisfy this property. For instance, for any n e Z-,, we have

hnon (l/l) = 0; hal‘C(n) = lOg(l’l),

I 1
hnon(n) = 5 log(n); hyze(n) = 5 log(n).

DErFINITION 1.4. Let F be a field; || : F — Ry a map satisfying the fol-
lowing conditions:
(i) The restriction of |-| to F* determines a group homomorphism

F* — R [relative to the multiplicative group structures on F*, R.g].
(i) It holds that |0] = 0.
(ili) For any x e F, it holds that |x+ 1| < |x| + 1.
Then for o« e F™, we shall write
T(@) 2 = 1P o = 1]

=l —a) =117 |2 1 — a2
Joe(1 — o) ;
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def _
Jooo () = max{o, [o] 7'}
def
Jloc(oc) ;

def _ _
Jor(2) = max{|oc— 1| - o " o] - Jo— 171

max{ e — 1], |« — 1| '};

LEMMA 1.5 (Comparison between J(x) and |«|%). In the notation of Defini-
tion 1.4, suppose that |o| = 2. Then we have

o <28 J(a).

Proof. First, we note that since |o¢— 1| < |«| + 1, we have
o — o+ 1] =]o? — (= 1) = |oa|* — o — 1| = |o)* — (Jo| + 1).
Thus, we conclude that
2% o — o 1P o P o= 17 2 28 (P = = 1) P (e 1)
> |of?

—where we observe that since x> —x — 1> x(x—3), —(x+1)> > —(2x)*, and

the function w3 is monotonically decreasing for x € R, the final inequality

follows from the elementary fact that

for x e Rs»,. O

LemmA 1.6 (Comparison between J(x) and Jooo () - Jioo () - Jo1 (). In the
notation of Definition 1.4, the following hold.
(i) Write z for the rational function given by the standard coordinate on IPlZ
and

ALz -2 (1-2) 2 2= ) (2= 1) 27,
BY (5 C A|#5=2; if we write § ={a,b}, then

it holds that A = {a,ail,b,lfl,—aba—(ab)il}}
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Then the set B coincides with the set

BEY (- a1 2"z 1 -2,
{Zﬁlaz' (Z_ 1)_1}7{1 -z (Z_ 1)_1}7
{1-27" (=127}
Moreover, the map
¢p:B— A
{a,b} — —ab
is bijective. Here, we recall that the symmetric group on 3 letters S;
admits a natural faithful action on the projective line Py over Z, hence
also on the set of F-rational points (PL\{0, 1, 0})(F) = F", and that the
orbit S;3 - z of z coincides with the set A. In particular, the action of S3

on A induces, via ¢71, a transitive action of S; on B.
(i) For every 6 ={a,b} € B, write

D; € {f e F"||a(f)| = 1, |b(f)| = 1} C F".

We note that the action of S3 on B [cf. ()] induces a transitive action
on the set [of subsets of F"| {Ds};.p Then we have

Fh = U D;.
JeB

(iii) For any ¢ € Rsg, we have
272 oo () - Jioo (@) - Jor (o) < max{25*%. J(a), 1}
< 2% Joo (o) - Troo (@) - Jor ().

(iv) Suppose that | - | is nonarchimedean, i.c., that for any x € F, it holds that
|x 4+ 1| < max{|x|,1}. [Thus, for any x € F such that |x| <1, it holds
that |x+ 1| =1.] Then we have

max{J(a), 1} = Jooo (&) - J1o0(2t) « Jo1(e0).

Proof. First, we consider assertion (i). To verify assertion (i), it suffices to
show that B= B’. [Indeed, it follows from this equality that #B = 6. Thus, to
verify that ¢ is bijective, it suffices to show that ¢ is surjective. But this surjec-
tivity follows immediately from the equality B = B’ and the various definitions
involved.] The inclusion B’ C B follows immediately from the various definitions
involved. Thus, it suffices to verify the inclusion B C B’. First, we observe that
A is the [disjoint] union of the following sets:

Ape T iz27), A4 Y {1-2(0-2", 40¥{z- -1 (-1}
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Let 0 € B. Note that [as is easily verified] J ¢ {40, A1, Ao1}. Thus, we may
write

o0 =1{a,b}
—where the pair (a,b) satisfies precisely one of the following three conditions:
(1) a€e Ao, b€ A1o, (2) a€ A1, be Agr, (3) a€ Ao, b€ Apes.

On the other hand, in each of these three cases, one verifies immediately that the
condition

A={a,a ' b,b", —ab, —(ab)fl}

implies that there are precisely two possibilities for d, and, moreover, that these
two possibilities are € B’, as desired. This completes the proof of assertion (i).

Next, we consider assertion (ii). Assertion (ii) follows immediately from the
following claim:

CLamM 1.6A: For f e F", §e B, write 5(f) & ¢(0)(f). Suppose that it
holds that

[0(/)] = max{le(f)|}-

ceB
Then we have f € DDs.

Let us verify Claim 1.6A. Write 6 = {a,b}. Suppose that f ¢ Ds. Then we
may assume without loss of generality that |a(f)| < 1. Thus, we have

0N = la(O)] - 16O < [b()]-

On the other hand, since we have |b(f)| € {e(f)},cp [cf. the latter portion of
assertion (i), i.e., the fact that ¢ is a bijection], we obtain a contradiction.
Therefore, we conclude that f € ID;. This completes the verification of Claim
1.6A, hence also of assertion (ii).

Next, we consider assertions (iii) and (iv). First, we observe that, in asser-
tion (iii), we may assume without loss of generality, that ¢ =0. Write

DED, oy = eF /1= 121} CF".

Then we observe that

F'"= | (c-D)

ge;
[cf. assertion (ii)], and that for e F", o e &3, we have
Jooo (00) - J10o () - Jo1(20) = Jooo (0 - &) - 100 (0 - &) - Jo1 (0 - @),
J(a)=J(o-a)

[cf. the fact discussed in the proof of Lemma 1.3, (i); Definition 1.4; the equality
“4 = C;-z” discussed in assertion (i); the manifest invariance of J(x) with
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respect to the transformations o +— 1 — o, o — o~!, which correspond to a pair
of generators of ;). Thus, to verify assertions (iii) and (iv), we may assume
without loss of generality that a e ID. Then observe that Jo, (o) = |o| > 1,
Jio(@) = |o— 1] > 1, Joy(a) = |o - [« — 1] " > 1, hence that

Joo () - J1oo (2) - Jor (@) = |of* (= 1).
Now let us verify assertion (iii). The inequality
Jooo (@) - J1oo (o) - Jor (@) < 2% - max{2% - J(a), 1}
follows immediately from Lemma 1.5. On the other hand, the inequality
max{2° - J(2), 1} <27 Jooo (@) - J1oo () - Jo1 (20)
follows immediately from the following computation:
J(@) = la(a = 1)+ 1P fo 2 o= 1]
<23 o 2 ja— 172 max{|a - ja— 1), 1}
=27 ol o — 1] < 23 o ? = 2% Jooo () - Troo (o) - Jon ().

—where we apply the easily verified fact that |x+ 1> <23 -max{|x|3 , 1} for
x e F. This completes the proof of assertion (iii).

Finally, let us verify assertion (iv). First, observe that it follows immedi-
ately from our assumption that |- | is nonarchimedean that

D={feF"||fl=If -1}

Suppose that |a| = | — 1| =1 (respectively, |a| = |« — 1| > 1). Then we have
J(@) = |a(o — 1)+ 1]° < (max{lo| - |0 — 1],1})* = 1 = |of?
(respectively, J(a) = Ja(or — 1) + 11> - o] ™ = | - o] ™ = |o]?).

Thus, we conclude that
max{J(2), 1} = [a|> = Jooo (&) - J105 () - Jo1 (2),
as desired. This completes the proof of assertion (iv). O
DerINITION 1.7. Let @ be an algebraic closure of @, F C @ a number field,

E an elliptic curve over F. Recall that E is isomorphic over @ to the elliptic
curve defined by an equation

P =x(x—1)(x = 1)
—where 1€ (l_)m [cf. [24], Chapter III, Proposition 1.7, (a)]. Recall further that
the j-invariant j(E) of E satisfies

_ 8 (A=i+1)7°

](E)_ /12(1—1)2 (GF)
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[cf. [24], Chapter III, Proposition 1.7, (b)], and that the symmetric group on
3 letters S; admits a natural faithful action on the projective line ]P(}2 over

@, hence also on the set of @Q-rational points (lP(})\{O,l,oo})((T)) = (T)m. For
[J € {non, arc}, we shall write

hE(E) ST hSt (o 2),
O’G@;
S-tor def ; - G-
hv 0 (E) ; hnoéor(E) + harctor(E)
[cf. Remark 1.1.1] and refer to h&©(E) as the symmetrized toric height of E.
We shall also write hZ""(E) for h®'T(E). One verifies easily that A5 (E),

non

hE°(E), h®°"(E) do not depend on the choice of “1” [cf. the proof of [24],

arc

Chapter III, Proposition 1.7, (c)].

Remark 1.7.1. One verifies easily [cf. Remark 1.1.1] that for e
{non, arc, @}, the quantity 45"°"(E) is unaffected by passage to a finite extension
of the base field F of E.

Remark 1.7.2. 1t follows immediately from Lemma 1.3, (i), that for [Je
{non, arc, ®}, we have

hS(E) =Y ho(a - 4).

0’663

PRrOPOSITION 1.8 (Comparison between 45" (E) and hp(j(E))). In the nota-
tion of Definition 1.7, the following hold.

(i) 0<hS(E) — haon(j(E)) < 8 log 2.

(i) —111og 2 < hZO(E) — hare(J(E)) < 2 log 2.

Proof. 1If veV(F), then it is well-known that |- ||, satisfies the condi-
tions (i), (ii), and (iii) of Definition 1.4, and, moreover, that, if v e V(F)"™", then
| - |l, is nonarchimedean in the sense of Lemma 1.6, (iv). Observe that, in the
remainder of the proof, we may assume without loss of generality that, in the
situation of Definition 1.7, 1€ F™ [cf. Remark 1.7.1). In the following, for
v e V(F), we shall write J(4),, Jowo (4),, J1o(4),, Jo1(4), for the “J(a)”, “Jos (),
“Jio (@), “Jo1(2)” of Definition 1.4, where we take

+ “F” to be F;
* “a” to be A
* [P to be |-,

Here, we observe that, for [Je {non,arc}, we have
hDS'“’r(E) =2 hltj"r()v) +2. hltjor(l ) +2- hg’r(}v (A— 1)71)

[cf. Lemma 1.3, (i); the set “4” of Lemma 1.6, (i)].
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First, we consider assertion (i). It follows from Lemma 1.6, (iv), that

[F:Q-hy™(E) = Y [F: Q] 10g(ox(2), - J1(2), - Jor(2),)

veV(F)™"

= Y [F:Q,] logmax{J(1), 1}.

ve V(F)™

Thus, to verify assertion (i), it suffices to show that, for every ve V(F)"" lying
over 2, it holds that

0 < log max{J(4),,1} —log max{27%.J(1),,1} <8 log?2

[cf. the equality 278 - J(4), = ||j(E)|,]. The first inequality follows immediately
from the inequality J(1), >27%-J(4),. Next, we verify the second inequality.
If J(4), <1, then

log max{J(%),, 1} —log max{27® - J(1),,1} =0 —0 < 8 log 2.

Thus, we may assume that J(4), > 1, hence that max{J(4),,1} = J(4)
ticular, if 278 J(4), > 1 (respectively, 27%-J(1), < 1), then we have

log J(1), — log max{27% - J(4),, 1} = —log(27®%) = 8 log 2

In par-

v

(respectively,
log J(2), — log max{27% - J(4),, 1} = log J(1), < 8 log 2).

This completes the verification of the second inequality, hence also of assertion
().

Next, we consider assertion (ii). Observe that

[F:Q-hZ™(Ey= Y [F:R] log(oe(A), Jio(2), - Jor(2),)-

veV(F)™

Assertion (ii) then follows immediately from Lemma 1.6, (iii)—where we take the
“¢” of Lemma 1.6, (iii), to be 2 [cf. the equality 2% -J (1), = ||j(E)|],). O

ProposITION 1.9 (Comparison between /finon(j(E)) and ha(j(E))). In the
notation of Definition 1.7, suppose that Q(A) is mono-complex. [Here, note that
the fact that Q() is mono-complex does not depend on the choice of “A” [cf the

t “A” of Lemma 1.6, (i)].] Then the following hold:

() hZ(E) < 3o (E)

(i1) farc(J(E)) < hpon(J(E)) +191og 2.

(iii) If C e R, then the element j(E)e€ Q is completely determined up to a

finite number of possibilities by the condition hyon(—) < C.

Proof. Assertion (i) follows immediately from Lemma 1.3, (iii), and the
various definitions involved. Assertion (ii) follows from assertion (i) and Prop-
osition 1.8, (i), (ii). Finally, we consider assertion (iii). It follows from assertion
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(ii) [cf. also Definition 1.1, (i)] that
h(J(E)) = hnon(J(E)) + hare(J(E)) < 2hnon(j(E)) + 19 log 2.

Thus, assertion (iii) follows immediately from Northcott’s theorem, i.e., the well-
known fact that the set of algebraic numbers of bounded degree and bounded
height is finite [cf. [3], Theorem 1.6.8]. O

ProPOSITION 1.10 (Comparison between A(j(E)) and h¥(E), 1). Let F be

a number field; E an elliptic curve over F that has semi-stable reduction over Op.

Then, in the notation of Definitions 1.1, (i); 1.7 [cf. also the discussion entitled

“Curves” in §0], we have
1

0< —-h(j(E) —h"E) <

<13 log(1 +h(j(E))) + 2.071.

N —

Proof. This follows immediately from [10], Proposition 3.1 [and the sur-
rounding discussion]. O

Remark 1.10.1. In the notation of Proposition 1.10, we observe that
(a) the normalized degree [cf. [19], Definition 1.9, (i)] of the [effective] arith-
metic divisor determined by the g-parameters of E at the elements of
W(F)non
coincides with
(b) Fnon (J(E))-
Indeed, this follows immediately from [24], Chapter VII, Proposition 5.5; the
discussion at the beginning of [25], Chapter V, §5. Moreover, we observe that
both (a) and (b) are unaffected by passing to finite extensions of the number field
F [cf. [15], Remark 3.3.1]. In particular, the assumption [cf. the statement of
Proposition 1.10] that E has semi-stable reduction over O is, in fact, inessential.

Lemma 1.11 (Linearization of logarithms). Let a € R.y be a positive real
number.  Then we have
0 <a-—log(a) — 1.
In particular, [by taking “a” to be a-(1+ x)] we have
log(l1+x)—a-x <a—log(a) —1

for all nonnegative real x € Rx.
Proof. Lemma 1.11 is well-known and entirely elementary. O

PrOPOSITION 1.12 (Comparison between h(j(E)) and AF(E), II). Let
¢ e R.g be a positive real number. Write
aer 1 { 3 3

C(<) =5 ——— — log m—l

6(1+2) }+2.071.
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Then, in the notation of Proposition 1.10, we have

1

G g ME) —hTIE) < CO).

Proof. Indeed, we have

T M) ~ A E)
{1 h( i(E)) — Fal _ é H
5 HUE) =B | - )
< 5+ {1oB(1 + AGE) — g5 HUCED b+ 207 <€)

—where the first (respectively, second) inequality follows from Proposition 1.10

(respectively, Lemma 1.11, where we take “a” to be 6 and “x” to be
hG(E)). 1+ 0

DerINITION 1.13. Let x <1 be a positive real number; X a finite subset
of V(@) such that V(@)™ CX. Write £ C V(Q) for the inverse image of

¥ C V(@Q) via the natural restriction map V(®) — V(®). Recall the set of
rational functions “A4” of Lemma 1.6, (i). Then we shall write

Hs(r) & {x c@"

min min{la(o)],} > x } € @
weX acd

[cf. the discussion e%titled “Numbers” in §0] and re%er to Ax(x) as a compactly
bounded subset of @ . Thus, the subset #5(x) C @ is stabilized by the natural

action of S; on Q" [cf. Lemma 1.6, (i)].

COROLLARY 1.14 (Upper bounds for hnen(j(E))). In the notation of Proposi-
tion 1.12, let | be a prime number. Suppose that E admits an I-cyclic subgroup
scheme [cf. [15], Lemma 3.5], and that | is prime to the local heights [cf. [15],
Definition 3.3] of E at each of its places of [bad] multiplicative reduction [a
condition that is satisfied, for instance, if | is > these local heights|. Then the
following hold:

(i) We have

!
12(1 +¢)

In particular, by applying the first inequality of Proposition 1.10, we

obtain that
I-(1+9)
12(14¢)

1

“haon(J(E)) < W™ (E) + >

log(l) + C(&).

aonG(E)) < 13- e J(E)) + 3 og(0) + C().
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(i) In the notation of Definitions 1.7, 1.13, suppose that
A e Az (k).

[Note that the issue of whether or not A€ Ax(x) does not depend on the
choice of the particular element “1” within the Ss-orbit of “1” [cf. the
final portion of Definition 1.13].] Then we have

I-(1+¢)
12(1 +¢)

Suppose, moreover, that [ > 105, Then, by taking & to be 1, we obtain
that

non(J(E)) < 210g(1)+c(@*%1°g() 1 102

ren(E) = 72 {5 Tox(D) + €(1) ~ § Togtw) + 73 loe)}

24 (1 1
< ) {§ log(/) +2.86 — i log(x) + 0.64}

<5-1071 —6.01- 107" log(x)

log(/) 14 _6
—> <3.46-10 =

11
15 log(2) <064, and C(1) <2.86

—where we apply the estimates <6.01-1071,

(iii

~—

Suppose that Q(A) is mono-complex. Then we have

1—2(14¢)
12(1+¢)

Suppose, moreover, that [ > 10,  Then, by taking & to be 1, we obtain
that

o ((E)) < 3 Tog(l) + C(&) + 15 Tog(2).

24

() = 723 { 5 o)+ C(1) + 13 tog()}

24 (1

<416-107034+096-1073=512.10"1

~

llof(l <3.46-101 li—4<241 10714,

1
é log(2) < 1.1, and C(1) < 2.86.

—where we apply the estimates

Proof. First, we con51der assertion (i). Let H C E be an /-cyclic subgroup
scheme. Write Ey & E/H [In particular, Ey is isogenous to E, hence has
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semi-stable reduction at all ve V(F)"™".] Thus, by applying the same arguments

as those applied in the proof of [15], Lemma 3.5, we obtain the following
equality:

hnon(j(EH)) =1 hnon(j(E))

[cf. also Remark 1.10.1]. On the other hand, it follows from the discussion
entitled “Curves” in §0; [5], Lemma 5, that we have the following inequality:

WY Ey) < hP(E) +% log(l).

In light of the above equality and inequality, assertion (i) follows from Proposi-
tion 1.12.

Next, we consider assertion (ii). Note that, since 1€ #3(x), for each ve
V(Q(A)™, we have:

max{[[4,, 12, '} <" max{[|A =1, 12 =1} <<
, 1 5 ) -1 -
max{[|4 = 1[l, - |4, s 140, - 14 = 1), < &7
Thus, we conclude from Proposition 1.8, (ii), that

hare (G(E)) — 11 log(2) < hE7(E)

arc
1

O : 0l ‘R - log(x—3
< [Q(g);Q]veww»m[ﬂ)(i)v.m] log (k%)

= log(x 7).

Assertion (ii) then follows immediately from the second inequality of assertion (i).
Finally, assertion (iii) follows immediately from the second inequality of assertion
(i) and Proposition 1.9, (ii). O

2. Auxiliary numerical results

In the present section, we recall
* a numerical result concerning the j-invariants of certain special elliptic
curves over fields of characteristic zero;
+ certain effective versions of the prime number theorem.
These results will be applied in §5.

PRrROPOSITION 2.1 (j-invariants of arithmetic elliptic curves). Let F be a field
of characteristic zero; E an elliptic curve over F. Suppose that the hyperbolic
curve obtained by removing the origin from E is “arithmetic”, i.e., fails to admit an
F-core [cf. [13], Remark 2.1.1). Then the j-invariant j(E) of E coincides with one
of the following:
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| 488095744

_hl4 213 g3
e = 2431057

1556068 _ 3 a5 5ea
81

- 1728 =26 .33,

0.

Proof. Proposition 2.1 follows immediately from [23], Table 4 [cf. also [23],
Lemma 1.1.1; [13], Proposition 2.7]. O

ProrosiTiON 2.2 (Effective versions of the prime number theorem). For
x € Rs,, write

n(x) -4 #{p € Primes | p < x};

o= Y log(p)

p € Primes; p<x
Set
Mo = 510 & < 1075,
Then the following hold.
(i) For any real number X > 1y, it holds that
X

log(x)

n(x) < 1.022-

[¢f- [19], Proposition 1.6].
(ii) For any real number x > &y, it holds that
|0(x) — x| < 0.00071 - x.
In particular, if </ is a finite subset of Brimes, and we write
0./ = Z log(p)
ped

[where we take the sum to be O if o/ =], then there exists a prime
number p ¢ o/ such that

P < (1-0.00071) " (0. + Epm) < 100072 - (0. + Epem)
[¢f [19], Proposition 2.1, (ii)].

Proof.  First, we consider assertion (i). Observe that log(x) > log(n,m) >

1.17 . -
47.66 > 0.0046" Thus, it holds that

n(x) <
log(x) — 1

X - X
L1177 log(x) — 1.0246
log(x)
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[cf. [1], Corollary 3.4; [2]]. Therefore, we conclude that

X

X
1022 .
022 15809 = Tog(w) — T.0246 = ")

Next, we consider assertion (ii). Observe that log(x) > log(&pm) = 34.53. Then

. 0.0242269 L . .
since ————— < 0.00071, assertion (ii) follows immediately from [22], Theorem

21 Togv) -

3. us-theory for [14]

In the present section, we introduce a slightly modified version of the notion
of an étale theta function of standard type [cf. Definitions 3.3, 3.5], a notion which
plays a central role in the theory developed in [14]. We then proceed to discuss
how the adoption of such a modified version of the notion of an étale theta
function of standard type affects the theory developed in [14].

We begin with certain elementary observations concerning roots of unity and
theta functions.

Lemma 3.1 (Group actions on primitive roots of unity). Let n>2 be an
even integer; k an algebraically closed field of characteristic zero. Write pj, C k>
for the set of primitive 2n-th roots of wumity in k; Aut(uj,) for the group of
automorphisms of the set w5\; T'_ C Aut(us,) (respectively, T~ C Aut(u,)) for
the subgroup of cardinality two generated by the automorphism of w;, defined as
Sollows: V(e uj,

{— —=C (respectively, { — C_').

[Note that since n is even, it follows that —( € p5\,.] Then the following conditions
are equivalent:

(1) ne{2,4,6}.

(2) The action of T_ xT'™ on u5, is transitive.

Proof. The fact that (1) = (2) is immediate from the definitions. Thus,
it remains to verify that (2) = (1). First, we observe that the tramsitivity of
the action of the group I'_ x I'" [whose cardinality is four] on g5, implies that
#(w,) < 4. In light of this observation, one verifies easily that

ne{l,2,3,4,5,6}.

Since n is even, we thus conclude that n e {2,4,6}. This completes the proof of
Lemma 3.1. (]

ProrosITION 3.2 (Theta values at primitive 12-th roots of unity). In the
notation of [14], Proposition 1.4:  Suppose that K contains a primitive 12-th root
of unity (5. Thus, we note that the set of primitive 12-th roots of unity in K
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coincides with the set

{C127£152a§1727C1121} g K
Recall the theta function ® of [14], Proposition 1.4,

° -1/8 n (1/2)(n+1/2)° 7
O(U) = g /* - Y (1)1 g g,
neZ

which satisfies the relations @(U) = —@(U~") = —O(=U) |[cf. [14], Proposition
1.4, (ii)]. Then the following hold.
(i) We have

O((12), 0(83,),0(L],), O(L13) € {O(L12), —O(L1)}-
(ii) We have ©((1) € OF.

Proof.  Assertion (i) follows immediately from Lemma 3.1 and [14], Prop-
osition 1.4, (ii). Assertion (ii) follows immediately from the fact that {1, — ( le €
Og [cf. the equality —({1» —hHr =1 O

Remark 3.2.1. Lemma 3.1 and Proposition 3.2 arose from observations due
to Porowski. These observations are, in some sense, the starting point of the
theory developed in the present paper.

In the remainder of the present §3, we consider a slightly modified version of
[14] based on “étale theta functions of ug-standard type”.

DeriNITION 3.3, In the notation of [14], Definition 1.9, suppose that K
contains a primitive 12-th root of unity. Note that the primitive 12-th roots of
unity in K determine precisely four 12-torsion points

{Tla 72,73, 74}

of [the underlying elliptic curve of ] X whose restriction to the special fiber lies in
the interior of [i.e., avoids the nodes of | the unique irreducible component of the
special fiber.
(i) We shall refer to either of the following four sets of values [cf. [14],
Proposition 1.4, (iii)] of #9Z

ﬁ@),Z| z :0,Z ~0,Z

Tlaﬂ&_|fza77 7_|f37’7 ._|14 gKX
as a pg-standard set of values of 7L,

(i) If #®Z satisfies the property that the unmique value € K* [cf. Proposi-
tion 3.2, (i); Remark 4.2.3, (vi); [17], Remark 2.5.1, (ii)] of maximal order
[i.e., relative to the valuation on K] of some p4-standard set of values
of #9Z is equal to +1, then we shall say that #%Z is of us-standard
type.
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Remark 3.3.1. By applying Definition 4.3, together with a similar argument
to the argument applied in the proof of [14], Theorem 1.10, one may prove a
“ug-version” of [14], Theorem 1.10, i.e., the assertion obtained by replacing, in
[14], Theorem 1.10, (iii),

“odd” — ““arbitrary”

[cf. Proposition 3.2, (ii); [19], Remark 1.10.6, (ii)]. Note that, in the notation of
[14], Theorem 1.10,

the dual graphs of the special fibers of the various coverings of C,, Cg are
somewhat more complicated in the case where p e {2,3}.

On the other hand, since one may still reconstruct the dual graphs group-
theoretically, this will not affect the proof of the uy-version of [14], Theorem 1.10,
in any significant way.

DerINITION 3.4, Let / > 1 be an integer coprime to 6. In the notation of
[14], §1, suppose that

« the residue characteristic of K 1is arbitrary;

- K=K;

+ K contains a primitive 12-th root of unity (i,
[cf. [14], Definition 1.7, and the preceding discussion; [14], Definition 2.5].

(i) Suppose, in the situation of [14], Definitions 2.1, 2.3, that the quotient

ﬁ;ll —» Q factors through the natural quotient I, —» Z determined by
the quotient H;}’ —» Z discussed at the beginning of [14], §1, and that the
choice of a splitting of D, — Gk [cf. [14], Proposition 2.2, (ii)] that deter-
mined the covering X'°¢ — X2 is compatible with the “{+1}-structure”
of the mg-version of Theorem 1.10, (iii), of Remark 3.3.1. Then we
shall say that the orbicurve of type (I,/-tors) (respectively, (1,/-tors®);
(1,1-tors) ;5 (1,/-tors®) ) under consideration is of type (1,Z/IZ) (respec-
tively, (1,(2/12)®); (1,Z/1Z),; (1,(Z/1Z)°),).

(ii) In the notation of the above discussion and the discussion at the end
of [14], §1, we shall refer to a smooth log orbicurve isomorphic to the
smooth log orbicurve

. log. - log

X" (respectively, X log, gtz )

obtained by taking the composite of the covering
X'°¢ (respectively, X log. Clog. g"g)

of C'°¢ with the covering C'°¢ — C'°2 as being of type (1,pu, x Z/IZ)
(respectively, (1, x (Z/I1Z)®); (1,m, x Z/1Z); (1,1, x (Z/1Z)®),).

Remark 3.4.1. In the “ug-version” of [14], Remark 2.5.1, the portion con-
cerning “C” should be eliminated.
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DeriNITION 3.5. In the notation of Definition 3.3 and the discussion pre-
ceding of [14], Definition 2.7, if #®Z is of pg-standard type, then we shall also

refer to #& 1%L, ML Ol Lxpm 5O ILxm - {OLXM a5 being of pg-standard type.

Remark 3.5.1. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1], the exposition of [14], §1, §2, goes through without essential change under
the assumptions stated in the first paragraph of Definition 3.4, with the following
exception: In the “pg-versions” of [14], Proposition 2.12; [14], Remark 2.12.1,
the portions concerning the hyperbolic orbicurves whose notation contains a “’”
[i.e., a single “overline dot”] should be eliminated.

Remark 3.5.2. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1, 3.5.1], the exposition of [14], §3, §4, goes through without essential change
under the assumptions stated in the first paragraph of Definition 3.4, with the
following exception: 1In the “ug-version” of [14], Example 3.9, the portions
concerning the hyperbolic orbicurves whose notation contains a “*” [i.e., a single
“overline dot”’] should be eliminated.

Remark 3.5.3. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1, 3.5.1, 3.5.2], the exposition of [14], §5, goes through without essential change
under the assumptions stated in the first paragraph of Definition 3.4, with the fol-
lowing exceptions:

(i) Throughout the “ug-version” of [14], §5, the portions concerning the
hyperbolic orbicurves whose notation contains a “"” [i.e., a single “overline dot”]
should be eliminated.

(ii) In the “p¢-version” of the statement and proof of [14], Proposition 5.3,
as well as the preceding discussion, the notation “9” should be replaced by
‘S‘D”.

(iii) In the “ug-version” of [14], Theorem 5.7, as well as the “ug-version” of
the remainder of [14], §5, the following modification should be made:

“(:)(\/——1)71 . (:)n _ “®(512)71 . én.

4. ug-theory for [16], [17], [18]

In the present section, we introduce a slightly modified version of the notion
of initial ®-data [cf. Definition 4.1], a notion which plays a central role in
the theory developed in [16], [17], [18], [19]. We then proceed to discuss how the
adoption of such a modified version of the notion of initial ®-data affects the
theory developed in [16], [17], [18].

DEerINITION 4.1. We shall refer to as ug-initial @-data any collection of data
(F/FaXF717 QK7Y7WKE1%C};I’§)

satisfying the following conditions:
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* [16], Definition 3.1, (a), (c), (d);
*+ The “pg-version” of [16], Definition 3.1, (b), i.e., the condition obtained by
replacing, in [16], Definition 3.1, (b),
“odd” — “‘arbitrary”;

+ The “p4-versions” of [16], Definition 3.1, (e), (f), i.e., the conditions ob-
tained by replacing, in [16], Definition 3.1, (e), (f),

“[14], Definition 2.5, (i)” — “Definition 3.4, (i)”
[cf. Remark 4.1.1 below].

Remark 4.1.1. In the notation of Definition 4.1, write Er for the elliptic
curve over F determined by Xy [so Xy C Er]. Then since v—1€F [cf. [16],
Definition 3.1, (a)], and, moreover, the 3-forsion points of Er are rational over F
[cf. [16], Definition 3.1, (b)], we conclude that F contains a primitive 12-th root
of unity (i, [cf. the conditions in the first display of Definition 3.4].

Remark 4.1.2. By applying Definitions 3.3, 3.4, 3.5, 4.1 [cf. also Remarks
3.3.1, 34.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1], the exposition of [16], §3, goes through
without essential change, with the following exceptions: In the “wug-version” of
[16], Example 3.2, the following modifications should be made:

+ In [16], Example 3.2, (ii),

“\/_—193 o« ]293;
+ In [16], Example 3.2, (iv),
X3 ’——qy,’ N “Clz\/q—y”;
“t(Tx )-multiple” — “p¢(Ty )-multiple”;
“,u_y(—)-orbit” — “,uﬁl(—)-_orbit”.

+ In [16], Example 3.2, (v),

“yy(=)-orbit” — “pg(—)-orbit”.

Remark 4.1.3. By applying Definitions 3.3, 3.4, 3.5, 4.1 [cf. also Remarks
3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2], the exposition of [16], §4, §5, §6, goes
through without essential change, with the following exceptions: In the “uc-

version” of [16], Example 4.4, the following modifications should be made:
+ In [16], Example 4.4, (i),

“the unique torsion point of order 2” — “‘a torsion point of order 6.

Thus, throughout the g¢-version of [16], Example 4.4, (i)—and indeed
throughout the remainder of the “ug-version” of [16], [17], [18], [19]—“u_"
is to be regarded as being allowed to wvary among the torsion points of
order 6 that satisfy the condition stated in the initial definition of “u_"",
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with the following exception: 1In [16], Remark 5.2.3, the notation “u_"" is
to be understood in the original “non-u,” sense, i.e., as the unique torsion
point of order 2 discussed in the original “non-u,” version of [16], Example
4.4, (i).

+ In [16], Example 4.4, (i),

“evaluation points” — ““ug-evaluation points’’;
“evaluation sections”” — “‘u,-evaluation sections’;

“ptp;-0rbit” — “pg-orbit”.

DEerINITION 4.2. Suppose that we are in the situation of [17], Remark 1.4.1
[cf. also Remark 4.2.2 below]. Write

te Xy (k)

for a torsion point of order 6 whose closure in any stable model of X, over U
intersects the same irreducible component of the special fiber of the stable model
as the zero cusp [cf. Remark 4.1.3]. Since k contains a primitive 12I-th root of
unity [cf. Remark 4.2.2 below], it follows from the definition of an “étale theta
function of pg-standard type” [cf. Definitions 3.3, (ii); 3.5] that there exists a
rational point

such that 7y Write

Hb<
<~\

for the decomposition group of Ty [which is well-defined up to A p-conjugacy]
We shall refer to either of the pairs %

(lf € Aut(!k), zg); (1Z € Aut(Hg)/Inn(Az), D,)
as a pg-pointed inversion automorphism. Again, we recall from Definitions 3.3,
(i1); 3.5, that

n “étale theta function of ug-standard type” is defined precisely by the
condition that its restriction to D; be a 2I-th root of unity.

Remark 4.2.1. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3], the exposition of
the Abstract and Introduction of [17] goes through without essential change, with
the following exceptions:

(i) In the “m4-version” of the Abstract of [17], the following modification
should be made:

“2-torsion point” — “6-torsion point”.
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(i) In the “mpg-version” of the first display and the discussion immediately
following the first display of the Introduction of [17], the following modifications
should be made:

<\/‘ Zq 1/2)(m+1/2) ) <\/‘ ngﬂ (1/2)(m+1/2) >

meZ meZ
“2-torsion point” — “6-torsion point —{3”’;
“2l-th root of unity” — “6l-th root of unity”.

(iii) In the “pg-version” of the paragraph of the Introduction of [17] that
begins “Constant multiple rigidity”’, the following modifications should be
made:

“[2-]torsion point” — *‘[6-]torsion point’;

“2/-th roots of unity” — “6/-th roots of unity”.

Remark 4.2.2. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3], the exposition of
[17], §1, goes through without essential change, with the following exceptions:

(i) In the “pg-version” of the discussion preceding [17], Definition 1.1, the
following modifications should be made:

“odd prime number” — “prime number > 57;
“of odd residue” — ““of arbitrary residue”;
“4l-th root” — “12I-th root”.

(i) In the “mg-version” of [17], Remark 1.12.2, (ii), the following modifi-
cations should be made:

“the 2-torsion point “x_"" of [16], Example 4.4, (i)”

113 79

— ““a 6-torsion point as in Definition 4.2”;

E3]

“the 2-torsion point “x_"" are reconstructed”

[T ]

— “6-torsion points “z”” are reconstructed’.

(iii) In the “mg-version” of [17], Remark 1.12.2, (iii), the following modi-
fication should be made:

“where we recall that...is assumed to be”
— “where we assume, for simplicity, that...is”.
(iv) In the “mpg-version” of [17], Remark 1.12.4, the following modification
should be made:

9999

“the point “u_ " — “6-torsion points

13 99 29
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Remark 4.2.3. By applying Definitions 3.3, 3.4, 3.5 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2], the exposition
of [17], §2, goes through without essential change, with the following exceptions:

(i) In the “pg-version” of [17], Corollary 2.4, (ii), (b), the following modifi-
cations should be made:

wno 173 2T RN
D/i, — Dz ;
“the torsion point “u_ of Remark 1.4.1, (i), (ii)”

e 9

— “some torsion point “z” as in Definition 4.2,

(ii) In the “m4-version” of [17], Corollary 2.4, (ii), (c), the following mod-
ifications should be made:

“Dé » “Dé EEN

t LT

“[16], Example 4.4, (i)” — “Remark 4.1.3”;

113 113

[_-translate” — “z-translate”.

(iii) In the “mg-version” of [17], Corollary 2.5, (ii), the following modifica-
tions should be made:

ch5 29 _ chJ ’9.

tu tr °
“yield uy-,” — “yield ug-,”.
(iv) In the “mg-version” of [17], Corollary 2.5, (iii), the following modifi-
cation should be made:

13

29 (13 2
Moy — Mg -

(v) In the “pg-version” of [17], Remark 2.5.1, (i), the following modification
should be made:

13

2 (13 2
Moy — Mg -

(vi) In the “pg-version” of [17], Remark 2.5.1, (ii), the following modification
should be made:

+1
“i\/__” _ cciclz »

(vii) In the “pg-version” of [17], Remark 2.5.1, (iii), the following modifi-
cation should be made:

“ptpy-0rbit” — “pg-orbit”.

(viii) In the “mg-version” of [17], Remark 2.5.2, (i), the following modifi-
cation should be made:

ch[}j]an N “D,};]T”.

(ix) In the “mg-version” of [17], Corollary 2.6, (ii), the following modifica-
tions should be made:
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113

29 (13 29,
oy — He s

“D;S# ’9 _ “D?T”~

(x) In the “mc-version” of [17], Remark 2.6.3, (i), the following modification
should be made:

113

1_-translates” — “z-translates”.

(xi) In the “pg-version” of [17], Corollary 2.8, (i), the following modifications
should be made:

ché » o ch5 ’9,

tp tT

“yield iy, — “yield pg-,”

(xii) In the “m4-version” of [17], Corollary 2.8, (ii), the following modifi-
cation should be made:

13

2 (13 2
Moy — Mg -

(xiii) In the ““pg-version™ of [17], Corollary 2.9, (i), the following modifi-
cations should be made:

ché » ch5 ’9.

[y 6T o

“yield pym,” — “yield pgs”

(xiv) In the “mg-version” of [17], Corollary 2.9, (ii), the following modifi-
cation should be made:

13

2 13 2
Moy — Mg -

Remark 4.2.4. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 42.2, 42.3], the
exposition of [17], §3, goes through without essential change, with the following
exceptions:

(i) In the “pg-version” of [17], Corollary 3.5, (i), the following modification
should be made:

113 2 L o 00
Dtle - DtaZ '

(ii) In the “pg-version” of [17], Corollary 3.5, (ii), the following modifica-
tions should be made:

5‘(21) [X” N ‘4(6[) [*,’;
“Ware(IM2)” — “Were(MP);

44521411\1»: N ué6l<]Nn;

“D(; LX) N “Dé 59,

tp [

“Warg, (M) = Va1, (M) — “Were, (IMP) = Were, (IMP)”.
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(iii) In the “mg-version” of [17], Remark 3.5.1, (i), the following modification
should be made:
“D?’IL »_ “Dg;’.

(iv) In the “mg-version” of [17], Corollary 3.6, (ii), the following modification
should be made:

“IPZLg"(_)” N “\P6]»f<_)”~
(v) In the “mg-version” of [17], Definition 3.8, (ii), (iii), the following mod-
ifications should be made:
64372]'5(]1\/[*@)” _ “3'76144‘(]1\/[@)”;

“(g{yﬂé(fz‘)” _ “'%gﬁlvi(‘i‘% )n;

“Tz[{(_)” _ “‘Il6[.c(_)”.

Remark 4.2.5. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 422, 423, 4.24],
the exposition of [17], §4, goes through without essential change, with the fol-
lowing exceptions: In the “pg-version” of [17], Definition 4.9, (i), the following
modifications should be made:

“2l-torsion subgroup” — “6l-torsion subgroup’;
“,uzl(iA)” N “,u61(iA)”-

Remark 4.2.6. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 42.2, 423, 4.2.4,
4.2.5], the exposition of [18], §1, §2, §3, goes through without essential change,
with the following exceptions:

(i) In the “mg-version” of [18], Proposition 3.5, (ii), (c), the following mod-
ification should be made:

“2/-torsion subgroup” — “6/-torsion subgroup”.

(i) In the “m4-version” of [18], Remark 3.11.4, (i), the following modification
should be made:

“2l-th roots of unity” — “6/-th roots of unity”.

(iii) In the “mq-version” of [18], Fig. 3.4, the following modification should
be made:

13

2 13 2
oy — He -

5. us-theory for [19]

In the present section, we first give explicit log-volume estimates for the
“ug-version” of @-pilot objects [cf. Theorem 5.1; Corollary 5.2]. [We refer to
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[19], Theorem 1.10; [19], Corollary 2.2, (ii), (iii), for the original ‘“non-u”
versions of these results.] Theorem 5.1 follows directly from the modified version
of [16], [17], [18] discussed in §4 [cf. also §3], together with certain estimates from
§2, while Corollary 5.2 is obtained by combining Theorem 5.1 with the theory
of §1, §2. We then examine Corollary 5.2 in more detail in the case of mono-
complex number fields; this yields an effective version of the ABC inequality over
mono-complex number fields [cf. Theorem 5.3], as well as an effective version of
a conjecture of Szpiro over the field of rational numbers [cf. Theorem 5.4]. As
an application, we compute an explicit integer ny > 0 such that for any prime
number p > ny, the Fermat equation xP + y” = z? does not have any positive
integer solutions [cf. Corollary 5.8], i.e., we give an alternative approach, via
fundamentally different techniques, to verifying an effective asymptotic version of
“Fermat’s Last Theorem”, as proven in [28]. We also apply the effective version
of the ABC inequality that we obtain to a generalized version of the Fermat
equation [cf. Corollary 5.9].

THEOREM 5.1 (Log-volume estimates for the “ug-version” of ®-pilot objects).
Fix a collection of pg¢-initial @-data [cf. Definition 4.1]. Suppose that we are in
the situation of the “ug-version” of [18], Corollary 3.12 [¢f. Remark 4.2.6], and that
the elliptic curve Er has good reduction at every place € V(F)®* NV (F)™" that
does not divide 2-3-5-1. In the notation of Definition 4.1, let us write dmoq def
[Finod : @], (1 <) emod (< dmod) for the maximal ramification index of Fyod [ie., of

def ~12 3 def 412 3
plajes e Vooul over Q, dy g = 2'-3% -5 dnods €foqg = 27375 emod (X djig)s
an

def
Finoda € Ftpd = FmOd(EFmod [2}) CF

for the “tripodal” intermediate field obtained from Fnog by adjoining the fields of
definition of the 2-torsion points of any model of Ep xp F over Fmeq [cf. [19],
Proposition 1.8, (ii), (iil)]. Moreover, we assume that the (3 - 5)-torsion points of
Er are defined over F, and that

F = Froa(V=1, Eppy[2-3-5)) € Fia(V=1, By [3-9))
—i.e., that F is obtained from Fypq by adjoining v/—1, together with the fields of

definition of the (3 - 5)-torsion points of a model Ef,, of the elliptic curve Ep X F
over Fiq determined by the Legendre form of the Weierstrass equation [cf., e.g.,
the statement of Corollary 5.2, below; [19], Proposition 1.8, (vi)]. [Thus, it follows
from [19], Proposition 1.8, (iv), that Er = EF,, xF,, I over F, and from Definition
4.1 that 1 #5.) If Fnoa C Fy C K is any intermediate extension which is Galois
over Fpod, then we shall write

d\bi, € ADiVR (F)

for the effective arithmetic divisor determined by the different ideal of F
over @,

axbiy € ADiVR (F)
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for the effective arithmetic divisor determined by the gq-parameters of the elliptic
curve Ep at the elements of V(Fq)™ % Vil xy, V(D) (#0) [of [15],
Remark 3.3.1],

AD1v € ADivgr (FD)

for the eﬂeclw;: arithmetic divisor whose support coincides with Supp(q,p.,), but all
of whose coefficients are equal to 1—i.e., the conductor—and

log(d,) = degv ), (DADW) € Ro; IOg(DI«VD) = degw " (D/I:]D)iv) € Rxo

log(DFD) dif deg(bADw) € ]RZO
def E def K
IOg(qL) ; @W(FD)L(QADDW) € IRZO; log(QUQ) ; @W(FD)UQ (qADDiv) € IRZO
def
log(a) = deg(axpy,) € Rao

def K def K
IOg(TUFD> = @W(Fu)f( A]D)iv) € Rxo; log(f?) = %W<FD)1'Q( ADDiV) e Ry
def
log(j'™) € deg( ADIV) € R

def def

—where oL € Vinod = V(Fimod), vg € Vo =VY(Q), V(Fp), = Y(IO) xXv,. {v},
V(Fa),, —W(FD) Xv, {vo} [c¢f also [19], Definition 1.9]. Here, we observe
that lhe various “log(q_y)’s” are independent of the choice of Fn, and that
the quantity “|log(q)| € R~o” deﬁned in the pg-version of [18], Corollary 3.12

[¢f. Remark 4.2.6], is equal to ﬂ log(q) € R [cf. the definition of “q > in [16],

Example 3.2, (iv)]. Moreover, suppose that
1=10".

Then one may take the constant “Ce € R” of the pg-version of [18], Corollary 3.12
[¢f Remark 4.2.6], to be

I+1 12 - dod Fo .
4 -[log(q)| {(“ 7 > (log(d" ™) +log(j"')) + 4.08803 - 77 - 1

—é-(l 122) log(q )}—1

and hence, by applying the inequality “Ce = —1" of the pg-version of [18],
Corollary 3.12 [¢f. Remark 4.2.6], conclude that

1 20 : dmo
g'log(q) < (1 —l—fd

(1 + 20 'ldmod

>'(log(bp‘pd)+10g(fF"’"))+40881 Cmod - |

<

) (log(d") + log(i")) + 4.0881 - ¢ty - .

Proof. Theorem 5.1 follows by applying a similar argument to the argu-
ment applied in the proof of [19], Theorem 1.10. In the present paper, however,
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we replace some of the estimates applied in the proof of [19], Theorem 1.10, as

follows:
. 4(1+5 20 L .
* We replace the estimate “% < ?” appearing in the final portion of
Step (v) of the proof of [19], Theorem 1.10, by the estimate

Sy 16 4 100y ypo
[+1 I+1 I

—cf. our assumption that /> 1015,
* We replace the estimate I, -log(s=) < 3 (€f0q - [ + #pm)” appearing in
Step (viil) of the proof of [19], Theorem 1.10, by the estimate

I¥oq - log(s=) < 1.022- e} -1

m

—cf. Proposition 2.2, (i); our assumption that / > 10'5, which implies the esti-
mate e 4/ >2'2-3%.5.10 >, =5-10%.
+ We replace the estimate

<14

336 1>2-2-2"2.3.5.1>2-log(l) + 56”

mod

appearing in Step (viii) of the proof of [19], Theorem 1.10, by the estimate
1072 1.022 - ¢l g - 1= (1072 212.32.5) .3/ > 3/ > 2 - log(/) + 56

—where the first (respectively, second; third) inequality follows from the estimate
1.022 > 1 (respectively, 2'2-3%.5 > 10% /> max{56,log(/)} [which is a conse-
quence of our assumption that /> 10'%]).

In light of these [three] modifications, together with the estimate

(441072 +107°)-1.022 < (4 +2-107°) - 1.022 < 4.08803,

we conclude that one may take the constant “Cg € IR” to be the constant stated
in Theorem 5.1. 12\"!

: . . 2 o
Finally, by replacing the estimate “(1 — 12> < 2” appearing in the final

portion of Step (viii) of the proof of [19], Theorem 1.10, by the estimate

12\ 12 100
1-—=) =1+=—"<l4+—<1+1078
( 12) trp <+ < +10

[where we apply the estimates /> 10'°, /> —12 > /], we obtain [by applying
the estimate 4.08803 - (1 + 107'%) < 4.0881] the final inequality of Theorem 5.1.
O

COROLLARY 5.2 (Construction of suitable ug-initial @-data). Write X for the
projective line over Q; D C X for the divisor consisting of the three points “0,
“1”, and “o0”; (,ﬂeu)Q for the moduli stack of elliptic curves over Q. We shall
regard X as the “A-line”—i.e., we shall regard the standard coordinate on X as

the “7” in the Legendre form “y?> = x(x — 1)(x — 1) of the Weierstrass equation
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defining an elliptic curve—and hence as being equipped with a natural classifying
morphism Uy & x \D — (Men)q |¢f. the discussion preceding [19], Proposition
1.8]. Let ke RygNR.y;
def — L~ =
A= Ay (k) C Ux(Q) (— Q)

a compactly bounded subset [¢f Definition 1.13); d € Z~ [cf. [19], Corollary 2.2,
(i), (iil)]; ee RsgNR<y [¢f [19], Corollary 2.2, (iii)]. Write

log(q(\l))

for the R-valued function on («ﬂell)@(@), hence on Uy (Q), obtained by forming the
normalized degree “deg(—)” of the effective arithmetic divisor determined by the

q-parameters of an elliptic curve over a number field at arbitrary nonarchimedean
places [cf. [19], Corollary 2.2, (1)]; Ux(Q)=Y C Ux(Q) for the subset of Q-rational
points defined over a finite extension field of Q of degree < d; Ux(Q)™ C Uy (@)
for the subset of Q-rational points defined over a mono-complex number field [cf.
Definition 1.2]. Set

5921233 5. 4 = 552960 - d;
e &5 10713 — 6.01- 107" log(x)
[cf the term “Hy” in the first display of [19], Corollary 2.2, (iii)];
3.4 10%0 . g-166/s1 (d=1)
61031 . g—174/85 (d — 2)
341030 . g7 166/81 . g5 (d > 3)

[¢f: the term “Hypig - ¢ - &, - d*T%” in the first display of [19], Corollary 2.2, (iii),
where we take “eq” to be 1]. Then there exists a finite subset

Cxcp g, C Ux(Q)=?  (respectively, Cxey's C Ux (@)= N Ux(@Q)™)

ha(e) <

—which depends only on k, d, ¢ (respectively, d, €) and contains all points corre-
sponding to elliptic curves that admit automorphisms of order > 2—satisfying the
following properties:

* The function log(q(\l)) is

< max{x"% hy(e)} (respectively, < hy(c))

on €xc. 4. (respectively, @xcm“). _
« Let Er be an elliptic curve over a number field F C Q that determines a
Q-valued point of ( en) which lifts [not necessarily uniquely!] to a point

xg e Ux(F)NUx(Q)=" N
(respectively, xp € Uy(F) N Uy(Q)=* N Uy (Q)™)
such that

xg ¢ Cxey g, (respectively, xp ¢ €xcy'").
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Write Fpnoa for the minimal field of definition of the corresponding point

& (Mar)g(@Q) and
Finoa C Ftpd d;f FmOd(EFmod [2}) CF

Jor the “tripodal” intermediate field obtained from Fuoa by adjoining the fields
of definition of the 2-torsion points of any model of Er xp Q over Fnoq [¢f [19],
Proposition 1.8, (ii), (iii)]. Moreover, we assume that the (3 -5)-torsion points of

Er are defined over F, and that
F = Froa(V=1, Ep,,[2-3-5]) € Fpa(V=1, Er,[3-5])

—i.e., that F is obtained from Fpq by adjoining V=1, together with the fields of
definition of the (3 - 5)-torsion points of a model EF,, of the elliptic curve Ep xp Q
over Fipq determined by the Legendre form of the Weierstrass equation discussed
above [cf. [19], Proposition 1.8, (vi)]. [Thus, it follows from [19], Proposition 1.8,
(iv), that Er = Er X, F over F, so xpe Uyx(Fpa) C Ux(F); it follows from
[19], Proposition 1.8, (v), that Ep has stable reduction at every element of
V(F)"™".] Write

log(q")

for the result of applying the function “log(qgt))” to xg. Then Ep and Fyoq arise
as the “Ep” and “Fynod” for a collection of pg-initial @-data as in Theorem 5.1 that
satisfies the following conditions:
(C1) (10'5-d <) (log(q"))"/? <1< 1.4645 - (log(q"))"* - log(1.455 - log(q"));
(C2) we have an inequality

1 .
a log(q") < (1 +¢) - (log-diff y (xg) + log-cond ,(xf))

—where we write log-diff  for the [normalized| log-different function on Ux(Q)
[cf. [15], Definition 1.5, (iii)]; log-cond, for the [normalized] log-conductor function

on Ux(@Q) [cf [15], Definition 1.5, (iv)].

Proof. First, let us recall that if the once-punctured elliptic curve associated
to Ep fails to admit an F-core, then it holds that

J(Ep) e {2".31%.57322.733.374 26.33 0}

[cf. Proposition 2.1]. Thus, if we take the set €xc, 4. (respectively, €xc]'S*) to be
the [ finite!] collection of points corresponding to these four j-invariants; then we
may assume that the once-punctured elliptic curve associated to Ep admits an
F-core—hence, in particular, does not have any automorphisms of order > 2 over
Q—and that it holds that

log(qgjﬁ) < max{log(5%),log(3*)} = log(5%)
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on €xc, 4, (respectively, (,xcmcx) [cf. Remark 1.10.1]. [In the discussion to follow,
it will in fact be necessary to enlarge the finite set €xc, 4, (respectively, (Excmc")
several times.]

Next, let us write

hdéflog(qv) Z hy - fo - 1og(po)

Fa o

—that is to say, &, = 0 for those v at which Ep has good reduction; h, € N> is
the local height of Ep [cf. [15], Definition 3.3] for those v at which Er has bad
multiplicative reduction. Now it follows [from [15], Proposition 1.4, (iv) [cf. also
the proof of [19], Corollary 2.2, (i)] (respectively, from Proposition 1.9, (iii), of the
present paper)] that the inequality 4'/> < 10'° - d implies that there is only a finite
number of possibilities for the j-invariant of Er. Thus, by possibly enlarging the
finite set Cxc, 4. (respectively, Gixcd °*), we may assume without loss of generality
that

hl/z = 1015 -d (Z iprm)v
[cf. the notation of Proposition 2.2], and that it holds that
log(q/ ) < max{log(5),10% - d*} =10 . 4>

on €x¢, 4, (respectively, (Excmc").
Thus since [F: Q] <0 [cf the properties (E3), (E4), (E5) in the proof of [19],
Theorem 1.10], it follows that

0-h?>[F:Q] h'?= Zh 12 hy - f, - log(py)

S ohT by log(p) = Y kY7 hy - log(py)
v hy>h!/?

Z log(py)

hy>h/?

Y

Y

and
1.450 - h'/? - log(1.455 - h)
> 1.45-[F: Q] h'? log(1.45-[F: Q] - h)
> )" 145 7712 log(1.45 - hy - f, -log(py)) - hy - f, - log(py)

hy #0

> N " h V2 log(hy) -hy > Y b7V log(hy) - By
hy #0 hzr =hl/?

> > log(hy)

hy>h1/?
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—where the sums are all over ve V(F)"" [possibly subject to various condi-
tions, as indicated], and we apply the elementary estimate 1.45-log(p,) >
1.45-1og(2) > 1.

Thus, in summary, we conclude from the estimates made above that if we
take

o
to be the [finite!] set of prime numbers p such that p either
(S1) is < A'/?
(S2) divides a nonzero h, for some ve V(F)™", or
(S3) is equal to p, for some ve V(F)™" for which h, > h'/?,
then it follows from Proposition 2.2, (ii), together with our assumption that
h'? > ¢pm, that, in the notation of Proposition 2.2, (ii),

0, <2 -2+ 1'% 41455072 log(1.450 - h)
= (240 +1.455-log(1.450 - h)) - h'/?
< 1.46215 - h'/? -1og(1.456 - h)
—where we apply the estimates 1+ 0.00071 < 2;
2 <0.01216 - log(1.455 - 10°°) —6 < 0.01215 - log(1.455 - h) — &
[cf. the fact that the function
0.0121x - log(1.45x - 10°°) — x
is monotonically increasing for x € Rsss0960]. On the other hand, since we have
Epm < 1/ <0.00016 - h'/2 - log(1.455 - h)
[cf. the estimates 1 < 0.00010 and 1 < log(1.450 - k)], we obtain that
1.00072 - (0.7 + Eprm) < 14645 - h'/? - 1og(1.450 - h)

[cf. the estimate 1.00072-(1.4621 4 0.0001) < 1.464]. In particular, it follows
from Proposition 2.2, (ii), that there exists a prime number | such that

(P1) (101 -d <) h'/> <1< 1.4645 - h'/? - 1og(1.455 - h) [cf. the condition (C1)

in the statement of Corollary 5.2];

(P2) [ does not divide any nonzero h, for ve V(F)™";

(P3) if [ = p, for some ve V(F)"", then h, < h'/?.

Next, let us observe that, again by possibly enlarging the finite set Cxc, 4,
(respectively, chf}fﬁx), we may assume without loss of generality that, in the ter-
minology of [15], Lemma 3.5,

(P4) Ep does not admit an /-cyclic subgroup scheme,
and that it holds that

log(q(v,)) < max{10% . g%, x'°¢}
(respectively, log(q)) < max{10%-4%5.12-107"*} =10 . d*)
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on €xc, 4, (respectively, €xc)'S*). Indeed, the existence of an /-cyclic subgroup

scheme of Ep, together with the fact that /> 10'° [cf. (P1)], would imply that
h <« (respectively, h < 5.12-1071%)

[cf. (P2); Remark 1.10.1; Corollary 1.14, (ii) (respectively, Corollary 1.14, (iii))].
On the other hand, [by [15], Proposition 1.4, (iv) [cf. also the proof of [19],
Corollary 2.2, (i)] (respectively, Proposition 1.9, (iii))] this implies that there is
only a finite number of possibilities for the j-invariant of Er. This completes the
proof of the above observation.

Next, we observe that

(PS) if we write V4 for the set of nonarchimedean places e Vpoq that

mod
do not divide | and at which Er has bad multiplicative reduction, then

vhad £ ¢,
Indeed, if V% =@, then it follows, in light of the definition of A, from (P3)
that

h < h'/? log(l).

In particular, we have

h'/? <log(l) < log(1.4645) + 0.5 - log(h) + log(log(1.455 - 1))
< log(1.4645) + 0.5 - log(h) + log(1.456 - h)
= 1.5 log(h) + log(1.4649) + log(1.459)
< 1.5-log(h) + 2 -log(20)
—where the second inequality follows from (P1); the third inequality follows

from the fact that log(x) < x for all x € Rs;; the fourth inequality follows from
the estimate 1.464-1.45 <4. Thus, if we write f(x) for the function

x2 — 1.5 log(x) — 2 - log(26),

then it holds that f(h) < 0. On the other hand, since [as is easily verified] f(x)
is monotonically increasing for x € R-9, we obtain that

S(h) = f(10% - a?%)
=10 .d -3 -10g(10" - d) — 2 -log(2" - 3% - 5-4d)
> 10" -d —5-10g(10%-d) >0

—where we apply the estimate 2'3-33.5 < 10'5; the fact that 5-log(x) < x for
all x e Rsj3—a contradiction. This completes the proof of the above observa-
tion. This property (P5) implies that
(P6) the image of the outer homomorphism Gal(Q/F) — GLy(TF;) deter-
mined by the /-torsion points of Ep contains the subgroup SLy(IF;) C
GL,(IF)).
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Indeed, since, by (P5), Er has bad multiplicative reduction at some place
e Vad ¢ (P6) follows formally from (P2), (P4), and [15], Lemma 3.1, (iii)
[cf. the proof of the final portion of [15], Theorem 3.8].

Now it follows formally from (P1), (P2), (P5), and (P6) that, if one takes
“F” to be Q, “F” to be the number field F of the above discussion, “Xz” to be
the once-punctured elliptic curve associated to Eg, “/”’ to be the prime number /
of the above discussion, and “V%4” to be the set V22 of (P5), then there exist
data “Cg”, “VY”, and “¢” such that all of the conditions of Definition 4.1 are
satisfied, and, moreover, that

(P7) the resulting pg-initial @-data

(F/FaXF7la QK?YaWbad ‘e)

mod>’ &

satisfies the various conditions in the statement of Theorem 5.1.
Here, we note in passing that the crucial existence of data “V”’ and “‘¢” satisfying
the requisite conditions follows, in essence, as a consequence of the fact [i.e., (P6)]
that the Galois action on /-torsion points contains the full special linear group
SL,(TF)).
In light of (P7), we may apply Theorem 5.1 [cf. also the fact that
eroq < dr 4l to conclude that

1 Zo'dmo
g logla) < <1 v ) (log(d"™) +log ")) + 4.0881 - djq -/

< (140-h7Y2) . (log(d) + log(fF)) + 5.985 - 0% - h'/? - log(1.450 - h)

—where we apply (P1), as well as the estimates 20:dno <d; 4 <0 and
4.0881 - 1.464 < 5.985.
Next, let us observe that it follows from (P3) that

-2 log(1).

N —

1 1

—h—-—. <

g ¢ logla) <
Thus, we conclude that

1
ch< (1+6-h7V2) - (log(dF) + log(F7)) + ¢ h'/? 1og(l)

N —

+5.985-5% - h'/2 . log(1.450 - h)

and hence that
(P8) the following equality holds:

%-h (1 =h7"2 log(l) — 35.91 -6 - h™'/% . 10g(1.455 - h))

< (140-h7"2) . (log(dF) + log(f/»)).

Now we claim that
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CLAaM 5.2A: If h = hy(e), then it holds that
71.82-6% - h~V? . log(1.456 -h) < &- (1 —1077).

Indeed, since [as is easily verified] the function x~'/%-log(1.456 - x) is monotoni-
cally decreasing for x € R, to verify Claim 5.2A, it suffices to show that

71.82-62 - ha(e)~/? - 1og(1.455 - hy(e)) <e- (1 —1077).

Let us prove this inequality. First, suppose that de{1,2}. Write o, &ef

212.33.5 5, % 213.33.5 Then one verifies easily that
71.82-6% - hy(1) "% - log(1.455 - hy(1)) <1 —107".
Thus, if d =1, then we have

71.82 - 52 ha(e)V? - log(1.458 - hy(e))

1 2/817
:71.82-52-hd(1)1/2-10g(1.455-hd(1))~883/81-{1 og(e )83}

~ log(1.456 - ha(1))
<e-(1—1077)- X8 (1 —log(e¥®)) <e- (1 —1077);
if d =2, then we have

71.82 6% - hy(e) "% - log(1.455 - hy(e))

2/85Y .
71.82-52.hd(1)1/2-1og(1.455.hd(1)).,987/85.{1 log(z )87}

~ log(1.456 - ha(1))
<e - (1—-1077)-&¥% . (1 —log(e¥®)) <e- (1 —1077).

Here, we apply the estimate log(1.450;h(1))>83; the estimate
log(1.450; - hy(1)) > 87; our assumption that 0<e<1; the fact that
x- (1 —log(x)) <1 for all xeR.y.

Next, suppose that d > 3. Then we have

71.82 62 - ha(e) V% - 1log(1.450 - hy(e))

= 71820} - hu(e) " log(1.450, - I (e) -d 12 {1 + g }

10g(1.4551 . hl (8))
6

(1 =10"".4d7 2. (1
<e-( 07")-d +83

-log(d)) <e-(1-1077)
—where we apply the estimate log(1.450; - hi(e)) = log(1.450; - i (1)) = 83; the
fact that x~1/2 (1 +& - log(x)) < 1 for all x € R.3; the estimate obtained above
in the case where d = 1. This completes the proof of Claim 5.2A.

Next, we claim that



218 MOCHIZUKI, FESENKO, HOSHI, MINAMIDE AND POROWSKI
CLAM 5.2B: If h = hy(e), then it holds that
2-h7 "2 log(l) +71.82-0% - h™ /% . log(1.456 - h) +6 - h™'/? <.
Indeed, since [cf. (P1)] it holds that
71.82 -6 -log(1.455 - h) > 71.82-2'2.3% . 5. 1og(1.45-2'2.3%.5.10%) > 108,
we have
71.82-0% - h™'/? . log(1.456 - h) > 108 .6 - h~/2.
Moreover, since it holds that
71.82-62>71.82-(2'2.3%.5)2>4.10",
we have [cf. (P1)]
71.82-0% - h™1/? . log(1.456 - h)
> 10221712 log((1.456 - h)?)
> 10'2.2- 172 . log(1.4640 - h'/* . 1.455 - h)
>10'2.2-h7Y2 . 1og(1.4640 - h'/* -10g(1.455 - )
> 10221712 log(l)

—where the second inequality follows from the estimate 1.45-/'/2 > 1.464; the
third inequality follows from the fact that x > log(x) for all x e Ry;. Thus, it
follows from Claim 5.2A that
2-h7V2 log(l) +71.82 - 0% - h=V/% log(1.456 - h) + 6 - h™'/?
< (1072 4+14+107%)-71.82-0% - h~'/% . 1og(1.456 - h)
<10 241410% .6 (1-1077)<¢
—where we apply the estimate (1072 +1+107%)-(1 —1077) < 1. This com-
pletes the proof of Claim 5.2B.
Here, note that the inequality & < /4(¢) implies [by [15], Proposition 1.4, (iv)
[cf. also the proof of [19], Corollary 2.2, (i)] (respectively, Proposition 1.9, (iii))]
that there is only a finite number of possibilities for the j-invariant of Ep. Thus,

by possibly enlarging the finite set €xc, 4. (respectively, €xcy't"), we may assume
without loss of generality that

h> hd(a),
and that it holds that
log(qy_)) < max{10% - d? x'°¢ h,(e)}

= max{x'°¢ ()}
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(respectively,
log(q(v_)) < max{10% - d? hy(e)}

= ha(e))
mCX)

[cf. the estimate h4(e) > 107 - d?] on €x¢, g4, (respectively, Cxcy;
Thus, in light of Claim 5.2B, it follows from (P8) [cf. also (P1)] that

£ < (142) - (log(d) + log ("))

< (1+4¢) - (log-diff y (xg) + log-cond(xg))

—where we apply the fact that for any x, y € Ry such that 2x + y < ¢, it holds
that

(1-x)"(+y)<l+e
[which is a consequence of the fact that 0 < ¢ < 1]. This completes the proof of
(C2), hence [cf. (P1), (P7)] of Corollary 5.2. O

THEOREM 5.3 (Effective versions of ABC/Szpiro inequalities over mono-
complex number fields). Let L be a mono-complex number field [cf. Definition
1.2); a,b,c € L™ nonzero elements of L such that

a+b+c=0
€ a positive real number < 1.  Write E, . for the elliptic curve over L defined by

the equation y* = x(x — 1) <x+a>; J(Eap.c) for the j-invariant of E,p ; Ap for
. :

the absolute value of the discriminant of L; d &f [L:Q];

Hi(a,b,) S ] max{lal, [bl,.lcl.};
veV(L)
I(a,b,¢) = {ve V(L) [#{lal,, |Bl,. el,} = 2} € V(L)™;
r::ldL(a,b,c)d;f H #(OL/Py);

velp(a,b,c)

jo(s) G [ 34107 10681 (g =1)
a(e) = 6103 .67 114/85 (g =2).

Then the following hold.
(i) We have [cf. Definition 1.1, (i)]

'hd(g)}

(1 +¢)-log(AL - radp(a,b,c)) + é - ha(e).

N =

hnon (J(Eap.c)) < max{é- (14¢) -log(Ar -rad(a,b,c)),

N =

Ul —

<
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(i) We have
Hi(a,b,c) < 2%d/2 -max{exp(j . hd(5)> ,(Ar -rady(a,b, C))3(1+8)/2}

< 2% . exp (Z : hd(g)> (Ar -rady(a,b,c))> 12,

Proof.  Assertion (i) follows immediately from Corollary 5.2 [cf. the bound
on the restriction of the function “log(qef_))” to “Cxcy';"”; the displayed inequality
of (C2)], Remark 1.10.1, and the various definitions involved. Next, we consider
assertion (ii). Write w e V(L)** for the unique element of V(L)** [cf. Definition

1.2]. First, we claim the following:
CLamM 5.3A: It holds that
b 1
d.h;g;<z):51og|bc|w+ S tog max{lal,, bl,, el }.
L‘GV(L)"OH

Indeed, we compute:

b 1 bl e
d'hrﬁ?fn(_) = Z logmax{‘— | }
C 2U€W(L)non ¢ v b v
1 1 22
=3 > log b—'max{|b|u»|c|u}
UGW(L)mm | C|l}
1
= 5 loglbe|,, + > log max{|p|,, |c],}

veV(L)™"
1
= 5 log|be|,, + Z log max{|al,, |b|,, [c[,}
ve V(L)

—where the third equality (respectively, the fourth equality) follows from the
product formula (respectively, the fact that for v e V(L)™",

lal, = [b+ c|, < max{|b|,, |¢[,})-

This completes the proof of Claim 5.3A.
Next, we observe that, to verify assertion (ii), we may assume without loss of
generality that

Han S ||b w S ||C||w'
Then we observe the following:
1 b 1\
Cram 5.3B: It holds that ||-|| = =, hence that |-| > (=] .
Cllyy 2 Clw 2
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Indeed, since a+ b+ c =0, we have
llell,, = lla+ bll,, < llall,, + Ib]l,, < 2 [Ib]],,-

This completes the proof of Claim 5.3B.
Now we claim the following:

CLamM 5.3C: It holds that

1

6

Indeed, it follows from Lemma 1.3, (i), (iv); Proposition 1.8, (i); Remark 1.10.1,

that
: ( for (—) + (”) + (”))
C C a
. htor é
non c *

b 1
(x2) d - h" (—) =3 log|bc|,, + Z log max{la|,, ||,, |¢|,}

C
veV(L)™"

2 5
“hnon (j(Ea,b,c)) = 3d log(H(a,b,c)) — 3 log 2.

1 4
(*1) g hnon(j(Ea,bﬁc)) +§ lOg 2>

=

W N W =

On the other hand, we have

*llo é
2 gc

+log(Hy(a,b,c))

w

1
> %l log E—i—log(HL(a,b,c))

—where the first equality (respectively, the second equality; the final inequality)

follows from Claim 5.3A (respectively, the fact that |¢|, > ||, > |a],; Claim

5.3B). The inequality of Claim 5.3C follows immediately from (x;) and (x;).
Finally, in light of assertion (i) and Claim 5.3C, we obtain that

log(H(a,b,c)) < max{% : hd(s),%(l +¢)-log(Ay - rady(a,b, c))} +% log 2.

This completes the proof of assertion (ii). O

Remark 5.3.1. The astronomically large constants in the inequalities estab-
lished in Theorem 5.3 reflect the explicit [i.e., “non-conjectural”| nature of inter-
universal Teichmiiller theory. Their size may seem quite unexpected, especially
from the point of view of the classical [“conjectural’] literature on such inequal-
ities, where sometimes it is even naively assumed that these constants may be
taken to be as small as 1.

Remark 5.3.2. The approach to applying the version of the ABC inequality
established in Theorem 5.3, (ii), to “Fermat’s Last Theorem” in the present paper
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[cf. Corollary 5.8 below]| extends to other diophantine equations [cf. Corollary
5.9 below]. Namely, in view of the very large constants [cf. Remark 5.3.1] that
appear, in order to apply such an inequality to a concrete diophantine equation
of the form u 4 v = w with polynomial functions u, v, w which involve, respec-
tively, positive integers /, m, n as exponents, one needs first to establish a lower
bound on potential solutions of this equation [cf. Lemma 5.7 below; the second to
last display of the proof of Corollary 5.9]. One then applies a suitable version of
the ABC inequality to obtain an upper bound on /, m, n, under the condition that
the diophantine equation admits a solution of the desired type [cf. the portion
of the proof of Corollary 5.8 subsequent to the application of Lemma 5.7; the
final display of the proof of Corollary 5.9]. Finally, the existence of solutions to
the diophantine equation for I, m, n satisfying the upper bound may be inves-
tigated by means of computer calculations.

Remark 5.3.3. In the notation of Theorem 5.3, let A€ L™. Write E; for the
elliptic curve over L defined by the equation y* = x(x — 1)(x — 4); Df, (respec-
tively, g,) for the minimal discriminant ideal [cf. [24], Chapter VIII, §8, the first
Definition] (respectively, conductor ideal [cf. [25], Chapter 1V, §10, the Definition
preceding Example 10.5]) of E;, over L. Let us first observe that E; has semi-
stable reduction at every place v € V(L)"™" such that 1 is integral at v, and v does
not divide 2. If ve V(L)"" is such that A is not integral at v, then observe the
following:

There exists an element # € L* such that ¥ = Aw? for some w e L*, and,
moreover, u is a unit or a uniformizer at v. Thus, E; is defined by the
equation

(V) = X' (¥ = w)(x —ud),
s def

where we write ' % 27" e L* [so u and ul’ are integral at v], x' & ui'x,

and y' = wiy.
In particular, by applying a similar argument to the argument applied in [24],
Chapter VII, §5, the proof of Proposition 5.4, we obtain that

10g(N1/q(PE;)) < d - hnon(J(E;)) + 6(log(Npq(fE,)) — log(radL(a, b, ¢)))
+d-(8—(—4))log2

¢ 99

—where we take “a” (respectively, “b”’; “c”) to be A (respectively, 1 — 4; —1);
we write “Np q(—)” for the absolute norm of the ideal (—) of ¢r; we recall that
Npjo(ig,) = radp(a, b, c) [cf. Remark 1.10.1; [24], Chapter III, §1, Proposition 1.7,
(b), and its proof; [25], Chapter IV, §10, Theorem 10.2, (a); [25], Chapter 1V, §10,
Example 10.5; [25], Chapter 1V, §11, Ogg’s Formula 11.1 and its proof]. Then it
follows immediately from Theorem 5.3, (i), that we have

Nijo(Dg,) <2 max{A" - Ny g (is) " exp(d - ha(e))}
< yl2d 'Ag(1+£) -exp(d . hd(b‘)) 'NL/Q(TE,')6(1+C)-
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This may be regarded as an explicit version of the inequality
“Normeg q(Ar) < C(K,¢)(Normeg/q(Ng))*™”

conjectured in [26], §1, CONJECTURE 1 forme forte, in the case of L and E; as
above.

Remark 5.3.4. Let K be a field such that 2 is invertible in K, E an elliptic
curve over K whose 2-torsion points are K-rational. Then, by considering global
sections, with suitable leading terms, of tensor powers of the line bundle on E
determined by the origin [cf., e.g., [6], Chapter IV, the proof of Proposition 4.6],
one concludes immediately that there exists A€ K™ such that E is isomorphic
over K to the elliptic curve over K defined by the equation y? = x(x — 1)(x — 4).
Conversely, one verifies immediately that the 2-torsion points of any elliptic curve
E; over K defined by an equation of the form 3> = x(x — 1)(x — A1) for some
J.e K" are rational over K.

Remark 5.3.5. By combining the inequalities in the second to last display of
Remark 5.3.3 with [7], Theorem 0.3, one obtains a numerically explicit version of
the inequality that appears in a conjecture of Lang [cf. [7], Conjecture 0.1] con-
cerning a lower bound on the canonical height of non-torsion points, for elliptic
curves “E;” over “L” as in Remarks 5.3.3, 5.3.4. One may also apply the
inequalities in the second to last display of Remark 5.3.3 to obtain a ‘“‘partially
numerically explicit” version of the displayed inequality of [7], Theorem 0.7, for
elliptic curves “E)” over “L” as in Remarks 5.3.3, 5.3.4.

THEOREM 5.4 (Effective version of a conjecture of Szpiro). Let a, b, ¢ be
nonzero coprime integers such that

a+b+c=0;
& a positive real number < 1. Then we have
|abe| = |labe|¢ < 2* - max{exp(1.7 - 10% - £7166/81) (rad(abc)) >}
< 2% exp(1.7-10% - £719/81) . (rad(abc)) >+

—which may be regarded as an explicit version of the inequality
3+¢

“labe| < C(e) H pl 7
plabe

conjectured in [26], §2 [i.e., the “forme forte” of loc. cit., where we note that the
“p” to the right of the “|[” in the above display was apparently unintentionally
omitted in loc. cit.].

Proof. First, we claim the following:
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CLamM 5.4A: In the notation of Theorem 5.3, suppose that
llall,, < 1]l

w —

—where we V(L)* denotes the unique element of V(L)* [cf. Defini-
tion 1.2].  Then it holds that

< [lell,,

w =

Hiy(a,b,c) < 2%/ -max{exp(g . hd(s)),(AL . radL(a7b,c))l+8} . \abc’2|;1/3.

Indeed, it follows from Theorem 5.3, (i), that we have
Cram 54B: It holds that

éhlmn(j(Ea,b,C)) < max{cli- (I +¢)-log(AL -rady(a,b, c)),é . hd(e)}.

Now we claim the following:

CLAaM 5.4C: It holds that

1 1

1 4
¢ Inon(J(Eup.) = -+ log(Hy(a,b, ) + 5 loglabe |, — 5 log 2

3d v

Let us verify Claim 5.4C. First, let us recall the inequality (%) in the proof of
Theorem 5.3

1 ; i l tor ﬁ tor é tor é
(Tl) 6 hnOH(J(Ea,bTC))+3 10g22 3 (hnon(c)+hnon c +hn0n a :

On the other hand, we compute:

tor (4 tor b tor b
(Tz) d- <hnon (C) + hnon (C) + hnon <a>>

1
=5 (loglac|,, + log|bc|,, +loglbal,) +3 > log max{lal,, |bl,, |el,}
veV(L)™
—loglabel,, +3 > log max{lal,, B, c|,}
e V(L)™"
= loglabc™?|,, + 3 - log(H[(a, b, ¢))

—where the first equality (respectively, the third equality) follows from Claim
5.3A (respectively, the fact that |c|, > |b|,, > |a|,,). The inequality of Claim 5.4C
follows immediately from (f;) and (f2). The inequality of Claim 5.4A then
follows immediately from the inequalities of Claims 5.4B, 5.4C.

Next, we observe that, to verify Theorem 5.4, we may assume without loss
of generality that

lalle < [blle < lelle-
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Now we apply the inequality in Claim 5.4A to the present situation, by taking
“L” to be Q. Then we have

1 , _
lele <243 ~max{exp (6 -3.4.10% .5166/81) , (rad(abc))”’} labe 2.

Therefore, by raising this inequality to the 3-rd power, we conclude that
|abe|l¢ < 2% max{exp(1.7 - 10%0 . g~ 166/81), (rad(abc))* 9}
This completes the proof of Theorem 5.4. O
In the following, we give an alternative approach to proving an effective
asymptotic version of “Fermat’s Last Theorem”, as proven in [28]. The following

Lemmas 5.5, 5.6, 5.7 are entirely elementary, but their statements and proofs are
given in full detail for lack of a suitable reference.

Lemma 5.5 (Elementary identity). Let p > 3 be an odd integer; r, s integers
such that r+s #0. Then we have

8]

1 :psp—l _ (r+s) (_1)i+1(l-+ 1)rp—2—isi.

I

S}

(17 +7)(r +5)”

i
o

Proof. One verifies immediately that we may assume without loss of gener-
ality that r 2 0. Then, to verify Lemma 5.5, it suffices to show [by dividing by
rP~1] the following equality of elements € Q(x):

p—2 ) )
1+ x7)(1+x) " =pxr™ = (1+x) D> (=D i+ '
i=0
Write ¢ for the derivation d/dx on Q(x). Then:
pxP P =01+ xP) =o{(1+x")1+x) " - (1+x)}

=(1+x)1+x) "+ 1 +x){0+x)1+x)""}

(_1)i+1xi+1>

S

B~

=(1+x")(1+x) "+ +x)a<

i=—1

2
=1+x)1+x)"" + 1 +2) > (=) + D'

=

hS]

(=1

This completes the verification of Lemma 5.5. O

Lemma 5.6 (Elementary properties of possible solutions of the Fermat equa-
tion). Let p >3 be a prime number; r, s, t nonzero coprime integers such that

P 457+ 17 =0.
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Then the following hold:
(i) Let [ be a prime number which divides r+s,(r?+s?)(r+s)" ' e Z
Then it holds that I = p.
(ii) Suppose that p does not divide t. Then r+s and (r? + s?)(r+s)~" are
coprime. In particular, [since (r+s)-(r? +s?)(r+s)"" = (=1)"] there
exist integers u and u such that

r4s=ul, (P +s")r+s) " =@ 1= —ui
(iii) Suppose that p divides t. Then it holds that
r+sepZ, (1’ +s")(r+s)"" e pZ\p’Z.
In particular, if we write t = p*v, where k € Z-q, ve Z\pZ, then [since
(r+s)-(r? +sP)(r+5)"" = (=1)?] there exist integers w¢ pZ
and w ¢ pZ such that
r4s=ptwl (1P £ 5P)(r45) " = pwP, v=—ww

lef (@)

Proof. First, we consider assertion (i). Let / be a prime number which
divides r+s and (r” +s?)(r+s)"'. In particular, it follows from Lemma 5.5
that / divides ps?~'. Thus, if / # p, then we conclude that / divides s, hence that
[ divides r = (r +s) — s—a contradiction. This completes the proof of assertion

@i).

Next, we consider assertion (ii). Suppose that r+s and (r? +s?)(r +s)~
are not coprime. Then it follows from assertion (i) that p divides r+ s and
(r? +s7)(r+s) ', hence that p divides r” + s? = (—1)”—a contradiction. There-
fore, we conclude that r+s and (r” + s7)(r+ )" are coprime. This completes
the proof of assertion (ii).

Finally, we consider assertion (iii). We begin by observing that

(r+s)’=r"+s=-=0 (mod p),

1

hence that r+s=0 (mod p). In particular, it follows from Lemma 5.5 that
(r? +s7)(r+5)"' =0 (mod p). Thus, to verify assertion (iii), it suffices to prove
the following claim:

CLAIM 5.6A: It holds that (r? + s?)(r+5)"" ¢ p*Z.

Indeed, suppose that (r” + s?)(r+s) "' € p*Z. Write r+ s = pm, where m € Z.
Then since we have

(" +57)(r+9) " ={r" + (pm—r)"}(pm) !

T zp: <If) (pm)”"'(—r)’}(pM)_'
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our assumption that (r” + s?)(r +s)~' € p*Z implies that pr’~' € p2Z. Thus, we
conclude that r e pZ, hence that s = (r+s) —r € pZ—a contradiction. There-
fore, we conclude that (r” +s?)(r+s) ' ¢ p?Z. This completes the proof of
Claim 5.6A, hence also of assertion (iii). O

Lemma 5.7 (Elementary estimate for possible solutions of the Fermat equa-
tion). Let p >3 be a prime number; x, y, z coprime positive integers such that

x? + yP =zP
Then it holds that

(p+1)”
L

Proof. First, we consider the case where p divides xy. [In particular, p
does not divide z.] In this case, to verify Lemma 5.7, we may assume without
loss of generality that p divides x. [In particular, p does not divide y.] Then
it follows by applying Lemma 5.6, (ii), first in the case where we take “(r,s,?)”
to be (x, y, —z), then in the case where we take “(r,s,#)” to be (z,—x,—y), that
there exist positive integers a and b such that

x+y=a’, z-—x=>b"
Here, observe that
(z=y)f =zl —y'=x"=0 (mod p),
hence that z— y =0 (mod p). Thus, we obtain that
b—a)=b"—a’=(z—y)—2x=0 (mod p),
hence that b —a =0 (mod p). Now we claim the following:
Cram 5.7A: It holds that max{a,b} > p+ 1.

Indeed, suppose that max{a,b} < p. Then it follows from the fact that b —a =
0 (mod p) that a = b, hence that z=2x+ y. In particular, we conclude that
7P = (2x+ y)? > x? 4+ yP—a contradiction.

In light of Claim 5.7A, we have

2z>z4+y=ad’+b" > (p+ 1)~

This completes the proof of Lemma 5.7 in the case where p divides xy.

Next, we consider the case where p does not divide xyz. Then it follows
by applying Lemma 5.6, (ii), first in the case where we take “(r,s,)” to be
(x, y,—z), then in the case where we take “(r,s, )" to be (z,—x, —y), and finally
in the case where we take “(r,s,#)” to be (z,—y,—x), that there exist positive
integers a, b, and ¢ such that

x+y=a’, z—x=b", z—y=ct.
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Here, observe that

(r—x—y)"=z"—x" =y’ =0 (mod p),

hence that z—x— y =0 (mod p). Thus, we obtain that
b+c—a)’=b"+c?—a’ =2(z—x—-y)=0 (mod p),
hence that b+ c¢—a =0 (mod p). Now we claim the following:
Cram 5.7B: It holds that a > p + 1.

Indeed, suppose that a < p. Observe that since (2x+ y)” > x? + y? = zP,
(x+2y)? > xP + yP = z?, it holds that x+ y >z —x, x+ y >z — y, hence that
a>b, a>c. Thus, we conclude that

—p<—a<b+c—a<at+a—a<yp,
hence that b+ c¢—a=0. Next, we claim that

CLAM 5.7C: Write EX {O€{a,b,c} | is even}. Then it holds that
#E = 1.

Indeed, it follows immediately from the equality b+ c¢—a =0 that #E > 1.
Suppose that #E > 2. Then it follows from the equality b 4+ ¢ — a = 0 that «a, b,
and ¢ are even. In particular, since a” (=x+ y) divides z? (= x? + y?), we
conclude that z is even. On the other hand, this implies that x and y are even
[cf. the equalities z — x = b? and z — y = ¢?’]—a contradiction. This completes
the proof of Claim 5.7C.

Now suppose that E = {a} [cf. Claim 5.7C]. Here, note that it follows by
applying Lemma 5.6, (ii), in the case where we take “(r,s,7)” to be (x,y,—z),
that there exists a positive integer @ such that (x”+ y?)(x+y) ' =ar. [In
particular, we have z =aa.] Then since

B+ b+e) ' =P +cP)a =2z —x—p)a! =2a—a"",
we conclude that (b? + ¢?)(b+¢)”' is an even integer. On the other hand,
since

p—1 ) ) )
(B + M) (b+e) " =D (=D,

i=0

and, moreover, each term “b?~~'¢ is odd, we conclude that (b? + ¢?)(b+¢)”"
is odd—a contradiction.

Thus, it follows from Claim 5.7C that E € {{b},{c}}. Moreover, to verify
Claim 5.7B, we may assume without loss of generality that E = {b}. Next,
observe that it follows by applying Lemma 5.6, (ii), in the case where we take
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“(r,s,t)” to be (z,—x,—y), that there exists a positive integer b such that
(zP — xP)(z — x) "' = b?. [In particular, we have y =bb.] Then since

(@’ —cMa—c) =@ —eP)b ' =2y +x—2)b ' =2b— b,

we conclude that (a? —c¢?)(a—c¢)™' is an even integer. On the other hand,
since

p—1
(ap _ cl’)(a _ 6)71 _ Zap—iflci’
i=0

and, moreover, each term “a”~~'¢ is odd, we conclude that (a? — ¢?)(a —c¢)™
is odd—a contradiction. This completes the proof of Claim 5.7B.
In light of Claim 5.7B, we have

2z>x+y=d’ > (p+1)~

This completes the proof of Lemma 5.7 in the case where p does not divide xyz.

Finally, we consider the case where p divides z. [In particular, p does not
divide xy.] Then it follows by applying Lemma 5.6, (ii), first in the case where
we take “(r,s,7)” to be (z,—x, —y), then in the case where we take “(r,s, )" to be
(z,—y,—x), that there exist positive integers b and ¢ such that

z—x=0b" z—y=c’.

Moreover, it follows by applying Lemma 5.6, (iii), in the case where we take
“(r,s,1)” to be (x, y,—z), that there exist positive integers w ¢ pZ and k, together
with a negative integer v ¢ pZ, such that

x+y=pr w2 =_pky.
Next, observe that
b+e)f=b"+c?=22—x—y=0 (mod p),
hence that b4+ ¢ =0 (mod p). In particular, it follows from the equality

S

bP 4 = per (bt ) = (b+¢)* > (=) i+ 12!

i

S

Il
o

[cf. Lemma 5.5] that b” + c? € p>Z. Thus, since we have
o =2z=(z—X)+(z— )+ (x+p) =bP + P + pP Wl e p’Z

[cf. the fact that kp — 1 > 2], we conclude that k > 2. Therefore, we conclude
that

22> x+y=pPwl > (p+1)?

[cf. the fact that y>~! > (y 4 1) for all y € R3]. This completes the proof of
Lemma 5.7 in the case where p divides z. O
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Remark 5.7.1.
(i) In the notation of Lemma 5.7, we observe that a stronger estimate

2>z —x> (2p7N)?

may be obtained by means of techniques of classical algebraic number theory
that are somewhat more involved than the argument given above in the proof of
Lemma 5.7 [cf. [8]; [9], Theorem 2].

(ii) In fact, it follows from [8], (4), that, in the situation of (i), if we assume
further that p divides xyz, then a stronger estimate

3p—1

2

P

z>
may be obtained.

Remark 5.7.2. 1In the notation of Lemma 5.7, suppose that p divides xyz,
and that p > 257. Then we observe that an even stronger estimate [i.e., than the
estimate of Remark 5.7.1, (ii)]

2> plr!
may be obtained by means of techniques that are somewhat more involved than
the argument given above in the proof of Lemma 5.7 [cf. [12], Theorem 1]. [A
similar, but weaker estimate may be found in [11], Lemma 2.] These techniques
of Mihailescu [and Rassias] use Mihailescu’s technique of working with a map of
the Stickelberger ideal into the algebraic integers and related power series develop-
ments associated to the image of this map, as well as a new insight on lattices
and an “inhomogeneous Siegel box principle”.

COROLLARY 5.8 (Application to “Fermat’s Last Theorem™). Let
p>1.615-10"

be a prime number. Then there does not exist any triple (x,y,z) of positive
integers that satisfies the Fermat equation

xP 4 pP = 2P,

Proof. Suppose that there exists a triple (x, y,z) of positive integers such
that x? + y? = z. Here, we may assume without loss of generality that x, y, z
are coprime. Then it follows from Lemma 5.7 that

(p+1)°
Z>72 .

Now we apply Theorem 5.3, (ii), to the present situation, by taking
* “L” to be ©Q;
+ “(a,b,c)” to be (x?,yr, —z?);
+ “g” to be 1.
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Then, in the notation of Theorem 5.3, we have
2P <252 exp<i~h1(l)) - (radg(x”, y?, —z"))’

5/2 1 3

< 27%.exp Zhl(l) - (xyz)

<2%?. exp@.hl(l)) (2%)?

—where we apply the fact that z > max{x, y}. Thus, we obtain that
nn" 1
{%} < P9 < 252 exP(Z'hl(l))

In particular, we conclude that
5 1
(P =9) (=1 +p-logy(p+ 1)) <5 +logy(e) -7 - (1) <1227 10%.

On the other hand, since [as is easily verified] the function
(x=9)(—1+ 1.44x - log(x + 1))

is monotonically increasing for x € Rsg9, we have

(P=9)(=1+p-log(p+1))=(p-9) (—1 +@-p-log(p+ 1))

>(p—9)(—-1+144-p-log(p+1))
>1.227-10%
—where the first (respectively, second) inequality follows from the estimate
L > 1.44 (respectively, our assumption that p > 1.615-10'*)—a contradic-

log(2)
tion. This completes the proof of Corollary 5.8. O

Remark 5.8.1. By combining Corollary 5.8 with the numerical estimate of
[4] [cf. [4], Abstract; the discussion following the first display of [4], §3], we obtain
[by applying the estimate 7.568 - 10'7 > 1.615-10'4] the following result:

Let p be an odd prime number. Then there does not exist any triple
(x, y,z) of positive integers such that p does not divide xyz, and, more-
over, the Fermat equation

Xl 4 pP =P
is satisfied.

This assertion is often called the first case of Fermat’'s Last Theorem.
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Remark 5.8.2.
(i) If we apply the estimate
z> (2p*7)?

of Remark 5.7.1, (i), instead of Lemma 5.7 in the proof of Corollary 5.8, then the
quantity “1.615- 10" in Corollary 5.8 may be replaced by 9.58 - 10'3. Indeed,
by applying this estimate of Remark 5.7.1, (i), we obtain the estimate

(2pT)07) < 217 < 252 exp (i ~ h1<1>>'
In particular, we conclude that

20 5 1
p(p— 9)(1 += 1og2(p)> <3+ log, (e) -Z-hl(l) < 1.227 - 10,

Thus, it suffices to observe that the manifestly monotonically increasing function
20
x(x—9) (1 + - logz(x)>

satisfies the inequality > 1.227 - 10° for x > 9.58 - 1013,

(i) Suppose that p divides xyz. That is to say, we suppose that we are in
the situation of what is often called the second case of Fermat's Last Theorem.
Then if we apply the estimate

3p—1

2

P

z>

of Remark 5.7.1, (ii), instead of Lemma 5.7 in the proof of Corollary 5.8,
then the quantity “1.615-10'* in Corollary 5.8 may be replaced by 9.39 - 10'3.
Indeed, by applying this estimate of Remark 5.7.1, (ii), we obtain the estimate

3p—1\(P—9) 1
(p2 ) <z”_9§25/2-exp(z-h1(l)>.

In particular, we conclude that

5 1
(P =9)(Bp = 1) loga(p) = 1) <5 +logy(e) - 5 - (1) < 1.227 - 10%,
Thus, it suffices to observe that the manifestly monotonically increasing function

(x =9)((3x — 1) logy(x) — 1)
satisfies the inequality > 1.227 - 10%* for x > 9.39-1013.
Remark 5.8.3.

(i) Observe that the estimate of Remark 5.7.2 due to [12] implies the
following consequence:
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Let
p =257

be a prime number. Then there does not exist any triple (x, y,z) of
positive integers such that p divides xyz, and the Fermat equation

xP 4 yP = zP
is satisfied.
[A similar, but weaker lower bound for p follows, by a similar argument, from

[11], Lemma 2.] Indeed, by applying the estimate of Remark 5.7.2 [instead of
Lemma 5.7] in the proof of Corollary 5.8, we obtain the estimate

p(S/z)pil(p*9) < Zp79 < 25/2 . exp(% . h1(1)> .
In particular, we conclude that

5\ 5 1
(E) (p—9)log,(p) < 5+1og2(e) .Z.hl(l) < 1.227-10%.

Thus, it suffices to observe that the manifestly monotonically increasing function

(j)l (x — 9) log, (v

satisfies the inequality > 1.227 - 10%° for x > 257.

(i) By combining (i) with the classical result of [27] [cf. [27], Theorem Vlla,
as well as [21], pp. 200-202], we obtain [by applying the estimate 269 > 257] an
alternative proof [i.e., to the proof of [28]] of the second case of Fermat’'s Last
Theorem [cf. Remark 5.8.2, (ii)]. In particular, in light of Remark 5.8.1, we
conclude that the results of the present paper, combined with the results of [27],
[4], and [12], yield an unconditional new alternative proof [i.c., to the proof of [28]]
of Fermat’s Last Theorem.

Finally, we give an application of the ABC inequality of Theorem 5.4 to
a generalized version of Fermat's Last Theorem, which does not appear to be
accessible via the techniques involving modularity of elliptic curves over Q) and
deformations of Galois representations that play a central role in [28].

COROLLARY 5.9 (Application to a generalized version of ‘“Fermat’s Last
Theorem™). Let r, s, t be nonzero integers every two of which are coprime.
Write

SE{(X,Y,2) e 2*|||XYZ||¢ = 2}
Let [, m, n be positive integers such that

min{/,m,n} > max{2.453 - 10%°, log,||rst||¢:, 10 + 5 log, (rad(rst))}.
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Then there does not exist any triple (x,y,z) € S of coprime [i.e., the set of prime
numbers which divide x, y, and z is empty] integers that satisfies the equation

rx! + sy +1z" = 0.

Proof. Write k &f min{/,m,n}. Suppose that there exists a triple (x, y,z) €
S of coprime integers such that rx!/ 4 sy” 4 1z” =0. Then we claim the fol-
lowing:

CLAM 5.9A: rx!, sy™, and tz" are coprime.

Indeed, suppose that a prime number p divides rx’

consider the set

, sy™ and tz". Let us

EY {O€{x,y,z}|p divides [1}.

Then, by applying our assumption that (x, y,z) are coprime (respectively, every
two of (r,s,t) are coprime), we conclude that #E <2 (respectively, #FE > 2),
hence that #E = 2. Thus, to verify Claim 5.9A, we may assume without loss
of generality that p divides x and y. [In particular, p does not divide z.] Then
observe that p* divides rx’ and sy™, hence also tz”. In particular, since p does
not divide z, we conclude that p* divides t. Thus, we have

log, ||rst||¢ = logy||?]|¢ = log, P>k

—a contradiction. This completes the proof of Claim 5.9A.
Now we apply Theorem 5.4 to the present situation, by taking
+ “(a,b,c)” to be (rx!,sy™, tz") [cf. Claim 5.9A];
+ “g” to be 1.
Then we have

Irstll - Ilxyzllg < [lrsex'y™z" ¢
< 2% max{exp(1.7 - 10%°), (rad(rstx'y"z"))®}
= 2% . max{exp(1.7 - 10*), (rad(rstxyz))°}.
On the other hand, since
st - vzl > rad(rst) - [xpzé
> 2% (rad(rs1))° - [zl
> 2% . (rad(rstxyz))®

[cf. our assumptions that k > 4+ (6 — 1) - log,(rad(rs?)) + 6 and ||xyz||¢ = 2], we
obtain that

2K < st - lxvzlle < 2* - exp(1.7 - 10%°),

hence that k& < 2.453-103°—a contradiction. This completes the proof of Cor-
ollary 5.9. Ul
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