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1d theory

To study properties of the Euler–Riemann zeta function

ζZ(s) = ∑
n≥1

1
ns

= ∏(1−p−s)−1

one can work with the completed zeta function

ζ̂Z(s) = π
−s/2 Γ(s/2)ζZ(s).
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1d theory

It has an integral representation

ζ̂Z(s) =
∫

∞

0
(θ(x2)−1)xs

dx

x
, θ(x) = ∑

n∈Z
exp(−πn2x).

The integral can be rewritten as∫
∞

1

(
θ(x2)−1

)
xs

dx

x
+
∫

∞

1

(
θ(x2)−1

)
x1−s dx

x
+ ω(s)

where

ω(s) =
∫ 1

0

(
(θ(x2)−1)x− (θ(x−2)−1)

)
xs−1 dx

x
.

The first two integrals are absolutely convergent and their sum is an entire function on
the complex plane symmetric with respect to s→ 1− s.
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1d theory

The Gauss–Cauchy–Poisson summation formula, which in this case means the functional
equation for the theta function θ(x2)x = θ(x−2) implies

ω(s) =
∫ 1

0
(1−x)xs−1 dx

x
=−

(
1
s

+
1

1− s

)
is a rational function symmetric with respect to s→ 1− s, hence the functional equation
and meromorphic continuation of the completed Riemann zeta function and the location
of its poles follow.
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1d theory: revealing more structure

The completed zeta function can be viewed as an adelic zeta integral

ζ̂Z(s) =
∫
A×Q

f (x)|x |sdµA×Q
(x)

with respect to an appropriately normalised Haar measure on the group of ideles A×Q.

Here f (x) is the tensor product ⊗fv (xv ) of the characteristic functions charZp
(xp) and of

exp(−πx2
∞) at the archimedean place.

f is (almost ) an eigenfunction of the appropriately normalised Fourier transform F on
the space of adelic functions.

|x | is the module function associated to µ: |x | := µ(xA)/µ(A) for any measurable set A
of non-zero volume.

To compare the zeta integral with the completed zeta function one uses the restricted
product splitting of ideles:

A×Q = ∏
′Q×v ,

∫
A×Q
⊗gv = ∏

∫
Q×v

gv
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1d theory

The computation of the zeta integral uses

self-duality of the additive group of adeles AQ ' X (AQ),

characters X (AQ/Q)'Q,

Fourier transform F on spaces of functions on adeles,

∫
Q
g =

∫
Q

F (g),

radial double integral
∫
A×Q

=
∫
A×Q/Q×

∫
Q×

,

from × to +
∫
Q×

+
∫

∂Q×
=
∫
Q
.
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1d theory

The discreteness of global elements Q in adeles AQ and compactness of AQ/Q are
associated properties.

In the general case of global fields k the compactness of A1
k/k

× (A1
k is the preimage of 1

with respect to | |) follows from the computation of the zeta integral and it immediately
implies the finiteness of the class number.

This computation of the zeta function also implies the Dirichlet’s unit theorem.

The Galois group at the background is Gal(kab/k).

Even though one uses objects of class field theory (ideles and idele class group), class
field theory is not used in this (1d) Iwasawa–Tate theory.
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1d GLn theory

For the L-function of an irreducible GLn-representation of the absolute Galois group Gk

of a global field k, its conjectural automorphicity, due to the converse theorems, is closely
related to the following conjectural property:

its completed L-function and its twists by appropriate characters, after multiplying with
appropriate Gamma-factors, are equal to a zeta integral for an appropriate
Mn(Ak)-Bruhat–Schwartz function f :

∫
GLn(Ak )

f (α)c(α) |det(α)|s dµGLn(Ak )(α).

The additional factor c(α) =
∫
GLn(Ak )1/GLn(k)

g1(γα)g2(γ)dµ(γ) for n > 1 involves two
cuspidal functions gi .
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Part of the tree of number theory

CFT = class field theory
HAT = higher adelic theory
2d = two-dimensional (i.e. for arithmetic surfaces)

CFT Iwasawa–Tate theory

Langlands program 2d CFT anabelian geometry

2d Langlands program? HAT IUT
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2d objects of HAT

There are several types of data associated to an integral normal 2d scheme S flat over Z
or Fp (surface), a closed point x on an irreducible projective curve y on S :

� 2d global field: the function field K of S ;

� 2d local fields/semi-fields: the quotient Kx ,y of the completion of the localisation of the
local ring at x at the local equation of y ;

� 2d cdvfs for y : the function field Ky of the completion of the local ring of y ;

� 2d rings for x : the tensor product Kx of K and the completion of the local ring of x .

From these objects one produces

2d geometric adeles A⊂∏Kx,y,

2d y -subadeles B = ∏Ky ∩A⊂∏Kx,y,

2d x-subadeles C = ∏Kx∩A⊂∏Kx,y.
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2d objects of HAT

Higher (2d) adelic theory (HAT) operates with six adelic objects on surfaces:

A A

C B B

K

Geometric adelic structure A is related to rank 1 local integral structure and to algebraic
geometry.

Self-duality of its additive group, endowed with appropriate topology, is stronger than
Serre duality and it implies the Riemann–Roch theorem on surfaces.

Another analytic/arithmetic adelic structure A is related to rank 2 local integral structure
and to 2d zeta integrals.
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Zeta functions

The zeta function of a scheme X of finite type over Spec(Z)

ζX (s) = ∏
x∈X0

(1−|k(x)|−s)−1,

x runs through closed points of X , k(x) is the finite residue field of x .

The zeta function ζX (s) factorises into the product of some auxiliary factors and several
L-factors or their inverses.

When the function field of X is of characteristic zero and X is two- or higher
dimensional, very little is understood about ζX (s).

HAT studies zeta functions via higher commutative zeta integrals.
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Zeta functions of elliptic surfaces

Let E be an elliptic curve over a global field k,
and let E be a regular model:

E → B proper flat, where B is the spectrum of the ring of integers of k or a proper
smooth curve over a finite field with function field k.

Then

ζE (s) = nE (s)ζE (s), ζE (s) =
ζB(s)ζB(s−1)

LE (s)
,

nE (s) is an auxiliary factor that knows about singularities of singular fibres.
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Zeta functions of elliptic surfaces

The function ζE (s) does not depend on the choice of a model E .

The numerator of ζE (s) is the product of the zeta functions in dimension one.
Its denominator is the L-function of E .

HAT studies the zeta function ζE directly, using commutative 2d methods.

The Galois group at the background is Gal(Kab/K), K = k(E ) is a 2d global field.
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HAT and elliptic curves

Aims of HAT in the case of arithmetic surfaces E :

understand ζE (and hence partially LE ) via working with a higher zeta integral on 2d
adelic spaces using adelic dualities, and then apply to the study of main open problems
about ζE .

Some of the difficulties:

(1) 2d local fields Kx ,y are not locally compact spaces, there is no nontrivial real valued
translation invariant measure on them,

(2) unlike 1d, arithmetic and geometric issues are separated from each other in 2d.

Ways to address them:

(1) locally compactness is not so important, we can work with R((X ))-valued translation
invariant measure on Kx ,y and K×x ,y discovered in 2001;

(2) arithmetic and geometry adelic structures are intertwined at the level of their
multiplicative groups and the zeta integral provides a bridge between them.
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Zeta integral

The general form of 2d zeta (unramified) integral is

ζ (f , | |s) =
∫
A××A×

f (α) |α|s dµ(α)

where f is a 2d Bruhat–Schwartz function (such as ⊗charOx ,y×Ox ,y
),

µ is the (appropriately normalised) measure (tensor product of the local measures),

| | is the module function associated to µ (|a|= µ(aD)/µ(D)).

Theorem

On Re(s) > 2 the zeta integral ζ (f , | |s) equals the product of ζE (s)2 times an auxiliary
1d zeta functions factor.

The zeta integral is a holomorphic function on that half plane.

This theorem essentially gives an integral representation of ζE (s)2.
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Radial computation of the zeta integral

Theorem
On the half plane Re(s) > 2 the zeta integral is the sum of three terms

ζ (f , | |s) = ξ (s) + ξ (2− s) + ω(s).

The function ξ (s) extends to an entire function on the complex plane.

The boundary term (in characteristic 0) is

ω(s) =
∫ 1

0
h(x)xs−2dx/x

where

h(x) =
∫
(A××A×)1/B××B×

(∫
∂ (B××B×)

(
x2 f (xβγ)− f (ν

−1x−1
βγ
−1)
)
dµ(β )

)
dµ(γ).

The function h satisfies h(x−1) =−x−2h(x).
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Mean-periodicity and FE of the zeta function

Definition
Let X be a space of complex valued functions on the real line in which the Hahn-Banach
theorem holds.

A function g ∈ X is called X -mean-periodic if it satisfies one of the equivalent conditions:

(i) there exists a closed proper linear subspace of X which contains all translates of g ;

(ii) g is a solution of a homogeneous convolution equation g ∗τ = 0 where τ is a non-zero
element in the dual space of X .
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HAT and meromorphic continuation and FE of the zeta function

Theorem
Let K be of characteristic 0.
Assume that the function

H(t) = h(e−t)

is mean-periodic in the space of smooth functions on the real line of not more than
exponential growth.

Then the boundary term and the zeta integral and hence ζE (s) and LE (s) have
meromorphic continuation and satisfy the functional equation wrt s→ 2− s.
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HAT and GRH

Theorem
Maintaining the assumption of mean-periodicity, let in addition

the fourth derivative of H keep its sign near infinity.

Then if the zeta function does not have real poles in the strip Re(s) ∈ (1,2) ,

the zeta function does not have complex poles in the same strip.

Note the fundamental difference with the 1d case. It is easier to study analytically the
location of poles in 2d than the location of zeros in 1d.
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HAT and the Tate–BSD conjecture

To compute the local behaviour of ζE (s) at s = 1 assume that the zeta function has a
meromorphic continuation and FE.

Information about
∫

∂ (B××B×) helps to compute the order of the pole of the boundary
term ω(s) (and hence the zeta function) at s = 1.

Partial information about ∂ (B××B×) modulo units can be obtained by using the
commutative diagram

B×⊗B×/units

�� ))
B××B×/units // K t

2(B)/units.
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HAT and the Tate–BSD conjecture

The quotient of B× modulo the image of units, the image of K× and p∗Pic(B), where
p : E → B, is a finitely generated group with the number of its generators equal to the
rank of E(k) plus a well known constant.

This leads to a factorisation of the boundary term near s = 1 into the product of finitely
many (their number is related to the geometric rank) squares of 1d zeta integrals each of
which has a pole of order 1 as s = 1.

This aims to explain the (conjectured) equality of the analytic rank ords=1ζE (s) and the
geometric rank χ(O×E ), i.e. the rank part of the Tate–Birch–Swinnerton-Dyer conjecture.
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Funding and open problems in HAT

List of open problems in HAT:

https://ivanfesenko.org/wp-content/uploads/prad-1.html
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Surveys and papers

Section K of https://ivanfesenko.org/?page_id=126

including

Adelic approach to the zeta function of arithmetic schemes in dimension two (survey)

https://ivanfesenko.org/wp-content/uploads/2021/10/ada.pdf

Higher adelic theory (talk)

https://ivanfesenko.org/wp-content/uploads/2021/11/hat.pdf
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