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Relations between mathematics and physics

have not been easy in the last 100 years ...
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Dyson

’As a working physicist, I am acutely aware of the fact that the marriage between mathematics
and physics, which was so enormously fruitful in past centuries, has recently ended in divorce.’

’Twenty years ago ... Richard Feynman gave a description of relativistic quantum field theory in
terms of a naive physical picture which he called "sum over histories."

His description seems to make sense as a qualitative guide to the understanding of physical
processes, but it makes no sense at all as a mathematical definition.

Mathematical rigor is the last thing that Feynman was ever concerned about.’
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Feynman integral

Feynman functional/path integral ∫
P

exp

(
i

h̄
S(x)

)
Dx

for the action integral S(x) =
∫ t
0
(
m
2 ( dx

ds )2−V (x(s)
)
ds on P

where V is the potential, P is the space of real valued continuous functions on [0,t] with fixed
boundary condition.

The problem is with Dx which is a translation invariant measure on P.

The space P is not locally compact, so it does not have a nontrivial translation invariant real
valued measure. So the integral does not exist for a mathematician, except some special cases.

Associated alchemistry of renormalisation or regularisation rules, satisfying to most physicists
while math rigour is typically missing.

Manin: ’imagine something like the Eiffel Tower, hanging in the air with no foundation, from a
mathematical point of view. So it exists and works just right, but standing on nothing we know
of. This situation continues to this very day.’
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Problems with foundations of quantum theory

The divorce actually had happenned earlier, in foundations of quantum theory some 100 years ago.

Quantum theory has enormous conceptual problems in its standard formulation that used 100–70
years old mathematics.

These problems are often ignored by many physicists.

Unfortunately, most of mathematics of the last 70 years are typically not known to quantum
experts.
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Problems with foundations of quantum theory

There are many alternative interpretations of quantum theory:

◦ The standard Copenhagen interpretation: the state collapses as soon as its degree of
macroscopicity becomes so large that we are no longer able to measure the phase between the
two terms of the superposition.

The measurement process: the quantum object becomes entangled with the macroscopic
measurement apparatus and, subsequently, with the experimentalist.

The instrumental interpretation of quantum theory that denies the possibility of talking about
systems without reference to an external observer.

A ’thing’ becomes simply a result of a measurement, physical statements represent our knowledge
of events rather than events themselves.

At which point does the superposition collapse into a set of probabilities, a subjective
phenomenon that only seems to happen when the observer becomes a part of the superposition.
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Problems with foundations of quantum theory

◦ Many-worlds interpretation

◦ Consistent histories interpretation

◦ Hidden variables interpretation to deal with assumed incompleteness of the quantum theory
formalism

Non-locality and contextuality (Bell, Kochen–Specker) — these features of quantum mechanics
are used to obtain quantum advantage over classical computational models in quantum
computing.
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Problems with foundations of quantum theory

Classical theory (quantities are real valued) −→ a quantisation of it,

but why should quantities be real valued?

Why should quantum probabilities be in [0,1]⊂ R?

Frauchiger–Renner: ’Quantum theory cannot consistently describe the use of itself’

Standard mathematics description of quantum theory assumes certain properties of space and/or
time but the Planck scale hints otherwise!

Gisin: the need a better version of real numbers, for math with the absence of law of excluded
middle, for math that can better incorporate indeterminant issues
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Topos theoretical approach to quantum theory

Isham–Döring’s topos theoretical approach to quantum theory

builds locally on (the topos of presheaves of) commutative (hence classical) sub-algebras of

the algebra B(H) of all bounded operators on the quantum theory’s Hilbert space.

Using topos theory leads to a reformulation of quantum theory which in several aspects looks like
classical physics,

propositions can be given truth values without using concepts of measurement or external
observer.

See the next talk!

It will be explained below in this talk that the topos theory looks in several aspects like sets theory.

A topos has an internal logical structure that is similar to the way in which Boolean algebra arises
in set theory, but instead of two truth values 1 and 0, goes outside Boolean logic with truth
values are in a larger set.

Topos theory is a math theory that can ’speak’ of indeterminism.
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Categories and quantum theory and related theories

There are many texts about categories in quantum theory.

There are various theories, somewhere between mathematics and physics, such as string theory or
topological quantum field theory or functional quantum field theory, which use categories.

It is interesting which of them are considered as physics by physicists.

Let’s look at very basic things at the next 30 slides about sets, the category theory and topos
theory in very general terms, emphasising key ideas and concepts, and the associated languages
and visions.
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The vision of categories

Categories formalise certain structures and conceptual frameworks which show up, in different
incarnations, in math areas of

◦ algebraic topology,
◦ homotopy theory,
◦ homological algebra,
◦ number theory,
◦ various kinds of geometry,
◦ analysis,
◦ algebraic K-theory,
◦ higher class field theory,
◦ motives,
◦ higher adelic theory,
◦ IUT,
◦ logic,
◦ model theory.

Categories is not just a language, it is a new conceptual vision on things in mathematics.
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Some contributors

In the 1940s Eilenberg and Mac Lane developed category theory to provide clearer structural
approach to algebraic topology and to build bridges between algebra and topology.

Since the mid 1950s Grothendieck further developed category theory and its applications in
numerous directions.

Lawvere, 1958: ’I liked experimental physics but did not appreciate the imprecise reasoning in
some theoretical courses ... So I decided to study mathematics first ... Categories would clearly
be important for simplifying the foundations of continuum physics’

Ivan Fesenko Categorical vision for quantum theory May 14 2022 13 / 43



Some contributors

In the 1940s Eilenberg and Mac Lane developed category theory to provide clearer structural
approach to algebraic topology and to build bridges between algebra and topology.

Since the mid 1950s Grothendieck further developed category theory and its applications in
numerous directions.

Lawvere, 1958: ’I liked experimental physics but did not appreciate the imprecise reasoning in
some theoretical courses ... So I decided to study mathematics first ... Categories would clearly
be important for simplifying the foundations of continuum physics’

Ivan Fesenko Categorical vision for quantum theory May 14 2022 13 / 43



Some contributors

In the 1940s Eilenberg and Mac Lane developed category theory to provide clearer structural
approach to algebraic topology and to build bridges between algebra and topology.

Since the mid 1950s Grothendieck further developed category theory and its applications in
numerous directions.

Lawvere, 1958: ’I liked experimental physics but did not appreciate the imprecise reasoning in
some theoretical courses ... So I decided to study mathematics first ... Categories would clearly
be important for simplifying the foundations of continuum physics’

Ivan Fesenko Categorical vision for quantum theory May 14 2022 13 / 43



Categories

Sets can be studied

◦ internally, by looking at their subsets, or

◦ externally, by looking at the relations to other sets.

A relation of one set to another set is a map f from one set A to another set B. One can
represent this map as an arrow f : A→ B.

For example,

the image f (A) is a subset of the set B,
the preimage f −1(b) of an element b ∈ B is a subset of A.

The two studies of sets are closely related to each other.

For example, every subset R of a set S uniquely corresponds to a map fR from S to the set of two
elements {1,0}:

fR(s) =

{
1 when s ∈ R

0 when s 6∈ R
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Sets

In the external study, one can compose maps:
for f : A→ B and g : B → C one has the composite map g ◦ f : A→ C .

There is the associativity property for compositions of maps f : A→ B, g : B → C , h : C →D:

h ◦ (g ◦ f ) = (h ◦g)◦ f .
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From sets to categories

For each set A there exists an identity map 1A : A→ A which satisfies the (external) properties:

for every map g : A→ B we have g ◦1A = g

and for every map h : C → A we have 1A ◦h = h.

For every set A all maps from A to A form a monoid Mor(A,A).
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Categories

A category generalises this.

Definition. A category consists of objects A,B, . . . and morphisms (or arrows) between the
objects, so that

◦ for every morphisms f : A→ B and g : B → C one has the composite morphism g ◦ f : A→ C

◦ the associativity property for compositions of morphisms f : A→ B, g : B→ C , h : C →D holds:

h ◦ (g ◦ f ) = (h ◦g)◦ f

◦ for every object A there is an identity morphism 1A (the properties as above).

Thus, Example 1 of a category is the category Set of sets and maps between them.

Categorical point of view is not to pay attention to what the objects and arrows are, but to what
patterns of arrows exist between the objects
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Categories

Dots and arrows, to represent categories

a category not corresponding to any set
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Categories

Example 2 of a category is in line with internal study, it is

the category SetS of all subsets R of a given set S and inclusions between them.

We write R ⊆ S for such subsets. Subsets include the empty set /0 and the set S .

Morphisms are maps between them, which are inclusions of sets: R ⊆ T with R and T subsets of
S .

Subsets are partially ordered with respect to inclusion.

In general, they are not fully ordered since there can be subsets R,T none of which is a subset of
the other set.
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Categories

For two subsets R,T of S we have operations of

intersection R ∩T (it can be called the infimum of R and T ) and

union R ∪T (it can be called the supremum of R and T ).

They satisfy the distributive property:

R ∩ (T ∪Q) = (R ∩T )∪ (R ∩Q), R ∪ (T ∩Q) = (R ∪T )∩ (R ∪Q).

They form a distributive lattice.
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Categories

Every subset R of S also has its complement in S: S \R, sometimes denoted ¬R, so

R ∪¬R = S , R ∩¬R = /0.

The lattice of subsets is a Heyting algebra.
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Categories

Example 3 is the category FSetS of all finite subsets of a fixed set S and inclusions between
them.

In this category the union of infinitely many objects is not necessarily an object of this category,
and generally finite subsets do not have their complements in the same category.

Example 4 is the category ZSetS of all subsets containing almost all elements of a fixed set S and
inclusions between them.

In this category the intersection of infinitely many objects is not necessarily an object of this
category, and generally such subsets do not have their complements in the same category.
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Categories

Suppose that S has a topology, i.e. it is a set S with a class of open subsets, including S and /0,
such that

the intersection of any two open subsets is open and

the union of finitely or infinitely many open subsets is open.

In particular, one can work with the

discrete topology on S in which every subset is open, or with

the (Zariski) topology in which open subsets are those which contain almost all elements.

Example 5 is more geometric: the category SetT
S of all open subsets of a fixed set S with respect

to its topology and inclusions between them.

In this category we can define ¬U as the interior (the maximal open subset) of S \U.

Then U ∪¬U is generally different from S, so no law of excluded middle holds here.
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Categories

Example 6 is even more geometric: the category TSet of topological spaces with continuous
maps as morphisms.

A map f : S → T is called continuous if f −1(U) is open in S for every open U in T .

We can operate with topological spaces using geometric intuition and continuity.

Further examples of categories come from situations when a group K acts on objects, i.e. there
are monoid homomorphisms K →Mor(R) for every object R.

Many more important examples ...

For every category one has its opposite category which has the same objects and reversed arrows.
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Functors of categories

To compare categories (external study) one needs kind of generalisation of a function. It is called
a functor.

Definition. A (covariant) functor F from a category C to a category D is

a map which associates to every objects A of C an object F (A) of D and

to every morphism f : A→ B in C a morphism F (f ) : F (A)→ F (B) in D

such that F (1A) = 1F (A) and F (g ◦ f ) = F (g)◦F (f ).

The latter property can be presented by a picture:
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Functors of categories

Example
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Functors of categories

Contravariant function is similar but reverses arrows and composition, i.e. F (f ) : F (B)→ F (A)
and F (g ◦ f ) = F (f )◦F (g)

Example of a functor from a category C to itself: 1C sends each object to itself and each
morphism to itself.

Another example is a forgetful functor: e.g. the functor from TSet to Set which forgets the
topology.

The composition of functors is a functor.
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Functors of categories

One also wants to compare functors (external study)

Definition. Let F ,G be functors from a category C to a category D .

A natural transformation from F to G is a collection η of morphisms

ηX : F (X )→ G(X ) for every object X of C

such that for every morphism f : X → Y in C we have

ηY ◦F (f ) = G(f )◦ηX ,

i.e. the following diagram of morphisms is commutative:
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Category of functors, equivalence of categories

Definition. A morphism f : A→ B of a category C is called an isomorphism

if there is a morphism g : B → A such that g ◦ f = 1A and f ◦g = 1B .

In this situation the objects A and B are called isomorphic.

Definition. The category DC of functors from C to D has objects which are functors and
morphisms which are natural transformations between the functors.

Definition. A natural transformation η from a functor F to a functor G , from C to D , is called

a natural isomorphism if it is an isomorphism in the category DC . This is the same as to ask that

ηX : F (X )→ G(X ) is an isomorphism for every object X of C .

In this situation the functors F and G are called naturally isomorphic.

Definition. Two categories C and D are called equivalent (not the same is isomorphic in the
category of categories!)

if there are functors F : C →D and G : D → C such that

the functor G ◦F is naturally isomorphic to the identity functor 1C and

the functor F ◦G is naturally isomorphic to the identity functor 1D .
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Functors of categories

Example of equivalent categories
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Categorical description of sets

The elementary theory of the category of sets by Lawvere is an axiomatic formulation of set
theory in a category-theoretic spirit.

Lawvere was interested in set theory not be based on membership but on isomorphism-invariant
structure and universal mapping properties

He provided a purely categorical description for the category of sets.
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Topos theory

The notion of topos was introduced in the early sixties by Grothendieck with the original first aim
of bringing a topological or geometric intuition also in parts of number theory where actual
topological spaces do not occur.

Grothendieck invented topos theory as part of his approach to prove the Weil conjectures in
number theory.

He realised that many important properties of topological spaces X can be naturally formulated
as properties of the categories Sh(X ) of sheaves of sets on the spaces.

At the same time, X → Sh(X ) is an embedding of continuous structures into categories which are
discrete structures.

Topos theory helped to define étale site and étale cohomology, with enormous applications in
geometry and number theory.

This was later used in Deligne’s proof of the generalised Riemann hypothesis in algebraic
geometry over finite fields.
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Topos theory

The crucial unifying notion of topos is to provide the common geometric intuition for many areas
of mathematics and to connect continuous with discrete.

L. Lafforgue: ’The common house of the continuous and the discrete is topos theory’

Grothendieck: ’We can consider that the new geometry is, above all, a synthesis between these
two worlds, which until then had been adjoining and closely interdependent, but yet separate: the
"arithmetic" world, in which "spaces" without a principle of continuity live, and the world of
continuous quantity. In the new vision, these two formerly separate worlds become one.’

Ivan Fesenko Categorical vision for quantum theory May 14 2022 33 / 43



Topos theory

The crucial unifying notion of topos is to provide the common geometric intuition for many areas
of mathematics and to connect continuous with discrete.

L. Lafforgue: ’The common house of the continuous and the discrete is topos theory’

Grothendieck: ’We can consider that the new geometry is, above all, a synthesis between these
two worlds, which until then had been adjoining and closely interdependent, but yet separate: the
"arithmetic" world, in which "spaces" without a principle of continuity live, and the world of
continuous quantity. In the new vision, these two formerly separate worlds become one.’

Ivan Fesenko Categorical vision for quantum theory May 14 2022 33 / 43



Topos theory

He defined a topos as a certain category of sheaves, by introducing an abstract notion of covering
and replacing the topological space X by a site (C ,J) consisting of a (small) category C and a
Grothendieck’s topology (a generalized notion of covering) J on it.

A Grothendieck topos is any category equivalent to the category of sheaves on a site.

A topos has various features similar to the category of sets.

However, unlike sets, the law of excluded middle does not need to hold in a topos.

Statements about a topos are not necessarily either true or false, they can be true somewhere and
false somewhere.

Somehow similar to a quantisation of a classical physical theory, constructions in topos theory can
often be understood by looking at them in the category of sets or geometrical categories first and
then lifting to the general case.

Ivan Fesenko Categorical vision for quantum theory May 14 2022 34 / 43
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Topos theory

Definition. Elementary topos (or topos) is a category with finite limits and colimits, exponentials,
and a subobject classifier.

In particular, topos has

◦ an initial object (in Set this is the empty set),

◦ a terminal object (in Set this is the ambient set),

◦ products (in Set this is the Cartesian product of two sets) and

◦ coproducts (in Set this is the disjoint union of two sets).

In particular, in topos for every two objects A and B there is an object BA

(in Set this is the set of maps from A to B).

The subject classifier C in Set is the two element set {1,0} corresponding to true and false.

In an arbitrary topos, subobjects of A correspond to morphisms from A to C .
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Topos theory

Examples of an elementary topos:

◦ Set,

◦ K -Set where K is a group,

◦ Topos of sheaves on a topological space (in the first approximation, think of functions on open
subsets, appropriately glued), for example:

the sheaf of regular functions on a variety

the sheaf of differentiable functions on a differentiable manifold

the sheaf of holomorphic functions on a complex manifold

the sheaf of continuous real-valued functions on any topological space
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Topos theory

More examples:

◦ Topos of presheaves on an arbitrary category C , i.e. the topos of contravariant functors from C
to Set, where morphisms are natural transformations between the functors.

◦ Topos of sets living in time: objects are sets A(t) for any time t in the studied interval and
maps are A(t1)→ A(t2) for t1 6 t2.

Lawvere describes objects in a topos as continuously variable sets while classical set theory treats
the special case of constant sets.
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Topos theory

Each Grothendieck topos is an elementary topos, but the converse property is false: e.g. the
category of finite sets, and the category of finite K -sets is an elementary topos but not a
Grothendieck topos.

The natural notion of morphism in topos theory is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric transformation.

A global point of a topos T is defined as a geometric morphism from the topos Set to the topos
T .

There are topoi/toposes which do not have global points.

The non-existence of classical explanations for quantum phenomena somehow corresponds to the
non-existence of global sections.
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Topos theory

No quantities show up in category theory and topos theory.

What matters is the form of a category and its structure.

The notion of a geometric morphism in topos theory has allowed to build general cohomology
theories which cannot be otherwise produced.

Homotopy-theoretic invariants such as the étale fundamental group, playing the key role in
anabelian geometry, can be defined as topos invarants.
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Developments

Caramello’s recent theory of topos-theoretic ’bridges’, which is a general theory of relations
between the contents of different mathematical theories.

It uses topos theory to relate and unify mathematics theories and construct ’bridges’ between
them.

The work of Caramello and L. Lafforgue in using topos theory in various directions

https://www.oliviacaramello.com/Papers/Papers.htm

https://www.laurentlafforgue.org/publications.html

Applying topos theory in computer science, see e.g.

https://aroundtoposes.com/toposesonline/
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https://www.oliviacaramello.com/Papers/Papers.htm

https://www.laurentlafforgue.org/publications.html

Applying topos theory in computer science, see e.g.

https://aroundtoposes.com/toposesonline/
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Modern number theory and quantum theory

Vafa (2000) ’In some sense quantum theory is a bending of physics towards number theory.

However, deep facts of number theory play no role in questions of quantum mechanics...

I predict that in the next century we will witness deep applications of number theory in
fundamental physics ...

In fact, if I were to guess, I would think that quantum mechanics will be completely reformulated
and that number theory will play a key role in this reformulation’

SB (2021) ’Number theory is connected to all other fields – and yet almost none of the related
advances utilized in Physics.

Number theory is not even taught to physicists!

While in many cases related to quantum mechanics & computations – it is perhaps a simpler
language to use.’
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Modern number theory and quantum theory

Even though the Feynman integral does not exist mathematically for potentials or degree higher
than 4, there is a rigorous arithmetic analogue of it.

Using structures in higher local fields (and hence some category theory),

a theory of higher translation invariant integral on higher local objects that are not locally
compact (e.g. C((x)), a formal loop space) was developed in

https://ivanfesenko.org/wp-content/uploads/2021/10/aoh.pdf

It is not real valued, it takes values in R((t)).

Fourier transform in this rigorous structural theory has many similarities to the Feynman integral.

This integration is used to define higher zeta integral whose applications provide entirely new
methods to understand several key open problems in number theory
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Modern number theory and quantum theory

Several analogies have been noticed between ideas of algorithmic anabelian geometry and
Mochizuki’s IUT theory (they use categories and étale topos) and of quantum theories.

In IUT there are two types of topological monoid structures:
(i) structures coming from Galois groups of symmetries and
(ii) structures coming from ’ordered’ objects.
The former structures pass intact through certain processes where the latter structures change.

One can say that the analogues of these two math structures are waves and particles.

The stabiliser formalism in quantum computing uses the facts
(a) the intersection of the Clifford group of a quantum state with the Pauli group still
distinquishes quantum states,
(b) this intersection has much smaller number of generators.

Anabelian geometry and IUT work with the stabiliser groups with respect to the Galois action on
closed points of relevant arithmetic schemes, they are called decomposition groups.

In anabelian geometry the map from points to conjugacy classes of decomposition groups is the
main object of the central Grothendieck section conjecture in anabelian geometry; (a) is the
injectivity of the analog of this section map.

Similarly to quantum computing, algorithmic IUT reduces exponential issues to polynomial issues.
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