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Several general points

the pdf file of this talk

Quantum theory in its standard formulation uses mathematics known 100–70 years ago.

It has enormous foundational problems.

They affect its further developments and applications, including quantum computing and
communication, most of which does not use modern mathematics.

Modern arithmetic geometry, including anabelian geometry, and the use of category theory and
toposes, remain unknown to quantum people and even to many number theorists.

There is huge potential for the use of some concepts and visions of modern arithmetic geometry
in developments of quantum theory, as well as for the use of some novel ideas and concepts of
anabelian geometry and IUT in quantum computing
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Relations between mathematics and quantum physics

have not been easy in the last 100 years ...
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Dyson and Feynman

Dyson (1972): ’As a working physicist, I am acutely aware of the fact that the marriage between
mathematics and physics, which was so enormously fruitful in past centuries, has recently ended
in divorce.’

’Twenty years ago ... Richard Feynman gave a description of relativistic quantum field theory in
terms of a naive physical picture which he called “sum over histories”.

His description seems to make sense as a qualitative guide to the understanding of physical
processes, but it makes no sense at all as a mathematical definition.’

Feynman (1983): ‘[math and physics] are very good friends, but they do not consider the same
problems, and they do not have the same point of view. The mathematician looks at a very broad
area and is interested in everything related to it. The physicist, on the other hand, who is
interested in certain specific questions, can go much further in some particular directions...’
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Feynman integral

Feynman functional/path integral ∫
P

exp

(
i

h̄
S(x)

)
Dx

for the action integral S(x) =
∫ t
0
(
m
2 ( dx

ds )2−V (x(s)
)
ds on P

where V is the potential, P is the space of real valued continuous functions on [0,t] with fixed
boundary condition.

The problem is with Dx which is a translation invariant measure on P:
the space P does not have a nontrivial translation invariant real valued measure.
An attempt by Wiener produces a measure which is not translation invariant.
For potentials of degree 6 4 there are rigorous math approaches.

Associated alchemistry of renormalisation or regularisation rules seems satisfying to most
physicists while lacking math rigour.

Manin: ’imagine something like the Eiffel Tower, hanging in the air with no foundation, from a
mathematical point of view. So it exists and works just right, but standing on nothing we know
of. This situation continues to this very day.’
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Modern number theory and quantum theory

There is a rigorous arithmetic analogue of the Feynman integral:

a theory of R((t))-valued higher translation invariant integral on higher local objects that are not
locally compact (e.g. C((x)), a formal loop space) was developed in 2001–2004

Fourier transform in this theory has many similarities to the Feynman integral.

This integration is used to define higher zeta integral whose applications provide entirely new
methods to understand several key open problems in number theory
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Perspectives of interaction of modern number theory and quantum theory

Vafa (2000) ’In some sense quantum theory is a bending of physics towards number theory.

However, deep facts of number theory play no role in questions of quantum mechanics...

I predict that in the next century we will witness deep applications of number theory in
fundamental physics ...

I would think that quantum mechanics will be completely reformulated and that number theory
will play a key role in this reformulation’

Belousov (2021) ’Number theory is connected to all other fields – and yet almost none of the
related advances utilized in Physics.

Number theory is not even taught to physicists!

While in many cases related to quantum mechanics & computations – it is perhaps a simpler
language to use.’
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Problems with foundations of quantum theory

The divorce between math and physics actually had happened in foundations of quantum theory
100 years ago.

Quantum theory has enormous conceptual problems in its standard formulation that used 100–70
years old mathematics.

These problems are typically ignored by modern physicists.

Unfortunately, most of mathematics of the last 70 years is typically not known to quantum
experts.
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Problems with foundations of quantum theory

There are many alternative interpretations of quantum theory:

◦ The standard Copenhagen interpretation: the state collapses as soon as its degree of
macroscopicity becomes so large that we are no longer able to measure the phase between the
two terms of the superposition.

The measurement process: the quantum object becomes entangled with the macroscopic
measurement apparatus and, subsequently, with the experimentalist.

The instrumental interpretation of quantum theory that denies the possibility of talking about
systems without reference to an external observer.

A ’thing’ becomes simply a result of a measurement, physical statements represent our knowledge
of events rather than events themselves.

At which point does the superposition collapse into a set of probabilities, a subjective
phenomenon that only seems to happen when the observer becomes a part of the superposition.
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Problems with foundations of quantum theory

◦ Many-worlds interpretation

◦ Hidden variables interpretation to deal with assumed incompleteness of the quantum theory
formalism

Frauchiger–Renner: ’Quantum theory cannot consistently describe the use of itself’
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Problems with foundations of quantum theory

Classical theory (quantities are real valued) −→ a quantisation of it,

but why should quantum quantities be real valued?

Why should quantum probabilities be in [0,1]⊂ R?

Standard mathematics description of quantum theory assumes certain properties of space and/or
time but the Planck scale hints otherwise!
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Real numbers and physics

Gisin: ’Real non-rational numbers have no periodicity in their infinitely many decimal digits, but
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Intuitionistic math and physics

Relevance of intuitionistic mathematics for physics
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Topos theoretical approach to quantum theory

Non-locality and contextuality (Bell, Kochen–Specker) — these features of quantum mechanics
are used to obtain quantum advantage over classical computational models in quantum
computing.

Non-Boolean logic in quantum theory

Isham–Döring’s topos theoretical approach to quantum theory

builds locally on (the topos of presheaves of) commutative (hence classical) sub-algebras of

the algebra of all bounded operators on the quantum theory’s Hilbert space.
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Topos theoretical approach to quantum theory

Using topos theory leads to a reformulation of quantum theory which in several aspects looks like
classical physics,

propositions can be given truth values without using concepts of measurement or external
observer,

and the logic can be non-Boolean

Topos theory looks in several aspects like sets theory.

A topos has an internal logical structure that is similar to the way in which Boolean algebra arises
in set theory, but instead of two truth values 1 and 0, goes outside Boolean logic with truth
values are in a larger set.

Topos theory is a math theory that can ’speak’ of indeterminism.
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Categories and quantum theory

Toposes

There are various theories, somewhere between mathematics and physics, such as string theory or
topological quantum field theory or functional quantum field theory, which use categories.

They are not discussed in this talk.
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The use of categories in modern mathematics

Categories formalise certain structures and conceptual frameworks which show up, in different
incarnations, in math areas of

◦ algebraic topology
◦ homological algebra
◦ various cohomology theories including étale cohomology
◦ various kinds of geometry, including derived algebraic geometry
◦ algebraic K -theory
◦ motives and motivic cohomology
◦ higher class field theory
◦ higher adelic theory
◦ representation theory
◦ geometric Langlands correspondences
◦ anabelian geometry
◦ IUT

Categories is not just a language, it is a new conceptual vision
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Categories

In the 1940s Eilenberg and Mac Lane developed category theory to provide clearer structural
approach to algebraic topology and to build bridges between algebra and topology.

Since the mid 1950s Grothendieck further developed category theory and its applications in
numerous directions.
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Categorical description of sets

Lawvere, 1958: ’I liked experimental physics but did not appreciate the imprecise reasoning in
some theoretical courses ... So I decided to study mathematics first ... Categories would clearly
be important for simplifying the foundations of continuum physics’
The elementary theory of the category of sets by Lawvere is an axiomatic formulation of set
theory in a category-theoretic spirit.

Lawvere was interested in set theory not be based on membership but on isomorphism-invariant
structure and universal mapping properties

He provided a purely categorical description for the category of sets.
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Toposes

The notion of topos was introduced in the early sixties by Grothendieck with the original first aim
of bringing a topological or geometric intuition also in parts of number theory where actual
topological spaces do not occur.

Grothendieck invented topos theory as part of his approach to prove the Weil conjectures in
number theory.

He realised that many important properties of topological spaces X can be naturally formulated
as properties of the categories Sh(X ) of sheaves of sets on the spaces.

At the same time, X → Sh(X ) is an embedding of continuous structures into categories which are
discrete structures.
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Toposes
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Toposes

The crucial unifying notion of topos is to provide the common geometric intuition for many areas
of mathematics and to connect continuous with discrete.

L. Lafforgue: ’The common house of the continuous and the discrete is topos theory’

Grothendieck: ’We can consider that the new geometry is, above all, a synthesis between these
two worlds, which until then had been adjoining and closely interdependent, but yet separate: the
"arithmetic" world, in which "spaces" without a principle of continuity live, and the world of
continuous quantity. In the new vision, these two formerly separate worlds become one.’
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Toposes

Grothendieck introduced an abstract notion of covering replacing the topological space X by

a site (C ,J) consisting of a (small) category C and a Grothendieck’s topology (a generalized
notion of covering) J on it.

A Grothendieck topos is any category equivalent to the category of sheaves on a site.

A topos has various features similar to the category of sets.

However, unlike sets, the law of excluded middle does not need to hold in a topos.

Statements about a topos are not necessarily either true or false, they can be true somewhere and
false somewhere.

Somehow similar to a quantisation of a classical physical theory, constructions in topos theory can
often be understood by looking at them in the category of sets or geometrical categories first and
then lifting to the general case.
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Toposes

Definition. An elementary topos (or topos) is a category with finite limits and colimits,
exponentials, and a subobject classifier.

In particular, topos has

◦ an initial object (in Set, corresponding to all subsets of a given set, this is the empty set),

◦ a terminal object (in Set this is the ambient set),

◦ products (in Set this is the Cartesian product of two sets) and

◦ coproducts (in Set this is the disjoint union of two sets).

In particular, in topos for every two objects A and B there is an object BA

(in Set this is the set of maps from A to B).

The subject classifier C in Set is the two element set {1,0} corresponding to true and false.

In an arbitrary topos, subobjects of A correspond to morphisms from A to C .
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In particular, in topos for every two objects A and B there is an object BA

(in Set this is the set of maps from A to B).

The subject classifier C in Set is the two element set {1,0} corresponding to true and false.

In an arbitrary topos, subobjects of A correspond to morphisms from A to C .
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Toposes

Examples of an elementary topos:

◦ Set corresponding to all subsets of a fixed set

◦ K -Set corresponding to all subsets of a given set with an action of a group K

◦ Topos of sheaves on a topological space (in the first approximation, think of functions on open
subsets, appropriately glued), for example:

the sheaf of regular functions on a variety

the sheaf of differentiable functions on a differentiable manifold

the sheaf of holomorphic functions on a complex manifold

the sheaf of continuous real-valued functions on any topological space
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Toposes

More examples:

◦ Topos of presheaves on an arbitrary category C , i.e. the topos of contravariant functors from C
to Set, where morphisms are natural transformations between the functors.

◦ Topos of sets living in time: objects are sets A(t) for any time t in the studied interval and
maps are A(t1)→ A(t2) for t1 6 t2.

Lawvere describes objects in a topos as continuously variable sets while classical set theory treats
the special case of constant sets.
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Toposes

Each Grothendieck topos is an elementary topos, but the converse property is false: e.g. the
category of finite sets, and the category of finite K -sets is an elementary topos but not a
Grothendieck topos.

The natural notion of morphism in topos theory is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric transformation.

A global point of a topos T is defined as a geometric morphism from the topos Set to the topos
T .

There are toposes which do not have global points.

The non-existence of classical explanations for quantum phenomena somehow corresponds to the
non-existence of global points/sections.
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Topos-theoretical approach to quantum theory

Isham–Döring’s topos theoretical approach to quantum theory
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Advances in topos theory

Caramello’s recent theory of topos-theoretic ’bridges’, which is a general theory of relations
between the contents of different mathematical theories.

It uses topos theory to relate and unify mathematics theories and construct ’bridges’ between
them.
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Advances in topos theory

The work of O. Caramello and L. Lafforgue in using topos theory in various directions

https://www.oliviacaramello.com/Papers/Papers.htm

https://www.laurentlafforgue.org/publications.html

Applying topos theory in computer science

https://aroundtoposes.com/toposesonline/

New Grothendieck Institute: https://igrothendieck.org/
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Toposes and étale objects in arithmetic geometry

No quantities show up in category theory and topos theory.

What matters is the form of a category and its structure.

The notion of a geometric morphism in topos theory has allowed to build general cohomology
theories which cannot be otherwise produced.

The Grothendieck definition of étale sites, étale fundamental group and étale cohomology use
toposes.

For any geometrically integral (quasi-compact) scheme X over a perfect field k one has its étale
fundamental group π1(X ).
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Anabelian geometry

Example. If C is a complex irreducible smooth projective curve minus a finite set of its points,
over an algebraically closed field of char 0, then π1(C) is isomorphic to the profinite completion of
the topological fundamental group of the Riemann surface associated to C .

A hyperbolic curve C over a field k of characteristic zero is a smooth projective geometrically
connected curve of genus g minus r points such that the Euler characteristic 2−2g− r is negative.

The étale fundamental group of a hyperbolic curve is highly nonabelian, its centre is trivial.

Question 1 (Grothendieck). Are hyperbolic curves over number fields anabelian, i.e. can one
restore the curve from its étale fundamental group?

A partial case of Q1 was positively answered by A. Tamagawa and then by S. Mochizuki in the
general case.

So, unlike the general case of affine smooth varieties over fields which are determined by their
ring (two operations) of functions, associated to polynomial equations defining the variety,
anabelian curves over number fields are determined by their group (one operation) π1.
This is why anabelian geometry is so powerful.
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Anabelian geometry

A point x in X (k), i.e. a morphism Spec(k)−→ X , determines, in a functorial way, a continuous
section Gk −→ π1(X ) (well-defined up to composition with an inner automorphism) of the
surjective map π1(X )−→ Gk .

Question 2 (Grothendieck). The section conjecture asks if, for a geometrically connected smooth
projective curve X over k, of genus > 1, the map from rational points X (k) to the set of
conjugacy classes of sections, x 7→Dx = Stab(x), is surjective (injectivity was already known).

Q2 is still unanswered, but various other similar conjectures such as a combinatorial section
conjecture are established by S. Mochizuki and his collaborators.
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Stabiliser formalism in quantum computing

One of the key issues for quantum algorithms is whether they can run in polynomial time, instead
of exponential time. Controlling loss of information/error correction is crucial.

In quantum error correction one uses stabiliser groups in finite dimensional complex spaces.

A map
s 7→Ds

from quantum states s in a 2n-dimensional vector space over C to their stabiliser group Ds

(unitary matrices acting trivially on s) is injective.

However, Ds has too many generators (about 4n).

Calderbank-Rains-Shor-Sloane, Gottesman, Aaronson-Gottesman (2008) considered the
intersection Ds ∩Pn.

Here Pn is the group of n-qubit Pauli operators: all tensor products of n Pauli matrices(
1 0
0 1

) (
0 1
1 0

) (
0 −i
i 0

) (
1 0
0 −1

)
and their scalar products with roots of order 4, |Pn|= 4n+1.

This intersection Ds ∩Pn has a much smaller number of generators.
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Quantum computing

It is easy to show that on the subset of quantum states that are stabilised by exactly 2n elements
of Pn the map

s 7→Ds ∩Pn

is still injective.

This subset is further characterised as obtained from |0〉⊗n by CNOT, Hadamard, phase gates
only.
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Injectivity of section map

Recently, Hoshi, Mochizuki and Tsujimura in their work on the Grothendieck–Teichmueller group
obtained further results about the injectivity of the section map

x 7→Dx ∩GL

from closed points x of hyperbolic curves over number fields to (conjugacy classes of) the
intersection of their stabiliser groups (decomposition groups) with the absolute Galois group of
various infinite extensions L of the number field k.

Note the similarity with quantum stabiliser theory in quantum computing
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Section map in arithmetic geometry

The variety of decomposition groups and absolute Galois groups in number theory is much larger
than just the Clifford group (the group of unitary matrices that normalise Pn) and Pn in quantum
computing.

One perspective is to investigate whether analogues of the decomposition groups and absolute
Galois groups in arithmetic geometry will provide new classes of groups useful for quantum
computing.

This may allow to go beyond the Clifford ground in quantum computing, an important open
challenge in quantum computing.

At the same time, there is a substantial difference between profinite decomposition groups and
discrete stabiliser groups in quantum computing: the centre of the former is trivial while the
centre of Clifford group is infinite but its quotient group by its centre is finite.

However, when one works with those arithmetic stabiliser groups, often one considers them as the
projective limit of their quotients which are extensions of a finite group by infinite abelian and
such quotients modulo their centre are finite groups as well.

In quantum communication, quantum entanglement and violations of Bell’s inequality is about
elements of the tensor product which are not tensors themselves.

So far quantum computing has not used mathematics of the last 50 years.
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IUT papers
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IUT papers

For surveys of IUT see

The mathematics of mutually alien copies: from gaussian integrals to inter-universal Teichmüller
theory, Inter-universal Teichmüller Theory Summit 2016,RIMS Kokyuroku Bessatsu B84, Res.
Inst. Math. Sci. (RIMS), Kyoto (2021) 23-192, by Shinichi Mochizuki

On the essential logical structure of inter-universal Teichmüller theory in terms of logical ‘and’
logical ‘or’ relations: Report on the occasion of the publication of the four main papers on
inter-universal Teichmüller theory, by Shinichi Mochizuki

Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta
functions, notes on the work of Shinichi Mochizuki, Europ. J. Math. (2015) 1:405-440, by Ivan
Fesenko

Fukugen, in Inference: International Review of Science 2 no. 3 (2016), by Ivan Fesenko

Talk on the IUT theory of Shinichi Mochizuki, by Ivan Fesenko

Introduction to inter-universal Teichmüller theory (in Japanese), by Yuichiro Hoshi

Introduction to inter-universal Teichmüller theory, continued (in Japanese), by Yuichiro Hoshi

More general public talks and books

2019 Book on IUT, Mathematics that bridges universes (in Japanese), by Fumiharu Kato

Video of public lecture on IUT (in Japanese with English subtitles), by Fumiharu Kato
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https://www.youtube.com/watch?v=fNS7N04DLAQ
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EE-IUT paper

For every two coprime (i.e. no common prime divisors) positive integer numbers a,b

log(ab(a+b)) < 6 log rad(ab(a+b)) if log(ab(a+b)) > 1.7 ·1030

where the radical rad of a number is the product of all distinct prime numbers dividing it.

For example, this effective abc inequality implies that for all sufficiently large m the number
2m +3m is divisible by (effectively computable) large prime numbers whose power in the
factorisation of 2m +3m does not exceed 5. This is a new way to find very large prime numbers.
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On IUT on two pages

Algebraic geometry involves locally the correspondence between affine varieties and commutative
rings.

Anabelian geometry for hyperbolic curves over number fields and other fields is a correspondence
between these geometric objects and their arithmetic fundamental groups (or slightly more
complicated objects).

Fundamental groups are highly non-commutative, but they have one algebraic operation, not two.
This opens the perspective to try to perform deformations of these geometric objects not seen by
algebraic geometry, using the fact that there are more maps, group homomorphisms and variations
of those between topological groups in comparison to morphisms between commutative rings.

However, important associated diagrams are not commutative.

The main contribution of Mochizuki in the IUT theory for certain hyperbolic curves (e.g. an
elliptic curve minus a point) is a new fundamental understanding of how to bound from above the
deviation from commutativity of certain crucial diagrammes.
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On IUT on two pages

IUT is a certain categorical monoidal geometry with few commutative diagrams but tools to
measure their deviations from commutativity in certain situations which results in the new
arithmetic deformation theory that is entirely unavailable via the standard arithmetic geometry.

IUT works with deformations of multiplication.

These deformations are not compatible with ring structure.

Deformations are coded in theta-links between theatres which are certain systems of categories
associated to an elliptic curve over a number field.

Ring structures do not pass through theta-links.

Galois and fundamental groups (groups of symmetries of rings) do pass.

To restore certain rings from some groups that pass through a theta-link one uses anabelian
geometry results about number fields and hyperbolic curves over them.

IUT is a non-linear theory which addresses such fundamental aspects as to which extent the
multiplication and addition cannot be separated from one another.
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Similarities between IUT and quantum theory

There are many similarities.

1. An illustration of graphene hexagonal lattices during a talk at the Opening Event of the new
Molecular Beam Epitaxy Facility for the growth of graphene and boron nitride layers has some
similarities is interesting from the point of view of depicting such important aspects of IUT as
symmetry, synchronisation, and the role of the number 6.

In IUT, multiplication and addition, which are related to geometric and arithmetic symmetries,
play a central role. These two dimensions are reminiscent of the two parameters, one of which is
related to electricity, the other to magnetism, employed in the study of layers of hexagonal
lattices.

2. In mono-anabelian geometry and IUT one algorithmically reconstructs objects (fukugen) from
étale fundamental groups.

IUT produces upper bounds on change of relevant data passing through the theta-link, using the
action of étale fundamental groups which pass through the link unaffected.

Using appropriate group action on a flow of information, to control its loss, is useful in quantum
computing.
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Similarities between IUT and quantum theory

3. IUT works with two types of topological monoid/group/ring structures: étale-like (coming
from groups of symmetries) and frobenius-like (coming from ‘ordered’ objects) and then use
various interactions and connections between these two structures. One of such connections is
given by a generalised Kummer map.

From a certain perspective, the analogues of these two new math structures are waves and
particles in quantum mechanics.

Interaction of frobenius-like and étale-like structures via the Kummer map in IUT may be
sometimes viewed a little analogous to the relation between particles and waves in quantum
mechanics.

4. The fact that in IUT it is only when one obtains a formal subquotient that forms a ‘closed
loop’ then one may pass from subquotient to a set-theoretic subquotient by taking the log-volume
is a little similar to a measurement of a quantum system with the wave function collapse.

5. One of the key issues for quantum algorithms is whether they can run in polynomial time,
instead of exponential time. The aspect of reducing exponential to polynomial is crucial for IUT.
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